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This article explores 2 important aspects of metacognition: (a) how students monitor their on-

going performance to detect and correct errors and (b) how students reflect on those errors to

learn from them. Although many instructional theories have advocated providing students with

immediate feedback on errors, some researchers have argued that immediate feedback elimi-

nates the opportunity for students to practice monitoring for and learning from errors. Thus,

they advocate delayed feedback. This article provides evidence that this line of reason is flawed

and suggests that rather than focusing on the timing of feedback, instructional designers should

focus on the “model of desired performance” with respect to which feedback is provided. In-

stead of delaying feedback, we suggest broadening our model of correct behavior or desired

performance to include some kinds of incorrect, but reasonable behaviors. This article explores

the effects of providing feedback on the basis of a so-called intelligent novice cognitive model.

A system based on an intelligent novice model allows students to make certain reasonable er-

rors, and provides guidance through the exercise of error detection and correction skills. There

are two pedagogical motivations for feedback based on an intelligent novice model. First, jobs

today not only require ready-made expertise for dealing with known problems, but also intelli-

gence to address novel situation where nominal experts are thrown back to the state of a novice.

Second, the opportunity to reason about the causes and consequences of errors may allow stu-

dents to form a better model of the behavior of domain operators. Results show that students re-

ceiving intelligent novice feedback acquire a deeper conceptual understanding of domain prin-

ciples and demonstrate better transfer and retention of skills over time.

The question of when to intervene with feedback following

errors is a controversial issue with important metacognitive

implications. Some researchers have argued that immediate

feedback following errors helps minimize unproductive

floundering and associated frustration. Consequently, stu-

dents remain motivated and efficient during problem solv-

ing. Others have argued that immediate feedback following

errors may impede metacognitive activities. For instance,

activities associated with self-regulation may be circum-

vented by feedback. Students may come to rely on the pres-

ence or absence of feedback messages to assess their per-

formance. They may use error messages to guide error-cor-

rection steps. Proponents of delayed feedback argue that

delay provides students with opportunities to engage in ac-

tivities associated with self-regulation. However, inappro-

priate levels of delay can introduce inefficiencies in the in-

structional process and overwhelm students who may need

guidance. Unfortunately, the polarized nature of the feed-

back debate leaves developers of instructional systems with

a mutually exclusive choice between the distinct benefits of

two feedback modalities.

This article presents a theoretical perspective that offers

the opportunity for developers of instructional systems to

jointly realize the benefits of immediate and delayed feed-

back. This article also summarizes evidence supporting this

perspective. We situate our analysis in the context of
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computer-based learning environments called Cognitive

Tutors.

COGNITIVE TUTORS

We discuss the metacognitive implications of feedback tim-

ing in the context of Cognitive Tutors. Cognitive Tutors are

computer-based instructional systems that use cognitive

models—fine-grained representations of successful and un-

successful strategies employed by learners—to track stu-

dents through complex problem spaces (Anderson, 1993).

Using a process called model tracing, these systems can as-

sess student performance on an action-by-action basis.

Such a diagnostic capability offers the opportunity to pro-

vide context-specific feedback and advice to learners.

Whereas there is considerable flexibility in terms of how

feedback is implemented in these systems, Cognitive Tutors

have generally provided feedback immediately after student

errors.

Cognitive Tutors have been rigorously assessed in class-

room and laboratory contexts. They have been shown to re-

duce training time by half and increase learning outcomes by

a standard deviation or more (Anderson, Corbett, Koedinger,

& Pelletier, 1995). These systems have been used to teach

concepts ranging from programming to genetics. Tutors for

algebra and geometry are in use by 200,000 students in over

1,800 schools around the country. The U.S. Department of

Education has designated Cognitive Tutors one of five exem-

plary curricula in K–12 mathematics education. However,

despite these successes in the laboratory and real world, the

strategy of providing immediate feedback on errors has been

controversial. We elaborate on the controversy surrounding

this issue in the following pages.

REVIEW OF FEEDBACK RELATED
RESEARCH

Immediate Feedback

Inherent in any design decision concerning feedback is the is-

sue of when it might be appropriate to provide feedback. De-

signers are faced with a choice of presenting feedback as

soon as an error is detected—immediate feedback, or pre-

senting delayed feedback—giving learners an opportunity to

detect and correct errors on their own. Research on the sub-

ject does not offer a clear-cut answer to inform such deci-

sions. A review of the literature, summarized here, shows

distinct pedagogical advantages offered by each of these

feedback modalities.

Several studies indicate that learning is more effective

and efficient with immediate feedback. For instance, Lewis

and Anderson (1985) explored the issue of feedback la-

tency in the context of a maze-based adventure game. Each

room in the maze had a set of features (such as lamp, fire-

place, doorkeeper, etc.). Players had a set of operators (e.g.,

Bow, knock, light fire) that would, in the presence of cer-

tain features, move them toward the ultimate goal of find-

ing treasure. Participants were trained to play the game in

either an immediate or delayed feedback condition. In the

immediate feedback condition, participants were notified

any time they applied operators that would lead them to-

ward dead ends. In the delayed feedback condition, partici-

pants were allowed to pursue dead-end paths up to a depth

of one room before being informed of the inappropriateness

of a previous choice. Participants then had to use a backup

operator to back out of the dead-end path. In a posttest, par-

ticipants trained in the immediate feedback condition were

more accurate at specifying correct operators when pre-

sented with descriptions of room features. The only case in

which delayed feedback participants were more accurate

was in the case of rooms with features indicative of dead

ends—these participants were more familiar with the use of

the backup operator.

Though the Lewis and Anderson study shows a dis-

tinct benefit for immediate feedback, certain characteris-

tics of their task limit generalization of these findings to

other problem solving domains. As Anderson, Conrad,

and Corbett (1989) have suggested, the maze task was a

situation where the total correct solution was never laid

out before participants and they had to integrate in mem-

ory a sequence of moves. In contrast, in many prob-

lem-solving domains, particularly in many academic

tasks, the final solution, along with intermediate steps, is

available for learners to study. It is possible for students

to assess their problem-solving steps after accomplishing

relevant goals.

Corbett and Anderson (2001) compared the pedagogical

benefits of immediate and delayed feedback in the context

of their LISP tutor—a context more representative of aca-

demic tasks. Students in their study worked with four dif-

ferent versions of the tutor. In the Immediate Feedback con-

dition, students were presented with a feedback message as

soon as an error was made. In the Flag Feedback condition

students were informed that an error was made without any

explanatory text concerning the nature of the problem or

any other interruption to the task. The Demand Feedback

condition allowed learners to ask the tutor to check for er-

rors of their own initiative. In the No Feedback condition

students received no guidance in the course of problem

solving but were told whether their solution was correct at

the end of the problem. Performance on a paper and pencil

posttest showed that all feedback conditions were better

than no feedback on the posttest. There were no statistical

differences among feedback conditions in the posttest

scores. However, there was a large difference among the

feedback conditions in terms of the learning rate. Students

in the immediate feedback condition completed training

significantly faster than those in the Demand and No Feed-
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back conditions. Immediate feedback served to minimize

floundering and keep the leaning process efficient.

Additional support for immediate feedback comes from re-

search carried out in other instructional contexts. For instance,

Bangert-Drowns,Kulik,Kulik, andMorgan(1991)conducted

a meta analysis of 53 studies that compared immediate feed-

back to delayed feedback in test-like events. These studies ex-

amined applications ranging from classroom quizzes to com-

puter-based learning environments. Bangert-Drowns and

colleagues concluded that immediate feedback produces

better learning outcomes than delayed feedback.

Delayed Feedback

Though the studies just described show an advantage for im-

mediate feedback,manyhavebeencritical about theuseof im-

mediate feedback in the context of instructional systems. Re-

searchers have argued that immediate feedback offered by

Cognitive Tutors is qualitatively different from that offered by

human tutors. For instance, researchbyMerrill andcolleagues

comparing human and computer tutors shows that human tu-

tors do not intervene immediately on errors that may provide

learning opportunities (Merrill, Reiser, Ranney, & Trafton,

1992). Other researchers have observed that human tutors let

learners engage in activities associated with error detection

and correction (Fox 1993). Furthermore, research on human

tutoring strategies shows that tutors try to instill a sense of con-

trol in learners (Lepper &Chabay, 1988). Immediate feedback

during problem solving, it could be argued, may detract from

individual control over the problem-solving process. These

comparisons to human tutors are important as skilled human

tutors typically produce better learning outcomes than Cogni-

tive Tutors—differences in tutoring strategies could be among

some of the factors that underlie this difference.

Critics of immediate feedback have also argued that im-

mediate feedback may foster unsound metacognitive beliefs

among students. For instance, as Nathan (1998) has pointed

out, immediate feedback may reinforce the belief prevalent

among many students that problem solving is an immediate

and single-step process rather than the deliberate and reflec-

tive process described by educational researchers. Further-

more, Bjork (1994) has highlighted the possibility that rapid

progress through a task as afforded by immediate feedback

may lead users to adopt an overly optimistic assessment of

their level of comprehension and competence. As Nathan has

noted, these possibilities closely correspond to

epistemological beliefs identified by (Schommer, 1993) as

being negatively correlated with academic achieve-

ment—that is, the degree to which students believe that

learning requires minimal effort, that knowledge is acquired

quickly, and in the certainty of knowledge that is learned.

Immediate feedback has also been criticized on the basis of

empirical studies that highlight benefits of delayed feedback.

These studies suggest that the benefits of delayed feedback

mayonlybecomeapparentover time,or in thecontextof trans-

fer tasks.For instance, inastudyinvolvingagenetics tutor, stu-

dents received feedback as soon as an error was detected in the

immediate feedback condition or at the end of a problem in the

delayed feedback condition (Lee, 1992). Students in the im-

mediate feedback completed training problems significantly

faster. In a posttest the following day, students in both condi-

tions performed equally well on problems encountered during

training. However, students in the delayed feedback condition

performed significantly better on a far transfer task.

Similar observations have been made in the area of motor

learning. For instance, Schmidt and Bjork (1992) reported on

a pattern of results showing that interventions that enhance

performance during training may compromise retention and

transfer. In one study, participants were asked to perform a

complex arm movement within a specified interval. Feed-

back on movement accuracy was provided at the end of 1, 5,

or 15 trials. Participants who were provided feedback after

every trial made the fewest errors during training—followed

by participants who received feedback in 5 trial blocks and

15 trial blocks, respectively. A retention test administered 10

min after training showed no difference in performance

among the three groups. A retention test 2 days later showed

a reversal in performance. Participants who received feed-

back in 15 trial blocks made the least errors—they were fol-

lowed by participants who received feedback after five trials

and every trial, respectively.

In a study involving the LISP tutor, students (Schooler &

Anderson, 1990) had to create LISP expressions containing

one or two extractor and combiner functions. Students were

trained in either an immediate feedback condition—where

the feedback was provided as soon as an error was detected,

or in a delayed feedback condition—where feedback was

presented after expression was complete and students had hit

Return to evaluate the same. In a posttest administered the

following day, delayed feedback condition participants fin-

ished faster and made half as many errors as those trained in

the immediate feedback condition

Considered together thesestudies suggest apotential trade-

off between the benefits offered by immediate and delayed

feedback. On the basis of the pattern of findings just summa-

rized, someresearchers (e.g.,Bjork,1994;Nathan,1998)have

argued that immediate feedback promotes efficiency during

training, whereas delayed feedback might lead to better reten-

tion and transfer performance. The guidance hypothesis of-

fered by Schmidt, Young, Swinnen, and Shapiro (1989) pro-

vides an explanation for this tradeoff. Feedback may serve to

guide student performance during training. Students can get

throughproblemsbyimplementingprescriptionsembodied in

feedback messages. This may have the effect of boosting per-

formance during, and immediately following, training. How-

ever, immediate feedback can negatively impact learning in

two ways. First, it could obscure important task cues—that is,

learners may come to depend on feedback to assess progress

on tasks instead of cues inherent in the natural task environ-

ment. Second, feedback could prevent important secondary
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skills from being exercised. Implicit in the guidance hypothe-

sis is the idea that immediate feedback maypromote the devel-

opment of generative skills. Generative skills are skill compo-

nents that are involved in selecting and implementing problem

solving operators in specific task contexts. However,

evaluative skills—skills called for in evaluating the effect of

applying problem solving operators, correcting errors, and

monitoring one’s own cognitive process—may go

unpracticed. These evaluative functions are instead delegated

to feedback. Consequently, task performance maybe compro-

mised in situations where students must jointly exercise

evaluative and generative skills. Transfer tasks and retention

tests are representative of situations where student perfor-

mance is likely to be error prone and subject to flounder-

ing—where the joint exercise of generative and evaluative

skills may be essential for success. Additionally, researchers

have argued that the exercise of evaluative skills may provide

opportunities for deeper conceptual understanding of domain

principles.AsMerrill,Reiser,Merrill, andLandes(1995)have

theorized, errors provide an opportunity to develop a better

model of the behavior of operators in a domain. Error recovery

requires that students construct explanations about the causes

andconsequencesoferrorsandact on their analyses.Thiskind

of active self-explanation and problem solving could contrib-

ute to a better understanding of domain operators and their ap-

plicability in problem contexts.

The Instructional Designer’s Dilemma

The research on feedback just summarized presents design-

ers of instructional systems with a dilemma. Immediate feed-

back keeps the learning process efficient. Additionally, some

of the most effective and broadly used Cognitive Tutors pro-

vide immediate feedback on errors (Corbett, Koedinger, &

Hadley, 2001). However, a designer may also wish to realize

benefits such as the development of debugging and

metacognitive skills purportedly offered by delayed feed-

back. Unfortunately, the feedback-related literature offers lit-

tle guidance as to what an appropriate level of delay might be

in a given context. This could have serious consequences. At

best, an inappropriate level of delay can introduce inefficien-

cies into the learning process. At worst, delayed feedback

can recede to a no-feedback condition, leading to unproduc-

tive floundering and student frustration.

AN INTEGRATIVE PERSPECTIVE

This article argues that the key to jointly realizing the benefits

of immediate and delayed feedback may lie in an emphasis on

the model of desired performance underlying Cognitive Tu-

tors. The model of desired performance refers to the behaviors

orperformancewedesire students toachieve. InCognitiveTu-

tors the model of desired performance is implemented as a set

of production rules representing target skills in a specific do-

main. The model of desired performance plays a diagnostic

role in intelligent tutoring systems. When student behavior is

consistent with the model of desired performance, the system

does not intervene. However, if student behavior is inconsis-

tent with the model of desired performance, the system inter-

venes with feedback so as to guide students toward perfor-

mance that is consistent with the model.

Expert Model

Currently, feedback in Cognitive Tutors is based on what is

broadly referred to as an expert model. An expert model of

desired performance characterizes the end-goal of instruc-

tion as error free and efficient task execution. Feedback is

structured so as to lead students toward expert-like perfor-

mance. The tutor intervenes as soon as students deviate from

a solution path. An expert model tutor focuses on the genera-

tive components of a skill. Figure 1 (left) illustrates the stu-

dent interaction with an expert model tutor.
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Intelligent Novice Model

An alternative model that could serve as the basis for feed-

back in Cognitive Tutors is that of an intelligent novice (cf.

Bruer, 1993). The assumption underlying such a model of de-

sired performance is that an intelligent novice, someone with

general skills facing a novel problem, is still likely to make

errors. Recognizing this possibility, the intelligent novice

model incorporates error detection and error correction activ-

ities as part of the task. Feedback based on such a model

would support the student in both the generative and

evaluative aspects of a skill, while preventing unproductive

floundering. Delayed feedback merely gives students the op-

portunity to exercise evaluative skills. In contrast, an intelli-

gent novice model-based tutor goes a step further by explic-

itly modeling these skills and providing instructional

scaffolds through the exercise of error detection and correc-

tion activities. Feedback regarding a model of an intelligent

novice may resemble delayed feedback, but it is really imme-

diate feedback regarding a model of desired performance that

includes error detection and correction skills. Figure 1 (right)

outlines student interaction with a tutor based on an intelli-

gent novice model.

The analysis just presented recasts the feedback debate.

The integrative perspective outlined here suggests that the

model of desired performance, and not feedback timing,

should be the crucial issue of focus in deciding when to inter-

vene following an error. This article details the design of two

versions of a spreadsheet tutor—one based on an expert

model the other on an intelligent novice model. Results from

two studies evaluating learning outcomes associated with

each will also be presented.

SPREADSHEET TUTOR

Spreadsheets have been widely regarded as exemplary

end-user programming environments (Nardi, 1993). They

allow nonprogrammers to perform sophisticated computa-

tions without having to master a programming language.

However, despite decades of evolution in spreadsheet de-

sign, there are aspects of spreadsheet use that are sources of

difficulty for novice and expert spreadsheet users (e.g.,

Hendry & Green, 1994). A commonly reported usability

problem concerns the appropriate use of absolute and rela-

tive references—these are schemes that allow users to per-

form iterative computations. Difficulties in cell referencing

have persisted despite an abundance of manufacturer and

third-party training materials and decades of spreadsheet

refinement. The tutor reported in this article was designed

to enable students to master cell-referencing concepts. We

elaborate on the tutorial domain later and go on to detail

features of two versions of a tutor based on the theoretical

analysis presented earlier.

Overview of Tutorial Domain

Spreadsheet formulas may be reused to perform iterative op-

erations. This is accomplished through a scheme called rela-

tive referencing. Consider the spreadsheet depicted in Figure

2 (left). One could enter a formula in cell B5 that adds the

contents of cells B2, B3, and B4. The corresponding opera-

tion can be performed in cells C5 and D5 simply by copying

the formula entered in cell B5 and pasting it into these new

locations. When pasted, the formula is automatically modi-

fied to refer to cells that lie at the same relative location as the

original formula. For example, the formula in Cell B5 re-

ferred to the three cells above it. When the formula is copied

and pasted into cells C5 and D5 the formulas are modified to

refer to the three cells above these new locations.

To determine the appropriate relative references at new lo-

cations, formulas are updated based on where the formula is

moved. When a formula is moved into a cell in a different

column, column references in the formula are updated by the

number of columns moved (Figure 2 [left], =B2+B3+B4 be-
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comes =D2+D3+D2 when moved across columns from B5 to

D5). Similarly, when a formula is copied and pasted into a

cell in a different row, all row references in the formula are

updated by the number of rows moved (Figure 2 [left],

=B2+C2+D2 becomes =B4+C4+D4 when moved across

rows from E2 to E4).

Though relative referencing works in many task contexts,

it is sometimes necessary to hold a row or column reference

fixed regardless of where a formula is moved. Consider the

example in Figure 2 (right). The value in cell B2 (Hourly

Wage) has to be multiplied with the values in cells A3, A4,

and A5 (Hours Worked). If the formula =A3*B2 is entered

into B3 and pasted into cells B4 and B5, all row references

will change to refer to cells that lie at the same relative loca-

tion as those referred to by the formula in B3. This would

produce =A4*B3 in B4 and =A5*B4 in B5 (instead of

=A4*B2 and =A5*B2, respectively). For the formula to con-

tinue to refer to cell B2, the row reference 2 has to be held

fixed as an absolute reference. This can be done by placing a

“$” ahead of “2.” Thus, for the formula in B3 to work appro-

priately when copied and pasted, it would be modified to read

=A3*B$2.

Expert Model Spreadsheet Tutor

The theoretical analysis presented earlier informed the de-

sign of two versions of an intelligent tutoring system for

teaching students cell referencing skills—one based on an

expert model, the other on a model of an intelligent novice.

During problem solving, students working with an expert

model tutor receive feedback as soon as an incorrect formula

is entered (Figure 3). The error notification message presents

students with the choice of correcting the error on their own

or getting help from the system in generating a solution. If

help is sought, the student is interactively guided through the

process of generating a solution. Students are first prompted

to predict references that will change when the formula is

copied and pasted. Subsequently, students are asked to iden-

tify references that must be prevented from changing.

Intelligent Novice Model Spreadsheet Tutor

In contrast, the intelligent novice tutor allows students to

enter an incorrect formula, copy it, and paste it to observe

the consequences of the error. The student is given an op-
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portunity to detect errors and make corrections if necessary.

However, if a student fails to detect an error and tries to

move on to a new problem, feedback directs the student to

check for errors and request hints. An error at the formula

correction step results in immediate corrective feedback to

minimize unproductive floundering. Note, a delayed feed-

back tutor would not necessarily intervene at this point. The

error notification message at the formula correction step

presents students with the choice of correcting the error on

their own or doing so with help from the system. If a stu-

dent chooses to correct the error with help from the system,

the student is taken through a two-step process to get back

on track.

The first step (Figure 4—left) focuses on error detection.

The system picks a cell into which a student may have

pasted an incorrect formula. The system then highlights the

cells inappropriately referenced by the underlying formula.

Additionally, a tag indicating the incorrect formula underly-

ing the selected cell is also shown. On the basis of these

cues the student can determine the discrepancy between ac-

tual and intended outcomes and identify incorrect refer-

ences. The second step (Figure 4, right) focuses on error

correction. Having detected the source of error in the first

step, the second step requires students to identify references

that must be held fixed in order for the formula to work as

intended. It is important to note that both versions of the

spreadsheet tutor are implemented using model tracing and

immediate feedback. The difference in feedback timing is a

consequence of different models of desired performance

embodied in each system.

EVIDENCE FOR FEEDBACK BASED ON AN
INTELLIGENT NOVICE MODEL OF DESIRED

PERFORMANCE

The two versions of the spreadsheet tutor were experimentally

evaluated (Mathan & Koedinger, 2003). Participants were re-

cruited from a local temporary employment agency. All partici-

pants had general computer experience, including proficiency

with word processing, e-mail, and Web applications. However,

they were all spreadsheet novices. We randomly assigned stu-

dents to either the intelligent novice or expert condition.

Experimental sessions spanned the course of 3 days. On

Day1, students came in for a90-min instructional session. De-

clarative instruction provided all students with an exposition

of basic spreadsheet concepts: everything from data entry and

copying and pasting to formula creation and cell referencing.

Theremainderof thesessionwasspentonproceduralpractice.

Students solved a variety of problems that called for the exer-

cise of cell-referencing skills. The session was preceded by a

pretest and was followed by a posttest. On Day 2, students

came in the next day for 50 min of procedural practice with the

tutor. A posttest was administered following the instructional

session. On Day 3, 8 days after Day 2, students came in for a

third instructional session. Students attempted a pretest and

transfer task to measure retention prior to the instructional ses-

sion. The third session consisted of 30 min of procedural prac-

tice and was followed by a posttest.

The pre- and posttests had two components: a test of prob-

lem solving and a test of conceptual understanding. The

problem-solving test consisted of problems isomorphic to
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training tasks; in other words, students were asked to write

and use Excel formulas. The conceptual test consisted of two

parts: The first part required students to exercise predictive

skills. Students had to identify an outcome (from a selection

of screenshots) that could have resulted from copying and

pasting a given formula. The second called for students to ex-

ercise error-attribution skills. Students had to examine a

given spreadsheet table and identify which of several formula

alternatives could have produced the observed outcome. The

transfer task called for the exercise of cell-referencing skills

in the context of a structurally complex spreadsheet. All stu-

dents were assessed for incoming mathematical ability using

a test of basic algebraic symbolization.

Declarative instruction in the two versions of the tutor de-

scribed here incorporated what we call Example

Walkthroughs to guide students through the studyof examples

prior to problem solving. Students began declarative instruc-

tion by reading textual expositions of concepts followed by

video clips illustrating the application of these concepts. Sub-

sequently, instead of progressing into problem solving, stu-

dents were interactively stepped through a set of example

walkthroughs. Walkthroughs served to lead students through

the reasoning necessary to solve problems. At each step,

multiple-choice prompts served to help students make infer-

ences necessary to select actions that would take them to the

next step in theproblem-solvingprocess. Incorrect inferences,

which may have resulted from inaccurate or partial encoding

of important concepts, were remedied through messages that

clarified the knowledge necessary to make appropriate infer-

ences. In our first experiment, students in the expert condition

received videos and walkthroughs emphasizing generative

skills. Declarative instruction for those in the intelligent nov-

iceconditionemphasizedbothgenerativeskills andevaluative

skills (including error correction). To rule out the possibility

that the results observed in the first study were a result of dif-

ferences in the example walkthroughs, a second study was

conducted. In the second study, students in both groups re-

ceived example walkthroughs emphasizing generative and

evaluative skills as part of their declarative instruction.

In our first experiment, students trained with intelligent

novice feedback performed significantly better on tests of

problem solving (effect size: 0.50), conceptual understand-

ing (effect size: 0.59), transfer (effect size: 0.43), and reten-

tion (effect size: 0.33). We also examined online training data

to determine if student performance during training mirrored

these posttest measures. We also hoped to identify the point

in the learning process where differences among the groups

began to emerge. To do this, we examined the number of at-

tempts required to solve training problems as a function of

the opportunity to practice skill components associated with

the six types of problems represented in the tutor. The y-axis

in Figure 5 plots a performance measure, namely, the number

of attempts required to write a correct formula, possibly with

the help of the tutor. The x-axis plots the number of practice

opportunities for problems of each type. Each point on the

graph averages across the six types of problems represented

in the tutor. Learning trends were estimated using best fitting

power curves. A comparison of learning curves associated

with the two tutorial conditions reveals that students in both

groups start off performing at approximately the same level.

However, over the course of successive attempts students in

the intelligent novice condition learn at a faster rate. A re-

peated measures analysis of covariance showed a significant

Feedback × Opportunity interaction. Our learning curve

analysis suggests that effects of intelligent novice feedback

begin relatively early in the learning process, and that the dif-

ferences in the two groups persist over the course of training.

Results associated with our second experiment, in which

students in both groups received identical declarative instruc-

tion, were similar to those obtained in Study 1. Students in

the intelligent novice condition performed significantly

better on tests of problem solving (effect size: .62), concep-

tual understanding (effect size: 1.05), transfer (effect size:

0.78), and retention (effect size: 0.70). Though the pattern of

results is the same across studies, effect sizes in our second

study appear larger. This difference may simply be random

variation. It should be noted that, within each study, entering

characteristics of students in each experimental group—as

measured by a math test, computer skills experience assess-

ment, and spreadsheet pretest—were the same.

DISCUSSION

Immediate feedback following errors has been criticized on

grounds that it may prevent learners from exercising skills that

are important for performing tasks outside the training environ-

ment. These include error-detection and error-correction skills.

However, as Corbett and Anderson (2001) have pointed out,

merely delaying feedback may be necessary, but not sufficient

to promote the metacognitive processes of detecting, correcting,

and learning from errors. Inappropriately designed delayed

feedback can contribute to unproductive floundering and frus-
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FIGURE 5 Comparison of learning curves associated with expert

(EX) and intelligent novice (IN) versions of the spreadsheet tutor. In-

telligent Novice students learn at a faster rate.



tration. Corbett and Anderson suggested that it may be neces-

sary to provide direct feedback and support for these skills.

The theoretical perspective presented in this article recasts

the feedbackdebate. It shifts the argument concerningwhen to

intervenefollowingerrors from afocusonlatencytoafocuson

themodelofdesiredperformance.Feedbackbasedonan intel-

ligent novice model does not simply provide students with an

opportunity to engage in evaluative skills as delayed feedback

would. Instead, an intelligent novice system explicitly models

error detection and correction activities and supports students

in the exercise of these skills. The intelligent novice tutor de-

scribedherewasdesigned toprovide immediate feedback.But

it does this on the basis of a cognitive model that includes error

detection and correction activities as an integral part of the

learning process. Feedback based on an intelligent novice

model provides a practical way for facilitating the joint exer-

cise of generative and evaluative skills in Cognitive Tutors,

whileminimizingthepotential forunproductivefloundering.

A comparison of student performance under the expert and

intelligent novice conditions attests to the effectiveness of intel-

ligent novice model feedback on a variety of different measures.

During training, students in the intelligent novice condition

learned at a faster rate. Students in the intelligent novice condi-

tion outperformed students in the expert condition on a variety

of tasks—including performance on isomorphs of training

tasks, tests of conceptual understanding, transfer tasks, and re-

tention tests following an 8-day retention interval. The analysis

and results presented here suggest that the joint exercise of gen-

erative and evaluative skills can contribute to better learning

outcomes than a focus on generative skills alone.

The perspectives presented in this article are relevant to ac-

tivities described by a variety of metacognitive frameworks.

For instance, Butler and Winne (1995) identified several skills

that characterize self-regulated learning. These skills include

interpreting and defining task, selecting tactics and strategies,

monitoring progress, and using feedback to reflect on the ap-

propriateness of actions. Though the emphasis of this article

has been on monitoring and reflection, the approach described

here can be employed to model skills such as task interpreta-

tion and strategy selection. Our analysis suggests that explic-

itly modeling metacognitive skills, and using these models to

scaffold student performance, is likely to lead to more effec-

tive and efficient learning than approaches that merely give

students an opportunity to apply these skills.
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