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Abstract

In planning a proof, a student searches through a space of inferences leading forward
from the givens of the problem and backward from the to-be-proven statement. One
dimension of growth of expertise is that students become more tuned in the search of this
problem space. This can be shown to result from the application of various learning
operators to production embodiments of the inference rules. Rules are.evaluated after the
solution of a problem according to whether they led to or led away from the solution. Rules
that contributed to a solution are strengthened and an attempt is made to formulate
general versions of these rules that wil! apply in other situations. Rules that led away from
the solution are weakened and a discrimination process is evoked to try to add features to
the rules that will try to restrict them to the correct circumstances of application.
Composition is a learning process that collapses successful sequences of rule operations
into single macro-rule productions. There is also a process that converts the backward
reasoning rules formed by composition into forward reasoning rules. The effect of these
learning processes is to put into production condition tests for problem features that are
heuristically predictive of the rule’s success.
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all the proposals put forth. The research descrited in this report was supported by contract NOOO14-
78-C-0725 from the Office of Navai Research and is currenily being supported by IST80-15357 from
the National Science Foundation. | would like to thank Gary Bradshaw and Matt Lewis for their
comments on the paper.



| have been involved in research (Anderson, Greeno, Kline, & Neves, 1981; Neves & Anderson,
1981) to characterize the organization of various proof skills possessed by high school students in
geometry and to identify how these proof skills are acquired. In this paper | will concentrate on the
skill involved in planning a proof to a geometry problem and, in particular, how the search for such a
plan improves with practice. The direct goal in this research is to provide an accurate psychological
model of how high school students learn to do geometry problems by doing geometry problems. A
perhaps-not-incidental by-product is a set of ideas for how learning mechanisms might be used to

guide problem-solving. A// ‘/’/)IS }’CSCBKGA Is Oloﬂc in the CCW‘/CX’/ 075
geners | production sysdem simulston of humap cognitron cz//ea/ ACT
Organization of the Task and the Skill

The planning process we are trying to model is how students find a sequence of legal deductions
that allow them to derive a to-be-proven statement from the givens. Figure 1 illustrates a triangle
congruence problem which is sinple but nonetheless is challenging for the just beginning student. It
is taken from the textbook we have been studying (Jurgensen, Donnelly, Maier, & Rising, 1975).
Figure 2 illustrates the attempt of one of our subjects to solve thié problem. First he tried to use the
SSS method which worked on the previous problem. However, he noted that there seemed no way to
get RJ ¥ RK and turned to side- angle-side. He |mmed|ately saw JS = KS would provide one side and
RS 2 RS another side. He had a little difficulty seeing the included angle. His protocol at the critical
'point (after identifying the two congruent segments) reads "But where would /1 and £2 are right
angles comein . .. Oh, | see how they work.” This evidence, consistent with the rest of the protocol,
shows that he did not see that right angles implied angle congruence until he needed angle
congruence for the SAS postulate. At this point his' plan was complete. He had some difficulty
converting it into a legal two column proof (e.g., remembering that the reason that j‘ustified?ig YRS

was called the "reflexive property of congruence") but there was no more planning in his protocol.

Figure 2 illustrates in simple form the backward search that is typical of novices in geometry and
other domains (Larkin, McDermott, Simon, & Simon, 1980). Our simulation program plans in part by
generating such a planning tree. In this tree there are disjunctions of methods to accomplish a goal
(e.g., eit'her SSS or SAS to prove triangle congruence) and each method can break down into a

conjunction of subgoals (i.e., two sides and an included angle). Novices and our simulation (with a
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Figure 1

Given: /1 and /2 are right
' angles
Prove: ARSJ 2 ARSK




Figure 2

GOAL: ARSJ 27aRSK

N

METHOD: SSS METHQD: SAS

GOAL: RS 9’% GOAL: JS T KS GOAL:RK® RJ GOAL: /1% /2

L ~ |

REASON: reflexivity REASON: Given REASON: right angles



novice knowledge base) tend to search such a proof tree in a depth-first manner.

In more experienced students one sees forward inference from the givens; For instance, in problem
1 a student with some experience would likely recognize that /1 and /2 are congruent before he had
conscioUsly chosen the side-angle-side method. Potentially, geometry problems could be solved by
pure forward search, but mény potential forward inferences (e.g., those authorized by the reflexive
rule) would be wasted. Optimal perf‘ormance will arise from a mixture of forward and backward
search. Figure 3 gives a problem that nicely illustrates the trade-off between forward and backward
search. The majority of the subjects we have looked at in solving this problem (all at some
intermediate level of skill) first reasoned forward to the inference the AAMC 2 ABMD without knowing
how they would use the fact. Then they worked backward to a proof plan that involved this forward

inference. Our simulation at one setting did the same (see Anderson et al., 1981 for details).

It has been documented in other domains such as physics (Larkin, McDermott, Simon, & Simon,
1980) that the proportion of backward search decreases and ‘the proportion of forward search
increases with expertise. In our simulation the amount of forward inference dépends on the existence
of production rules that will make the forward inferences, on their strength, and whether various tests
on their applicability are met. It is typical of our éimulation that it will generate some set of forward
inferences and then settle into a backward reasoning mode to complete the proof plan. This also
seems typical of students who frequently start off marking some set of forward inferences on the
diagram. Forward inferences tend to precede backward inferences in our simulation because they

require less coordination and can therefore be more quickly executed.

It is clear that either in forward or backward inference mode, there is a serious search problem for
students. In forward inference mode one wants to only make those inferences that will play an
essential role in the final proof. In backward inference mode one wants to pursue only those methods
that lead to success. Neither our students nor the simulation are always successful in their search.
However, it seems clear that one dimension of expertise is the ability to make more judicious
decisions about the paths to search. The main focus of this paper is how that expertise is' gained. (If

Crezfe the expersience of Search
the reader would like a problem likely to nﬁse-eeapehﬂmbieme}‘for his level of expertise, | suggest he



Figure 3

GIVEN: M is the midpoint of AB and CD
PROVE: M is the midpoint of EF



Figure 4
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Prove: m/BFC = 90°



consider solving the problem in Figure 4.)

The central theses of this paper are that there are certain features of a problem that are predictive
of the success of a particular inference pathe and that the student learns the correlations (through
proving problems). Some correlations between problem features and inference rules are logically
determined. So, for instance, a student will learn that if he is trying to prove two triangles congruent
and they both involve right angles, ii is likely that he should try a right angle postulate. Other
correlations between problem features and inference rules reflect more about biases in problem
construction than any logical necessity. So, for instance, a student learns that if he sees a triangle
that looks as if it is isosceles, it is likely that he will want to prove that it is isosceles. Whatever the
reason for t‘he correlation between features and inference methods, the student can use these
feature-method correlations as heuristics to guide search. This paper is concerned with methods that

can discover and exploit these correlations.

It is the character of heuristics that they should not always work and that it is possible to create
problems that will violate these heuristics and which will, as a consequence, c.reate difficulties. Figure
Sillustrates such a problem which occurred in the textbook we were using. The pfoblem appears as
an exercise immediatelly after the section that présents the hy'potenuse-leg postulate for right-angle
triangles. The majority of the subjects we have given this problem to report reasoning from the fact
that /H and /K dre complementary to the fact that /A is a right angle. Then they can apply the
hypotenuse;leg theorem. However, a simpler proof exists by simply noting the two triangles share /K
and then applying the side-angle-side proof. However, subjects are led by vari.ous heuristics such as
(1) Problems tend to use the postulates introduced in the section; (2) If right-angles are mentioned
and it is a triangle congruence problem, use a right-angle postulate; (3) Use all the givens in a
problem. Students are generally not instructed as to such heuristics; they have picked them up by

example.

Learning Mechanisms

I will discuss six methods for using the experience of past problems to improve search on current

problems. We have worked on each method in our computer simulation and have reason for believing



Figure 5

GIVEN: /GBK is aright /
/His comp to /K
- n—
AK = BK
GK = HK
PROVE: AGBK = AHAK




that each is found in high school students. The first, analogy to prior problems, is somewhat distinct
from the rest and will therefore be treated separately. The other five are principles concerned with
extracting general and reliable rules from examples. They are the principles of rule evaluation,
generalization, discrimination, composition, and forward inference formation. These last five make
critical use of the production system architecture in which the simulation is implemented. The first,

analogy, does not.

Analogy

Despite the fact that its role is somewhat singular in our theory, our protocols are rich in evidence of
successful problem-solving by analogy and many more attempts to use analogy. In the theory,
analogy involves two processes. First, there is the noticing of the similarity between the specifications
of a current problem and the specifications of a previous problem. Second, an attempt is made to
map the solution to the brevious similar problem to the current problem. The first process in our
protocol is sufficiently rapid that it cannot be decomposed into substeps. A student will typically
simply announce after reading the problem--"This is similar to Problem X." We have not been able to
identify any instances where this Problem X occurred any earlier than in the previous day’§ lesson.
So, there appears to be important memory limitations to the range of similarity noticing in analogy

process.

We have implemented a partial graph matching process to model this similarity noticing. This
partial matching process is also used in our work on generalization. The basic idea is an attempt to
identify subgraphs on which the problems overlap. An early version of this is described in Anderson,
Kline, and Beasley (1979, 1980) and a more advanced version by Kline (19xx). The ideas are

variations on techniques suggested by Hayes-Roth and McDermott (1976) and Vere (1977).

Such a similarity detection mechanism is very much influenced by how the problems are
represented. Consider Figure 6. In term§ of many features such as shape and orientation, problems
(a) and (c) are more similar than (a) and (b). However, it turns out that the more profitable similarities
exist between (a) and (b). Many of the unsuccessful attempts to use analogy in our protocols can be

accounted for by subjects being distracted by such superficial similarities.
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Figure 6

(a)

Given: AE = EC
| [BEA = /BEC
Prove: AABD = ACBD

Om—

Given: QN = OR
[QNO = [RoN
MN = OP

Prove: AMQO = APRN

(c) 5 L
Given: rg= gE

NN\ [BEF = /BEG
| AB IIFE
- BC I EG

A F D G C Prove: AABD = ACBD
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In contrast to the r.apid similarity-detection, the efforts to map a proof from one problem to another
are quite long and definitely analyzable into substeps. It seems that the student has transformed his
initial problem spaée into a new problem space of finding the mapping. We have not in our simulation
work modelled this mapping process systematically. Figure 7 illustrates one of the more strikving
exarhples of failure of the mapping. The studen; noted the similarity between the twb problems and
proceeded to copy the proof to one problem over to the other. The first line for part (a) read RO = NY
so analogously he wrote AB > CD for part (b). The second line fvor part (a) read ON = ON so
analogously he wroté BC > BC for part (b)! His semantic sensibilities deteéted the problem; he

abandoned the attempt to use the analogy; and proceeded to solve part (b) on its own.

While these two examples illustrate analogy by showing how it can fail, it is clear that it succeeds
.more often than not. One major problem with it is that it does not provide any permanent benefit as
seen by the fact that all analogies are to problems encountered iﬁ the current or previous day. It may
be that formulating analogies causes more permanent operators to be formed. The generalization
process that will be described could apply after solution by analogy although solution by analogy is

not a pre-requisite to generalization.

Rule Evaluétion

The core of our simulation is a set of production rules for making forward and backward inferences.
Below | illustrate, in informal syntax, pr‘oductions embodying the SAS rule for forward and backward
inference.

IFYY":QV, YZ ¥ VW, and /XYZ = JUVW
THEN axyz ¥ suvw

ne

IF the goal is to prove AXYZ = AUVW

THEN set as subgoals to prove XY '?-'UV, N7 —VVV_ and /XYZ ~ JUVW
Other more elaborate production embodiménts of these rules are also possible. The simulation keeps
a record of the rules it zpplied in working on a problem. By comparing this record with the final procf
plan it can determine which choices of proof method in working backwards were successful and
which were mistakes. A little care is required here_: Suppose a goal is set to prove two angles

congruent by showing they are corresponding parts of congruent triangles. Suppose, all methods



Figure 7

(.o)

Given: RO=NY, RONY
- Prove:RN=0Y
RO = NY
~ ON=ON
RO+ON=ON+NY
RONY
'RO+ON =RN
ON+ NY =0Y
RN =0Y
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(b)

Given: AB>CD, ABCD
Prove: AC>BD

AB 2CD
BC <BC
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tried for proving congruent triangles fail and the angle congruence is eventually proven by resorting
to supplementary angle postulate. The mistake is not in the methods attempted for proving the
triangles congruent rather the mistake was in setting the subgoal of triangle congruence. Forward

inferences can be classified as successful if they figure in the final proof and as mistaken otherwise.

Success and error classifications are used by the learning mechanisms to be described shortly, but
it is also used to simply strengthen or weaken the rules responsible for the decisions. The
mechanisms for strengthening and weakening a production and the impact of production strength on
conflict }esolution has been described elsewhere (Anderson, Kline, & Beasley, 1979). However, it is
important to note that disastrous results will not occur if a bad rule is formulated since the strength
evaluation mechanism will separate out successful from unsuccessful rules and eventually only the
former will be selected in conflict resolution. This means that we do not have to be concerned that

the learning mechanisms always be correct in the production rules they formulate.

Generalization

Generalization attempts to extract common features of two instances and successfully apply the
same inference method. This is done by testing for similarity between the problem descriptions
before the rule of inference applies. Consider problems (a) and (b) of Figure 6. In both cases, the
initial step involves setting as a subgoal to prove congruent triangles that overlap with the to-be-
proven-congruent triangles. The representation of the state of knowledge for problem (a) at the point

of setting this subgoal might involve the following clauses:
1. The goal is to prove AABD '-'—-, ACBD

2. AABD contains AAEB
3. ACBD contains ACEB
4. AEZEC

5. /BEA T /CEA

6. Bisat top

7. AABC contains AABD

8. AABC contains ACBD
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Similarly, the state of knowledge for problem (b) when this subgoal is set might be:

1. The goal is to prove AMQO 2 APRN
2. AMQO contains ANQO

3. APRN contains AORN

4. NQ ¥ OR |

5. /QNO T /RON

—

6. MPisa horizbntal line at the base

7. Qis at the top

8. Ris at thetop

These two states of knowledge can be generalized by extracting what they have in common. This
generalized situation can be assigned the common action of subgoal proof of the contained triangles
by the 'production:

IF the goal is to prove AXYZ T AUVW

and AXYZ contains ASYZ

and AUVW contains ATVW

and SY £ TV

and /YSZ = /VTW "
THEN set as a subgoal to prove ASYZ = ATVW
' The extraction of such similarities is described in Anderson, Kline, and Beasley (1880) and Anderson
and Kline (1979) and is similar to ideas proposed earlier by Hayes-Roth and McDermott (1976) and by
Vere (1977). As noted earlier, generalization involves the same mechanisms used in similarity
detection for analogy. The above example illustrates how it might be used to extract from examples
the principle of chaining the goal of proving triangle congruence to a subgoal of proving the triangle
congruence of overlapping triangles. Note that the generalization preserves features specific to the

two examples that are predictive of the method's success--namely, that parts of the overlapping

triangles are congruent.

The evidence is quite clear that subjects do extract from examples methods that work cver a class
of examples containing features. The overlapping triangles rule above is one although it usually

appears to be more general in that problem solvers will try to chain to overlapping triangles whenever
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they contain one or two congruent pieces--not a specific side and angle. A more general production
such as this could derive from the one above by further generalization (with appropriate

representational assumptions).

Although students do have these general rules without a doubt; it is unclear that they emerge by the
generalization mechanissm.suggested above. As an alternative, they might derive by a retrospectivé
analysisAof a single problem rather than a generalization between two. Our protocol data cannot
inform us on this issue and we ére tooling up to do the right kinds of controlled experiments. Work on
extraction’ of object categories (Anderson & Kline, 1979; Elio & Anderson,_1981) has provided good

evidence for a generalization process in that domain.

Discrimination

The initial rules that a system has comes from mofe-or-l'ess direct encodings of postulates. So, for
instance, the SSS postulate can lead to a rule of the form

IF the goal is to prove AXYZ = AUVW
THEN set as subgoals to prove XY ¥ UV Yz ¥ VW and ZX WU

The problem with such productions is that their conditions are too general and do not lead to
selectivity of search. lt is also the case that the generalizatién process itself might produce overly
general productions. Overly general rules can be restricted with by a discrimination mechanism
. which compares successful and unsuccessful applications of a production, tries to determine the
features which distinguish the successful applications, and proposes.new productions derived frbm
the old but which contain these distinguishing features in their conditions. Again, the details of the
discrimination procedure have been described in Anderson and Kline (1979), Anderson, Kline, and

Beasley (1980) and | will simply describe here their application to the geometry domain.

Consider the represen/tation in Figure 2< of the student’s planning for the problem in Figure 1. After
completing this problem the learning program would identify tt e attempt to use SSS as a mistake ani
SAS as the correct rhethod. Comparing thié situation to the previous problem that was successfully
solved by SSS, the program would note that this problem differs only in the fact that right angles are

mentioned. Thus, it could propose the following discrimination:
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P1: IF the goal is to prove AXYZ Y AUVW
and AXYZ contains no right angles
and AUVW contains no right angles __

THEN set as subgoals to prove XY ‘= o uv, Yz MVW and ZX WU

The discriminating clauses are found by locating additional clauses in the data base that constrain the
variables. The above discrimination is probably too specific and should not be 'Iimited to right angles.
Through generalization with other productions that do not involve right angles, the no right angle

requirement could be replaced.by the requirement that no angles be mentioned.

It is also possible to form a discrimination of a different variety by embellishing the SAS rule to
encode what is distinctive about the current situation. This can lead to a production of the following

sort:
P2: IF the goal is to prove AXYZ 2 auvw
and AXYZ contains a right angle triangle /XYZ

and AUVW contains a right angle tr tnangle /UVW -
THEN set as goals to prove XY = g uv, YZ = VW, and AXYZ JUVW

This type of discrimination was not produced in our original ACT simulation but has proven useful in

some of our more recent, special purpose simulations (Anderson, 1981).

As in the case of generalization, the fact is ihdisputable that subjects form discriminations on their
original rules. Indeed, one subject articulated a rule essentially identical ‘to P1 after the history
illustrated in Figure 2. However, again as in the case of generalization, what is unclear is whether
these discriminations are achieved by the mechanisms described here. Again,Athat issue awaits more

detailed experimental research.

Composition

Neves and Anderson (1981), developing ideas put forth by Lewis (1978), applied a learning
mechanism called composition to proof generation in geometry. The basic idea behind the
composition mechanism is to package sequences of production steps into single operators. A
somewhat similar idea in the domain of logic proofs has been advanced by Smith (198x). Figure 8
illustrates one of the problems where we applied this mechanism. The first pass of this system over

the problem was accomplished by a sequence of five productions. The first production to apply in
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Figure 8

Given: AB
CAz=T
Prove: /A= /D

nm m
g &l
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solving this problem was:

P1: IF the goal is to prove /X £ /U
and /X is part of AXYZ
and /U is part of AUVW
THEN the subgoal is to prove AXYZ = 2 AUVW

This production would set as a subgoal to prove AABC = ADBC. At this point the following production

applied:

P2: IF the goal is to prove AXYZ Y AUVW
andW” w.
and ZX £ WU

THEN the subgoal is to prove YZ £ VW

—

This production, applied to the situation in Figure 8 set as the subgoal to prove-éz “Z BCasastepon

the way to using SSS. At this point the following production applied:

P3: - IF the goal is to prove XY < -)?Y-
"~ THEN this may be concluded by reflexivity

This production added-BE % BC and allowed the following production to apply:

P4: IF the oal is to prove AXYZ & auvw
and Y v
andYZ £ YZ2VW =W
and ZX £ WU

THEN the goal may be concluded by SSS

where XY = AB, UV = DB, YZ = BC, VW = BC, ZX = CA, and WU = CD. This adds the information
that AABC = aDBC. Finally, the following production applied which recognizes that the to-be-proven

conclusion is now established:

P5: IF the goal is to prove /X = /U
and AXYZ £ auvw-
THEN the goal may be concuded because of congruent parts of congruent triangles

The composition process, operating on this sequence, produced a single production that served as a

macro-operator:

P6: IF the goal is to prove /A < /D
and /A is part of AABC
and /Di /Dis part of ADBC
and AB = DB
and CA £DC
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THEN conclude AB 2 AB by reflexivity
and conclude AABC £ ADBC by SSS
and conclude the goal because of congruent parts of congruent triangles

AThe variables in this production have been named to correspond to the terms in Figure 8 for purposes
of readability. This production would immediately recognize the solution to a problem like that in
Figure 8. This composition is achieved basically by adding tpgether the conditions of the five original
productions and making them the condition of the composed production; adding together the actions
and making these the gction of the composed production, editing out the unnecessary or redundant

clauses in the composed production.

The detéils for the editing of the unnecessary clauses are given in Neves and Anderson (1981) but
basically they involve (a) eliminating clauses from the conditions of productions late in the sequence
which are satisfied by the actions of productions early in the sequence and (b) eliminating the setting
and testing of goals which are met in the sequence. With respect to (b) composition serves the effect

of collapsing several levels in the proof plan into a single level.

There is a question of when to evoke composition. The original implementation by Neves and
Anderson was. to use composition on any immediately contikuguous sequence of productions.
However, | think it more reasonable to have it apply to a se\qjuence of productions related by
manipulation of the same goals--as in the case just illustrated. These two definitions of production
sequence need not yield the same sequences in the ACT system. ltis quite possible for immediately

contiguous productions not to share similar goals.

Creation of Forward Inferences _

It is a feature of the composition production P6 that it summarizes what had been a multi-level goal
tree. The system had started with the goal of proving two angles congruent, set a subgoal of proving
two triangles congruent, set a subgoal of proving two sides congruent, and then proceeded to pop the
goals finally achieving tt.e highest level goal. It would be use ful to have this available as a forward
inference rule so that, should the situation appear again, the inferences can be made to embellish the
problem representation. This can be achieved by dropping the goal specification from P& (a similar

idea was proposed by Larkin, 1981). The resulting production would be:



P7: IF /Ais part AABC

and le part of ADBC

and AB = DB

and CA £ DC > BC

THEN conclude ABY AB by reflexivity

and conclude AABS ADBC by SSS

and conclude /A = /D because of congruent parts of
congruent triangles

It is interesting to note that this production makes a reflexive inference in forward mode. To have a
pure reflexive rule as a forward inference:
IFAB __
THEN AB £’ AB by reflexivity
would be a sheer disaster since it would complicate the problem representation with many useless
"inferences. However, cast as part of a larger operator as above it is a very profitable forward

inference.

To review, forward inferences can be made when composition creates a macro-operator which
achieves a stated goal by a sequence of inferences that previously had involved the embedding of
subgoals. The forward inference can be created from the composition by deleting the goal clause. It
is useful to understand why one would only want to drop goal clauses from the macro-operators
rather than the original working-backwards productions. The original productions are so little
constrained that the goal clauses provide important additional tests of applicability. After a macro-
operator is composed there are enough tests in the non-goal aspects of its condition to make it quite
likely that the inferences will be useful. Thatis, it is unlikely to be an accident that the conjunction of |

tests are satisfied.

We do not have any evidence for P6 or P7 as specific inference rules--probably because the pattern
in Figure 8 occurs but once in the textbook exercises. In contrast the pattern in Figure S or slight
variants of it occur quite frequently in the chapter. The problem in Figure 9 can be solved by the

following three productions.

P8: IF the goal |s__prove AXYZ £ AUVW
and XY £ UVand YZ £ VW
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Figure 9

GIVEN: AX = XB
CX = XD
AXB, CXD

PROVE: AAXC = ABXD
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THEN set as a subgoal to prove _/_XYZ': /UVW

Po: IF the goal is to prove /XYZ = [UYW
and XYW and OYZ~

THEN this can be concluded by vertical angles
P10: IF the goal i :s____p rove A AXYZ £ AUVW
and XY UV, YZ & VW and /XYZ = /UVW
THEN this can be concluded by SAS

Composing these three prodUctions toéether we get:

P11: IF the goal is to prove AXYZ € AUYW
and XY 2 OV and YZ £ YW
and XYW and UYZ

THEN conclude /XYZ £ [UYW by vertical angles
and conclude AXYZ 2’ AUYW by SAS

Deleting the goal clause we get the following forward inference:

P12: IF there are AXYZ and AUYW
XY ¥ UYand YZ £ YW
and XYW and UYZ
THEN conclude /XYZ ¥ /ZUYW by vertical angles
and AXYZ & aUYW by SAS

There is clear evidence for such a forward inference rule in some more advanced students. For them,

the pattern in Flgure 9 is something that will trigger the set of inferences even when it appears
Howevers

embedded in a larger problem. et we have poor evidence on . - - what the exact origins

. are of this forward inference rule.

Final Points

We have described a set of mechanisms that might plausibly account for the growth in expertise of
proof search. The mechanisms of generalization, discrimination, and compositiqn were shown to -
produce more tuned judgments in backward search--at least in specific cases. These mechanisms
could also be used to produce mofe tuned and powerful forward inference rules. The final learning
method involved dropping goal clauses of composed backward productions to create forward
reasoning productions. This serves to produce the frequent observation of a shift in search from
backward to forward inference with growth of expertise. There are certainly other aspects to learning
in problem solving besides this tuning of search, but this is an important aspect. The apparent ease
with which this tun'ing can be produced in a production system architecture is evidence for ‘that

architecture.
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There are two major issues that need to be pursued. One, as noted throughout the paper, is the
detailed empirical verification of these mechanisms. The second is a sufficiency proof of their
operation by simu‘lating a student’s course through a textbook. While we have worked up individual
examples of successful tuning by these learning mechanisms, we have not done the large scale
simulation to show that their cumulative effect .after hundreds of problems will match the degree of
tuning we see in the typical student. We intend to pursue this and | am reasonably optimistic given
that we have achieved success with such large-scale simulations of our learning mechanisms in the

domain of concept formation (Anderson & Kline, 1979) and syntax acquisition (Anderson, 1981).
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