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Abstract. The debate over symbolic versus sub-symbolic representations
of human cognition has been continuing for thirty years, with little
indication of a resolution. The argument is this: Does the human cognitive
system use symbols as a representation of knowledge, and does it process
symbols and their respective constituents? Or does the human cognitive
system use a distributed representation of knowledge, and is it somehow
capable of processing this distributed representation of knowledge in a
complex and meaningful way? This paper argues for an integrated sym-
bolic and sub-symbolic approach to the representation of cognition. The
lines of reasoning used as evidence to bolster this argument for an
integrated approach are the cognitive architecture the Adaptive Character
of Thought-Rational (ACT-R), and biology, where it is argued that
symbolic and sub-symbolic representations of cognition are part of an
intellectual continuum, with sub-symbolic representations at the low end
and symbolic representations at the higher end.
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Symbolic and Sub-symbolic Representations in Cognition

The US Army Research Laboratory’s (ARL) Human Research and Engin-
eering Directorate (HRED) has begun an ambitious project to model human
cognition on its high-performance computing (HPC) assets (a.k.a. super-
computers). The project, which is called Modeling and Integration of
Neurological Dynamics with Symbolic Structures (MINDSS), has developed
cooperative research agreements with major universities (Carnegie Mellon
University, University of California, University of Massachusetts) and with
other government organizations (National Aeronautics and Space Admini-
stration), with the goal of developing computational models of human
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cognition which include the major areas of brain functionality (i.e. language,
memory, perception) (Kelley, 2001). To achieve this goal, we have devel-
oped a theoretical perspective of human cognition that calls for the in-
tegration of the symbolic and sub-symbolic paradigms into a more cohesive
theoretical whole. This paper presents the theoretical arguments for sym-
bolic and sub-symbolic representations and then presents arguments for an
integration of symbolic and sub-symbolic architectures.

Introduction

The question of how to computationally represent knowledge is a difficult
one. The thesis that knowledge is represented as a system of symbols has
been argued by classic cognitive psychology. Does the human cognitive
system use symbols as a representation of knowledge, and process symbols
and their respective constituents? Or does the human cognitive system use a
distributed representation of knowledge, and is it somehow capable of
processing this distributed representation of knowledge in a complex and
meaningful way? The latter is the argument traditionally made by those in
the artificial intelligence field (specifically, those in the connectionist
movements).

This paper argues for an integrated symbolic and sub-symbolic approach
to the computational representation of cognition. It presents three arguments
as evidence to bolster the idea of an integrated approach to the development
of cognitive architecture: First, the Adaptive Character of Thought-Rational
(ACT-R) is a well-established cognitive architecture that includes aspects of
both symbolic and sub-symbolic theory. Second, the biological perspective
shows that symbolic and sub-symbolic representations of cognition are part
of an intellectual continuum, with sub-symbolic representations at the low
end and symbolic representations at the higher end. Third, the biological
perspective will be discussed within the human anatomical system as well as
across other species’ anatomical composition.

Symbolic and Sub-symbolic Representation

The symbolic representation of human cognition can be easily understood if
one uses the metaphor of a computer. Indeed, the development of the
computer greatly influenced the symbolic approach to the study of cognition
(Turing, 1950), an approach which has been called ‘a species of computing,
carried out in a particular type of biological mechanism’ (Pylyshyn, 1989,
p. 2). The function of a computer, in its most basic terms, can be thought of
as an input⇒process⇒output system. The computer can take a series of
symbols as input. These symbols are representations of some other concept
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or construct (which actually have meaning only to the human operator). The
computer can then manipulate these symbols by using some pre-set instruc-
tion set. It can then output a result of the symbols based on the previous
manipulation process. So, if a computer is given the number ‘4’ and
instructed to add the number ‘4’ to the number ‘7’, it will output the
symbolic result ‘11’.

In the symbolic tradition, human cognition can be thought of in much the
same way, as a symbolic manipulation process. If I am told, ‘Mary loves
Sam’, I understand that ‘Mary’ is the symbolic representation for some
person who loves Sam. I also understand that ‘loves’ is a symbolic
representation of an emotional attachment two people can form for each
other, and I understand that the symbol ‘Sam’ represents the person who is
the receiver of Mary’s affection. That is what I understand from the
symbolic representation given to me. I can, however, infer other types of
symbolic relationships, based on the one I was given. For example, I might
infer that Sam is probably a male, and that Mary is probably a female. I
might infer that Sam probably loves Mary as well. I might also infer that the
relationship is probably serious, and so on. Note here that the problems
involved with the inferring of information from symbolic relationships are
extremely complex and difficult to implement computationally.

Sub-symbolic or connectionist systems are most generally associated with
the metaphor of a neuron. Early implementations of sub-symbolic systems
were called perceptrons (Rosenblatt, 1958, 1962). Like a small collection of
neurons in the brain, a sub-symbolic system is composed of a small
collection of perceptrons that operate in parallel to recognize a given input.
This recognition process is accomplished by the adjustment of the weights
which connect the perceptrons to each other. A collection of nodes can thus
be enabled to recognize a given input and produce a specified output by
adjusting the weights of the connections between the perceptrons. Therefore,
a sub-symbolic system can be thought of as an autonomous learning system,
and this is one of its great strengths.

Sub-symbolic architectures and symbolic architectures offer strengths and
weaknesses to the study and the representation of human cognition. As
previously mentioned, the sub-symbolic neural network can be viewed as an
autonomous learning system, where a predetermined learning algorithm
allows the network to relate input with appropriate output. Therefore, a sub-
symbolic architecture can be ‘trained’ once care has been taken to develop
the training set and develop the neural network architecture. Conversely, the
symbolic architecture must have its internal representation of the world
written by a knowledgeable programmer. Thus, the problem of representing
the world can become a chore for a team of developers, as happened with the
Cyc project (Lenat & Guha, 1989). Also, symbolic systems have a tendency
to be removed from any real-world experience since their ‘experience’ is
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essentially provided by a programmer. This has been referred to as the
symbol grounding problem (Harnad, 1989).

Perhaps the biggest problem facing either the symbolic or sub-symbolic
architecture is the problem facing sub-symbolic architectures and their
apparent difficulty in representing complex relationships. For example, a
sub-symbolic architecture might be able to represent the constituent relation-
ship ‘Mary loves Sam’ in terms of vector relationships, but more complex
relationships such as ‘Mary loves Sam and Bob hates Sally’ tend to give
sub-symbolic systems more trouble. A typical sub-symbolic model has
difficulty making the distinction between ‘Mary loves Sam and Bob hates
Sally’ and the slightly different ‘Mary hates Sam and Bob loves Sally’. A
sub-symbolic system can easily confuse these two symbolic relationships.
This is a complex problem and is based on the constituent relationships
among the symbols. As Fodor and Pylyshyn (1988) explain, ‘It is important
to see that this problem arises precisely because the [sub-symbolic] theory is
trying to use sets of atomic representations to do a job that you really need
complex representations for’ (p. 322).

One can easily see the dichotomy between these two different types of
approaches to the representation of cognition. Sub-symbolic systems operate
in parallel—that is, many perceptrons can be used to recognize a given
input—whereas symbolic systems operate in series—that is, symbolic rep-
resentations are performed in a sequential manner. Sub-symbolic systems
have a distributed representation of knowledge: that is, the symbolic
representation of the relationship between ‘4 + 5’ is not stored in any one
location but is distributed across the various weights of the perceptrons.
The symbolic system, by contrast, stores the symbol ‘4’ in a given location
in order to manipulate it with symbolic operations. Sub-symbolic systems
learn to recognize input and respond in accordance with a learning rule.
However, symbolic systems are concerned not with the recognition of a
stimulus, but, instead, with the manipulation of recognized symbols follow-
ing the recognition. While there is a dichotomy between these two ap-
proaches to cognition, one can also view the two approaches as two ends of
a single continuum, especially when one thinks of the continuum in these
terms: sub-symbolic systems recognize input and pass that input along to
more symbolic systems.

Integrated Architectures

The cognitive architecture ACT-R (Anderson & Lebiere, 1998) represents
an interesting integration of symbolic and sub-symbolic mechanisms. As
background, the ACT-R architecture is a symbolic, production system
architecture, capable of low-level representations of memory structures.
Production system architectures are those where the main type of processing
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occurs within an If–Then format. It includes a declarative memory compon-
ent and a procedural memory component. Declarative memories are those
which can be characterized as long-term factual memories (i.e. phone
numbers, dates, locations). Procedural memories can be characterized as
low-level compilations of memories, primarily of basic skills, which are
sometimes difficult to describe to other people (how to ride a bike, how to
shoot a basketball). ACT-R is implemented in the common LISP program-
ming language as a collection of LISP functions and sub-routines, which can
be accessed by the cognitive modeler. More importantly, ACT-R has an
underlying layer of sub-symbolic processes that affect the higher layers of
symbolic processes. This does not mean that ACT-R is constructed on top
of a neural network or some other type of connectionist framework. Instead,
the symbolic components of ACT-R are linked to the sub-symbolic
framework through a series of equations that ‘determine many of the
continuously varying, qualitative properties of the symbolic cognitive ele-
ments’ (Anderson & Lebiere, 1998, p. 13). In practical terms, this means that
if I wanted to use ACT-R to represent the cognition involved with re-
membering the symbol ‘4’, I could attach the symbol ‘4’ to a decay function;
this function would simulate, in a continuously varying manner, the decay
and possible forgetting of the symbol ‘4’. Furthermore, if I needed to
remember a series of numbers, each of the memories for these numbers
would have a continuously varying algorithm associated with them; and
these algorithms would vary in parallel with each other. Thus, in ACT-R,
sub-symbolic algorithms are able to vary continuously and in parallel while
symbolic operations continue in serial fashion. This is just one example of
an integrated cognitive architecture.

While ACT-R can function as an integrated symbolic–sub-symbolic
architecture, it still is prone to the deficiencies of each architecture. For
example, much of the knowledge that is acquired within ACT-R is written
by an experienced programmer and not developed through recognition of
outside stimuli. In other words, ACT-R does not use sub-symbolic mechan-
isms to recognize and identify stimuli; instead, knowledge structures which
relate to the outside world are developed by a programmer. ACT-R can
create new declarative memory structures as it processes information, but
these are generally not perceptual aspects of the environment (this distinc-
tion is being made of ACT-R 4.0). With the development of ACT-R 5.0,
newer perceptual-motor components have allowed for some integration of
perceptual and motor elements with declarative memory structures. How-
ever, these newer systems are not of the type capable of developing a
learned recognition of external stimuli, as is typical of sub-symbolic
systems. Nevertheless, ACT-R does show some of the advantages of an
integrated hybrid architecture, and has set a trend within applied psychology
toward more integrated cognitive architectures.
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Hybrid architectures are becoming more and more popular as a way of
addressing the limitations of purely symbolic or sub-symbolic approaches.
Sun and Bookman (1995) and Sun and Alexandre (1997) review the state-of-
the-art in hybrid architectures and offer many examples of successful sub-
symbolic and symbolic integration approaches. While many of the papers
in the latter volume concentrate on the more philosophical architectural
issues of integration (i.e. how much integration, what type of integration,
direction of information flow), there are also examples of successfully
integrated architectures. One of the more successful implementations was
the CLARION architecture (Sun & Peterson, 1997), which was able to
improve over traditional sub-symbolic learning techniques (Q-learning) and
successfully generalize learned rules to other domains.

The Human Nervous System

This paper puts forth a biological argument to support the view that
cognition should be represented as a symbolic–sub-symbolic integrated
system, one that uses sub-symbolic input at its lowest end and manipulates
symbolic representations at its highest end in order to produce appropriate
output. To examine this argument, the biology of cognition will be ap-
proached from two different angles: first, the biology and capability of the
human cognitive system will be specifically examined; then the biology and
capability of cognitive systems across a continuum of species will be
examined. From these two points of view, the hope is to build the
evolutionary argument for sub-symbolic and symbolic integration.

The internal elements of the human cognitive system can be viewed as
two ends of a cognitive continuum. At the highest end, the symbolic
processing end, the human system is composed of the prefrontal cortex areas
of the brain. As a structural component within the human brain, the
prefrontal cortex represents the zenith of human cognitive capabilities. Early
neuro-psychologists labeled the frontal lobes as the ‘seat of wisdom’
(Beaumont, Kenealy, & Rogers, 1996, p 348). The prefrontal cortex and the
larger, more encompassing frontal lobes play an important role in many of
the most complex of human activities. Behaviors such as self-awareness,
planning and supervisory control emanate from the frontal lobes. It is in
these areas of the brain that human reasoning of the most complex and
symbolic form originates. Furthermore, these systems have evolved on top
of lower, older, more simple systems. Within the frontal lobes, the neocortex
is primarily a mammalian structure that is built upon the older and more
primitive structures of the human brain (Marin-Padilla, 1988).

Language represents a symbolic system. The proponents of the symbolic
representations of human cognition often characterize human reasoning as
the ‘Language of Thought’ (Fodor, 1975; Pylyshyn, 1984). It is clear that the
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human cognitive system is capable of symbolic manipulation and much of
this activity occurs in the frontal lobe of the brain or the high end of the
human cognitive spectrum. The frontal lobes, more specifically, the pre-
frontal cortex, play a particularly large role in the processing of language.
Damage to the prefrontal cortex can lead to various language impairments
including dysarthria, aphemia and Broca’s Aphasia (Beaumont et al., 1996).
While some of human language processing also occurs in Wernicke’s area,
which is located in the temporal lobe, it is important to note that Wernicke’s
area is also part of the neocortex, which is the outermost layer of the brain.
Researchers have found that the bulk of language processing is cortically
based (Metter et al., 1988).

At the lowest end of the human cognitive spectrum, the simplest cognitive
mechanism is the reflex. Simple reflexes are the most basic neural archi-
tecture, since only one synapse is involved in order to elicit an appropriate
response. For example, the myotatic stretch reflex (or the tendon reflex),
which has the effect of stabilizing a muscle in response to an external flex,
happens ‘quite quickly and unconsciously because only one synapse is
involved’ (Matsumoto, Walker, Walker, & Hughes, 1990, p. 94). The
function of a reflex (at least the most simple of reflexes) is to remove any
input from the higher cognitive functions of the brain. In other words, the
sub-symbolic system of reflexes is devoid of any symbolic processing. This
has two advantages: (1) to accelerate the response to the stimulus; and (2) to
remove any unneeded cognition from the decision process. The analogy to
the sub-symbolic system is that the reflex, especially a myotatic stretch
reflex, could be thought of as a single feed-forward neural network. The
reflex has been pre-trained through millions of years of evolution to
recognize a specific input, and the appropriate output is then emitted; no
interference from higher cognitive elements is needed. To make the analogy
to a sub-symbolic system, the weights of the neural net have been set by
evolution.

Biological Architectures

Just as within the human anatomical system there is an intellectual con-
tinuum from the simple reflex to the frontal lobes, so too in the animal
kingdom there is an intellectual continuum which has evolved over time
from the lowest organisms to the highest organisms. At the bottom of the
evolutionary tree are simple one-celled organisms which have extremely
rudimentary nervous systems. However, these organisms are capable of
displaying elementary behaviors such as avoidance of heat, cold or noxious
chemicals. All organisms at the bottom of the evolutionary tree represent a
class of organisms displaying the simplest of nervous systems, which could
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then be replicated by the simplest of sub-symbolic models. The basic two-
layered sub-symbolic models developed during the 1940s by McCullough
and Pitts (1943) were capable of reacting in ways similar to the behaviors of
single-celled organisms.

Continuing to move up the evolutionary tree, simple organisms begin to
develop simple nervous systems also called ‘nerve nets’. The neurons in an
organism called the hydra display some of the same anatomical character-
istics of human neurons, including communications via a gap between
neurons called a synapse. As complexity increases, neurological organiza-
tion begins to include some resemblance to a spinal column and a primitive
brain. For example, some organisms have long nerve cords which are
connected to cerebral ganglia located in the head. These organisms also have
sensory capabilities called auricles that are concentrated in the head region.
These auricles contain chemical receptors that are used to gather food; in
addition, they have structures similar to eyes, called ocelli, which help them
to avoid light. The point is that a ‘nervous system complexity continuum’
starts to emerge as one progresses up the evolutionary tree from in-
vertebrates to vertebrates, from organisms that can respond to the simplest of
stimuli with some kind of distributed nervous system to organisms that have
some type of primitive sensory system that allows them to locate food. The
progression continues from organisms that have small brain-like structures
to organisms that are capable of associative learning.

The learning capabilities of insects are frequently described as ‘associat-
ive learning’ (Simpson & White, 1990). Associative learning is the simple
association of a stimulus with a response. Interestingly, early sub-symbolic
models were actually criticized as being capable of exhibiting only associat-
ive learning. The main point of the criticism was that simple association was
not capable of learning more complex relationships (Fodor & Pylyshyn,
1988). This critique is similar to the assertion that atomic representations are
not detailed enough to represent complex relationships. More complex ways
of representing knowledge and processing knowledge are needed by higher-
level organisms in order to process symbolic relationships. And as the
progression to the higher levels of nervous system complexity continues,
one begins to see the ability of the higher-level organisms to process not just
simple associations, but symbolic relationships as well. This symbolic
representational understanding is evidenced by the understanding of lan-
guage by highest-level organisms, namely apes and humans.

There is strong evidence that apes are capable of understanding symbolic
relationships similar to those used in human speech. As early as the 1950s,
researchers found that an ape named Viki was capable of sorting photo-
graphs into conceptual categories (Hayes & Hayes, 1953). A few decades
later, a chimpanzee named Washoe was taught ASL (American sign
language) and was able to produce 85 different signs by the age of 36
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months (Gardner & Gardner, 1971). Besides Washoe’s use of ASL, other
types of symbolic systems have been used to teach chimpanzees to ‘talk’.
Rumbaugh et al. (1973) were able to teach chimpanzees to use non-verbal
symbolic systems, which were essentially symbols that could be selected via
buttons on a screen, which could then be combined to produce sentence-like
structures. Rumbaugh et al.’s work was later replicated by researchers in
Japan using a similar symbolic representational system (Matsuzawa, 1989;
paraphrased from Savage-Rumbaugh et al., in press).

The use of symbols by apes has been criticized by some researchers
(Terrace, Straub, Bever, & Seidenberg, 1977: Thompson & Church, 1980) as
being the learning of simple associative chains, similar to what pigeons
could learn. Others (Sebeok & Umiker-Sebeok, 1980) have considered the
symbol manipulation of apes to be an elaborate form of cueing. All this
criticism has been addressed and shown to be unsubstantiated (Rumbaugh,
1981; Rumbaugh & Savage-Rumbaugh, 1980; Savage-Rumbaugh, 1986,
1987; Savage-Rumbaugh, Romski, Sevcik, & Pate, 1983; Savage-
Rumbaugh & Rumbaugh, 1982).

Furthermore, an argument could be made that the apes are not actually
understanding symbols at all, but instead simply translating symbols without
an understanding of their true meanings. This is the famous ‘Chinese Room
Argument’ (Searle, 1979). In the Chinese Room Argument, Searle postulates
that a person using a look-up-table could translate Chinese into English with
little or no understanding of Chinese. However, the Chinese Room Argu-
ment has been criticized as not addressing the symbol-grounding problem
(Harnad, 1989). The symbol-grounding problem acknowledges that many
symbols are grounded by perception and experience. Apes being tested on
language comprehension are not exposed to the symbol-grounding problems
of computer simulations of the mind because they have experience in the
world which computers do not. Tests of ape symbolic comprehension could
easily be addressed by tests not of only symbolic comprehension, but also of
the actual meaning of symbols. These tests have been done, and the most
recent research by Savage-Rumbaugh and her colleagues concludes that apes
can comprehend symbols (Savage-Rumbaugh et al., in press).

There is biological evidence for an intellectual continuum within the
human cognitive system as well as within the biological system of species as
a whole. At one end of the human spectrum, reflexes approach the simplest
of feed-forward sub-symbolic systems. Likewise, at the low end of the
evolutionary scale, simple organisms display avoidance behaviors that could
be easily simulated by sub-symbolic models. At the higher end of the
biological continuum, apes and humans appear to be able to manipulate
symbolic systems and communicate via manipulation of symbols. It is also
possible that other higher-order organisms, such as dolphins, are capable of
symbolic manipulations as well (Herman, Matus, Herman, & Pack, 2001).
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Conclusions

The idea that symbolic and sub-symbolic architectures should be integrated
is not a new one. Researchers have been working for the past few years on
integrated architectures and have produced a wealth of research (Barnden &
Holyoak, 1994; Gallant, 1993; Goonatilake & Khebbal, 1995; Medsker,
1994, 1995; Miikkulainen, 1993; Reilly & Sharkey, 1992; Smolensky, 1995,
Sun & Alexandre, 1995, 1997; Wermeter, Riloff, & Scheler, 1997). How-
ever, the reasoning for the integration has never been made on biological
grounds. Psychological plausibility has been a central theme of both
symbolic researchers and sub-symbolic researchers, and yet it has never
been used as justification for an integration of architectures. Psychological
plausibility has long been one of the hallmarks of sub-symbolic systems
with their albeit simple representations of interconnected neurons that are
capable of learning. Recently, symbolic architectures have been striving to
reach some level of congruence with psychological plausibility as well. For
example, using Functional Magnetic Resonance Imaging (fMRI), the hybrid
symbolic architecture ACT-R has shown some correlations with the cogni-
tive mechanisms revealed by FMRI technology (Sohn, Ursu, Anderson,
Stenger, & Carter, 2000). On the sub-symbolic side of pure connectionist
models, newer sub-symbolic implementations have emphasized their corre-
lations with psychological plausibility as well (Shastri & Ajjanagadde,
1993).

It could be argued that symbolic architectures do not need to be placed at
the top of the intellectual continuum, instead that sub-symbolic systems
merely need to catch up to symbolic system’s level of representational
complexity. While it has been shown that the traditional connectionist
typology is inadequate for representing complex symbolic relationships
(Fodor & Pylyshyn, 1988), newer, more complex sub-symbolic topologies
may allow for a strictly sub-symbolic representation of the entire mind. For
example, Smolensky (1995) has used the tensor product of vector relation-
ships in order to represent recursion and thus overcome some of the
problems associated with sub-symbolic representation of constituent rela-
tionships. Also, Shastri and Ajjangadde (1993) has used dynamic sub-
symbolic systems where the synchronous firing of related neural networks is
used to represent conceptual relationships. Shastri and Ajjangadde’s pulsed
neural nets also address other limitations of sub-symbolic systems, namely
that they tend to be static representations of some previously presented
pattern of inputs, while the brain’s behavior is better characterized as a
dynamic system of electro-chemical pulses. While it has been noted that the
static representations of traditional neural networks could be viewed as very
similar to a reflex response; clearly more complex dynamic designs are
evident in the frontal lobes of the brain. It could be that further research into
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different types of sub-symbolic topologies will led the representational
complexity needed for a fully sub-symbolic representation of the mind.

While increased complexity of sub-symbolic architectures may be one
answer to adopting a complete sub-symbolic architecture for the representa-
tion of cognition, the traditional symbolic architecture still holds numerous
advantages for the representation of complex cognition. Until one archi-
tecture can clearly display an overwhelming advantage, researchers with the
HRED MINDSS program will continue to investigate avenues for the
integration of symbolic and sub-symbolic architectures. The argument put
forth in this paper is that biology has evolved compelling examples of
integrated architectures; both within human cognition and across species,
there is evidence of an intellectual continuum of symbolic and sub-symbolic
integration.
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