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Abstract

We examined the effect of cognitive noise on human game
playing abilities. Human subjects played a guessing game
against an ACT-R model set at different noise levels. Counter
to the normal effect for noise (i.e., to increase randomness)
increasing noise over certain ranges increased the win rate in
both the ACT-R model and in the humans. We then attempted
to model the human results using ACT-R, Q-Learning, neural
networks, and Simple Recursive Neural Networks. Overall,
ACT-R produced the best match to the data. However, none
of these models were able to reproduce a secondary counter
intuitive human win rate effect.

Noise, or randomness, plays an important role in cognitive
modelling. In problem solving it is often necessary to add
noise to a model to get it to explore possible solutions rather
than freezing onto a single approach. In memory models,
noise often plays a role in modelling errors of omission and
commission (e.g. Anderson & Lebiere, 1998). Noise is also
used to model the ability of humans to purposefully behave
stochastically (e.g., Treisman & Faulkner, 1987). In these
cases, the role of noise is to create and/or increase
randomness in behaviour. However, adding noise to a
component within a system can also have the opposite
effect. That is, adding noise can, under the right conditions,
decrease randomness (i.e. the system’s behaviour moves
away from chance).

The best-known example of this is stochastic resonance
(SR). SR refers to a class of models that produces the effect
of reducing randomness by adding noise. Importantly, SR
has been implicated in neural functioning (see chapter 22 of
Ward, 2002 for a review) and has also been shown to
influence decision making in perceptually based tasks (see
chapter 21 of Ward, 2002, for a review). However, there is
no agreed upon, precise definition of when a system should
be classed as SR. For experimental results it is often the
case that a result is assumed to be SR if adding noise to a
system reduced the level of randomness of the system in
some way. This is the sense in which we use the term SR.
However, the important point is not the technical definition
but whether or not noise can function in this way for the
cognitive system, as it is known to do for the neural and
perceptual systems.

Games, Randomness, and Cognitive Noise

In game theory, the ability to behave randomly or pseudo-
randomly often plays a central role. This is because
increasing the level of randomness in a player’s moves

decreases the ability of the opponent to predict these moves.
If we assume that increasing noise in a cognitive model will
always increase the level of randomness in its behaviour
then there is a direct link between cognitive noise levels and
the level of randomness in a game. However, if adding noise
can, under certain conditions, reduce the level of
randomness, then the relationship between cognitive noise
and randomness is not so straightforward.

We investigated this by looking at the relationship
between cognitive noise and the ability to predict your
opponent in the game of Paper, Rock, Scissors (henceforth
PRS). PRS was chosen for this study because the game
theory solution is very simple; just play randomly, 1/3
paper, 1/3 rock, 1/3 scissors. The reason for this is that any
deviation from this strategy would leave the player open to
exploitation from an opponent who could detect the
deviation. The expected outcome for this strategy over time
is for both players to play at chance; 1/3 wins, 1/3 losses,
and 1/3 ties. If adding noise to the cognitive system of a
player increases the randomness of their playing then adding
noise should cause the rate of win, losses and ties to move
towards the chance rate. In contrast, an SR effect would
cause one or both players to move away from the chance
rate as more noise is added. Typically, such an effect would
occur over only a limited range of the noise parameter.

Another reason that PRS is a good choice is that the
cognitive processes underlying PRS play have been
previously studied. Human PRS play has been successfully
modelled using neural networks (West & Lebiere, 2001) and
ACT-R (Lebiere & West, 1999). In both cases the basic
strategy was the same: to attempt to win through the
detection of sequential dependencies. Specifically, each
player tries to predict what their opponent will play next by
detecting sequential dependencies in past moves. Both the
neural network model and the ACT-R model, when
compared to human data, indicated that people use their
opponent's last two moves to predict the current move. We
refer to this as a lag 2 model. Simpler models, which use
only the last move, were termed lag 1 models.

The effect of cognitive noise on this strategy seems
straightforward: as noise is added to the sequential
dependency mechanism the player should become less able
to predict their opponent's moves. Also, as their moves are
increasingly determined by the noise they should become
increasingly hard to predict. Eventually the cognitive
system will become completely swamped with noise and all
the moves will be random. That is, the win/loss/tie rates for
both players will converge towards the chance rates. With
sufficient noise this outcome is unavoidable. However, if an
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SR effect exists then the relationship between the level of
noise and the level of randomness will not be monotonic.
That is, for some regions of noise, increasing noise will
cause the win/loss/tie rates to move away from chance.

Humans Versus ACT-R

Testing for stochastic resonance in humans is difficult
because it is problematic to add precise amounts of noise to
their mental processes. We approached this issue by having
human subjects play against an ACT-R model with different
amounts of noise. Previous experiments (Lebiere & West,
1999; West & Lebiere, 2001) have shown that humans tend
to beat the ACT-R model when it is set to detect sequential
dependencies at lag 1, while they tend to tie or lose if the
model uses the last two moves (lag 2) to predict the next
move. They also found that human players were much more
motivated when they were winning, so we chose the lag 1
version for this experiment.

The ACT-R model learns sequential dependencies by
observing the relationship between what happened and what
came before on each trial. After each round, a record of this
is stored in the ACT-R declarative memory system. Each
time the same sequence of events is observed it strengthens
the activation of that sequence in memory. Thus, activation
levels reflect the past likelihood of a sequence occurring.
Noise is added (via the standard ACT-R activation noise
parameter) when the model attempts to retrieve the
sequence with the highest activation level in order to predict
the opponent’s next move. For example, if the opponent’s
last move was P and the model was set to use information
from just the previous move (lag 1), the model would
choose from PR, PS, and PP based on activation levels, then
use the retrieved sequence to predict the opponent’s next
move. Thus, if PS had the highest activation this would
predict that the opponent will play S next, and so the model
would play R (which beats S). The model would then see
what the opponent actually did and store a record of it (e.g.,
assume the opponent played S, the model would then store
PS), which would strengthen the activation of that sequence.

Previous research has shown that when two players use
the strategy of detecting sequential dependencies against
each other, the result is that both players produce a series of
short-lived sequential dependencies (West & Lebiere,
2001). Adding noise to the ACT-R model increases the
likelihood that a mistake will be made, in that it increases
the chance that the most active sequence may not be chosen.
Thus, if the model ‘knows’ the right answer, adding noise
increases the chance that it will fail to retrieve it. When
noise causes a failure to retrieve the most active sequence, it
also introduces noise (i.e., false information) into the signal
sent to the opponent. This causes the opponent to store false
information that is not predictive of the player’s sequential
dependencies (which are embodied in the activation levels),
and so introduces noise into the opponent’s learning
process. Thus we tested for two sources of noise: internally
generated noise in the ACT-R model, and noise in the signal
provided to the human players.

For all the experiments, each human subject played
against the ACT-R model at different noise levels. Each
game was 150 trials and the order was randomized. To test
the significance of the noise manipulation we used a least

squared regression to examine the human scores across
trials and the ACT-R score across trials. The slope of the
regression produced an estimate of the win and loss rates for
each noise level.

The thick lines in Figure 1 and Figure 2 show the results
for our first experiment. In Figure 1, we see that as the
model noise increased from 0 to 0.5, the human win rate
decreased towards chance. At the same time, Figure 2
shows that the model’s win rate (which is the same as the
human’s loss rate) increased dramatically. Importantly,
between a noise level of 0.2 and 0.5, increasing the amount
of noise caused the win rate to significantly increase in a
direction away from chance (p<0.001). This is a clear
example of an SR effect within the model. The model was
able to predict the human players better as noise was added,
within this noise range.

The data also revealed an SR effect within the human
players. When the model’s noise was increased from 0.5 to
0.75, the humans significantly increased their win rate away
from chance (p<0.001). The increased noise in the ACT-R
model caused increased noise in the information being
received by the human players, which in turn caused an
increase in their ability to predict the model’s performance.

To replicate the human SR effect, we repeated the
experiment focusing in on the noise range that produced this
effect. As the thin line in Figure 1 illustrates, the effect for
the humans was even stronger in this experiment, possibly
because we came closer to capturing the peak of it. Again,
the movements away from chance were significant
(p<0.001).

Finally, to be sure of the effect, we re-ran the experiment
using only experienced players (n = 8) who had been able to
win in the previous experiment, and focused in on two noise
levels that would maximize the effect. Again we found a
significant increase in the human hit rate (p<0.001). In this
case, probably due to the use of experienced players, every
subject individually produced the effect. As far as we
know, this is the first direct demonstration of SR effects at
the cognitive level in human subjects.
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Figure 1: Human win rate (model loss rate) at different
levels of model noise for three different experiments.
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Figure 2: Human loss rate (model win rate) at different
levels of model noise for three different experiments.

Modeling Human Performance

We developed a number of fundamentally different models
of the human performance versus ACT-R, and tested them
at various parameter settings. In practice, this approach can
have a number of different outcomes. First, a model may
simply not match well with the human data, no matter what
changes are made to its parameter settings. This falsifies the
model. Second, a model may match well over a wide range
of plausible parameters settings (or, indeed, over all
parameter settings). It is our experience that this happens
surprisingly often (see Stewart, West, & Coplan, 2004 for
an example). Third, a model may match the human data
well, but only over a particular narrow range of settings. If
there is no way to explain or justify those parameter settings
then there is a possibility that the fit is due to capitalizing on
chance and it is difficult to draw any conclusions about the
validity of the model. Fourth, a model may inherit
recommended settings for its parameters that have been
found to work in a wide range of situations. In this case,
there is a prediction that the standard settings should work
well in the new situation, and as the parameters are moved
away from that norm, the accuracy should decrease.

We compared the human data shown in the previous
section to models falling into five major classes: Game
Theory, ACT-R, Associative Neural Net, Simple Recursive
Neural Net, and Q-Learning. To do the comparisons, we ran
the various models against the same opponent that the
humans played: an ACT-R lag 1 model with varying
degrees of noise. For each level of noise in the opponent,
we ran 100 simulations of the two agents playing 150
rounds of PRS.

For each model class, we created a large number of sub-
models by adjusting the internal parameters. A variety of
settings for each parameter were chosen, and the models
were run for each combination of settings. All models were
implemented in Python, and the source code is available at
<http://ccmlab.ca/prs>.

The Game Theory Model

This is the simplest model, and inspired by the pure game-
theory solution to PRS. This model chooses its actions
randomly, without regard to the actions of the opponent.

This is not expected to be a good match to the human
results, but is included so as to have a baseline for
comparison. It hasno parameters.

The ACT-R Model

This model is as previously described. It has a single
parameter (the level of noise), and the general
recommendation is to set this value to 0.25. This gives us a
prediction that the model should be optimal at or near that
setting.

We also examined a number of variations on the basic
ACT-R model. The original ACT-R PRS model was
created in ACT-R 4. An important aspect of this model was
that it used the architecture in a very direct way to detect
sequential dependencies. ACT-R 5 introduced a change in
the architecture such that implementing the version 4 model
in ACT-R 5 could not be achieved in a simple and direct
way. So we created a version 5 model that used the ACT-R
5 architecture in the most direct way. The difference
amounts to this: in version 4 only the chunk describing what
actually happened is strengthened, while in version 5 the
chunk describing what the model thought was going to
happen is also strengthened. This makes sense, as both of
these chunks play an important role and are focused on.

In both ACT-R 4 and 5, there is the option to enable
‘partial matching’, allowing for memory retrieval errors.
We varied this and found that it caused either no significant
effect or a deleterious effect. These results are not otherwise
reported.

We also tried making use of ACT-R’s ‘optimized
learning’ system. This approximation of the learning
system is used in ACT-R models to save computing time,
but, similar to Sims and Gray (2004), we found that it
significantly altered the results. Because there is no
theoretical story behind the optimized version we only
report on the results from the full, non-optimized version.

Associative Network

This model has been used previously to model PRS playing
(West & Lebiere, 2001). Here, a network is used whose
weights form a payoff matrix for performing a given action
given the previous moves by the opponent. The weights are
then modified based on whether or not this choice results in
a win. The rewards and punishments were set equal to the
game payoffs (i.e., +1 for winning and -1 for losing) so the
only free parameters are the number of rounds of history to
use (i.e. the 'lag' of the network, in the same sense as the
ACT-R model), and whether the system treats ties as neutral
(payoff = 0) or as losses (payoff = -1). West and Lebiere
(2001), using different experimental manipulations, found
that a lag 2 network that treated ties as losses most closely
modeled the human data.

Simple Recursive Neural Network

An SRNN is a variant of the standard neural network that is
specifically designed to predict the next element in a
sequence (Elman, 1990). It does this by adjusting its
connection weights via the back-propagation of error
learning algorithm (Rumelhart et al, 1986), and by having a
separate set of inputs that are set to the values of its own
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internal hidden nodes. This allows the network to learn its
own representation of past events, and thus to find patterns
that are not artificially limited to being of a certain length.
This is in contrast to the models seen thus far which are set
to be either lag 1 or lag 2.

The important parameters for an SRNN are the learning
rate and number of hidden nodes. We also varied the
number of times the network was trained on the previously
seen data. This allowed the network to adjust more quickly
to short-term patterns. Payoffs were set in the same way as
the associative network.

Q-Learning
Here, we made use of the classic reinforcement-learning
algorithm as defined in (Watkins, 1989). This is an action-
selection algorithm that makes decisions based on a current
sensory state (in this case, the last 1 or 2 moves by the
opponent) and an experientially learned estimation of the
long-term rewards (as measured by wins and losses) for
overall strategies. Importantly, it is capable of learning
strategies that involve short-term loss for long-term wins.
However, it has three parameters (the learning rate, the
future-discount rate, and the exploration rate), and these do
not have suggested values. Furthermore, we had the option
of treating ties in the game as either losses or neutral (as in
the SRNN and associative networks), and we could set it to
be either lag 1 or lag 2. This resulted in a large number of
possible parameter settings.

Modeling Results

To establish that a given model matches with the known
human data, we performed equivalence testing. This is
similar to a standard t-test, but the null hypothesis is that the
two means are different, rather than being equal. In the
results that follow, the p-values indicate the probability that
the model data and the human data have means that differ
by more than 2.5%.

For each model, we measured the average win and loss
rates when that model played against the ACT-R lag 1
model with the 9 different levels of noise studied in the
human data. This gave us 18 p-values per model. We
combined the p-values using Fisher’s rule, resulting in a
single p-value indicating the probability that the model and
the humans had different mean scores. This means that a p-
value of less than 0.05 indicates 95% certainty that the
model is within 2.5% of the human data.

In total, we investigated 223 separate parameter settings.

The Game Theory Model

Since it is well known that humans are generally bad at
performing randomly (e.g. Neuringer, 1986), it was
expected that this model would act as a benchmark for
comparison. As expected, the match was not significant
(p>0.05).

Q-Learning

No matter what combinations of parameter settings were
tried, we were unable to find a Q-Learning model that
matched the human data, according to our criteria. All p-

values were above 0.05. However, the best version of the
model came close to significance. It was a Lag-2, treating
ties like losses, with learning rate of 0.5, exploration of 0.1,
and future discount rate of 0.95, which achieved a p-value
of 0.052. Most settings were significantly worse.

Associative Network

This model was also unable to match the human data at the
0.05 significance level. Its best result was also with a Lag
of 2, and treating ties as losses (the same result as found in
West & Lebiere, 2001).

Simple Recursive Neural Network

For the SRNNs, we found one model that matched the
human data, according to our criteria. With 3 hidden nodes,
a learning rate of 0.1, and repeating the training 100 times,
the model achieved a p-value of 0.02. This gives us a 98%
certainty that the model plays within 2.5% of the human
performance. However, since there were 50 SRNN models
investigated, the fact that one was found to match with 98%
confidence would be expected, even if none of the models
matched. This means that we should be wary of accepting
the SRNN as a model of human performance on this task.

ACT-R

Almost half of the ACT-R models investigated were found
to be good matches (p < 0.05) to the human data. This is a
remarkable result, indicating that we can model the human
data accurately without parameter tweaking. However, the
best matches were in the range of 0.25-0.28. This compares
favorably to the recommended noise setting of 0.25.

Table 1: The Top 10 ACT-R Models

p-value  Noise Lag  Version
<0.01 028 2 5
<0.01 0.25 2 5
<0.05 028 2 4
<0.05 0.28 1 4
<0.05 0.5 2 4
<0.05 0.3 2 5
<0.05 0.3 2 4
<0.05 0.25 1 4
<0.05 0.5 1 5
<0.05 0.7 1 4
The SR Effects

All of these results were based on an overall fitting of the
model data to the human data. As discussed earlier, in the
human versus ACT-R data there were two SR effects. As
noise was added, the first effect was a relatively large effect
benefiting the ACT-R player. The second effect was a
relatively small effect benefiting the human player.
Disappointingly, none of the models we tested produced the
second effect.

To determine if this effect could be produced with highly
specific parameter settings, we ran a (1,5)-Evolutionary
Strategy (a relative of a standard Genetic Algorithm, but
more suited for parameter optimization) on all the models to
try to get this effect. However, this failed to get the effect in
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any of the models, indicating that none of the models is
ultimately correct. All of the models became swamped by
the noise in the output of the lag 1 ACT-R model and went
to chance rates around the point where the human SR effect
occurred.

Discussion

In this study we tested four different classes of cognitive
models. Qualitatively, all of them (with the right parameter
settings) were able to match the human win rate for the first
SR effect to some degree. That is, it was possible to produce
a model that initially could beat the lag 1 ACT-R model, but
lost this ability as noise was added. One way to interpret this
is that the model is able to predict the opponent (the ACT-R
lag 1) and so wins above chance; however, the opponent
cannot predict the model's moves and so wins at chance.
Because one wins above chance and the other at chance, ties
occur at a level below chance. As noise is added to the
opponent it becomes more difficult for the model to predict
it and its win rate and the tie rate converge towards chance.
In this situation, everything moves towards chance as noise
is added. This is a standard randomness effect as opposed to
an SR effect. However, this is not what happened for the
ACT-R lag 1 model that the human subjects played against.
The human win rate went down, but the model’s win rate
(the human loss rate) increased away from chance,
producing an SR effect (see Figure 2).

The mechanism for this first SR effect may reside in the
fact that the interaction between two players using the
sequential dependencies strategy causes the players to
generate short lived sequential dependencies (West &
Lebiere, 2001). If the opponent can detect one of these, it
can be exploited, but after it disappears the opponent needs
to let it go and find the next one. Thus unlearning is as
important as learning. Under these conditions, during the
unlearning stage it can actually be an advantage not to select
the most active chunk, because it now represents a wrong
prediction. Of course it is also a disadvantage not to select
the most active chunk once a sequential dependency has
been learned and is still valid. However, if learning is more
transitory than unlearning, the overall effect would be to
increase the win rate.

Another possibility is that the dynamic interaction that
creates the sequential dependencies is affected. It is
important to realize that the sequential dependencies are not
generated by the individual players but through the
interaction between them. Thus it is possible for changes in
the behaviour of one player to affect the sequential
dependencies outputted by the other player. In most cases
adding noise would increase the chance of choosing the next
most active chunk. It is theoretically possible that this could
affect the interaction such that the opponent would output
stronger sequential dependencies and thus be easier to
predict. The dynamic interaction between the players forms
a complex coupled system that is not easily unpacked.

With this in mind, Figure 3 shows the results for the best
performing ACT-R model (version 5, lag 2, noise = .28). It
models the human win rate well, but the loss rate is much
flatter than the human loss rate. However, the small initial

rise away from chance in the loss rate is significant
(p<0.001), so the model did succeed in replicating the
effect, although it produced only a muted version of it. The
problem seems to be that the randomness effect was too
large and the SR effect was too small. Interestingly the best
performing models for the Associative Networks and Q-
Learning (not shown) also produced a muted version of the
first SR effect.
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Figure 3: Performance of the best ACT-R model (lag 2,
noise 0.28, version 5) playing against the same opponent the
human subjects played against.

Overall, when the models were examined across the entire
data set, only ACT-R and SRNN were able to outperform
the random game theory model in terms of matching the
human data. However, SRNN could do this only for a very
limited set of parameter settings that did not have a
theoretical justification, and also failed to reproduce the first
SR effect. Thus it is questionable whether the SRNN model
should be regarded as better than the Associative Network
and Q-Learning models. In contrast, ACT-R was able to
outperform the random model over a wide range of
parameter settings, worked best for parameter settings at or
near the value found to work in most ACT-R models, and
produced the first SR effect.

The fact that the ACT-R model performed well in this
study, and also in other studies using different games
(Lebiere, Wallach, & West 2000; Lebiere, Gray, Salvucci,
& West, 2003), indicates that it is accurately capturing a
significant portion of the cognitive functions involved in
human game playing. However, the ACT-R model we used
was falsified, along with all the other models, because it
could not produce the second SR effect. This is part of the
normal process of developing and refining models. Some
(e.g., Roberts & Pashler, 2000) have suggested that
cognitive models are not falsifiable and therefore not
scientific. Our results show that this is not the case, as the
current version of the ACT-R model has clearly been
falsified. However, we hope that with further study we will
be able to develop an ACT-R model that will produce both
SR effects and thus shed more light on the phenomenon.

The second SR effect requires an explanation. It was
interesting that the second effect occurred as the first effect
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was ending. We speculate that this marked a transition from
the first SR effect to a normal randomness effect in the
ACT-R model. One possibility is that at this point the
increasing randomness component in the signal from the
ACT-R model caused the human subjects to be less ‘locked
in’” when they detected a sequential dependency. We have
some simulation results indicating that this can produce an
advantage. Another possibility, as with the first SR effect, is
that the dynamic interaction that created the sequential
dependencies was affected, causing the ACT-R model to
output stronger sequential dependencies. Further analysis
(beyond the scope of this paper) is required to understand
the mechanisms for both the first and second SR effects.

Another interesting question is the extent to which SR
effects can occur in ACT-R models. The ACT-R lag 1
model produced a large SR effect when interacting with the
human players, but only a muted effect when playing
against the ACT-R lag 2. This raises the question of whether
a large effect is possible using ACT-R to model both
players. Figure 4 shows a lag 2 ACT-R model set at
different noise levels playing against a lag 1 ACT-R model
fixed at a somewhat low noise level (noise = 0.10). This
result demonstrates that large SR effects are possible using
just ACT-R players (this is also demonstrated in Lebiere
and West. 1999).
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Figure 4: Performance of an ACT-R lag 2 model against
the same opponent the humans played against. Unlike the
other graphs, here we vary the amount of noise in the lag 2

model, not in the opponent.

Conclusions

As far as we can ascertain, this is the first conclusive
demonstration that adding noise can produce an SR-like
effect in the human cognitive system. Although we could
not model both SR effects found in the human data, three
out of the five cognitive models we tested did produce the
first SR effect. This indicates that SR effects are a property
of current models of cognition. This means that adding
noise to a cognitive system should not automatically be
assumed to increase the randomness of that system’s
behaviour. This is particularly true for systems involved in
dynamic interactions with competition and feedback.
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