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Abstract

Explicit information-seeking actions are needed to evaluate alternative actions in problem-solving
tasks. Information-seeking costs are often traded off against the utility of information. We present
three experiments that show how subjects adapt to the cost and information structures of environ-
ments in a map-navigation task. We found that subjects often stabilize at suboptimal levels of
performance. A Bayesian satisficing model (BSM) is proposed and implemented in the ACT-R
architecture to predict information-seeking behavior. The BSM uses a local decision rule and a
global Bayesian learning mechanism to decide when to stop seeking information. The model
matched the human data well, suggesting that adaptation to cost and information structures can
be achieved by a simple local decision rule. The local decision rule, however, often limits exploration
of the environment and leads to suboptimal performance. We propose that suboptimal performance
is an emergent property of the dynamic interactions between cognition and the environment.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a person deciding which route to take to go from one city to another. The per-
son may be seeking information about traffic conditions of various routes. Since each
information-seeking action takes time, tradeoffs are often made as exhaustive information
seeking may be too costly to be justified. The person may decide to stop seeking
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information when a reasonably good route is found, and he believes that the utility (i.e.,
usefulness) of checking the traffic condition of the next route is unlikely to justify the cost
of the next information-seeking action (Stigler, 1961). The problem of when to stop seeking
information is quite common. For example, doctors need to know when to stop perform-
ing diagnostic tests to decide on a treatment, as testing cannot be carried out indefinitely.
Similarly, chess players need to decide when to stop evaluating alternative moves as it is
almost impossible to evaluate all possible moves. These are but instances of a general deci-
sion problem, in which the decision-maker has to decide when to stop seeking information
by trading off the cost of information-seeking actions against the utility of the information
being sought. In the domain of Artificial Intelligence, numerous algorithms have been pro-
posed that optimize the solution path by minimizing search costs. Such algorithms, how-
ever, often require extensive computations that make them psychological implausible. The
goal of this article is to study the degree to which people are able to adapt their information
seeking to the cost-structure of their task environment; and to understand the circumstanc-
es under which this adaptation may plateau at suboptimal levels.

2. Information seeking as the interface between cognition and the environment

Most distal properties of the environment (such as the utility of information) cannot be
directly perceived (Brunswik, 1952; Fiedler, 2000). Rather, these distal properties have to
be inferred from proximal information obtained from dynamic interactions of the person
and the environment. Information-seeking actions can be considered a major form of these
cognitive-environment interactions, as the purpose of these information-seeking actions
is to obtain samples from the environment so that certain distal properties of the
environment can be inferred. Actions are then selected based on the person�s cognitive
representation of these distal properties. In the route-finding example above, each infor-
mation-seeking action allows the person to update his or her knowledge of the traffic
conditions of possible routes, which allows the person to make a better decision on which
route to take. The amount of information obtained therefore indirectly influences
performance. Ideally, perfect performance can be attained when the person has complete
knowledge of the environment. But in most situations, the information-seeking costs
prevent exhaustive search of information. In this article, we study the adaptiveness of this
kind of information-seeking behavior. In particular, we focus on how people are able to
tradeoff the cost against the utility of information adaptively. The tradeoff may not be
fully under the person�s cognitive control, and our goal is to characterize the cognitive
processes underlying the tradeoff. To preview our conclusions, we find that suboptimal
tradeoffs are often a natural consequence of the dynamic interactions between cognition
and the environment.

3. Tradeoffs between information-seeking costs and utility of information

In finding a fast route to another city, both costs and utility of information can be
cast in the dimension of time: information-seeking costs will be high when they take
more time, and information utility will be high when the information is able to lead
to a route that takes less time. One can then measure performance by the total costs
required to finish the task (the lower the cost the better the performance). The total costs
can be calculated as



W.-T. Fu, W.D. Gray / Cognitive Psychology 52 (2006) 195–242 197
Total costs ¼ Execution costsþ Information-Seeking costs.

To illustrate the tradeoff between execution and information-seeking costs, consider the
three episodes in Fig. 1. The lengths of the arrows represent the amount of time to finish
the task. Episode B shows how the task is finished without information seeking, hence the
information-seeking cost is zero and the total costs equal the execution costs. In episode A,
information was sought and the time spent in executing the information-seeking actions is
the information-seeking cost. Based on the information obtained, the execution costs are
much lower in episode A than in episode B. The difference in the execution costs between
episode A and episode B can be used as a measure of the utility of the information sought
in episode A. In this case, the utility of information is higher than the information-seeking
costs, and as a result, the total costs in episode A are lower. In other words, the informa-
tion obtained has led to performance improvement in episode A. On the other hand, it is
possible that additional information seeking does not always lead to the same reduction in
execution costs, as, for example, information obtained could be redundant. As a result,
too much information seeking may not be justified by the utility of information obtained.
This is the case in episode C, where the total costs are larger than that in both episode A
and episode B. The three episodes in Fig. 1 illustrate the point that optimal performance
depends critically on the decision on when to stop seeking information.

If we assume the simplistic view that each information-seeking action incurs a constant
cost, and each piece of information obtained reduces the execution cost required to finish a
task, we can calculate the relationship among the number of information-seeking actions
(n), the information-seeking costs (n * C), the execution costs (f (n)), and the total costs
(f(n) + n * C). As shown in Fig. 2, the positively sloped straight line represents the increase
of information-seeking costs with the number of information-seeking actions. The curve
f (n) represents the execution costs as a function of the number of information-seeking
actions. The function f (n) has the characteristic of diminishing return, so that more
information-seeking actions will lead to smaller savings per information-seeking action.
The U-shape curve is the total costs, which equals the sum of information-seeking costs
and execution costs. The U-shape curve implies that optimal performance is associated
with a moderate number of information-seeking actions. In other words, too much or
too little information seeking may lead to suboptimal performance. How are people able
to adapt to different numbers of information-seeking actions in different environments?
Episode A:
IS improves 
performance

IS actions

Time

Task 
finished

Episode B:
No IS

Episode C:
“Too much” IS

IS actionsactions IS

Time

Task 
finished

IS actions IS actions

actions

Time

Task 
finished

Execution Costs TE(A)

Utility = TE(B) – TE (A)

> IS costs

Execution Costs TE(B)

Fig. 1. Three problem-solving episodes showing how cost and utility of information are measured in the same
dimension. The current definitions of cost and utility of information are measured by time. (IS = information-
seeking actions.)
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Fig. 2. The relationship between information-seeking costs, execution costs, and total time spent to finish the
task. Execution costs (i.e., time to finish the task excluding all information-seeking costs) is represented as f (n), a
decreasing function of the number of information-seeking actions (n). Assuming a constant cost C for each
information-seeking action, total information-seeking costs increase linearly with the number of information-
seeking actions (i.e., total costs = n * C). The total time to finish the task is the sum of information-seeking costs
and execution costs. Optimal performance, defined as the minimum total time to finish the task, is thus associated
with a particular number of information-seeking actions. From the figure, it is clear that the optimal number of
information-seeking actions depends on both C and f (n).
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What are the cognitive processes underlying the adaptation? Before we present our
approach to answer these questions, we will first briefly review the relevant research on
information-seeking behavior.

3.1. Sensitivity to information-seeking costs

Information-seeking costs have been manipulated to study problem-solving processes
(Ballard, Hayhoe, & Pelz, 1995; Fu & Gray, 2000; Gray & Fu, 2004) and decision-making
processes (Beach & Mitchell, 1978; Payne, Bettman, & Johnson, 1993). In general, behav-
ior is found to be sensitive to even small changes in information-seeking costs. For exam-
ple, in the experiments by Ballard et al., subjects were asked to copy some configurations
of colored blocks presented on one computer screen to another computer screen. Ballard
et al. found fewer information-seeking actions when the cost of information seeking
increased from an eye-movement to a head-movement. Fu and Gray replicated and
extended the findings by manipulating the information-seeking costs by either a single
key press on the keyboard (low cost), a single mouse movement (medium cost), or a single
mouse movement and a 1-s lockout time (high cost). The results suggest that people are
sensitive to increases in information-seeking costs as low as 50 ms and as great as
1100 ms: people reduce the number of information-seeking actions when their costs are
increased.

Although previous research has shown that people are sensitive to information-seeking
costs, two questions remain unanswered by these studies. First, since only information-
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seeking costs were manipulated in these studies, the results were not sufficient to distin-
guish between the case where people simply minimized the information-seeking costs
and the case where people were trading off information-seeking costs against the utility
of information. To make this distinction, one needs to explicitly manipulate the utility
of information. If people are simply minimizing information-seeking costs, the level of
information seeking should not change when the utility of information is changed. On
the other hand, if people are engaged in tradeoffs, we should see a continuum in the num-
ber of information seeking actions when the utility of information is increased or
decreased for a given level of information-seeking cost. Second, it is still not clear whether
information-seeking behavior is truly adaptive in the sense that the increase or decrease of
information-seeking actions will lead to better global performance (i.e., reduction in total
costs in the example shown in Fig. 2). In other words, it is not clear whether people are
able to adapt to the optimal number of information seeking actions in different
environments.

3.2. Bounded rationality and the local adaptive process

The argument for the adaptiveness of behavior is most often discussed in the context of
human rationality. In its strong form, behavior is assumed to be normatively rational.
Normative rationality implies that one should always adopt the level of information seek-
ing that leads to globally optimal performance. The normative standard, however, often
requires the assumption of perfect information and infinite computational resources. A
more successful hypothesis about adaptive behavior is that it exhibits bounded rationality

or makes choices based on satisficing (Simon, 1956, 1996). Following Simon, many
researchers (Anderson, 1990; Gigerenzer & Todd, 1999; Oaksford & Chater, 1994,
1996) argue that the rationality of the decisions made by humans and animals about their
world are always within the bounds of limited time, knowledge, and computational power.
In the case of a person exploring an unfamiliar task environment, the best that one can do
is to make decisions based on local information obtained from direct experience with the
environment. The concept of satisficing refers to the process that searches for and evalu-
ates different options until an option is found that suffices to satisfy the goal. Satisficing
can therefore be characterized as a local adaptive process that relies on limited knowledge
and does not require exhaustive search of available options. However, the local process
does not necessarily lead to the globally optimal solution. Rather, it describes a possible
advantageous adaptation process that may or may not lead to the global optimum,
depending on the particular characteristics of the environment.

There has been a long history of empirical studies on the use of local information as a
variable that controls behavior (Herrnstein, 1991; Herrnstein & Prelec, 1991; Mazur, 1981;
Vaughan, 1981, 1985). Impressive evidence of the use of local information in the underly-
ing mechanism for tradeoffs between two options has been provided by Vaughan (1981).
In his experiment, pigeons were first trained to distribute their pecks on the two available
buttons so that the peck ratio roughly matched the reinforcement ratio on the two but-
tons. After performance stabilized, the reinforcement rates of the two buttons were chan-
ged. Pigeons, as expected, changed the distribution of pecks on the two buttons. The
cleverness of the experimental design lies in the different predictions derived from whether
the pigeons used local or global reinforcement rates to adapt to the new environment. Spe-
cifically, if global reinforcement rates were used, pigeons would stabilize in a region where
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global reinforcement rates were highest. Results showed that pigeons did not stabilized on
regions with the highest global reinforcement rates, but on regions with the highest local

reinforcement rates (i.e., slightly increasing or decreasing the choice of a particular button
would decrease the reinforcement rates). The results provide strong evidence that learning
is a local adaptive process that relies on limited information obtained from direct experi-
ence, which does not necessarily lead to the globally optimal level of performance.

4. Plan of the article

The goal of this article is to study the degree to which information-seeking behavior is
adaptive and how well people are able to attain the optimal level of information-seeking in
environments with different cost and information structures. In the next section, we pres-
ent our approach to studying how people adapt to different environments with different
information structures. Specifically, we present a model that integrates the learning of
information utility with the decision on when to stop seeking information. The model gen-
erates a set of predictions that guide the designs of three experiments. We implemented the
model in the ACT-R architecture so that the predictions can be directly tested against the
empirical data.

Fig. 3 shows the structure of the article and how the model and the three experiments
are related. The central theme of this paper rests on the Bayesian satisficing model (BSM),
which will be discussed in the next section. The behavior of the model leads to three
BSM simulations:
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Fig. 3. The structure of the article relating the Bayesian satisficing model (BSM), the ACT-R model, the three
experiments, and the approach to validate the model.
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hypotheses to be tested in each of the three experiments. In E1, we test whether subjects
will adapt their information-seeking behavior in environments with different costs and util-
ities. In E2, we directly test whether subjects respond faster to local than to global feed-
back information. In E3, we test whether suboptimal performance is related to the local
nature of the adaptive process. An ACT-R model, constructed based on the BSM, per-
formed the same task as the subjects and generated data that allow us to match the behav-
ior of the model to human performance. The ACT-R model has a number of free
parameters, and the values of these parameters were set to best fit the E1 human data.
The same model, with its parameters set to the E1 data, performed the tasks in E2 and
E3. We will elaborate on the validity of this model fitting process in Section 11.

5. The Bayesian satisficing model

As discussed in the last section, satisficing is a process based on bounded rationality
that does not require perfect information and unlimited cognitive resources. Satisficing
does not look for the globally optimal solution, but searches for solutions based on simple
heuristics (e.g., hill-climbing) utilizing imperfect local information as included constraints.
The overall BSM replaces complex computations by a simple effective mechanism that
often performs reasonably well by exploiting the general structure of the environment.
In this section, we will first describe the BSM; and then we will show how the BSM
behaves in different environments. Finally, we will generate predictions on when the
BSM is likely to settle at suboptimal levels of performance.

5.1. Structure of the BSM

As illustrated in Fig. 2, to model how well people are able to adapt to the optimal level
of information-seeking requires the specification of two processes: (1) the estimation of the
function f (n), and (2) the decision on when to stop seeking information. The first process
requires the understanding of how people estimate information utility based on experi-
ence. The second process requires the understanding of how information-seeking behavior
is sensitive to the cost and utility of information. These two processes are integrated into
the BSM (Fig. 4; details of the model are presented in Appendix A). In the global learning
Seek information

Environment
Global Bayesian Learning:

Estimate utility of information by 
combining new observations with 

prior knowledge

Local Decision Rule:
Decide how many IS actions:

Stop when Cost > Utility

Select actions to finish
the task

Bayesian Satisficing Model

Seek information

Environment
Global Bayesian Learning:

Estimate utility of information by 
combining new observations with 

prior knowledge

Local Decision Rule:
Decide how many IS actions:

Stop when Cost > Utility

Select actions to finish
the task

Bayesian Satisficing Model

Fig. 4. The structure of the Bayesian satisficing model (BSM): (1) the local decision rule decides when to stop
seeking information, and (2) the global Bayesian learning mechanism updates the knowledge of the environment
(utility of information) after actions are executed. Information-seeking actions act as the interface between the
model and the environment.
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process, the model assumes that execution costs can be described by a diminishing-return
function of the number of information-seeking actions (i.e., f (n) in Fig. 2). A local decision
rule is used to decide when to stop seeking information (see Fig. 5) based on the existing
estimation of f (n). Specifically, when the estimated utility of the information (i.e.,
f (N) � f (N + N 0)) is lower than the information-seeking cost, the model will stop seeking
information. This local decision rule decides how many information-seeking actions will
be done. The time spent to finish the task given the chosen number of information-seeking
actions is then used to update the existing knowledge of f (n) based on Bayes� theorem (see
Appendix A for details). Since we are interested in the general behavior of the model, we
have simply chosen a set of parameters and environments to study how they affect perfor-
mance. The prior distribution of the mean execution costs (B) to solve a problem is
assumed to be a gamma distribution, and the likelihood function is assumed to be an expo-
nential distribution. Using Bayes� theorem, the model updates its own representation of
the relationship between information-seeking costs and utility of information. As we show
below, the simulations of BSM will be useful for generating specific predictions about
behavior of the subjects.

5.2. Behavior of the BSM in diminishing-return environments

Two categories of diminishing-return environments were created to verify the behavior
of the model. Each category assumed a different diminishing-return relationship between
the amount of information-seeking and the amount of effort required to solve the problem.
For the exponential environment the relationship is expressed by C = Cnp * e�k*n, where C

is the amount of effort required, n is the amount of information-seeking, Cnp is the amount
of effort required when no information-seeking is done, and k is the parameter controlling
the rate of change. In the power environment, the relationship is expressed by
C = Cnp * n�k. In general, the higher the value of k, the lower will be the optimal amount
of information-seeking for a given value of information-seeking cost.
Number of
information-seeking 
actions (n)

Execution costs (T= f(n))

N+N’

f(N)

f(N+N’)

Utility of information estimated
from N’ additional information-seeking 
actions = f(N) – f(N+N’)

N

Execution costs = f(n)

Local decision rule:
f(N) – f(N+N’) > Cost (N’)?

Number of
information-seeking 
actions (n)

Execution costs (T= f(n))

N+N’

f(N)f(N)

f(N+N’)

Utility of information estimated
from N’ additional information-seeking 
actions = f(N) – f(N+N’)

NN

Execution costs = f(n)

Local decision rule:
f(N) – f(N+N’) > Cost (N’)?

Fig. 5. The local decision rule that decides when to stop seeking information. In the figure, the relationship
between the number of information-seeking actions (n) and the execution costs (i.e., time to finish the task
excluding all time spent on seeking information) is represented by the function f (n). The utility of information
associated with an additional N 0 number of information-seeking actions is f (N) � f (N + N 0). The local decision
rule is to stop seeking information when n is such that the marginal utility of information is smaller than the cost.
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Fig. 6 shows the simulation results of the BSM with different parameters values for
the prior distribution in different environments. The figure also shows the optimal
number of information-seeking actions based on the local decision rule as shown in
Fig. 5. The figure shows that when the BSM first approaches the problem, the number
of information-seeking actions chosen by the model is close to the mean (calculated as
the a * b) of the prior distribution. With sufficient observations from the environment,
the number of information-seeking actions either decreases or increases and eventually
converges to the optimal level specific to characteristics of each environment (the
dashed line in Fig. 6). The convergence to the optimal levels in both the exponential
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Fig. 6. The number of information-seeking (IS) actions plotted against the number of new observations sampled
(cycles) from the (A) exponential and (B) power environments with different prior distributions of the amount of
effort required to solve the problem. Dashed line shows the optimal number of IS for the environment. a, b are the
parameters of the prior distribution of the mean savings of effort per information-seeking action. The mean of the
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and power environments demonstrates that the model adapts to different diminishing-
return environments even when the prior knowledge of the environment are very dif-
ferent. In fact, the simulations show the behavior of the model is quickly dominated
by experience after a few cycles.

5.3. Behavior of the model in environments when cost and utility of information are changed

Two sets of simulations were conducted in a diminishing-return environment (exponen-
tial) with the same equation as the previous simulation (i.e., C = Cnp * e�k*n). For the
switch-utility set, the cost of each information-seeking action was fixed at 1. Two
switch-utility simulations were run. In the first simulation, k (which reflects utility of infor-
mation in the environment, the lower the value of k, the higher the utility of information)
was set to 0.2 for 25 learning cycles and then switched to 0.05 for another 25 learning
cycles. The second simulation switched in the opposite direction; that is, the k was initially
set to 0.05 for 25 learning cycles and then switched to 0.2 for another 25 cycles. The num-
ber of information-seeking actions chosen by the model is plotted in Fig. 7A. The values of
k were chosen such that the optimal numbers of information-seeking actions were 30 and
14, as shown by the horizontal straight lines in Fig. 7A.

In the switch-cost set of simulations, the model learned in the same diminishing-return
environment with k fixed at 0.05. In the first switch-cost simulation, the model first learned
for 25 cycles with cost of information-seeking action set to 1, and then learned for another
25 cycles with the cost set to 2.5. The model was then reset and learned with cost set to 2.5,
then learned for another 25 cycles with the cost set to 1. The results of these simulations
are plotted in Fig. 7B. Similar to the values of k in the switch-utility set, the values of cost
were chosen such that the optimal numbers of information-seeking actions were 30 and 14,
as shown by the horizontal straight lines in Fig. 7B.

To summarize, in each of the two sets of simulations, one set of costs (C) and informa-
tion-seeking returns (k) was identical (C = 1; k = 0.05; optimal IS actions = 30). In the
second set of the switch-utility simulations, costs were held constant but k was set to
0.2 (C = 1; k = 0.2; optimal IS actions = 14). In the second set of the switch-costs simula-
tions, utility was held constant, but costs were set to 2.5 (C = .5; k = 0.05; optimal IS
actions = 14). In both simulations, when utilities or costs are switched at cycle 25, we
can observe from Fig. 7 how the model adapts by changing the number of information
seeking actions from 30 to 14, and vice versa. The different time courses of adaptations
generated from the two simulations can therefore reveal the differences in how the model
adapts to changes in utilities and costs.

Fig. 7 shows that the rates of approach to the new optimal values are faster in the
switch-cost simulations (b) than in the switch-utility simulations (a). In the switch-utility
case, the Bayesian learning mechanism uses new observations from the environment to
update its prior knowledge of the environment. Since the Bayesian learning mechanism
takes both the uncertainties of new observations and prior knowledge into account, the
changes to the estimation of the parameters of the global environment are slow. On the
other hand, since a local decision rule is used, when the cost is changed, the number of
information-seeking actions will be affected directly, and the rates of approach to the
new optimal values are therefore higher. The differential rates of approach is therefore
an inherent property of the interaction of the global Bayesian learning and the local deci-
sion process.
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5.4. Behavior of the BSM in a ‘‘local-minimum’’ environment

The use of the local decision rule suggests that the decision to stop seeking information
does not guarantee that it will lead to optimal performance. For example, Fig. 8 shows a
‘‘local-minimum’’ environment in which the marginal utility of information (i.e., the slope
of f (n)) varies with the number of information-seeking actions. The marginal utility is high
during initial information-seeking, becomes flat with intermediate amounts of informa-
tion-seeking, but then becomes high again with greater amounts of information-seeking.
The flat region in the curve (i.e., region B) is the local-minimum region. Using the local
decision rule, information seeking is likely to stop at this region (i.e., when the marginal
utility of information is lower than the cost), especially when the cost is high. From pre-
vious simulations, the global Bayesian learning of information utility is found to be slow.
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Therefore unless somehow people are forced to accumulate experiences in region C, the
estimation of the marginal utility of information is likely to be dominated by experiences
in regions A and B. When the cost is high, information-seeking will likely stop before
region C is reached. We therefore predict that in a local-minimum environment, if a local
decision rule is used, high cost may lead to poor exploration of the task space. In other
words, suboptimal tradeoffs are more likely when the cost is high in a local-minimum
environment.

5.5. Summary of predictions from the BSM

To summarize, simulation results of the BSM lead us to predict that (1) with sufficient
experience, people make good tradeoffs between costs and utility of information and con-
verge to a reasonably good level of performance in a general diminishing-return environ-
ment, (2) people may respond to changes in costs faster than changes in utility of
information, and (3) in a local-minimum environment, high cost may lead to suboptimal
tradeoffs and poor exploration of the problem space, thus worse performance. These three
predictions were tested against human data collected from three experiments. To preview
the results, human data supported these predictions, suggesting that the BSM was consis-
tent with the underlying tradeoff mechanisms.

6. The task

Our three experimental studies used a map-navigation task to collect human and sim-
ulated human (i.e., ACT-R models) data in information seeking. In map navigation, a sim-
ple hill-climbing strategy (usually the shortest route) is always applicable and sufficient to
accomplish the task (and any path can eventually lead to the goal), but the hill-climbing
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strategy is not guaranteed to lead to the best (i.e., fastest) path. With sufficient experience,
one learns the speeds of different routes and turns, and will be able to improve perfor-
mance by a better choice of solution paths.

Subjects used the train map shown in Fig. 9. Subjects were given a start station and des-
tination (end station), and were asked to travel from the start station to the end station. Sub-
jects could choose to go to one of the adjacent stations on the same line (literally and
figuratively). To go to an adjacent station, subjects had to point the mouse cursor to the sta-
tion, press and hold down the mouse key. A red line would be drawn from the current station
(the red dot) to the station clicked. The speeds of the train lines (and the transfers, described
below) were reflected by the time it took for the red line to go from one station to the next.
When the red line reached the station, the station turned red and became the current station.

Subjects could use the transfer at the intersection of the train lines to change direction.
There were four transfer stations at every intersection of the train lines. When subjects
were at a transfer station, they could go to another train line or stay on the same train line.
Subjects were told that there were two kinds of transfers, pink transfers and orange trans-
fers, and one of them was faster than the other. However, they were not told which one
was faster. When the trial started, the colors of the transfers were covered (i.e., in black).
The color of a transfer would be shown when the subject was at the transfer station or
when the subject clicked on any of the transfer stations. As soon as the experiment started,
the subject could check the color of any transfer (i.e., an information-seeking action) in the
map anytime before they reached the end station. At any time during the experiment, the
subject could see at most one transfer uncovered.

In this task, the hill-climbing heuristic (i.e., no information-seeking action) was always
sufficient to finish the task, but was not guaranteed to yield the fastest path. With sufficient
experience, subjects learned the speeds of different routes and turns, and were able to
improve performance by a better choice of solution paths.
Red hollow = Next

Red = Current

Yellow = End

Blue = Start

Fig. 9. The train map used in experiments 1 and 2. The blue dot is the start station, the yellow dot the end station,
the red dot the current station. The red hollow circles are stations that can be reached next by clicking on one of
them. Colors of all the transfers are covered (black) unless being clicked. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this paper.)
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In each experiment, the information-seeking costs and the utility of information were
manipulated. The task was constructed so that more information-seeking actions would
decrease the execution costs. The number of information-seeking actions was measured
by the number of transfers checked (and rechecked). The cost of each information-seeking
action was increased by adding a 1-s lockout time after the transfer station was clicked.
Utility of information (i.e., the color or speed of a transfer) was manipulated by varying
the speed of the slow transfers; that is, the speed of the fast transfer was held constant.
When the difference between the speeds of the slow and fast transfers was large, utility
of information would be large because using slow transfers to finish the map would be
much slower than the path that uses only fast transfers (which requires more informa-
tion-seeking actions to discover).

The execution costs depended on the length of the path and the speed of the transfers
used in the solution path. Most of the maps were designed so that the major factor affect-
ing the execution costs was the speed of the transfers used, not the length of the path (see
description of Experiment 1 later). This feature was necessary because the length of differ-
ent possible paths could be judged perceptually. Besides, we thought it safe to assume that
this kind of perceptual judgment would be well-learned before subjects came to the exper-
iment. It was therefore unlikely that any significant learning effects could be observed
(which was one of the goals of the current research). Hence, the maps were constructed
so that explicit information-seeking actions (i.e., using the mouse to click on a transfer
to uncover its color) were required to reduce the execution costs.

7. The ACT-R model of the task

The BSM aims at characterizing adaptive information-seeking at a fairly abstract
level—no specific cognitive mechanisms have been specified. The model also does not
assume any cognitive constraints such as memory or attention limitations. The BSM as
presented above is therefore not precise enough to generate quantitative predictions that
can be matched directly to actual human performance. To describe human performance at
the mechanistic level, psychologically plausible mechanisms and constraints need to be
imposed on the BSM so that precise predictions can be generated. ACT-R is a good can-
didate for this purpose. The ACT-R architecture consists of multiple mechanistic modules
and a theory of how these modules are integrated to produce precise predictions of human
behavior. This set of integrated mechanisms is able to explain a wide range of behavior
(Anderson & Lebiere, 1998). By building models in ACT-R, we expect to obtain precise
predictions that can be directly matched to human performance. A brief description of
the ACT-R architecture and the relevant mechanisms can be found in Appendix B.
Although ACT-R has 35 variables and parameters (see Table 12.3, p. 434 of Anderson
& Lebiere, 1998), not all of these parameters are relevant to the current model. In fact,
only 4 parameters1 were set to fit the data from E1, 1 parameter was set according to
the experimental conditions,2 and the rest were all set at default values. These parameters
were estimated from E1 and were used in the model for E2 and E3, as illustrated in Fig. 3.
1 The 4 parameters were: the prior number of successes, the prior number of failures, the noise, and the
procedural learning decay parameter.

2 The cost parameter is set according to the condition.
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Fig. 10. The overall structure of the ACT-R model. The model assumes that the hill-climbing strategy will be
used when the information-seeking strategy is not chosen. The decision on whether information will be sought is
decided by the utility values of the two productions. Strategies compete only at transfers. Once a transfer decision
is made the subject continues on the line to the next transfer station. At that point the strategies compete again.
Details of the strategies are in Appendix C.
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The main goal of the model is to go from the start station to the end station. The
model assumes that an information-seeking action (i.e., moving the mouse cursor to a
transfer station, clicking on it, and waiting for the color of the transfer to be shown) is
initiated to decide which transfers to use. Once a transfer is chosen, the model will
move to it and another cycle of decision will start. We also make the assumption that
when subjects decide not to seek any information, they use hill-climbing to get to a
particular transfer station. The model, however, does not assume that subjects will
use a single strategy to finish the whole map; rather, in the course of completing a giv-
en map, the model can combine hill-climbing with information-seeking. Hence, the
information-seeking versus hill-climbing (i.e., no information-seeking action) decision
is a local choice, not a global disposition. This allows a series of dynamic choices of
strategies that do not have rigid constraints on when information seeking initiates
and stops. Therefore, although only two ‘‘strategies’’ are described below, the current
model is able to capture relative differences in the number of information-seeking
actions for different task environments.

Fig. 10 shows the overall structure of the model that finishes the task. When the
task begins, a strategy is chosen based on ACT-R�s conflict resolution mechanism.
The conflict resolution mechanism is a noisy process that selects a strategy (represent-
ed as a set of productions) based on the utility value of the first production in each
strategy. Either the information-seeking or the hill-climbing strategy selects a transfer
station, and the model moves to the transfer station and uses it to transfer to another
line (i.e., change direction either from left–right to up–down). When the model reaches
the line the end station is on, the model will move to the end station; otherwise
another cycle of strategy selection will begin. Details of the model are described in
Appendix C.

8. Experiment 1

Experiment 1 (E1) was designed to test the first prediction of the BSM, that behavior
adapts to the costs and utility of information in the task environment. In E1, we varied
the cost and utility of information to create six different environments. If people adapt
to the cost and information structures of their environments, then we should see six differ-
ent patterns of information-seeking behavior.
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8.1. Design and procedures

E1 was a 2 · 3 between-subject design. The two between-subject independent variables
were cost (with or without the 1-s lockout time before the color of the transfer is uncov-
ered) and utility of information (transfer speed difference). The dependent variables were
number of information-seeking actions, relative path time, and relative trial time (see
Table 1). The independent and dependent variables were the same across the three exper-
iments. The number of information-seeking actions simply measures the number of times
subjects clicked on a transfer to uncover its color. Relative path time represents the exe-
cution costs spent on the path, excluding all information-seeking costs. It therefore repre-
sents the quality of the path chosen (i.e., relative path time should be described as a
function of the number of information-seeking actions, similar to the function f (n) in
Fig. 2). Relative trial time measures the total time the subject actually spent on each trial.
This includes both the execution costs and all information-seeking costs (including any
lockout time).

Each subject solved 64 maps. The 64 maps were blocked into 8 groups with 8 maps in
each group. The order and the types of maps within each block are shown in Table 2. In
E1, 6 out of 8 maps in each group were round-about-fastest (RAF) maps. These maps had
12 slow transfers and 4 fast transfers. All transfers along the shortest path were slow trans-
fers (3, 4.5, and 6 s). This made the shortest path not the fastest path. However, there was
always one and only one path that contained only fast transfers, and it was always the fast-
est path. Therefore information-seeking was necessary to find the fastest path (which uses
only fast transfers) on these maps. Under the assumption that people would use hill-climb-
ing to solve the map initially, the organization of the fast and slow transfers in the RAF
maps allowed the study of the transition of strategies with practice (i.e., from hill-climbing
to information-seeking).
Table 1
The variables used in the three experiments

Variables Explanation

Independent variables

Information access cost (cost) Between-subject, 2 levels
Low: 0 s lockout time
High: 1 s lockout time

Utility of information (utility) Between-subject, 3 levels
Low: fast transfer 1 s, slow transfer 3 s
Med: fast transfer 1 s, slow transfer 4.5 s
High: fast transfer 1 s, slow transfer 6 s

Dependent variables

Information-seeking The number of transfer clicks to check its color
Relative path time
(i.e., execution costs—see the
results section for details)

RPT = (chosen path time � fastest path time)/
(hill-climbing path time � fastest path time) where path time
is the ‘‘pure’’ time spent on the trains and transfers, excluding all
information-seeking costs

Relative trial time
(see the results section for details)

RTT = (trial time � fastest trial time)/(hill-climbing path
time � fastest trial time), where trial time includes both
information-seeking costs and execution costs



Table 2
For experiment 1, the types of map encountered by each subject in each group of 8 maps

Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8

RAF RAF RAF AS RAF RAF RAF DF

Both the round-about-fastest (RAF) maps and the direct-fastest (DF) maps have 12 slow transfers and 4 fast
transfers. However, all transfers on the shortest path are slow for round-about-fastest maps, but are fast for the
direct-fastest maps. All-slow (AS) maps have 16 slow transfers and no fast transfers.
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In one of the maps in each group, fast transfers (1 second) were located along the line of
the shortest path. These direct-fastest (DF) maps had 12 slow transfers and 4 fast trans-
fers. The purpose of these maps was to avoid the situation where subjects would never
try to use the shortest path to finish the map. In one map in each group, there were no
fast transfers on the map. These all-slow (AS) maps had 16 slow transfers. These maps
were used to test how many transfers subjects would check before they stopped and chose
a path. The AS maps served as catch trials to measure how much information seeking sub-
jects were willing to do when no useful information could be found.

The locations of the start and end stations were randomized in all maps, with two con-
straints imposed to make sure that they were reasonably far apart. The first constraint was
distance. Distance was measured by city block distance (CBD). Mathematically, the CBD
of two points A (xa,ya) and B (xb,yb) on a 2-dimensional plane is simply the sum of the
absolute distances in each dimension, i.e., CBD (A,B) = |xa � xb| + |ya � yb|. In the train
map, CBD measures the minimum number of stations one needs to go through to reach
the end station. In E1, the start and end stations were separated by at least 10 CBD
(the maximum possible was 16 CDB in the map). The second constraint was the minimum
number of transfers required to go from the start station to the end station. In E1, the start
and end stations were always placed on parallel train lines (both vertical or both horizon-
tal), which required the use of at least two transfers.

8.2. Procedure

Before the experiment began, each subject was given a practice trial. The map in the
practice trial was a short-distance map (and was the same for all conditions). The cost
was set according to the condition (i.e., 0- or 1-s lockout time). Subjects were told to go
from the start station to the end station as fast as possible, and that they would be timed
during each map. Subjects were told that there were two kinds of transfer, one was orange
and the other was pink, and that one kind was faster than the other. Half of the transfers
in the practice trial were orange and the other half were pink, but the actual speed of the
two kinds of transfers was the same in the practice trial. They were shown how to go from
one station to another, as well as how to uncover the color of the transfers. Subjects were
then asked to solve the map by themselves. The experimenter answered any questions that
the subjects had during the task. After they solved the map, feedback was given to let them
know that they had finished one map. After the practice trial, subjects were given 64 maps.

8.3. Results

The effects of the two independent variables, cost and utility of information, on the
dependent variables were analyzed by a series of ANOVAs (analysis of variance). The
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dependent variables were (1) the number of information-seeking actions, (2) the relative
path time (RPT), and (3) the relative trial time (RTT). The equations that calculate the
RPT and the RTT will be presented below. Owing to programming errors, one direct-fast-
est and one slow map in all conditions were corrupted and not analyzed. There were there-
fore 7 direct-fastest and 7 all-slow maps in each of the 6 between-subject conditions. These
direct-fastest maps and all-slow maps were identical across conditions. The round-about-
fastest maps were, however, all randomly generated.

In presenting the data, we first present analyses of the empirical data and then compare
it with the predictions of the model. As ACT-R models are probabilistic, we ran the same
model 15 times so that the predictions we report are stable.3 The model was run with the
goal value (G) set to the default value of 20, the expected gain noise (i.e., s in the conflict
resolution equation) set to 0.3. The expected gain noise controls the proportion of times
the production with the highest expected gain is picked in the conflict resolution
mechanism.4

8.3.1. Number of information-seeking actions

Subjects had significantly more information-seeking actions in the all-slow maps
(mean = 5.6, SD = 0.5) than in the round-about-fastest maps (mean = 4.5, SD = 0.4),
and they had the least in the direct-fastest maps (mean = 2.7, SD = 0.2). Paired t tests
show that all differences are significant (p < 0.01). Since different types of maps required
different numbers of information-seeking actions to find a reasonably fast path, the results
suggest that subjects stopped seeking information when a reasonably fast path was found
in the direct-fastest and round-about-fastest maps.

Fig. 11 shows the number of information-seeking actions in the round-about-fastest,
direct-fastest, and the all-slow maps respectively. The main effects of cost and utility of
information, as well as their interaction were significant in the round-about-fastest maps
(F (1,84) = 56.11, MSE = 12083.5, p < 0.01, F (2,84) = 42.82, MSE = 9222.6, p < .01,
F (2,84) = 10.15, MSE = 2185.9, p < .01), direct-fastest maps, (F (1, 84) = 12.31,
MSE = 201.168, p < .01 and F (2,84) = 20.35, MSE = 332.63, p < .01, F (2, 84) = 5.00,
MSE = 81.68, p < .01), and all-slow maps (F (1, 84) = 37.95, MSE = 2645.53, p < .01
and F (2, 84) = 34.39, MSE = 2397.386, p < .01, F (2,84) = 6.70, MSE = 467.10, p < .01).
The same pattern of results is obtained from the all-slow maps as for the other two
map types. This all-slow pattern shows that subjects� decision to stop seeking information
was sensitive to the cost and information structures of the task environment and was not
specific to the particular maps.

Fig. 11 also shows that the model fit the data well in the round-about-fastest maps
(R2 = 0.93, RMSE = 0.07), in the direct-fastest maps (R2 = 0.83, and RMSE = 0.05),
and the all-slow maps (R2 = 0.89, and RMSE = 0.12). The model exhibited the same pat-
tern of information-seeking behavior as human subjects. This shows that the model has
shown the same sensitivity to costs and utility of information as subjects, and was able
to adapt to different cost and information structures as subjects did.
3 We do not mean to imply that different runs of the model are equivalent to data from different human
subjects. However, it is the case that after 15 runs, the variance from the model in each condition was within the
range of the variance from the 15 human subjects in that condition.

4 For the sake of parsimony, the standard procedural learning mechanism was used (a refined procedural
learning mechanism that incorporates time-based decay is available, see Appendix B).
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Fig. 11. The number of information-seeking actions (IS) for each of the between-subject conditions in (A) round-
about-fastest, (B) direct-fastest, and (C) all-slow maps. Error bars represent standard errors of the means. The
standard errors of the model are calculated from 15 iterations of model runs.
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The results across different map types show a consistent pattern supporting the hypoth-
eses that subjects had more information-seeking actions when the utility of information
was high and had fewer information-seeking actions when the cost was high. The results
support the notion that information-seeking is adaptive—people are sensitive to both costs
and utility of information and they will adjust the number of information-seeking actions
to tradeoff costs with utility of information. The results complement previous research that
showed people are sensitive to information-seeking costs. Our results show that people are
willing to spend more time in information-seeking when the utility of information is high,
even when costs are high. The good match of the model data to human data in all three
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types of maps shows that the three mechanisms in ACT-R capture the tradeoffs. The
match provides at least partial support for the cognitive reality of BSM. To simplify
our presentation of the results, from here on in we focus on performance in the round-
about-fastest maps.

8.3.2. Relative path time (RPT)

Path time is defined as the execution costs taken by the chosen path from the start
station to the end station, excluding all time spent in information seeking. Path times
therefore depend on the paths chosen as well as the experimental condition the sub-
jects were in. Since the RAF maps were designed so that the most direct hill-climbing
paths (also the shortest distance) were always slower (thus lower quality) than the
fastest path, the time spent in the shortest path in each round-about-fastest map
can be used as the lower bound for the measure of quality of paths. The hill-climbing
path can also be taken as the path chosen when no information seeking is done. The
difference between the hill-climbing path time and the fastest path time therefore
roughly reflects the maximum time savings the subjects could gain with information
seeking. The quality of a path chosen in the round-about-fastest maps can be calcu-
lated as (see Table 1)

RPT ¼ ðchosen path time� fastest path timeÞ=ðhill-climbing path time

� fastest path timeÞ:

Fig. 12 shows the RPT in the 6 between-subject conditions. Overall, subjects chose faster
paths (by more information seeking, see Fig. 11) when the cost was low or when the utility
of information was high. The main effects of cost and utility are significant
(F (1,84) = 8.49. MSE = 7.16, p < .01 and F (1,84) = 4.31, MSE = 3.63, p < .01 respective-
ly). The interaction between cost and utility is not significant (F (2,84) = 0.27,
MSE = 0.228, p > .5). Fig. 12 shows that the model fit the data well, R2 = 0.95,
RMSE = 0.016. The model not only had the similar number of information-seeking ac-
tions across different cost and information structures, it also found similar paths and fin-
ished the map in similar ways as subjects.

8.3.3. Trial time and relative trial time

Trial time measures the total time the subjects spent to finish each map (i.e., the sum of
information-seeking costs and execution costs). Subjects were instructed to minimize the
trial time in all conditions. Trial time depends on costs and utility in different experimental
conditions, as well as the path chosen and the number of information-seeking actions.
However, differences in trial times could be an artifact of the design of the task, as different
experimental conditions inherently made the trial time different. To statistically compare
across benefit conditions, a normalized trial time measure is needed. Similar to relative
path time, relative trial time5 (RTT) can be calculated as:

RTT ¼ ðtrial time� fastest path timeÞ=ðhill-climbing path time

� fastest path timeÞ:
5 RTT were square-root transformed so they follow a normal distribution.
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Fig. 12. (A) The relative path time (RPT) and (B) relative trial time (RTT) for the round-about-fastest maps in
each of the between-subject conditions. The lower the relative path time, the higher the quality (or faster) of the
path chosen. The error bars represent standard errors of the means. The standard errors of the model are
calculated from 15 iterations of model runs.
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Relative trial times are also useful in showing how well subjects traded costs for utility of
information. Subjects in the high cost conditions had fewer information-seeking actions,
but it is not clear whether the time savings from less information-seeking justified the
use of slower paths. Fig. 12 shows the RTT in the 6 between-subject conditions for
round-about-fastest maps. The main effects of cost and utility are significant
(F (1, 84) = 6.07, MSE = 12.80, p < 0.01 and F (1, 84) = 321.34, MSE = 677.791, p < .001
respectively). The interaction between cost and utility is significant (F (2, 84) = 4.366,
MSE = 9.2, p < .05). The effects of utility are significant in all levels of cost. However,
the effect of cost is significant only in the low utility condition (F (1, 28) = 5.84,
MSE = 29.78, p < .05). The effect of cost is not significant in the high utility condition
(F (1, 28) = 2.46, MSE = 0.604, p > .1), nor in the medium utility condition
(F (1, 28) = 0.159, MSE = 0.156, p > .5).

From previous analyses, when costs were high, subjects reduced the number of informa-
tion-seeking actions. Although the main effect of cost is significant, the significant interac-
tion implies that the effects of cost depend on the level of utility. Specifically, we found that
the simple effect of cost is significant when the utility of information is low, but not when
the utility of information is high. This suggests that subjects were adaptively trading off
costs with utility of information—the slower path chosen was compensated by the reduc-
tion of information-seeking cost—thus there was no significant difference in the overall
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performance. Note that Fig. 12 shows that relative to the best possible trial time the dif-
ference between costs for the high utility conditions was not significant. Although path
time was higher when the utility is higher (see Fig. 12A), the relative trial time was actually
lower. This suggests that subjects in the high utility conditions were performing close to
the optimal level of performance.

As shown in Fig. 12, the fit of the model to these data was good, R2 = 0.88,
RMSE = 0.21. In general, however, the model slightly under-predicted the relative trial
times—it performed faster than the subjects. This is not too surprising as the model
assumed unrealistically that the subjects were completely focused on the task. The model
can thus be taken as the ideal performance of the subjects. On the other hand, the
model does duplicate the interaction of cost and utility as exhibited by the subjects. The
model thus provided evidence that by trading off costs against utilities (by changing
the expected values of the two strategies), the same interaction effects are obtained. This
model has thus provided a reasonable account of the pattern of empirical results.

8.3.4. Summary and conclusions of E1

In general, E1 shows that subjects were sensitive to costs and utility of information and
were able to perform good tradeoffs between costs and utility. Subjects had fewer informa-
tion-seeking actions when costs were high, and had more when utility was high. With more
information-seeking actions, subjects were able to find faster paths from the start station
to the end station (as shown by relative path times). The tradeoffs between the costs
incurred by information-seeking and the utility of information seem adaptive. In the
low cost conditions, subjects had more information-seeking actions but as a consequence
they found faster paths. In the high cost conditions, subjects had fewer information-seek-
ing actions but as a consequence they found slower paths. Taken together, subjects in the
low and high cost conditions had roughly the same level of overall performance (as mea-
sured by RTT).

The same pattern of information-seeking behavior in different cost and utility condi-
tions in the all-slow maps suggests that the decision on when to stop seeking information
did depend on past experiences, which apparently helped the subjects to decide how much
time savings they could obtain from further information seeking. (If the decision on when
to stop seeking information were independent of past experiences, there would have been
little difference in the number of information-seeking actions across different conditions.)

Overall, the model provides a compelling account of the tradeoff between costs and
utility of information from E1. Both the model and subjects adapt to different environ-
ments by using similar numbers of information-seeking actions. Likewise, the quality of
paths chosen by the model is similar to the quality of paths chosen by the subjects. In
common with our human subjects, the model subjects are sensitive to costs as well as
to situations where information-seeking is not necessary to improve performance. The
fit of the model to data also suggests that the model�s stop-rule for information seeking
is similar to that of the subjects. The model�s ability to match the human data in all
three dependent variables provides a solid ground for using the same model for match-
ing data from E2 and E3.

Another promising aspect of the model is that only environment parameters (i.e., the
two independent variables in the six between-subject conditions) were changed. All other
parameters were held constant. Hence, the good match in the six conditions comes from
running the same model in different environments. Different information-seeking behavior
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of the model was caused by adaptation through interacting with the environments. The
same approach will be adopted when matching the data from E2 and E3—i.e., only the
environment parameters will be changed according to the different experimental condi-
tions. This provides even stronger constraints to the model.

9. Experiment 2

E1 showed that subjects adaptively changed the number of information-seeking
actions in response to different task environments. These results, however, were based
on between-group differences. To further study the processes underlying the tradeoffs,
we conducted a within-subject study. The study of the change of information-seeking
behavior within an individual in response to changes in costs and utility of informa-
tion will give a direct test as to how well the Bayesian learning mechanism of the
model resembles the learning mechanisms of human subjects. This was the goal of
Experiment 2 (E2).

As in E1, in E2 subjects were instructed to minimize trial time. To do that, subjects
could either reduce information-seeking costs or execution costs. Our focus in E2 is on
comparing changes in subjects� behavior when costs are varied to changes in behavior
when utility of information is varied. We predict that subjects will be more sensitive to
changes in costs than to changes in utility.

As discussed earlier, the use of the local decision rule (i.e., the stopping rule in the BSM)
implies that when costs are varied, the perception of different costs will lead to an imme-
diate change in the number of information-seeking actions. On the other hand, when util-
ity of information is varied, the Bayesian learning equation requires a series of consistent
observations to update the global estimation of the environment. In the map-navigation
task, when the costs are varied (i.e., 0- or 1-s lock-out time when uncovering the color
of the transfer), the decision on how many transfers to check will be changed once the cost
is perceived. However, when the utility is varied, the decision on how many transfers to
check will be changed when the end station was reached and the total trial time was com-
pared to past experiences of the task. E2 focused on subjects� differential sensitivity to
changes in costs and utility of information.

In E1 we used two levels of costs and three levels of utility. In E2 we used the same lev-
els of low and high cost as in E1 and the medium and high levels of utility from E1. As
there are only two levels of utility in E2, we refer to these levels as low and high. (Hence,
the E2 low level of utility was the E1 medium level.) We define our E2 transfer conditions
in terms of costs and utility. Transfer to the Lo–Hi (Low cost and High utility) condition
from either the Hi–Hi condition or the Lo–Lo condition should increase the tendency to
seek information (because for the Hi–Hi to Lo–Hi transfer, the cost is decreased; for the
Lo–Lo to Lo–Hi transfer, the utility is increased). However, if subjects are more sensitive
to cost than utility, the increase in information seeking should be faster when the cost is
decreased (Hi–Hi to Lo–Hi) than when the utility is increased (Lo–Lo to Lo–Hi). On
the other hand, the transfer to the Hi–Lo condition from either the Hi–Hi condition or
the Lo–Lo condition should decrease the tendency to seek information (because for the
Hi–Hi to Hi–Lo transfer, the utility is decreased; for the Lo–Lo to Hi–Lo transfer, the cost
is increased). Again, we predict that subjects are more sensitive to costs than utility; hence,
the decrease in information seeking should be faster when the cost is increased than when
the utility is decreased.
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9.1. Design and procedures

E2 was a within-subject design. The main manipulation was to transfer subjects from
one set of costs and utility to another. Like E1, subjects were given instructions and a prac-
tice trial. Half of the subjects were assigned to the High Incentive group and the other half
to the Low Incentive group. In the High Incentive group, the focus was on how subjects
adapted to the increase in information-seeking incentive, i.e., either lower cost or higher
utility. In the Low Incentive group, the focus was on how subjects adapted to the decrease
in information-seeking incentive, i.e., either higher cost or lower utility.

After a base block of 8 trials, subjects in each group were given two sets of one switch-
utility block and one switch-cost block (see Table 3). The order of the switch-utility and
switch-cost blocks was counterbalanced. For the High Incentive group, the switch-cost
block consisted of 8 training trials of the Hi–Hi condition and 8 transfer trials of the
Lo–Hi condition (decreased cost); the switch-utility blocks consisted of 8 training trials
of the Lo–Lo condition and 8 transfer trials of the Lo–Hi condition (increased utility).
Since the 8 transfer trials in both the switch-cost and switch-utility blocks were in the same
set of costs and utility (i.e., in the Lo–Hi condition), the behavior of the subjects in the
transfer trials could be compared across blocks. If there was no difference between the sen-
sitivity of costs and utility, then the responses of the subjects in the transfer trials will be
the same in the switch-cost and the switch-utility block. However, if subjects were more
sensitive to costs than to utility, responses (i.e., more information-seeking actions) in
the transfer trials of the switch-cost block would be faster than those in the switch-utility
block. Similar comparisons could be in the Low Incentive group, in which the informa-
tion-seeking incentive was decreased.

To obtain a stable prediction of performance, the model was run 10 times in each con-
dition of E2. Since E2 is a within-subject manipulation, the adaptation to the changing
costs and utility are modeled by using ACT-R�s time-based decay procedural learning
mechanism that discounts past experiences. All parameters for the E1 model were reused
in the E2 model. Indeed, the two models were identical except for changes in the expected
gain noise parameter and the use of the time-based decay mechanism. For the sake of par-
simony, the time-based decay mechanism had not been used by the model during E1.

Other than the use of time-based decay, the only difference between the E1 and E2
ACT-R models was the setting of expected gain noise (egs). The E1 value was 0.3. For
E2, egs was set to 0.5 as a post hoc change designed to obtain a better fit to the data.
In general, the higher the expected gain noise, the higher the chance that a production with
a lower utility value will be chosen. The consequence is that the model will be more likely
Table 3
Table showing the design of E2

Block 1 Block 2

Switch-utility Switch-cost Switch-utility Switch-cost

Group Base Training Transfer Training Transfer Training Transfer Training Transfer

HI Lo–Hi Lo–Lo Lo–Hi Hi–Hi Lo–Hi Lo–Lo Lo–Hi Hi–Hi Lo–Hi
LI Hi–Lo Hi–Hi Hi–Lo Lo–Lo Hi–Lo Hi–Hi Hi–Lo Lo–Lo Hi–Lo

HI, high incentive; LI, low incentive. Lo–Lo, low cost and low utility; Lo–Hi, low cost and high utility, etc. The
switch-cost and switch-utility blocks were counterbalanced within each incentive group.



W.-T. Fu, W.D. Gray / Cognitive Psychology 52 (2006) 195–242 219
to choose different strategies. Our interpretation of the higher expected gain noise is that in
the within-subject manipulation, subjects were aware that the costs and utility were chang-
ing and, therefore, were more willing to try different strategies than in the static E1 envi-
ronment. Note that we changed only 2 out of 35 parameters in E2 (one for the decay and
the other for the noise parameter). To preview, in E3, we used exactly the same set of
parameters as in E1 (i.e. the noise was set to 0.3 and the decay mechanism was turned off).

9.2. Empirical results

The same independent (cost and utility of information) and dependent variables (num-
ber of information-seeking actions, relative path time, and relative trial time) were used in
E2 as in E1. Two sets of analyses were performed on each incentive group. For each
group, a separate 2 · 2 (switch-cost and switch-utility · first and second blocks) ANOVAs
was conducted on the training and transfer sets. The transfer analyses attempted to deter-
mine if there were differential transfer effects between the switch-cost and switch-benefit
blocks, and if so, whether these differential transfer effects interacted with practice. If dif-
ferential transfer effects exist, the results of the training analyses will tell if the differences
can be explained by performance in the training blocks (i.e., before the transfer). To pre-
view our results, we found that subjects in general were more sensitive to changes in costs
than changes in utility. Since the overall pattern of results from both Incentive groups were
similar as far as the support for the hypothesis on the differential sensitivity was con-
cerned, we chose to report only results from the High Incentive group below. As the effect
of order of transfer (e.g., the switch-cost block presented first or second) was not signifi-
cant, this comparison is not reported here.

9.2.1. Number of information-seeking actions

Fig. 13 shows the number of information-seeking actions in the transfer trials of the
High Incentive group. An ANOVA on the number of information-seeking actions in
the transfer trials (i.e., the Lo–Hi condition) showed that subjects had significantly more
information-seeking actions in Block 1 than Block 2, F (1,75) = 9.64, MSE = 290.51,
p < .01. Subjects in the transfer trials also had significantly more information-seeking
actions in the decreased-cost transfer than in the increased-utility transfer,
F (1, 75) = 7.02, MSE = 88.17, p < .01. The kinds-of-transfers by Blocks interaction was
not significant, F (1, 75) = 2.75, MSE = 51.04, p > .1. These analyses suggest that subjects
were more sensitive to changes in costs than utility. Simple effect analyses showed that sub-
jects had significantly more information-seeking actions in the transfer trials in the
decreased-cost transfer than the increased-benefit transfer in Block 1, F (1, 15) = 5.45,
MSE = 143.521, p < .05, but not in Block 2, F (1, 15) = 0.243, MSE = 1.69, p > .5. This
suggests that the differential sensitivity to costs and benefits became not significant with
practice.

ANOVA on the number of information-seeking actions in the training trials (i.e., the
Lo–Lo versus Hi–Hi conditions) showed that the main effect in the number of informa-
tion-seeking actions was not significant, F (1,75) = 0.0004, MSE = 0.1, p > .9, but the
main effect of Blocks was significant, F (1, 75) = 14.43, MSE = 253.3, p < .01 (see Table
4). Subjects had significantly more information-seeking actions in Block 1 than in Block
2. The lack of difference between the Lo–Lo and Hi–Hi condition (in Block 1) suggests
that subjects had roughly the same number of information-seeking actions in the training
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blocks before they were transferred to the Lo–Hi condition, thus the differences found in
the Lo–Hi condition cannot be simply attributed to inertia from the training blocks.

Fig. 13 and Table 4 also show the model fit of the number of information-seeking
actions in E2. In general, the model fit the data well in both the training and transfer trials,
R2 = 0.98, RMSE = 0.24. Specifically, the model responded to changes in costs faster than
changes in utility in Block 1, but not in Block 2. In Block 1, the model had relatively fewer
past experiences to rely on than it did in Block 2. Thus, the decay-based procedural learn-
ing mechanism was able to respond faster to changes in the environment by putting higher
weighting on recent experiences. However, in Block 2, the longer history of past experienc-
es (even after the discounting by the decay-based mechanism) made the relative impor-



Table 4
Means of the training trials in E2

Training Block 1 Training Block 2

Observed Predicted Observed Predicted

Increased utility

Number of IS 5.125 (0.487) 5.144 (0.562) 3.448 (0.335) 3.682 (0.446)
RPT 0.228 (0.021) 0.230 (0.032) 0.251 (0.024) 0.227 (0.027)
RTT 1.889 (0.040) 1.855 (0.086) 1.761 (0.037) 1.220 (0.042)

Decreased cost

Number of IS 5.062 (0.555) 5.515 (0.539) 3.490 (0.336) 3.668 (0.455)
RPT 0.222 (0.019) 0.227 (0.031) 0.241 (0.019) 0.270 (0.030)
RTT 1.312 (0.040) 1.220 (0.073) 1.195 (0.028) 1.246 (0.046)

Numbers in parentheses represent standard deviations. Standard deviations for the model are calculated from 10
simulations of model runs.
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tance of recent experiences lower, thus producing a similar rate of response to the changed
costs and utility.

9.2.2. Relative path time

Fig. 13 shows the RPT (the same definition as that in E1) in the transfer trials of the
High Incentive group. A 2 (switch-cost and switch-utility transfers) · 2 (Blocks) ANOVA
on the relative path times in the transfer trials showed that the main effect of Blocks was
not significant, F (1,75) = 0.43, MSE = 0.006, p > .5. The main effect of kinds-of-transfer
was marginally significant F (1, 75) = 3.68, MSE = 0.02, p = .07. Subjects in the decreased-
cost transfer found slightly faster paths than in the increased-utility transfer. The kinds-of-
transfer by Blocks interaction was significant, F (1,75) = 4.27, MSE = 0.034, p < .05.

Simple effect analyses showed that the difference in the transfer trials between the
decreased-cost and increased-utility transfers was significant in Block 1, F (1, 15) = 4.0,
MSE = 0.304, p < .05, but was not significant in Block 2, F (1,15) = 0.344,
MSE = 0.011, p > .5. The difference between the blocks suggests that when the cost was
decreased, subjects had more information-seeking actions and found better paths, but that
this greater sensitivity to cost than to utility diminished with practice.

ANOVA on the RPTs in the training trials showed that the main effect of kinds-of-
transfer in the RPTs was not significant, F (1, 75) = 0.158, MSE = 0.006, p > .6, nor was
the main effect of Blocks, F (1, 75) = 1.51, MSE = 0.042, p > 0.2 (see Table 4). None of
the differences in the training trials (i.e., between the Lo–Lo and Hi–Hi conditions) was
significant. None of the effects of Blocks was significant. This, again, showed that before
subjects were transferred, the quality of paths chosen in the training blocks was roughly
the same. The difference in RPT in Lo–Hi therefore cannot be simply explained by inertia
from previous training trials. Fig. 13 and Table 4 also show a good fit of the model to the
data in both the training and transfer trials (R2 = 0.92, RMSE = 0.015).

9.2.3. Relative trial time

Fig. 13 shows the RTT (the same definition as that in E1) in the transfer trials of the
High Incentive group. Results from the ANOVA on the RTT in the transfer trials showed
that the main effect of Blocks was significant, F (1,75) = 7.084, MSE = 0.245, p < .01. Sub-
jects finished the map faster in Block 2 compared to Block 1. The main effect of kinds-of-
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transfer was not significant F (1, 75) = 0.252, MSE = 0.07, p > .6. The kinds-of-transfer by
Blocks interaction was significant, F (1,75) = 5.69, MSE = 0.209, p < .05.

The difference between decreased-cost and increased-utility transfers was significant in
Block 1, F (1,15) = 4.16, MSE = 0.147, p < .05, but was not significant in Block 2,
F (1,15) = 2.33, MSE = 0.07, p > .1. Recalling previous results, subjects in the
decreased-cost transfer had more information-seeking actions in Block 1 and found a bet-
ter path. However, they were slower to finish the trials in the transfer blocks, compared to
the increased-utility transfer. This suggests that when the cost was decreased, subjects
spent too much time seeking information to find a good path, therefore ended up with a
slower relative trial time. However, in Block 2, the effect was not significant.

For the training trials, the ANOVA showed a significant main effect of kinds-of-trans-
fer, F (1,75) = 102.363, MSE = 31.34, p < 0.01, and a main effect of Blocks,
F(1,75) = 20.81, MSE = 1.46, p < .01(see Table 4). The difference between the Lo–Lo
and Hi–Hi condition in Block 1 was significant, F (1,15) = 78.46, MSE = 15.97,
p < 0.01, and was also significant in Block 2, F (1,15) = 83.56, MSE = 15.37, p < .01.
The interaction of kinds-of-transfer and Blocks was not significant. Subjects were faster
in both conditions with practice. The significant differences in RTT between the Hi–Hi
and the Lo–Lo conditions were not surprising, given the fact that only the different utility
conditions were normalized, not the different levels of cost. The relative trial times in the
high cost conditions were significantly higher than low cost conditions mostly because of
the extra time (the lockout time) spent on checking in the high cost conditions.

Fig. 13 and Table 4 also shows the model fit to the data in both the training and transfer
trials. The quantitative fit was reasonably good, R2 = 0.66, RMSE = 0.16. In general, the
model captured the overall patterns of the empirical data and showed the same conse-
quences of differential sensitivity to costs and benefits to performance. Specifically, in
Block 1, when costs decreased the model planned more and found faster paths, but the
overall performance (i.e., relative trial time) was worse.

9.3. Summary and conclusions of E2: Suboptimal tradeoffs between costs and utility

Based on results from E2, we conclude that subjects reacted to changes in costs faster
than changes in utility. When the costs were reduced, subjects increased the number of
information-seeking actions and found better paths than when utility was increased. We
found the complementary pattern in the Low Incentive group. When the costs were
increased, subjects made fewer information-seeking actions and found slower paths com-
pared to the decreased-utility transfer. However, the overall performance (in both Incen-
tive groups) in the switch-cost transfers was worse (slower) compared to the overall
performance in the switch-utility transfers. This intriguing set of results suggests that sub-
jects� decisions on when to stop seeking information were more sensitive to costs than util-
ity. In fact, the results suggest that subjects ‘‘over-reacted’’ to changes in costs, thus
leading to suboptimal tradeoffs between costs and utility of information. When costs were
decreased subjects spent too much time gathering information. Unfortunately, this time
spent was not a good investment, as the cost of information seeking was not recovered
by the faster routes.

The overall fit of the model was promising; the model responded to changes in costs and
utility the same way as the subjects. Since changes in cost updated the expected utilities of
productions after the model clicked on a transfer, the responses were relatively fast. In
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contrast, changes in utility of information updated the expected utilities of productions
only after the model moved to and used the transfer. The changes in expected utilities
of the productions affected how often the hill-climbing or the information-seeking strategy
was used. The good fit of the model to the data shows that the differential rates of respons-
es to changes in costs and utility matched well to those in the human data.

The time-based decay learning mechanism allows the model to discount remote past
experiences so that it responds to recent past experiences faster. This mechanism is used
because when the cost and information structures of the environment are changed, new
observations need to have a larger impact on behavior than previous experiences in the
old environment. The differential weighting of past experiences provides good explana-
tions of the behavior observed in E2. It is possible that the mechanism captured the behav-
ior of the subjects when they realized that the environment had significantly changed and
began to put more weight on new observations.

The noisy conflict resolution controls the probability that a previously favorable (i.e.,
one that has a higher utility value) strategy would be used again. This was particularly
important because in E2, subjects were given a series of different within-subject conditions,
and a once favorable strategy may not continue to be favorable when the condition is
changed. The model therefore had to ‘‘sample’’ the results of different strategies (even if
they were less favorable based on past experiences) to know which strategy would be best
in a particular condition. In E2, the model fit was better with a higher expected gain noise,
suggesting that subjects could be exhibiting a higher probability of this kind of ‘‘sampling’’
behavior. The tradeoff between this kind of sampling behavior and adopting consistently
the strategy that works the best is often cast as a tradeoff between exploration and exploi-
tation. In a changing environment, the best strategy may not always be the best all the
time, thus it may be beneficial to shift the balance to more exploration than exploitation.
The increase in expected gain noise basically achieve this in the model: the model will be
more likely to select different strategies (exploration) than to use the strategy that has the
highest utility (exploitation).

10. Experiment 3

E3 tested the third prediction of the BSM—high cost may lead to poor exploration of
the task space in a local-minimum environment. In E2, subjects were found to be more
sensitive to costs than utility. High costs may therefore lower people�s willingness to
explore the task environment because exploration requires higher costs that may or may
not be compensated by better solutions. The use of the local decision rule in the BSM
implies that when costs are high, information seeking may stop prematurely, thus leaving
a major part of the task space unexplored.

The RAF maps in E3 were designed as shown in the notational Fig. 14. In contrast to
the RAF maps used in E1 and E2, these are local-minimum maps in that a fast path to a
location close to the end station could be found by a small number of information-seeking
actions. However, this path would eventually lead to a slow transfer in the map (right
before they reach the end station), thus making the overall path to the end station slow.
The fastest path from the start station to the end station required more information-seek-
ing actions and uses a path that initially went away from the end station, but did not
require the use of any slow transfer to reach the end station. To increase the utility of
information, the slow transfers in E3 were twice as slow as those in E1 and E2. The costs
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were the same as in E1 and E2. E3 is a between-group study in which half of the subjects
were assigned to a low cost condition, the other half to the high cost condition.

10.1. Design and procedures

Each of the 20 subjects was given 40 trials, half of the maps were direct-fastest maps
and half were local-minimum maps. The order of the maps was randomized with the con-
straint that 4 direct-fastest and 4 local-minimum maps were given every 8 trials. This is to
make sure that subjects would have roughly equal experience with each type of map during
the experiment. Half of the subjects were randomly assigned to the high and low cost
conditions.

10.2. Results

Predictions from the model were obtained by running the model 10 times. The major
change specific to E3 was one that reflected the difference between the E3 task environment
and the task environment used in E1 and E2. Specifically, the effort parameter of use-slow-

transfer in E3 was set at 32, (i.e., twice as large as that in the High Utility condition of E1,
see Appendix C).The model used here was the model used in E1 and E2. As in E1, the
expected gain noise was set to 0.3. Since the task environment was constant throughout
the study, the time-based decay mechanism was not used as in E1.
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10.2.1. Number of information-seeking actions

Fig. 15 shows the number of information-seeking actions in the two between-subject
conditions. A 2 (high/low cost, between-subject) · 2 (map types, within-subject) ANOVA
shows that the main effect of cost is significant, F (1,22) = 23.7, MSE = 6342.13, p < .01.
The main effect of map types is also significant, F (1,22) = 32.89, MSE = 377.82, p < .01.
The cost · map types interaction is significant, F (1, 22) = 6.30, MSE = 72.42, p < .05.
Subjects had significantly more information-seeking actions in the low cost condition,
and in the local-minimum maps. The greater amount of information-seeking actions in
the low cost condition was consistent with the results from E1 and E2. However, subjects
had significantly more information-seeking actions in the local-minimum maps than in the
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direct-fastest maps only in the low cost condition. The number of information-seeking
actions between map types in the high cost condition was not significant. Subjects in
the high cost condition seemed not able to distinguish between the two types of maps,
and used similar numbers of information-seeking actions.

Fig. 15 also shows the model fit to the empirical data for the number of information-
seeking actions in the two different map types. The overall fit was good, R2 = 0.90,
RMSE = 0.07. The model slightly under-predicted in the low cost condition and over-pre-
dicted in the high cost condition. The model, however, captured the overall pattern of the
data. In the low cost condition, the number of information-seeking actions in the local-
minimum maps was much higher than that in the direct-fastest maps. However, in the high
cost condition, the number of information-seeking actions was roughly the same in the
two kinds of maps.

10.2.2. Relative path time (RPT)

Fig. 15 shows the RPT in E3. Since for the direct-fastest maps, the hill-climbing path
time equals the fastest path time, the original definition of RPT in E1 and E2 cannot be
used (since the denominator will be zero). Instead, RPT is defined as: RPT = chosen path
time/fastest path time. A 2 · 2 ANOVA shows that the main effect of cost is not signifi-
cant, F (1, 22) = 2.66, MSE = 3.85, p > .1. The main effect of map types is significant,
F (1,22) = 21.20, MSE = 2.79, p < .01, and the cost · map types interaction is also signif-
icant, F (1, 22) = 7.26, MSE = 0.96, p < .01. The difference in map types in the low cost
condition is not significant, F (1, 11) = 2.80, MSE = 0.47, p > .1, but is significant in the
high cost condition, F (1, 11) = 39.45, MSE = 5.34, p < .01. The difference between
the high and low cost in the direct-fastest maps is not significant, F (1, 22) = 0.74,
MSE = 0.59, p > 0.3, but is significant in the local-minimum maps, F (1, 22) = 5.57,
MSE = 5.73, p < .05. Subjects used equally efficient paths in the direct-fastest maps, re-
gardless of the cost. However, when the cost was high, subjects found significantly
slower paths in the local-minimum maps than when the cost was low.

Fig. 15 shows the model fit to the data. The model fit the data well, R2 = 0.75,
RMSE = 0.13. The model found paths with similar quality in the direct-fastest maps,
but over-predicted (i.e., found slower paths) in the local-minimum maps. The model
also exhibited slightly larger variances than the human subjects. The model apparently
did not consistently find the fastest paths in the low cost condition as the subjects did.
On the other hand, the model apparently found fewer fast paths in the high cost
condition.

10.2.3. Relative trial time (RTT)
Fig. 15 also shows the RTT (same definition as in E1 and E2) in E3. A 2 · 2 ANOVA

yielded a significant main effect of cost, F(1, 22) = 7.97, MSE = 13.38, p < .01. The main
effect of map types was not significant, F (1,22) = 2.38, MSE = 0.36, p > .1, and the
cost · map types interaction was not significant, F (1, 22) = 0.66, MSE = 0.11, p > .4.
The difference in map types in the low cost condition was not significant,
F (1,11) = 0.42, MSE = 0.022, p > .4, but was significant in the high cost condition,
F (1,11) = 5.73, MSE = 0.39, p < .05. The lack of effect of map types in the low cost con-
dition suggests that, when using the local-minimum maps, subjects were able to find a path
almost as fast as when using the direct-fastest maps. However, in the high cost condition,
the overall performance in the local-minimum maps was significantly worse than that in
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the direct-fastest maps. This was possibly because subjects spent less time seeking informa-
tion, and obtained a worse path.

Fig. 15 also shows the model fit of the relative trial time. The model shows a good over-
all fit, R2 = 0.97, RMSE = 0.03. Although the model fit the human subjects well in the low
cost condition, it under-predicted in the direct-fastest maps, and over-predicted in the
local-minimum maps in the high cost condition. The lower RTT in the direct-fastest maps
in the high cost condition was probably because of the lower number of information-seek-
ing actions of the model. The higher RTT in the local-minimum maps was probably
because of the slower path the model used. Again, given the high constraints of the model,
the fit was reasonably good.

One may wonder if subjects would have performed better if more information seeking
were done. Given the reliability of the model across three studies and many measures, we
turned to it for an answer to this question. To do so, we increased the expected utility of
the information-seeking-strategy production in the high cost condition so that the mean
difference of the number of information-seeking actions between the two types of maps
was approximately 2 (note that mean difference in the low cost condition was approxi-
mately 1.85). In other words, we forced the model to perform more information-seeking
and observed how well it performed. We found that with more information seeking, both
the RPT and RTT were lower (see the dashed lines in Fig. 15). This suggests that the mod-
el found a faster path, and the time saved from the faster path was larger than the time
spent on information-seeking. In other words, the subjects could have potentially attained
much better overall performance if they had spent more time on information seeking. Our
results showed that subjects had apparently stabilized at a suboptimal level of informa-
tion-seeking.

10.2.4. Summary and conclusions of E3

Consistent with results from E1 and E2, when costs were high, subjects had fewer infor-
mation-seeking actions. The key finding in E3 was the interaction between cost and map
types. When the cost was low, subjects had significantly more information-seeking actions
for the local-minimum than for the direct-fastest maps. As a result, the paths found when
costs were low were of similar quality (i.e., similar relative path time) for both the local-
minimum and direct-fastest maps. However, when the cost was high, subjects did not have
more information-seeking actions for the local-minimum maps; as a consequence, the
paths found were significantly slower paths for local-minimum than for the direct-fastest
maps. Apparently when cost was high, subjects failed to adapt to the changing map types,
and adopted a similar number of information-seeking actions in both types of maps.

The results of E3 highlight the importance of studying the course of adaptation. Many
traditional cost-benefit analyses tend to extract an episode of behavior, calculate the costs
and benefits of different alternatives, and infer the choices of the subjects based on the
optimal cost-benefit tradeoffs of the existing alternatives (e.g., Beach & Mitchell, 1978;
Christensen-Szalanski, 1978; O�Hara & Payne, 1998; Pirolli & Card, 1999). If this
approach were adopted, performance of subjects in E3 would be considered irrational—
because apparently non-perfect cost-benefit tradeoffs (that subjects failed to perform bet-
ter in the local-minimum maps in the high cost condition) were observed.

It is possible that with longer practice (more than 40 trials), subjects might be able
to learn the utility of information in the local-minimum maps in the high cost condi-
tion. However, three points lead us to believe that E3 performance is stable. First, the
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interaction between costs and map types shows that subjects in the low cost condition
did adapt to the task space in the trials provided. Second, in E2 our results showed
that, with the right set of conditions, Subjects could and did change their information
seeking behavior every 16 trials. Third, we found that the model had stabilized after 40
trials. In fact, we ran the model for an additional 40 trials and still did not find adap-
tation to local-minimum maps in the high cost condition. All in all, these points lead
us to the conclusion that for the high cost condition, the cognitive system has stabi-
lized on a suboptimal tradeoff.

The overall fit of the model was promising, with the model capturing the overall pattern
of the empirical data for the three performance measures. Perhaps the most important
aspect was that the model did exhibit different information-seeking behavior in different
map types when the cost was low, but not when the cost was high. The behavior of the
model provides a good account of this effect. In the local-minimum maps, the cost (the
C parameter) of using the hill-climbing strategy will be much higher than in the direct-fast-
est maps. However, when the cost of information-seeking was high, information seeking
stopped before the fastest path (the roundabout path) could be found because through
interacting with the environment, the utility value of the production that initiated informa-
tion-seeking actions became lower (because the C parameter was increasing) than the pro-
duction that stopped the information-seeking strategy. The procedural learning
mechanism therefore updated the utility values of the set of productions in such a way that
competition between productions led to a low number of information-seeking actions. The
low number of information-seeking actions was not sufficient to find the fastest path in the
local-minimum maps, but was sufficient to find the fastest path in the direct-fastest maps.
On the other hand, when the cost was low, more information-seeking actions were execut-
ed and the fastest paths were more likely to be found in both types of maps. Suboptimal
tradeoffs were therefore realized by the conflict resolution and learning mechanisms of
ACT-R, which updated the utility values of the information-seeking, hill-climbing, and
the ‘‘give-up’’ productions according to the cost and information structures in different
task environments. The set of productions, with different sets of utility values in different
map types and costs, reflected the local decision rule as described in the BSM. The subop-
timal tradeoffs found from the data therefore provide support for the BSM�s local decision
rule and Bayesian learning mechanism.

11. General discussion

In the beginning of the article, we cast the problem of deciding when to stop seeking
information as a process of adaptation to the environments. The Bayesian satisficing mod-
el (BSM) is able to obtain good level of performance in various environments through the
global Bayesian learning process mediated by the local decision rule. The BSM, however,
does not guarantee that the optimal tradeoff point can be found. The BSM predicts three
related characteristics of information-seeking behavior that were supported by empirical
data collected from human subjects. First, in a diminishing-return environment, the local
decision rule was sufficient to lead to optimal performance. Second, in an environment
where either the cost or information structure was changed, subjects responded to changes
in costs faster than changes in utility of information. Third, when the cost was high in a
local-minimum environment, subjects prematurely stopped seeking information and stabi-
lized at suboptimal performance.
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When faced with a new environment, a person may actively seek information to gain
knowledge about the distal properties of the environment. Both our empirical and simu-
lation results show that subjects used a local decision rule to decide when to stop seeking
information. Although the local decision rule was effective in finding the right level of
information seeking in most situations, the nature of local processing inherently limits
the exploration of the environment. As we showed in Experiment 3, the local decision rule
often implies ‘‘insufficient’’ information-seeking as high information-seeking costs discour-
age exploration of the environment. As a result, suboptimal performance emerges as a nat-
ural consequence of the dynamic interactions between cognition and the environment.

The combination of the conflict resolution, the procedural learning, and the credit
assignment mechanisms of ACT-R were able to exhibit the same patterns of behavior across
all three experiments in all dependent measures. The fact that the same model (only one
parameter was different across the experiments) matched subjects� behavior across the three
experiments shows that these mechanisms were flexible enough to adapt the model�s behav-
ior to large differences in its task environments. The result is that, across three studies, the
model exhibited the same patterns of information-seeking behavior as the humans. Having
verified the basic reliability and validity of the model, we then interrogated it to yield precise
predictions of performance in the local-minimum environment if more information-seeking
were performed and if more practice were given to the subjects. The ability of the models to
generate these testable predictions is encouraging for the goals of cognitive psychology.

11.1. How persuasive are our good fits?

Roberts and Pashler (2000) argued against the overreliance on goodness of fit (GOF) as
evidence to support theories, and suggested several other features of theory evaluation that
are more important than GOF. We agree wholeheartedly. Below we examine our analyses
in light of their three main principles of theory evaluation: (1) Flexibility—can the theory
predict alternative results? (2) Data variability—do the data rule out what the theory rule
out? (3) A priori likelihood of a good fit—can the theory fit any plausible result? We will
examine our analyses based on these principles below.

11.1.1. Flexibility

The first principle focuses on how much a theory constrains the possible behavior of the
model. For example, if a model has adjustable parameters, a particular good fit is only one
example of what the model can produce. In general, ACT-R is complex and involves many
parameters, and thus may seem able to fit a wide range of data. In fact, because of the
interactions of the symbolic and subsymbolic representations, it is difficult to specify
exactly how many parameters are free to vary in an ACT-R model (e.g., there are many
possible symbolic representations for a given task). However, in our model, the symbolic
representation is based on the BSM; and most of the subsymbolic parameters are set at
their default values (as used in most of the models posted in the ACT-R website
http://act-r.psy.cmu.edu). We did set 4 out of 35 parameters to obtain the fit in E1, but
the parameter values were then fixed to fit data in both E2 and E3 (the only parameter
we changed was the noise parameter to obtain the fit in E2). The parameter values were
thus not ‘‘completely free’’ to vary to fit all the data across the three experiments.

A similar argument on the importance of the flexibility of a model to its validation is
given by Pitt, Myung, and Zhang, 2002 (see also Pitt & Myung, 2002). They argued that

http://act-r.psy.cmu.edu
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besides the number of parameters, the functional form is an important consideration when
evaluating a model. A complex functional form will lead to high flexibility of the model to
fit a wide range of possible patterns of data. Our model presented above rests on our the-
ory that the adaptation process can be explained by the interaction of the Bayesian learn-
ing and the local decision components. The simulations of the BSM model clearly show
that the simple functional form of the model is able to produce the different patterns of
results obtained from the experiments. The ACT-R model is implemented based on the
BSM, and thus has the same functional form. In fact, given the symbolic representation
of the model as shown in Fig. 10 and Appendix C, none of the ACT-R parameter values
affected the general functional form of the model. The good fits to the data are therefore
not a result of an overly complex model.

Comparing results from E1 and E3, we found significantly different patterns of results:
in E1, subjects adapted well to the different environments with different costs and utilities;
however, in E3, subjects failed to adapt to the local-minimum environment when the cost
was high. We showed that a single model, interacting with different environments, was
able to produce the two different patterns of data by adjusting only the noise parameter
of the model. The same model also produced the pattern of results in E2, in which the rates
of approach to stable performance were faster when costs were changed than when utilities
were changed. The good fits to the three sets of data show significant constraints to what
the model cannot produce—for example, it cannot adapt to the local-minimum environ-
ment in E3 as well as it does to the diminish-return environments in E1.

11.1.2. Data variability

The second principle concerns the variability of the data on the constrained dimension
that the theory predicts. The idea is to show how firmly the data agree with the predictions
of the model. The major predictions of our model are focused on differences of the various
dependent measures between the environments with different costs and utilities, and as we
showed, all differences are statistically significant. Besides, we showed that the variability
of the model closely matches that of the data in all sets of data. This shows that the data
do seem to rule out what the theory rules out.

11.1.3. A priori likelihood of a good fit

The third principle rests on the well-known belief that a theory is useful only if it predicts
unlikely, novel events. For example, a learning function, although correct, is not surprising
if it merely predicts that performance improves according to a smooth function, reaches
asymptotes, and stays there. Indeed, the likelihood of having a function that exhibits such
characteristics is fairly high, and a good fit to the data does not gain much theoretical sup-
port for the function. However, if a theory predicts that performance stops improving and
is able to specify the conditions under which this will happen, the likelihood of a good fit by
chance will be much lower, and a good fit will be more meaningful. We argue that our the-
ory does have a low a priori likelihood of good fits by chance to the three sets of data.
Although it is not hard to imagine a simple learning function that improves and stabilizes
at the level of information seeking as observed in E1, the finding that the improvement
stops in a local-minimum environment when the cost is high cannot be easily predicted
by a simple learning function, such as the power law of learning. In fact, we take the specific
prediction and confirmation from E3 as strong evidence suggesting that a local decision
process is used when subjects adapt to the cost and information structures of the task.
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11.2. Relations to other suboptimal behavior

11.2.1. Suboptimal rules

The research presented in this paper falls into the general category of research that inves-
tigates how people learn from experience. It is obvious that most real-world decision-mak-
ing behavior is action oriented; people have to choose what action to take to satisfy their
goals, and they need to learn the degree to which their actions will lead to desirable or unde-
sirable outcomes. Undoubtedly, much initial learning occurs by trial and error—i.e., one
randomly chooses an option and observes the outcome. In our analyses, we assume that
reinforcement from trial-and-error learning is the principal means to evaluate what actions
to take in a particular environment. Indeed, we showed that that BSM does a good job
characterizing the adaptation process of information-seeking behavior in different costs
and utilities structures. However, one may speculate that in more complex situations people
do inductively generalize action-outcome linkages and develop general rules to deal with
specific instances. Learned values (i.e., costs and utility) of information seeking in one task
environment may be transferred to a new task environment in which they may lead to the
use of suboptimal rules (Einhorn, 1982). Indeed, we have found that suboptimal rules may
persist even after years of experience with various software tools (Fu & Gray, 2004).

11.2.2. The sunk cost effect

The sunk cost effect refers to the higher tendency that one will continue an endeavor once
an investment in money, effort, or time has been made. This tendency is often regarded as
irrational in the normative standard, as decisions to continue or not should be based only
on the marginal costs and benefits of future attempts. However, many studies find that the
amount of resources spent on a task can have substantial impact on future decisions. For
example, in a field study, Arkes and Blumer (1985) demonstrated that people who paid more
for a 6-show theatre subscription package had a higher tendency to attend the shows.
According to the normative standard of rationality, the likelihood to attend the shows
should be the same once they had the tickets in hand, regardless of the price they paid for
them. Apparently, the likelihood was higher for the group who had the higher sunk costs
for the tickets.

In our task, subjects incurred continuous costs as they were seeking information until
they reached the end station. This is analogous to a sunk cost situation: time already spent
seeking information is the sunk cost; reluctance to use a direct path to the end station rep-
resents the desire to invest further in information-seeking. However, we argue that in our
task the sunk cost effect is not as irrational as other examples of the sunk cost effect. The
major difference of our task and other tasks is that continued information-seeking will
increase the probability that a faster path will be found (see Fig. 2). There is therefore a
prominent rational basis for continued information-seeking. In fact, many have argued
that there exists a similar relationship between prior efforts and future likelihood of success
in large information structures (Pirolli & Card, 1999) and problem-solving environments
(Anderson, 1990). However, we do not intend to argue that the positive relationship
between sunk costs and future likelihood of success is sufficient to explain the ubiquitous
sunk cost effects. For example, in the theatre subscription package example discussed ear-
lier, it is unlikely that people who paid more would anticipate that the shows would be
more enjoyable. However, these situations may involve complex value functions of money
and time that are obviously beyond the scope of this paper.
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11.3. Implications

11.3.1. Global and local control processes in choice behavior

The good match of the BSM to the data suggests a mixture of global and local con-
trol of performance by trial-to-trial feedback. The model slowly adapts to the global
characteristics (i.e. the relationship between number of information-seeking actions
and overall performance time) environment by the Bayesian learning process, and deci-
des to stop seeking information by a local decision rule. The BSM is in agreement with
many choice models that treat adjustment of choice behavior in response to local sam-
ples of recent reward contingencies (Busemeyer & Myung, 1992; Davis, Staddon, Mach-
ado, & Palmer, 1993; Gonzalez-Vallejo, 2002; Herrnstein & Vaughan, 1980; Vaughan,
1981, 1985). However, our model assumes further that local samples of the environment
are used to update the global knowledge of the environment through the Bayesian learn-
ing process. We also showed that compared to the local decision rule, the Bayesian
learning process is slow and highly dependent on experienced samples of the environ-
ment. Although the model stabilizes at a suboptimal level of performance in a local-min-
imum environment, the process clearly has a prominent rational basis. In fact, as argued
by others (Stephens & Krebs, 1987), for a forager in the natural environment, it makes
more sense to pay attention to local changes of food patches than to the global trends of
the environments.

11.3.2. Implications for bounded rationality

Although Bayesian learning is often associated with optimization, we showed that
the BSM may not necessarily lead to the optimal level of performance. Rather,
because of the use of a local decision rule, optimality is an exception, not a rule
for the model. In fact, the use of a local decision rule leads to a stable level of per-
formance, which is a necessary but not sufficient condition for optimality. Indeed, we
share our views with others (e.g., Herrnstein, 1997) that stability provides a more gen-
eral class of explanations than optimality. Since optimality implies stability, but not
vice versa, we maintain that for models of bounded rationality, the level of explana-
tion should not be more specific than the assumption of stability. In fact, as a mech-
anism of adaptation, the performance of our subjects and our models showed that the
assumption of global optimization may be too constrained as a general guideline to
explain human behavior.

Under the common assumption that cognition is well adapted to the environment to
which it has evolved (e.g., see Anderson, 1990), the above arguments may lead to the ques-
tion of why the optimal level of performance is not achieved, and what defines adaptivity.
Our model takes the stance that adaptivity arises from the ability to take limited local
information as controlling variables to myopically select the potentially ‘‘most profitable’’
actions. This myopic nature of adaptation, however, does not necessarily lead to globally
optimal performance. On the other hand, we show that in environments with the general
characteristic of diminishing returns, people are able to perform good tradeoffs between
costs and utility, as we found in the simulation results of the BSM and from E1. We would
like to think that cognition is evolved in natural environments where myopic processes are
‘‘good enough’’ to achieve reasonably high levels of performance such as our subjects did
in E1. Unfortunately, we do not expect to obtain the data relevant to tracing the evolution
of cognition that is needed to test this hypothesis.
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The standard assumption that cognition is adapted to the most frequently encoun-
tered characteristics of natural environments, suggests that environments that result in
suboptimal performance have characteristics that are not frequently encountered in
nature. For better or worse today, more than ever, much of our daily environment
is an artificial environment whose information-seeking characteristics may well be out-
side the normative range of most natural environments. Indeed, across the three stud-
ies, the empirical results and model predictions showed that the use of a simple local
decision rule was able to achieve a reasonably good level of performance, except in
environments with specific peculiarities, like the ones in E2 and E3. It is not too far-
fetched to argue that these peculiarities stem from features of the task environment
that are unrepresentative of the natural environment to which humans have evolved.
In fact, it has been our goal to investigate how behavior deviates from optimality when
people interact with environments with specific peculiarities, so that the underlying
mechanisms can be revealed. We believe that the model provides a useful explanation
of the patterns of behavior we observed—without the model we would have been
forced to conclude that people are suboptimal in their information-seeking behavior.
Instead, we conclude that cognition is adaptive—the simple, effective mechanisms are
able to perform good tradeoffs in our ‘‘natural’’ environment and that complex com-
putations are not necessary.

The models we constructed were based on our hypothesis that local information was
utilized as a controlling variable in deciding the tradeoff point. This hypothesis was con-
firmed by the empirical data. When information-seeking costs were high, subjects in E3
stabilized at a suboptimal level of performance as predicted by the model. If global infor-
mation were utilized as much as local information to decide the tradeoff point, subjects
would have reached optimal performance even when information-seeking costs were high.
Similar to the arguments made by many researchers studying human and animal choices,
we conclude that bounded rationality is more likely to lead to a stable rather than an opti-
mal tradeoff point.

11.3.3. Implications for interactive behavior

The results also contribute to recent research on interactive behavior, which stresses the
importance of the study of the interaction of cognition, the environment, and the task
(Byrne, 2001; Gray, 2000, in press; Kirsch & Maglio, 1994). Research on interactive
behavior focuses on how internal cognitive processes are coupled with external physical
activity in an interactive process. For example, Kirsch and Maglio (1994) showed that
in a real-time interactive video game called Tetris, many manipulations are best under-
stood as physical actions that complement complex computations in cognition. They
argued that many process models of cognition often assume that information is already
in the head, and have neglected the fact that people often use external physical actions
to manipulate external objects to provide information to internal cognitive processes
through our perceptual systems. Similarly, Gray and Fu (2004) showed that a small
increase in information-seeking costs induced strategies that rely on imperfect knowledge
in-the-head rather than accessing perfect knowledge in-the-world. The use of the subopti-
mal strategies was apparently a result of a local process that traded off information-seek-
ing costs with memory retrieval costs. Similar to the studies in Gray and Fu, our
manipulation of information-seeking costs (with or without the 1-s lockout time) was rep-
resentative of that encountered in many human-system interactions. For example, people
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often need to search for a particular command in the pull-down menu in a computer appli-
cation, or they may need to use the ‘‘help’’ function to search for how a particular task can
be done. In fact, information-seeking actions are ubiquitous in everyday tasks, in which we
often find ourselves diving into the increasingly complex networked world of information
and computer-mediated interaction. Our results show the importance of understanding the
complex interaction between the task, cognition, and different information structures to
facilitate the use of information. Specifically, in our experiments, we showed that even
when useful information is lurking somewhere in the environment (e.g., an efficient short-
cut in a computer application or a useful piece of information for decision-makers), people
are not necessarily able to fully utilize the information to efficiently finish their tasks. Our
results suggest the importance of the interaction between cognitive and perceptual-motor
processes in understanding how information will be accessed and utilized to service the
user�s goal.

Another aspect of interactive behavior is that it often involves a series of distribut-
ed choices on what actions to take. One of our recent studies (Fu & Gray, 2004)
found that even after years of experience, users of a wide range of computer applica-
tions stabilized at a suboptimal level of performance. Carroll and Rosson (1987) call
this phenomenon the ‘‘paradox of the active user.’’ Results from the current article
suggest that the stable suboptimal level of performance could be a result of the local-
ized process for choice of actions. As we observed in E3, when information-seeking
costs are high, people tend to under-explore the task space. In other words, informa-
tion-seeking costs may be affecting how likely people will be to use more efficient pro-
cedures in computer applications or other interactive environments. Our results
therefore suggest an important warning for designers of interactive applications—even
small differences in information-seeking costs may affect long-term learning and
performance.
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Appendix A. Details of the Bayesian satisficing model (BSM)

A.1. Assumptions in the BSM

We make four general assumptions about the environment and the model to limit the number of variables
without reducing its predictive power. By making these assumptions, we do not imply that all environments have
the same kind of characteristics. Instead, we aim at deriving predictions of human behavior based on some gen-
eral characteristics of environments. First, for the model, it is assumed that learning is a Bayesian combination of
new and old information through each cycle of interaction with the environment. Second, we assume that the
model uses a simple decision rule to stop seeking information based on existing knowledge of the environment.
Third, for the environment, we assume that the more information the model has, the less time will be required to
accomplish the task. Fourth, we assume that the task can always be finished by some heuristics (even with no
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information-seeking action). However, depending on the number of information-seeking actions, the time
required to finish the task varies. These assumptions allow us to focus on the study of how people behave in dif-
ferent environments with different relationships between costs and the utility of information.

The following variables are defined for the BSM:

B—the mean execution costs required to finish the task
n—number of information-seeking actions
n 0—number of information-seeking actions chosen by the model
C—actual execution costs required to finish the task associated with a particular N

Learning in the BSM is concerned with estimating B from information observed from the environment. The
model assumes that the execution costs required to finish the task uses the exponential function to represent the
decreasing, diminishing-return relationship with the number of information-seeking actions (i.e., n). Research has
shown that the exponential relationship fits the relationship well (e.g., see Pirolli & Card, 1999). The uncertainties
of B are represented by a gamma distribution. The exponential distribution assumes minimal knowledge about
the environment. The gamma distribution is a two-parameter (a and b in the following equation) general distri-
bution that describes the uncertainties of B in a general environment:

pðBja; bÞ ¼ 1

CðaÞba Ba�1e�B=b.

The likelihood function is assumed to be an exponential distribution

f ðnjBÞ ¼ A
B

e�
n
B;

where A is a proportionality constant and is assumed to be 1.
The gamma and exponential distribution are standard non-informative distributions in Bayesian analysis

(Berger, 1985), which make minimal assumptions on the structure of the environment. Although the use of the
exponential distribution assumes unrealistically that execution costs will approach zero as the amount of infor-
mation increases, the decision criterion described below will almost guarantee that information-seeking will stop
before the execution costs is too low. We do not claim that these distributions are able to describe characteristics
of all possible task environments, but they are simple distributions that describe the general characteristic of f (n)
(i.e., decreasing, diminishing-return characteristic).

Mathematically, the distributions for B are assumed to be:

pðBja; bÞ ¼ 1

CðaÞba Ba�1e�B=b sðGamma distribution of the mean execution costs to

solve the problem ðBÞ; a; b are parameters of the distributionÞ;

f ðnjBÞ ¼ A
B

e�
n
B ðExponential function of the execution costs to solve the problem;

with the mean equal to B; after n information-seeking actions. A is a

proportionality constant.Þ

From Bayes� theorem, the posterior probability density function of B given some observations of the out-
comes of actions (i.e., the execution costs associated with n 0 steps of information-seeking) is:

pðBjn0Þ ¼ f ðn0jBÞpðBÞ
f ðn0Þ ¼ f ðn0jBÞpðBÞR

f ðn0jBÞpðBÞdB
ðEquation 1 : Bayesian learning equationÞ

p (B|n 0) will then be used as the updated ‘‘prior’’ estimation of the environment (i.e., p (B)) the next time the prob-
lem is solved. This allows the distribution p (B) to be continually updated with new information.

With the definition of B, the function, f (n), representing the amount of effort after n units of information-seek-
ing can be calculated by:

f ðnÞ ¼
Z

pðnjB0ÞpðB0ÞdB0
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If wn is the cost of a single information-seeking action, the optimal decision to stop seeking infor-
mation is when the cost of an additional step of information-seeking exceeds its marginal utility of
information. Mathematically, information-seeking will stop as soon as n satisfies the following
equation:

f ðnÞ � f ðnþ 1Þ < wn ðEquation 2 : local decision ruleÞ:

To summarize, the prior distribution in the model represents the prior knowledge that people have of the rela-
tionship between the number of information-seeking actions and the execution costs required to finish the task
in a general environment. With experience, the model gains information about the specific environment and
updates its prior beliefs of f (n). Based on this updated information, the number of information-seeking actions
is decided. New observations from the environment can be obtained that allow a better estimation of when
information-seeking will stop, and so on. This process allows the model to adapt progressively to the environ-
ment as more and more information is obtained from the environment. The BSM therefore provides a frame-
work as to how people are able to seek information adaptively, based on limited knowledge about the
environment.
Appendix B. ACT-R Architecture

ACT-R is a symbolic cognitive architecture with memory elements (i.e., chunks) in the declarative memory
module and condition-action pairs (i.e., production rules) in the procedural memory module. ACT-R also has
a subsymbolic level in which continuously varying quantities are processed, often in parallel, to participate in
neural-like activation processes that determine the speed and success of access to chunks and production
rules. These mechanisms are based on the ‘‘rational analysis’’ by Anderson (1990), in which Bayesian learning
is one of the major assumptions of the analyses. Understanding of the models that we present requires
knowledge of three of ACT-R�s subsymbolic components: the noisy conflict resolution mechanism, the pro-
cedural learning mechanism, and the credit assignment mechanism. These three mechanisms together deter-
mine the choice of different productions in different situations that are critical to the implementation of
the BSM.

There are two major symbolic components in the ACT-R architecture (Anderson & Liebere, 1998)—a declar-
ative knowledge component and a procedural knowledge component. Declarative knowledge corresponds to
things that we know and can easily describe to others, and is represented as ‘‘chunks’’ in ACT-R. Each chunk
has an activation value that determines the availability of the chunk. Goals are also represented as chunks that
encode the system�s intentions. An example of a goal chunk, in which two has to be added to three and the answer
is still unknown is shown below.

Goal-addition
ISA ADDITION
ADDEND1 TWO
ADDEND2 THREE
ANSWER NIL

Procedural knowledge is knowledge that we display in our behavior but of which we are not conscious.
In ACT-R, procedural knowledge is represented as condition-action pairs, or production rules (or simply
productions). Productions are in the form of IF Æcondition � 1æ Æcondition � næ THEN Æaction � 1æ Æac-
tion � mæ. Procedural knowledge controls the operation of ACT-R�s buffers; for example, initiating retrievals
from memory or shifts of attention on the action side and harvesting the results of these actions on the
condition side. An example production rule that tries to solve an addition problem by retrieving an addi-
tion chunk is shown below. IF the goal is to add num1 to num2 and there is no answer THEN retrieve an
addition chunk with num1 and num2 as addends

At any point in time, only a single production will fire. When there is more than one match, a mechanism
called conflict resolution is used to decide which production to execute. The conflict resolution mechanism is
based on a utility function. The expected utility of each matching production is calculated based on this utility
function, and the one with the highest expected utility will be picked according to a mechanism referred to as
conflict resolution, as described below.
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B.1. Noisy conflict resolution

When there is more than one production rule that matches the goal specification, the noisy conflict resolution
mechanism will decide which production to fire. Each production rule in ACT-R has a utility value E (referred to
as ‘‘expected utility’’) that determines the probability that the production will be selected. Since the conflict res-
olution mechanism is noisy, even the production with the highest utility is chosen only a certain proportion of
time. Specifically, the probability that a production x will be selected is captured in this closed-form equation

Probability of selecting x ¼ eEx=tP
je

Ej=t
;

where t (the expected gain noise) controls the noise added to the expected utilities. Noise is sampled from a lo-
gistic distribution with mean equals one and variance (r2) equals r2 = p2s2/3, and t2 = 2s. This equation is also
known as the ‘‘softmax’’ or the Boltzmann�s machine equation in connectionist models (e.g., see Hinton & Sej-
nowsky, 1986). In general, the higher the value of t (or s, both are settable parameters in ACT-R), the higher the
chance that productions with lower expected utility (E) will fire. This is an important characteristic because it bal-
ances exploration and exploitation behavior. In terms of the problem of choosing the number of information-
seeking actions, the softmax equation allows sampling of the amount of effort required to finish the task for dif-
ferent numbers of information-seeking actions.

E is calculated as E = PG � C, where P is the expected probability that the goal will be achieved if that pro-
duction rule is chosen, G is the value of the goal, and C is the expected cost of achieving the goal if the production
is chosen. Similar to the BSM, the scale or currency for measuring utility in ACT-R is time. As described in the
next section, the values of P and C will change with experience, allowing ACT-R to learn.

B.2. Procedural learning—a Bayesian learning mechanism

There are learning processes in ACT-R that produce statistical estimates of the appropriate quantities of two
parameters—the probability of achieving the goal, P, and the cost of executing the production, C. P and C are
calculated as

P ¼ successes

successes þ failures
C ¼ efforts

successes þ failures

The parameters successes and failures in both equations refer to the number of times the production has suc-
ceeded or failed to accomplish the goal. The parameter efforts is the total amount of time taken over all past
uses of the production, successful or failed. In general, the chance of choosing a production increases when the
number of times the production fires successfully is high, and the time taken over all past uses of the produc-
tion is low. The formulae presented above were derived from a Bayesian estimation of the log odds of the
probability that a particular action will successfully lead to its intended outcome (see Anderson, 1990 and
Anderson & Lebiere, 1998).

The expected utility (E = PG � C) of a production is updated when the production fires and the outcomes of
the production (i.e., success or failure and efforts) observed. This learning process in ACT-R is therefore similar to
the Bayesian learning mechanism in the BSM. Both mechanisms learn by combining existing knowledge with new
observations from the environment based on Bayes� theorem. The expected utility of the productions that initiate
information-seeking actions therefore reflects the function f (n) in the BSM, which captures knowledge about the
relation between the number of information-seeking actions and execution costs to finish the task. However,
unlike the BSM, learning in ACT-R does not directly determine the number of information-seeking actions.
Instead, the change in expected utilities of productions influences the probabilities that the productions will be
chosen in the future. This introduces more variability in the learning process.

The above procedural learning mechanism, however, does not take into account the fact that people tend to
weigh recent experiences more than distant experiences. ACT-R provides a time-based decay mechanism to the
learning of expected value. This mechanism allows the influence of past experiences to decay with time. Thus,
recent experiences will have a relatively larger influence on the production selection process. Consequently, an
ACT-R model with a long history of past experiences can respond to recent experiences faster. The decay mech-
anism is important because the basic learning mechanism will respond to recent experiences more and more slug-
gishly when the number of older, past experiences increases (i.e., as the denominator gets larger and larger with
experience).
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The time-based decay mechanism has the same equations as the ones shown above, but successes and failures
are calculated by

successesðtÞ ¼
Xm

j¼1

t�d
j failuresðtÞ ¼

Xn

j¼1

t�d
j ;

where tj is defined as how long ago each past success or failure was. From the equation, the larger t is, the
smaller the value will be weighted—i.e., the more remote a past experience is, the smaller its influence (i.e.,
discounting) will be to the current choice of actions. In other words, past experiences decay with time accord-
ing to a power function with d as the index. The higher the value of d, the faster will be the decay of past
experiences (when d = 0, all past experiences will be equally weighted). This time-based decay mechanism al-
lows faster response to new information, because recent information has a larger weight compared to old
experiences.

B.3. Credit assignment mechanism

Another factor affecting the rate of learning is where the success and failure flag is set. The flags are set to tell
ACT-R when the current goal is successfully accomplished and when the model fails to accomplish the goal. It
can be seen that the later the flag is set, the larger will be the impact to the earlier productions (i.e., faster learning,
see Appendix C). The credit assignment mechanism in ACT-R is therefore affected by where the flags are set. It
determines how consequences of actions are credited to each of the production rules. In other words, the place-
ment of the flags allows us to control when the consequences of different costs and utility of information will be
fed back to the production rules. To preview our results, this mechanism is critical for the model to respond to
costs faster than utility of information in the experiments.

Consider the example shown in the table below, where five productions, P1, P2, P3, P4, and P5 were fired in
succession. Assume that the initial number of successes and failures for P1 is 1 and 0 respectively; the initial g
parameter is set to 20; and the initial efforts parameter is set to 0.05 (all are default values). The change of the
efforts parameter is shown in the second row. The initial utility value for P1 will be 19.95 (=1 · 20 � 0.05). If
the success flag is set at P3, then after P3 was fired, the procedural learning mechanism (without decay for sim-
plicity) will update efforts of P1 to (0.15 + 0.05) = 0.2. Since the number of successes is now 2, P remains 1 but C

becomes 0.1 (0.2/2). Therefore the utility value will be updated to 19.9 (1 · 20 � 0.1). However, if the success flag
is set at P5, then the efforts parameter of P1 will be updated to (0.25 + 0.05) = 0.3. The number of successes is still
2, P remains 1 but now C becomes 0.15 (0.3/2). The new utility value of P1 will then be 19.85 (1 · 20 � 0.15). It
can be seen that the later the flag is set, the impact to the ‘‘upstream’’ productions (in this case, P1 and P2) will be
higher (i.e., faster learning for the upstream productions).

Productions P1 P2 P3 P4 P5
Cumulative efforts
 0.05
 0.1
 0.15
 0.2
 0.25
Appendix C. Details of the ACT-R model

For the hill-climbing strategy, each box in the following figure represents a set of productions that imple-
ments the function as described. When the hill-climbing strategy is chosen, the model will look for and
encode the transfer stations around (i.e., left, right, up, and down) the current station. Each transfer station
is evaluated according to how much closer it is to the end station. If the model is at a transfer station, it will
also consider using the transfer to change direction. If the model is not at a transfer station, it will go to the
nearest transfer station between it and its end station. If it is at a transfer station, the model may decide to
use the transfer (which could be either a fast or slow transfer) or to give up the hill-climbing strategy and use
the information-seeking strategy. This decision is also a result of the conflict resolution mechanism, which is
based on the utility values of the competing productions. The P and C parameters of these productions were
updated through experience by the procedural learning mechanism. For example, the model will have learned
that using a slow transfer has a high cost (i.e., an increasing C value, thus making the utility value lower).
When the utility value of the production of using a slow transfer is lower than the production that gives up
the hill-climbing strategy, the model may switch to the information-seeking strategy.
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The credit assignment mechanism is controlled by a success flag after a transfer is used and a failure flag after
the model gives up the strategy. The total cost (i.e., the C parameter) of executing the hill-climbing strategy is
then credited to the initial production that chooses the strategy, and updates the utility value according to the
procedural learning equations. The combination of the credit assignment and procedural learning mechanisms
therefore influences the chance of selecting the hill-climbing strategy in the next cycle, in the same way as
the Bayesian learning mechanism influences how frequently information-seeking actions will be chosen in the
BSM.
C.1. The information-seeking strategy

For the information-seeking strategy, each box in the following figure represents a set of productions
that implements the function as described. When the information-seeking strategy is chosen, the model will
first look for transfer stations on the same line as the current station. There are two sets of productions
that look for transfers to check. The first set of productions, find-transfer-inside, finds transfer stations that
lie within the area enclosed by the current station and the end station (i.e., transfer stations that would be
used if hill-climbing is used). The second set of productions, find-transfer-outside, finds transfer stations
that lie outside the area enclosed by the current station and the end station. Find-transfer-inside has a
higher initial utility value than find-transfer-outside (see table below). By doing this, we assume that ini-
tially subjects will tend to use a short path (which can be judged perceptually without deliberate informa-
tion-seeking actions). As we will discuss later, this assumption is very useful when we model data from
E3.
Info - seeking
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Find-transfer-inside

Find-transfer-outside

Click and evaluate Click and evaluate
transfer on same line transfer on next line
as current station as current station
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The procedural parameters of the critical productions in each of the two strategies
Productions/parameters
 Successes
 Failures
 Effort
 Utility
Hill-climbing-strategy
 10
 0*
 0.05*
 19.995

Give-up-hill-climbing
 90
 10
 0.05*
 17.9995

Use-train
 500
 0*
 1
 19.998

Use-fast-transfer
 50
 0*
 0.5
 19.99

Use-slow-transfer (high utility condition)
 50
 0*
 16
 19.68

Use-slow-transfer (med utility condition)
 50
 0*
 8
 19.84

Use-slow-transfer (low utility condition)
 50
 0*
 2
 19.96

Information-seeking-strategy
 10
 0*
 0.05*
 19.995

Find-transfer-inside (high cost condition)
 50
 0*
 3
 19.94

Find-transfer-inside (low cost condition)
 50
 0*
 0.5
 19.99

Find-transfer-outside (high cost condition)
 40
 10
 3
 15.94

Find-transfer-outside (low cost condition)
 40
 10
 0.5
 15.99

Stop-information-seeking
 40
 10
 0.05*
 15.995

Give-up-information-seeking
 30
 70
 0.05*
 5.9995
Critical productions with different parameter values in different experimental conditions are also shown. Values
with ‘‘*’’ are the default values, so are the rest of the procedural parameters not shown in this table. Initial utility
values are calculated based on the values shown in the table. With experience, these values change, and the change
may affect utility.

Clicking on a transfer reveals its color (pink or orange) and the color codes the speed of transfer (pink fast,
orange slow). This will continue until (1) a fast transfer is found, (2) another set of productions, give-up-infor-

mation-seeking, is chosen, or (3) the model finds out that there is no fast transfer on the same line as the current

station. Initially, give-up-information-seeking has a low utility value, but its chance of being chosen may increase
through experience especially if the cost of information-seeking is high. When the information-seeking cost is
high (i.e., the value of C increases through experience), the utility value of the set of productions that finds,
clicks on, and evaluates a transfer will decrease, thus increasing the chance of giving up the information-seeking
strategy.

When a fast transfer is found, the model will encode its location (labeled Transfer X) in the figure above and
continue to evaluate transfers on the line to which the fast transfer leads. This will continue until (1) a fast transfer
is found that leads to the line on which the end station lies, (2) the set of productions that stops information-seek-
ing is chosen, or (3) the model cannot find any fast transfer. In cases (1) and (2), the model will move to the fast
transfer on the same line as the current station (i.e., Transfer X) found earlier. In case (3), the model will give up
the information-seeking strategy and use the hill-climbing strategy.

The following table shows where the flags were set. The flags specified where P and C will be calculated
and all productions that were selected and led to the flagged production would be updated according to the
procedural learning mechanism. Another cycle of credit assignment would then start after the flagged produc-
tion. In the model, success flags were set after the train or the transfer was used. A failure flag was set after each
‘‘give-up’’ production. A failure flag has the effect of decreasing the P value of all productions selected that led to
the flagged production, but the effect on the C parameter is the same as the effect of a success flag.

C.2. Relation of the ACT-R model to the BSM

The BSM combines the local decision rule and the Bayesian learning mechanism to decide on the number
of information-seeking actions. In ACT-R, the local decision rule is implemented through the conflict reso-
lution mechanism based on the expected utility of productions. The expected utility of a production is cal-
culated as the difference between the expected gain and costs (i.e., PG � C), thus taking into account both
the likelihood of reaching the end station and the costs associated with it. Similar to the BSM, the value
of the C parameter is learned through each interaction with the task according to a Bayesian process.
The credit assignment mechanism allows the actual cost of a series of actions to be credited to the produc-
tions that are responsible for initiating these actions. The experienced cost can therefore influence the chance
of initiating the same series of actions in the future. For example, when the cost of information-seeking is
high (i.e., C is high), the utility value of the productions that initiate the information-seeking action will
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decrease. When the utility value of the production that initiates the information-seeking action becomes lower
than the utility value of the productions that stop further information-seeking actions, the model will stop
seeking information.

The tradeoff between costs and utility of information is reflected by the utility values of the productions
that initiate and stop information-seeking actions, and those that initiate and stop the hill-climbing strategy
(i.e., no information-seeking action). For example, when costs of information-seeking actions are high, the
utility values of productions that initiate information-seeking actions will decrease, thus increasing the chance
of selecting productions that stop information-seeking actions and productions that use the hill-climbing strat-
egy. The number of information-seeking actions is then reduced. Similarly, when the utility of information is
high (i.e., when the difference between the speeds of the slow and fast transfers is high), using the hill-climbing
strategy to finish the task has a high cost, the utility values of the productions that initiate the hill-climbing
strategy will decrease, thus increasing the chance of selecting productions that stop the hill-climbing strategy
and productions that initiate information-seeking actions. The number of information-seeking actions is then
increased. The interaction of the conflict resolution, procedural learning, and credit assignment mechanisms in
ACT-R are able to model the tradeoff and implement the local decision rule and the Bayesian learning process
in the BSM. Since the model can interact with the experimental software directly, the results from the model
also allow quantitative measures that can be directly matched to the empirical data collected from human
subjects.

The success and failure flag set in the model
Productions
 Flag
Use-Train
 Success

Use-Fast-Transfer
 Success

Use-Slow-Transfer
 Success

Give-Up-Hill-Climbing
 Failure

Found-fast-transfer-to-end station-line
 Success

Use-fast-transfer-after-information-seeking
 Success

Give-up-information-seeking
 Failure
The flags were the same the models for all three experiments.
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