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1 INTRODUCTION

Game playing is an excellend domain {or researching interactive behaviors
because any time the culcomes of the inleractions between people are
associated with payolfs the situation can be cast as a game Because it is
usually possible to use garse theory (von Neumann & Morgenstern, 1944}
lo caleulate the optimal strategy, game theory has often been used as a
framework for understanding game-playing behavior in terms of optimal
and sub-optimal playing That s, players who donot play according to the
optimal game theory stralegy are understood in terms of how they deviate
from it. In this chapter we explore whether or not this is the right approach
for understanding human game-playing behavior, and present a different
pesspective, based on cognitive modeling

Optimal game theory models have been shown to be predictive of com-
petitive strategies used by some animals {see Pool, 1995 for a review), lead-
ing o the argument that the process of evolution acts as a genetic algorithm
for producing optimal or near-optimal competitive behaviors However,
game theory models have not been very successful in predicting human
behavior (Pool. 1995) in fact, psychological testing indicates that, from
& game theory perspective, humans do not have the necessary cognitive
skills to be good players According to the classical game theory view, two
abilities are needed 1o be a good game player (note, game theorists de not
claim that game theery describes the cognitive process underlying game
playing; however, these two abilities are necessary to play in the manner
described by game theery): (1) the player needs the ability to calculate
or learn the optimal probabiiities for performing each move, and {2) the
player needs to be able to select moves at random, according to these prob-
abilitics Humans are remarkably poor at both of these tasks. For exampie,
in a simple guessing task in which a signal has an 80% chance of appearing
in the top part of a compuler screen and a 20% chance of appearing in
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the bottom, instead of adhering to the game theory solution and always
guessing that the signal will be in the lop parl {for an optimal hit rate of
B0%) people will fruitlessly try to predict when lke signal will appear inthe
bottom past {for a hitrate of approximately 68%); which causes us humans
to perform significantly worse than rats (Gazzaniga. 1996) Likewise, in
addition to being poor at finding optimal probabitities. husmnans have been
shown to be very poor at behaving randomly across a wide variety of tasks
(sec Tune, 1964, and Wagenaar, 1972 for reviews)

Given that humans are. arguably, the most successful species on earth, it
dues not seem reasonable that we should fail to fit the profile of a successlut
competilor The answer to this problem kes in the unique adaplive stralegy
adopted by humans. In alsnost ail cases, other creatures have evolved niche
strategies That is, they have adapled to compele as effectively as possi-
ble within particular environments and/or against particular opponents.
These strategies tend to be near optimal, in the game theory sense, and
also tend to be relatively inflexible. In contrast, humans have evoived to
use tearning, reasoning, problem solving, and creative thought to respond
in highly adaptive ways across a wide variety of conditions

From a game-playing perspective. these two evolutionary strategies
equate to twa different types of players As noted above. niche players can
ofien be understood as optimal or near-optimal players Optimal players
conform o game theory expectations in that (1) their cholce of moves across
time can be described in terms of selecting moves according to fixed prob-
abilities and (2 these probabilities delineate an optimal or near-optimal
approach to the game I contrast, the stiategy of using some form of learn-
ing or thinking to try to improve the choice of fulure moves is a maximizing
stralegy Maximal players do not use a fixed way of responding Instead
they altempt to adjust their responses to exploit perceived weaknesses in
their opponent’s way of playing We argue that humans have evolved to
be maximal rather than optismai players That is, in competitive situations,
humans attempt to exploit their opponent’s weakniesses, rather than play
optimally. Furthermore, we argue that evolution has evolved the human
cognitive system Lo support a superior ability 1o operate as a maximizing
player

11 Maximal Versus Optimal

Maximal agents are polentiaily more effective than optimal agents against
non-optimal agents The optimal game theory solution is calcuiated by
assuming that the oppenent will play rationally. What this amounts tois an
assumption that all players will assume that all other players will attempt
to find the optimal strategy. Il an opponent is using a sub-optimal strategy
the optimal player will generally fail to exploit it Tor example, the game
theory solution for the game of Paper, Rock, Scissors is to play randemly
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1/.3 paper. 1/3 rock, 1/3 scissors (in this game paper beats rock, rock beats
scissors. and scissors beats paper) If an opponent plays 1/2 paper, 1/4
rack, and 1/4 paper, the optimal strategy wiil tend lo produce ties instead
of the wins that could be produced by maximizing and playing scissors
more Nevertheless, it is also {rue that if a maximal agent piays against an
optimal agent the best they can do is tie However, keep in: mind that for an
optimal agent lo be safe against all maximizing agents it needs the ability
to behave truly randomly, sumething that may not be all that common
in the natural world Overall, we can characterize optimal agents as being
designed to aveid losing, whereas maximizing agents can be characterized
as being designed to try to win by as much as possible. at the risk of fosing

1.2 Understanding Maximizing Strategies

Game theory provides a mathemalical mode! for understanding and cal-
culating optimal strategies. In this framework it is generally possible lo
calculate who should win, how often they will win, and how much they
wiil win by. However, for games between maximizing players it can be
very difficuit to predict these things The reason for this is that when two
maximizing agents interact they form a dynamically coupled system To
adjust their behavior to exploit their opponent they have 1o sample their
opponent’s behavior io find a weakness After they alter their behavior
to exploit their opponent. the opponent wili eventually detect the change
and aller its behavior to exploit weaknesses in the new behavior Thus,
maximizing agenis can end up chasing each other, leying to stay on top
\\.rilh the best strategy This could result in an agent ending up in equilib-
rium. where the agent maintains a single strategy, or a limit cycle. where
an agent repeatedly cycles through a limiled set of strategies. However
another possibility is that the coupled system. compesed of the two in-
teracting agents, could fail to setile info a stable pattern and instead pro-
duce a chaos-tike situation {the lerm chmos-like is used instead of chaos as
truly chaolic systems, ie. systems that never repeat, exist only in math-
ematics or in physical, analog systems In this case, cheos-fike is simply
meant to refer to dynamic systems that appear to an observer to behave
randomly)

Clark (1997, 1998) refers to these chaos-like inleractions as reciprocal
causation Reciprocal causation is associated with emergent properties,
that is, these systems often produce unexpected, higher-level patterns of
behavior In terms of game playing, the abilily of one player to beat an-
other at a greater than chance raie is the higher-level pattern of Interest
Clark {1997} also noles that. due to the chaos-ike properties of recipro-
cal causation systems, it is often difficult to deliberately design systems
to produce specific emergent properties This is because predicting the re-
sulls of these types of interactions is often mathematically intractable. To
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deal with this problem, maximizing stralegies are usuajly studied by using
computer simuiations lo creale gnmes between agents programmed witly
specific maximizing strategies

This approach has been used by game theorists is to study the role of
learming in game theory A central question in this area of research has been
whether or not players couid learn the optimal move probabilities through
their experience jn a game. More specifically, if both piayers adjusted their
move probabilities to create an advantage for themselves based on the
history of their opponent’s moves, would they eventually settle into an
equitibrium equivalent to the game theory solution? if so, it would mean
that the optimal game theory solution would still be relevant for under-
standing maxirnizers. However, research has shown that. maximizers can
co-evolve to non-optimal solutions (e g , see Fudenberg & Levine, 1998;
Sun & Qi, 2000), meaning thal the optimal strategy is not predictive of
behavior in these cases

We also used the simulation approach, but with one important differ-
ence Rather than adapting the basic game theory model to include fearn-
ing, we based our model on psychological findings describing the way
people process information in game-like situations. Thus we draw a dis-
tinction between gaute Hicory maxinizers {i.e the game theory model witls
the proviso that the move probabilities be learned) and cogitive maxiniz-
ers (i.¢ . models based directly on the way human cognition works} Our
contention s that these bwo approaches are very different and that the cog-
nitive maximizer perspective is necessary lor understanding human game
playing behavior

13 Experimental Psychology and Reciprocal Causation

Hurmans frequently interact in complex and dynamic ways Despite this,
experimental psychology is based almost exclusively on studying indi-
viduals in isolation, inleracting with static situations {i.e . situations that
do not feed back or do not feed back in a way that could produce re-
ciprocal caugation) This has allowed psychology to avoid the difficulties
associated with studying complex dynamic systems, and to amass a large
body of facts and models describing how people respond under these con-
ditionss However, it may alse be preventing psychology from forming a
complete picture of human behavior Huichins (1995) has argued that much
of what humans have achieved is due to distributed cognition rather than
individual cognition — where distributed cognition refers to the fact that
cognition {the processing of symbolic information) can oceur acxss brains
{linked by language and other means of communication) Likewlse Clark
(1997} has noted that much of human behavior seems to form reciprocal
causation linkages to the wotld and to other humans (e.g . the economic

system}
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Others (e g . van Gelder & Port. 1995} have pointed to the limited num-
ber of s_tudies showing that dynamic systems theory (i e, mathematical,
dynamic systems models) can be used to describe human behavios, and
argued that traditional cognitive models (i e . compuiationai. symbelically
based models) need to be abandened in favor of tiynamic.systems models
We agree with Hulchins and Clark that humans ultimalely need to ke un-
derstood in terms of the dynamic, interactive behaviors that make up most
of their lives, but we disagree with the view that exisling cognitive models
need to be thrown cut in faver of dynamic systems models Instead we
argue that experimental psychology has produced goed models of specific
cognitive mechanisms. and that these should form the building biocks for
modeling complex interactive behavior

However, interactive human behavior is often complex, invoiving more
than one specific cognilive mechanism. Because of this need to go beyond
the study of individual. isolated cognilive mechanisms, and the need to
simulale interactions between agents, we argue that the use of cognitive
arcliitectures is the best way to proceed

2 COGNITIVE ARCHITECTURES

Cognitive architectures (specifically. production systems) were proposed
by Newell (1973b) as a solution o the problems that he raised in a com-
'pzmion paper (Newell, 1973a) about the state of the study of cognition
The basic problem as he saw it was that the Held of cognitive psychol-
ogy practiced a sirategy that was too much divide and (oo little conquer
lpcreasingly speciatized lields were being carved out and esoteric distine-
tions being proposed, without any resolution that could lead {o an in-
tegrated understanding of the nature of human cognition Although the
exient o which our cognitive abilities result from specialized capacities
or from general-purpose mechanisms remains a hotly debated question,
Newell's concept of cognitive architectures addresses the undertying sys:
lemic problem of unification by providing computational accounts of the
findings of each specialized area in a comprehensive and integrated archi-
tecture of cognition He later developed and proposed his own Soar archi-
tecture as a candidate for such a unified theory of cognition (Newell, 1990).

ngnitive architeckures can provide some insights into the nature of
cagnition, but they do not constitule a panacea. Cognitive architectures
specifly, often in considerable computational detail, the mechanisms un-
derlying cognition. However, performance in a given task depends not
only en those mechanisms but also on how a given individual chooses
1o use them Individual differences include not only fundamental capac-
ities such as working memory or psychomotor speed. but also a bewil-
dering array of different knowledge states and strategies. Limiting the
complexity and deprees of freedom of such models is a major chalienge
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in making cognitive modeling a predictive rather than merely explanatory
endeavor. )

Hybrid architectures (see Wermter & Sun, 2000, for a review) have
become increasingly popular over the last decade to remedy the re-
spective shortcomings of purely symbolic or connectionist approaches.
Symbolic architectures (eg Soar) can produce very complex, structured
behavior but find it difficult to emulate the adaplivity and robustness
of human cognition Connectionist approaches (e g., see McCleHanc} &
Rumelhart, 1986) provide flexible learning and generalization to new situ-
ations, but have not been successful in modeling complex, knowledge-rich
behavior.

ACT-R (Anderson & Lebiere, 1998} is a cognitive architecture developed
over the fnst 30 years at Carnegle Mellon University Ata fine-grained scale
it has accounted for hundreds of phenomena from the cognitive psychol-
ogy and human faclors literature. The most recent version, ACT-R 59, is
2 modular architeclure composed of interacting modules for declarative
memory, perceptual systems such as vision and audition, and motor sys-
tems, afl synchronized througha central production system (see Figure 5 1)
This modular view of cognition is a reflection both of functional constraints
and of recent advances in neuroscience concerning the focalization of brain
functions

ACT-R is a hybrid system thal combines a tractable symbalic level that
enables the easy specification of complex cognitive functions, with a sub-
symboliclevel that tunes itseif to the statistical structure of the environment
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to provide the graded characteristics of cognition such as adaptivity, ro-
bustness, and stochasticity. The subsymbolic level is controlled by func-
tions that control the access to the symbolic struciures As ACT-R gains
experience in a task the parameler vaiues of these functions are tuned to
reflect a rational adaptation to the task (Anderson, 1990). where “ratio-
nal"” refers Lo a general ability to respond rationally 1o our environment. as
opposed o a rational analysis of the specific task Using this approach.
Anderson (1990} demonstrated that characleristics of human cognition
thought of as shoricomings could actually be viewed as optimally adapted
to the environment For example, forgelting provides a gracefu implemen-
tation of the fact that the relevance of information decreases with ime.

The symbolic level of ACT-R is primarily composed of dunks of infor-
mation. and production rules that coordinate the Bow of information and
actions between modules based on the current goals of the system, also
represented as chunks Chunks are composed of a small number of pieces
of information {typically less than half a dozen}. which can themselves be
chunks Chunks stored in declarative memory can be retrieved according
to their associated subsymbolic parameter called activation. The activation
of a chunk is influenced by several factors that cause activation to increase
with frequency of access, decay with time, and vary with {he strengths
of association to elements of the context and the degree of the maich Lo
requested patterns (chunks are requested by production rules) The chunk
with the highest level of activation is the one that is retrieved

Production rules are condition-action pairs that fire based on matching
their if condition with chunks in the buffers providing ihe interface with
the other modules, When production rules execute their tHen condition
they change the information in these bulfers. This acl can trigger actions,
request information, or change the current goal Because several produc-
tions typically match in a cycle, but only one can fire at a tme, a conflict
resolution mechanism is required to decide which production is selected
Productions are evaluated based on their associated subsymbolic parame-
ter called expected utility. The expected utility of # production is a function
of iis probability of success and cost {to accomplish the current goal). Over
time. productions that lend 1o Tead to success more often and /or at a fower
cost receive higher utility ratings Both chunk activation and production
utility include noise compuonents so declarative memory retrieval and con-
flict resolution are stochastic processes {for a more extensive discussion on
ACT-R see Chapter 2 by Taatgen. Lebiere, and Anderson in this book)

3 METHODOLOGY

In this chapler we want to show that humans are “good ™ maximal players,
but there is no direct way to do this Aspoted above, it is often not possible
to calculale whether one maximizing stralegy is betler than another Also,
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because different maximizing strategies may draw on different abilities. it
isnot possible, asitis with game theory, loidentify theessential abilitiesand
test them in isolation (in game theory these are the abilily to learn or caleu-
late the right probabilities and the ability 1o play randemly) Our solution
lo this was to create a cognitive model of how people play games and then
to play this mode! against artificial intefligence (Al) models designed to
play a particular game as well as possible Although providing qualitative
rather than definitive answers, this approach hag led to important insights
in the area of perfect information ganws Perfectinformation games are games
where il is, in principle, possibie to calculate the best move on every turn.
One of the best-known examples is the game of chess, which has provided
important insighls into human cognitive abilities through the matches be-
tween humans and computers; another good example is the game of go
These games are toe compiex for even the {astest computer to come close
to finding the best move for every situation, but it is possible for them to
search very deeply into future possibilities. What surprised many was the
enormous amount of computing power required o beat a skilled human.
Even today it is debatable whether or not computers have truly surpassed
the best humans in chess, and it is definitely not the case for go

Game theory applies to imperfee! information gmngs In imperfect infor-
mation games it is not, in principle, possible lo calculate the best move
on every turn because that would require knowing what your oppenent
was going lo do. For exarmple, in Paper, Rock. Scissors, if your opponent
is goihg to play rock then your best move is lo play paper. but you cannot
be sure when they will piay rock Game theory is a way lo calculate the
optimal way to play for these types of games Generally, it is assumed that
people are poor at imperfect information games and ean easily be beaten
by a well-programmed computer The main reason for this Is probably
that people are poor at the basic skills required to be an optimal player.
whereas computers are ideal [or oplimal playing Prior to having humans
play against compulers, similar assumptions were made about perfect in-
formation games because of the belief that perfect information games were
all about how deeply a player could search a game tree (i e, the outcome of
future moves) Similarly, we believe that the current view of people as poor
imperfect information players is based on an erroneous view of imperfect
information games; specifically that game theory delineates the essential
skills Demonstrating that the way people play games competes well with
Al models designed to play specific games would support our hypothesis
Alternatively, if we are wrong, the human model should be badly beaten
by the Al models

§ HOW DO HUMANS PLAY?

The first question that we need to ask is, do people play games in the
way described by game theory? If they do. we have no need for cognitive
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FIGURE 52 A lag 3 network model for playing paper. rock scissors. The modet can
be converled to a tag 2 model by getling rid of the lag 3 inputs, or a lag 1 model by
gutting rid of the lag 2 and 3 inputs

models The standard game theory model requires that the players be able
to select moves at random according Lo preset probabilities. However, re-
search has repeatedly shown that people are very poor at doing this (see
Tune. 1964, and Wagenaar, 1972. for reviews) suggesting that our evolu-
tionary success is not based on this abiity. Instead of trying o learn advan-
tageatis move probabilities. people try Lo detect sequential dependencies in
the opponent’s play and use this to predict the opponent’s moves (Lebiere
& West, 1999; West & Lebiere, 2001) This is consistent with a large amount
of psychological research showing that when sequential dependencies ex-
ist, people can detect and exploit them {e.g . Anderson. 1960; Estes, 1972;
Restle, 1966; Rose & Vitz. 1966; Vitz & Todd, 1967} 1t also explains why
people tend to do pootly en lasks that are truly random - because they per-
sist in trying to predict the culcome even though it resulls in sub-optimal
resulls (e g, Gazzanigs, 1996; Ward, 1973; Ward, Livingslon, & Li, 1988)
West and Lebiere (2001) examined this process using neural networks
designed to detect sequential dependencies in the game of Paper, Rock,
Scissors  The networks were very simple two-layer nehvorks rewarded
by adding 1 and punished by subtracting 1 from the connection weiglis,
which all started witha weight of 0. The inputs to the network were the op-
ponent’s movesat previous lags and the outputs were the moves the player
would make on the current play (5¢e Figure 52) West and Lebiere (2001)
found four interesting results: (1) the interaction between two agents of this
type produces chaos-like behavior, and this is the primary source of ran-
domness; (2} the sequentin} dependencies that are produced by this process
are ternporary and shost lived; (3} processing more lags creates an advan-
tage; and {4) treating ties as losses {i e, punishing the network for ties)
creates an advantage, West & Lebiere (2001) also tested people and found
that they played similarly to a lag 2 network that is punished for ties That
is, people are able to predict their opponent’s moves by using information
from the previous two moves, and pecple treat tiesas losses Although both
the network model and game theory predicted that people would play pa-
per, rack. and scissors with equat frequency, the network model predicted
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that people wouid be able ta beat alag 1 network that was punished for ties
and a lag 2 network that was not punished for ties; whereas the game the-
ory solution predicted they wouid tie with these opponents The results
showed that people were reliably able fo beat these opponents, demon-
strating thal the game theory solution could not account for all the resuits

41 The ACE-R Model

Although ACT-R was not designed (o detect sequentiai dependencies, it
turns out that there is a straightforward way fo get the architecture o
do tiis. The model learns sequential dependencies by cbserving the ve-
lationship between what happened and what came belore on each trinl

After ench turn. a record of {his is stored in the ACT-R deciarative memory
system as a chumk Each time the same sequence of events is observed it
strengthens the activation of that chunk in memory Thus, chunk activation
level reflects the past ikelihocd of a sequence oceurring. For example. if the
opponent’s fast move was P (where P = Paper, R = Rock, and § = S¢issors)
and the model was sef to use information from the previous move (i e, lag
1 information). then the model would cheose one of the following chunks
based on activation level: PR, P53, PP {where the fitst letler represents the
oppunent’s fag 1 move and the second letler represents the expected next
move). The model would then use the retrieved chunk to select jis own
move based on what it expecled its opponent to do Thus if PR had the
highest activation the model would play P to counter the expected move
of R 'The model would then see wiiat the opponent actually did and storea
record of it (e g , assume the vpponent played S, the model would then store
P5Y. which would strengthen the activation of that sequence Also, in addi-
tion lo the correct chunks being strengthened on each trinl. the activation
levels of the chunks that are not used are lowered according to the ACT-R
memory decay function (Figure 5 3 shows this process for a lag 2 madel)

4.2 Accounting fer Human Data

I theory, ACT-R represents fundamental cognitive abilities directiy in the
architecture, wherens learned abilities are represented as information pro-
cessed by the architecture The model described above is based dizectly on
the ACT-R architecture and therefore represenis a strong prediction about
the wity people detect sequential dependencies (f.¢ , because it is not influ-
enced by assumptions about how fearned information could influence the
task). Also. it should be noted that our results do not depend on parameter
tweaking All parametess relevant for this model were set at the default
values found to work in most other ACT-R models

Simutations and testing with human subjects confirmed that the model
couid account for the human Paper, Rock. Seissors (PRS) findings (Lebiere
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fioune 53 The process for an ACT-R. lag 2 model: (1) retrieve a cliunk represent-
ing memary of the fast two trials, with the chunk slot representing the current trial
blank, (2} find the matching chunks, (3) retrieve the matching chunk with the high-
est activation level. (4) use the value in the current slot to predict the opponent’s
current move and play a move te counter it, (3) see wiiat the opponent actuatly did.
(6} create a chunk representing what actualiy happened. (7) put it into declarative

memory where it will strengthen the aclivation of the chunk with the same slot
vitlues, and (B) the activation lovel of all other chunks decays

& West, 1999). This was very significant as the aspects of the architecture
that we used were developed to model the human declaralive memory
system, not our ability to play gnmes ltsuggests that the evolutionary pro-
cesses that shaped dectarative memory may have been influenced by com-
petition (in the game theory sease) for resources and mating privileges. It
also indicates amazing design efficiency, as it suggests that humans use the
same system for competition as they do for learning facts about the world
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The same model, without any changes other than adapting it to han-
dle different gamas, has also been shown to account {or batting results in
baseball players (Lebiere. Gray, Salvucci, & West, 2003} and strategy shifls
in 2X2 mixed stiategy games, including the famous prisoner's dilemma
(Lebiere, Wallach, & West, 2000} These findings indicate that this general
mechanism is fundamental te human game playing abililies However, we
would not go so far as to claim that this simple mechanism could com-
plotely account for all human game playing The structure of the ACT-R
architecture itself suggests that under certain conditions people may learn
specific production rules {using the procedural memory system} that can
interact with ar override the system we have described Another possi-
bitity is that pecple may use the declarative memory system in different
ways For example. if a person does not have a strong {eeling (activation
sirength) about ihe opponent’s next move. they might instead opt to play
a segusence that has caused the opponent to behave predictably in the past
Such sequerces would also be leamned through the declarative memory
system in game playing terms, having this type of flextbility is advanta-
geous as it means that it would be difficult to develop systems that could
routinely beat ACT-R models

5 COMPARISON WITH OGTHER ARCHITECTURES

We chose ACT-R to model human game playing because of the substantial
body of wotk showing that ACT-R is a good model of human cognition.
However, it is not the case that ACT-R is the only architecture capable of
playing in this way Any architecture capable of detecting sequential de-
pendencies could most likely be adjusted to produce similar results for
individual games In fact, as noted above, we have used both neural net-
works and ACT-R to model human playing ACT-R is often contrasted
with neural networks but the ACT-R declarative memory system possesses
network-like abilities The ACT-R modei presented in this chapter can be
thought of as roughiy equivalent to & simple network (so hidden layer)
with feedback that rewards the correct answer on each trial whereas the
wrong answers are punished through the decay function In addition te
neura] networks, hybrid architectures embodying seme form of network
(e g, CLARION - see Ron Sun’s chapter 4 on CL ARION in this book for
a description} as well as models based directly on sequential dependency
detection algorithms could potentially be adjusted to produce similar re-
sults {see Ward, Livingston. & 14, 1986 for an example of how this might
be done with a sequential dependency detection algerithm) However, the
ACT-R architecture can be viewed as a good choice for four reasons: {1} the
architecture severely constrains how the declarative memory system couid
detect sequential dependencies, (2) it works with no parameler twenking
(all relative paramelers were set to default values), {3} it locates the pro-
ceus within a well studied model of & particular brain function, and (4} the
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same process can also be used 1o explain othes, non-game results, such as
implicit learning {Lebiere & Wallach. 1998)

Madlels that do not play by detecling sequential dependencies may alse
be able to capture some game results For example. the classic game theory
maodel can capture the result that across time and across individuals, hu-
wan players seem to play paper. rock, and scissors with equal fnsquéncy
Alse, ACT-R can be programmed to play through the production learning
system rather than through the declarative memory system The strategy
shift in the prisoner’s, dilemma. which can be fairly well accounted for
using he ACT-R declarative memory system (Lebiere, Wallach. & West,
2000): can also be fairly well accounted for using the ACT-R pmductiox{
learning system (Cho & Schunn. 2002) Note that the production system
madel is the same general type ag the maximizing game theery models
merttioned earlier, where each move {represented by a production) ha‘s
a certain probability of being chosen. and these probabitities are learned
thugh experience However, this approach does not account for the find-
ings that humans use sequential dependency information and are bad at
being random Also, ilis secems unlikely that this type of model could repli-
cate the West and Lebiere (2001} data demonstrating that humans could
beat some of the network models This is because the only way 1o beat the
network models was lo somehow eapitalize on the short-lived sequential
dependencies that they produced Howeves, it is possible that some people
may play this way for some games For example, some people may have
wz.ali learned rules for cooperation that would influence how they play the
prisoner’s dilemma, and would be more appropriately modeted through
the ACT-R production system

6 COMPARISONS WITH HUMAN DATA

All of our assertions so far concerning our mode] have been based on the
claim that the model’s behavior matches human behavior Thusitis impor-
tant to also evaluate the process by which we have compared the model 1o
human behavior One criticism of cognitive modeling is that many differ-
ent models can be {it to a human data set by tuning the model parameters
(Roberts & Pashler. 2000}. This is a legitimate concern, but it applics only
to stu.d'fes limited to fitling a particular model to a single dala set In addi-
tion, it is important to note that this type of study is still useful, especially
in the early stages of developing a model. as it shows tha, in principte, a
certain type of model can account for a certain type of human behnvior:’A
:!;ecoud criticism is that it is difficult 1o set & ¢riterion for when 'samething
is considered a close fit This is because the logic of significance lesting is
!Jnsec! on evalualing when there is a significant difference. not when there
is a significant similatity. Generally, the fit for cognitive models is evalu-
ated through the visual inspection of graphs comparing the behavior of the
cognitive model and the human subjects. Although nformal. this process
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is legitimale if a modei is truly poor at fitting the data it will be visuallly
obvious Likewise. if one model is better than another at fitting the data it
will often be visuaily obvious.

However. the initial goat is not always to closely fit the data Models can
also be evaluated in terms of qualitatively fitting the data This is relevant
when the human data displays interesting or important c;tlmlim%we prop-
erties For example, human PRS play displays the qunlitahlvc property of
appearing 1o be random The game theory model can {?I\S.ll}' account for
this quality because moves are selected al random according to set prab-
abitities However. the sequential dependency model. whether madeled
using neural networks or ACT-R, does not choose moves at rfmdc?m {ex-
cept when 1we moves are equally weighted} Thus. although inspired by
empirical results, it was an open question whether or not Lhis type of medel
coutd generate n random-fike output Demonstrating that the model could
produce this effect through a chaos-like process (Lebiere & West, 1999; West
& Lebiere, 2001) provided important. early support for the n:mdel

Overall, the key 1o demonstrating the validity of a model is to eynl_uate
converging evidence from different sources One way to do this is to
use different ways to test the model against the ciafa' Ir {erms of the game
playing research our model has been compared against the avesape game
putcomes (1.2, the final scores), the win rate (i e, the probability for el?ch
triai that A player will get a win), the time course funclion (i e, tht; fur‘n:lson
describing the rate of winning across time - it is lineat). the dtsir:butzm? of
final scores. the distribution of meves across players, and the distribution
of moves across time In each case the model provided a good fit to the
data

Ins addition to direcity comparing the model lo humar results, we have
also used model tracing (Anderson, Cosbett, Koedinger. & Pelletier, 1995)
Playing PRS in the manner suggesied by our model involves leatning se-
quential dependencies that produce positive resulls and then uniearning
thern as the opponent learns ot to produce them anymore We w_amed
1o know approximately how lorg the learned sequenh:_nl dependencies re-
mained viable, but this could not be directty observed in the human play-
ers To get an indirect estimate we assumed that our model was valid a'ncl
used model tracing as a way of estimating this parameler Model tracing
invulves forcing the model to make the same behaviors as a human on
each trinl West & Lebiere {2001} forced a lag 2 network model to make

the same moves as a human subject in a game against a lag ¥ network
model (the lag 1 model was also forced o make the same moves 5 the lag
1 modet the human played against) We were then able to examine how
long the sequential dependencies remained viable in the lag 2 model The
resulls showed that the learned sequential dependencies were very short
lived (mostly less than 5 trials) To further test the validity of the que[
we compared these resulls to the results from a lag 2 moFlel played against
a lag 1 model without any constraints The model tracing results closely
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matched the unconstrained rasults for both the fag 1 and lag 2 models This
provided further support for the model by demonstrating that the model
behaves the same when it is unconstrained as when it s forced 1o play
exactly the same as a human
A second source of converging evidence comes from lesti§1g a model on
different tasks. hypothesized Lo engage the same basic mechanisms Here it
is generally necessary to modify the model for the new task Naturally the
modifications should be as gmall as possible In ourcase. because the ACT-R
model made very direct use of {he archilecture, the changes were minimal
For PRS (Lebiere & West, 1999), prisoner's dilemma (Lebiere, Wallach, &
West, 2000). and bageball (Lebiere. Gray, Salvucci, & West. 2003), the model
required only minor modifications that did not alter the basic strategy of
using the deciarative memory system fo1 delecting sequential dependen-
cies Note also that these three games tested the model in very different
ways The PRS model (Lebiere & West. 1999) showed that the mode} could
account for the novel effects found by West and Lebiere (2001}, when they
hac humans play against different versions of the neural network model In
both of these studies. humans played against dynamic models that contin-
uously altered their play in an altempt to find and maintain an advantage
In contrast, in the baseball study, the human subjects played against a
stochasticaily based opponent (the pitcher threw different pitches accord-
ing to fixed probabilities - the humans were batters) Thus the task was
to learn a stable, stochastic truth about the opponent Another important
feature of the baseball study was that it used human data gathered in a
simulaled batting environment, where subjects had to physically swing a
bat {see Gray. 2001. for a description) This was important because it could
be argued that self-paced compuler games, such as our version of PRS, are
artificial and do not relate to games involving fast physical actions Also,
the baseball study used experienced basebali players, thus further adding
to the realism
The prisoner s dilemma study (Lebiere. Wallach & West. 2000) used data
generated by humans playing against other humans, rather than humans
playing against computer models. This addressed the concern that hu-
mans playing against computers s a situation qualitatively different from
hamans playing against humans The prisoner’s dilemma study focused
on an pbserved shilt in behavier that has been found to occur at a certain
point in this type of game This shift has been attributed to a change in
attitude about cooperation {Rapoport, Guyer. & Gordon. 1975) However,
our model produced the shift with no added assumptions whatsoever This
finding is important because it shows there is no need to invoke higher-
tevel mechanisms, such as attitude shifts, to account for this result
Finally, a third source of converging evidence thatis particularly relevant
for testing cognitive models of game playing. is the testing of counteifac-
tunl scenarios {see Bechiel, 1998, for a detailed discussion of counterfaciual
testing, dynamic systems, and cognition) As West & Lebiere (2001) note,
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tlie oppenent isa key element in game playing, and it is possible o generate
many different counterfactual situations by creating different opponents
using the computer Thereflore it is possible to test both humans and he
model against a range of opponents, not found in nature (i e, counterfac-
tual) If the model is valid it should produce the same results as the humans
against alt of the oppenents, without any changes fo the structure of the
model or the parameler values We have used this approach to test the PRS
model against opponents set at different lags {i.e., lag 1 and lag 2) as well ag
different strategies (i e , treating ties as neutial and treating ties as losses}
In both cases the human data could be accounted for without any changes
to the original model {Lebiere & West, 1999; West & Lebiere, ZGE}})

One point that is critical for understanding cognitive modeling is that,
unjike experimental psychalogy, it is often necessary (o look across muk-
tiple studies to fully evatuate a model. This reflects the fact that copnitive
medels often cannot be reduced to simple hypotheses that can be fully
evaluated within one study However, this is the whole point of cognitive
miodeling « to advauce the study of human belavior to mare complex beaviors
When viewed across studies, there is compelling convergent evidence indi-
cating that cur model is a valid representation of how humans play simple
games

7 HOW WELL DOES ACT-R PLAY?

We have argued, based on the evolutionary success of the human race,
that the way people piay games likely constitutes a good, general-purpose
design for maximizing agents To test this, we entered our ACT-R modelin
the 1999 International RoShamBo Programming Competition (RoShamBo
is apother lerm for Papes, Rock, Scissors). Although Paper, Rock, Scissors as
a simple game. it is not ensy to design effective maximizing agents fer“ t.ius
game due to the reasons described previously The goal of the competition
was to illustrate this fact and explore solutions (see Biliings, 2000, for details
and discussion).

Overall. ACT-R placed 13th out of 55 entries in the round robin com-
petition (scores eajculated based on margin of victory across games, e.g,
+5 for winning by 5 and —5 for losing by 5} However, to get a beller idea
of how ACT-R compared o the other medels we will focus on the open
event. where ACT-R faced all the models In this event ACT-R placed 15th
in terms of margin of victory and 9th in terms of wins and losses That
is, the ACT-R mode}, with no modifications, was able 1o beat most of the
other models

To further test our claim we entered the same model in the 2000 Interna-
tivnal RoShamBo Programming Competition However, the code {or the
winning program in 1999, which had been able to infer the ACT-R strategy
well enough 1o beat it by a large margin, had been released (see Egnor,
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2000) Therefore we expected a lot more programs would have this abil-
ity in 2000 To counteract this, we created a second model that retained
the essential features of the first model but incorporated a strategy o pre-
vent other programs from locking onto the ACT-R strategy. This modet
was called ACER-Plus ACT-R-Plus simultaneously ran 30 ACT-R models
that leoked at both the opponent’s hislory and its own history. The lags
were setat 0. 1, 2, 3, 4, and 5 {lag = 0 would just keep track of what the
most fikely move is, regardless of history} and for each of these there was
a version with noise on and noise off (the ACT-R chunk relrieval process
invalves a noise component that can be turned off) These were then com-
bined with 3 stiategies for chovsing a move based on the prediction of the
opponent’s mave: play the move that beals the move predicted, play the
move predicied, or play the move that loses to the move predicted As
with the ACT-R model, the prediction with the highest activation vajue
was chosen Of course, ACT-R-Plus does not represent how humans play
Paper, Rock, Scissors Instead, it was an experiment in combining brule
strength tactics with a human-inspired architecture In a sense, playing
against ACT-R-Pius is like playing against a commitiee of agents, each
with slightly different approaches as 1o how to use the ACT-R architecture
to play the game.

In the round robin event, ACT-R came in 31st out of 64 whereas ACT-
R-Plus came in 14th in the open event ACT-R came in 32nd according
to margin of victory and 28th according to wins and losses ACT-R-Pius
came in 9th according {o margin of victory and 16th according to wins and
losses It was interesting lo note that ACT-R was once again able to beat
most of the models, despite the fact that the code that could beat it had
been released and had influenced many of the new models However, as
this program still placed 3 in the competition, we speculate that in trying
to improve on the code, many people actually made it woarse This again
highlights the difficulties in designing maximizing agents

The models in the competition could be divided into two lypes, historical
models that searched for specific patterns in the history of the game. and sfa-
tistical models that searched for statistical trends in the history of the game
To get a better idea of how well ACT-R petformed, Figure 5.4 shows the
open evenl resuits for ACT-R; ACT-R-Plus; the frst-placed model, which
was historical; and the second-placed model, which was statistical. From
this grnph we can see that. although it was net able to exploit some models
as well as the history model or the statistical madel, ACT-R-Plus compares
quite well It mostly wins and when it loses it does not lose by much
ACT-R loses more but only the first-placed history model is able to exploit
itina big way (this can be seen in the first point for ACT-R and the second
big spike for the history model) Otherwise, overall, the performance of the
basic ACT-R model is not bad, especially when you consider ils relative
simplicity and the fact that it was not designed for this competition
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8 SUMMARY

When viewed from a traditional game theory perspective, imlmz'ms du not
appear to be particularly skillful game players. le?.rev.er, this Is difficult
to reconcile with our evolulionary success, whth indicates that we are
very effective competitors, We argued that this is because human game
playing needs lo be viewed as a maximizing strategy sather tl.mn the D}?tl-
mizing strategy suggested by traditional gnme‘theory analysis. How.e\ fr,
it is difficult lo evaiuate the effectiveness of different types of maximiz-
ing strategies because competing maximizers can fGlZf‘.f back on.each other
ard form dynamically coupled systems that can giverise to emergent prop-
erties that are difficalt 1o foresee (Clark, 1997) This was demonstm.ltfc} in
the resulis of the International RoShamBo Programming Competilions.
which showed that even for the very simple game of Pa}?w, Rock, Scissors
it is difficult to predict the results of this type of interaction E

In support of our position we reviewe'd a seres of findings on hu-
man game playing abilities Consistent with our view .ihaf humans arg
maximizing players we found that, under close examlfmtmn, standar
game theory models do not describe human game.playmg very well (at
least for the games we investigated) Instead of trying Yo optimize move
probabilities, humans try to maximize by exploiting the short-lved sequen-
tial dependencies produced when they interact with .anothe; maximizing
player (West & Lebiere, 2001 We also found t!lm! this type of interaction
produces complex (chaos-like) behaviors anFl l.ngl\er—level emergent prop-
erties resulting in one or the other player receivingan advantag'e Fcl]ow‘mg
this we showed that lhese behaviors could be accounted for in a detailed
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and straightforward way by using the ACT-R cognitive architecture, and
that the model could account for human behavior across a number of dif-
ferent games. This finding supports our contention that the human cogni-
tive architecture. in addition to supporting individual activities, supports
& level of functionality thal can be accessed only by studying the dynamic
interactions that occur belween people. Finally, we demonstrated that the
way humans play games, as represented by the ACTR model, comgpares
well to agents specifically created to play a pasticular game

When considering the tournament results it is important to keep in mind
that the ACT-R modei was much simpler than the other models shown in
Figure 5.4 and that the ACT-R model can play many different games with-
out modifying the basic strategy We also showed that the basic ACT-R
model could be adapted o deal with specific limitations of the basic ACT-R
model for a particular game (e g . ACT-R-Plus) Although the adaptations
that we made were not cognitively inspired. it is possible that with suf-
ficient experience, humans could effectively augment their basic stralegy
The main point however is that the general human strategy was competi-
tive withand, in many cases, superior to Al sirategies designed specifically
for this game

Finally, it is important to note that the same architectural compenents
that we have shown to be important for game playing have alse been
shown to be important in a wide vatiety of other tasks unrelated to game
playing (e g . tasks involving problem solving and learning). Humarns do
not have a separaie. dedicated system for game playing: we use Lhe same
cognitive system for a vast array of divergent tasks Thus, the human cog-
nitive system represents a highly efficient, mullipurpose mechanism that
hasevolved tobeag effective as possible across a wide variety of behaviors,
including game playing
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