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Abstract

We describe a system, G2A, that produces ACT-R models from GOMS models. The GOMS models can contain

hierarchical methods, visual and memory stores, and control constructs. G2A allows ACT-R models to be built much

more quickly, in hours rather than weeks. Because GOMS is a more abstract formalism than ACT-R, most GOMS

operators can be plausibly translated in different ways into ACT-R productions (e.g., a GOMS Look-for operator

can be carried out by different visual search strategies in ACT-R). Given a GOMS model, G2A generates and evaluates

alternative ACT-R models by systematically varying the mapping of GOMS operators to ACT-R productions. In

experiments with a text editing task, G2A produces ACT-R models whose predictions are within 5% of GOMS model

predictions. In the same domain, G2A also generates ACT-R models that give better predictions than GOMS, provid-

ing good predictions of overall task duration for actual users (within 2%), though the models are less accurate at a

detailed level. In a separate experiment with a mouse-driven telephone dialing task, G2A produces models that do a

better job of distinguishing between competing interfaces than a Fitts� law model or an ACT-R model built by hand.

G2A starts to describe the relationship between two major theories of cognition. This may have appeared a simple rela-

tionship, but the complexity of the translation illustrates why this was not done before. G2A shows a way forward for

cognitive models, that of higher level languages that compile into more detailed specifications.
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1. Introduction

The automatic generation of cognitive models

from high-level specifications has been of continu-

ing interest in cognitive modeling for human-
computer interaction. Cognitive models such as

ACT-R (Anderson&Lebiere, 1998) can give impor-

tant insights into user behavior, but building de-

tailed models is usually demanding of time and

modeling expertise. If cognitivemodeling in support

of user interface development or analysis could be

made a routine, low-cost activity, this would

provide a powerful tool to improve user interface
designs.

Unfortunately, many of the cognitive architec-

tures in use today are hard to learn, difficult to

program, and a challenge to debug – even as mod-

els increase in complexity (Pew & Mavor, 1998).

Ritter et al. (2003) note that usability is one of

the difficulties that preclude wider use of cognitive

models. In order for cognitive architectures to be
truly useful, they must become easy to use by a

population with a range of backgrounds, including

user interface developers.

Recently, significant progress has been made to-

ward making models easier to apply to design

problems. Our work is inspired by research on

high-level cognitive modeling languages, such as

ACT-Simple and its conceptual relatives (e.g.,
Freed, Matessa, Remington, & Vera, 2003; Lewis,

Vera, & Howes, 2004; John, Vera, Matessa, Freed,

& Remington, 2002; Jones & Wray, 2004; Yost,

1993).

Salvucci and Lee (2003) developed the ACT-

Simple system, which automatically generates

ACT-R models from a language similar to

KLM-GOMS (Card, Moran, & Newell, 1983).
John, Prevas, Salvucci, and Koedinger (2004) de-

scribed techniques for automatically building

ACT-R models (via KLM and ACT-Simple) from

actions demonstrated by interface designers. In the

domain of interaction modeling for cellular

telephones, St. Amant, Horton, & Ritter (2004)

developed automated techniques for generating

partial ACT-R models based on the specification
of a keypad and menu hierarchy.

ACT-Simple demonstrates the feasibility of

automatically translating a high-level specification
language into detailed ACT-R models – an excit-

ing and significant achievement. ACT-Simple can

be viewed as a high-level programming language

for cognitive modeling. It is deliberately simple
in order to encourage wide adoption by interface

developers, but at the cost of producing a very

restricted set of ACT-R models.

The ACT-Simple translation process and its re-

sults have strong limitations. Each operator in the

source model is transformed into one or two ACT-

R productions in a static translation process.

These productions are chained together in a
mostly linear fashion. The productions make al-

most no use of the environment (e.g., all visual

processing is represented as shifts in attention be-

tween two fixed locations). Essentially, the gener-

ated ACT-R models have relatively little that is

‘‘cognitive’’ about them: there is no input of infor-

mation from the environment; there are no mem-

ory retrievals for information processing; there
little or no decision-making. This is not to slight

ACT-Simple – these are mainly constraints dic-

tated by KLM-GOMS, which is intended to pro-

vide a simple, largely external description of

expert performance.

We have built a system, G2A, 4 that translates

models from GOMSL (Kieras, 1999), an abstract

but rich modeling language within the GOMS fam-
ily, into models in ACT-R. For a brief contrast

with KLM-GOMS, GOMSL allows representation

of mental objects, working memory storage, prim-

itive internal and external operators, composite

methods, and various flow-of-control constructs.

G2A supports all of these capabilities in its transla-

tion process. Our goal is to allow the expression of

models as simple as KLM-GOMS models, but to
let modelers add more complexity as needed.

This article has four main parts. In Section 2, we

discuss related literature in GOMS and cognitive

modeling in HCI, focusing on the potential benefits

that improved modeling techniques can bring to

user interface development. In Section 3we describe

the G2A system and how it converts GOMSLmod-

els intoACT-Rmodels. Our evaluation ofG2A is in
two parts. The first part, in Section 4, is a proof of

http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/code/parsing/lalr/lalr.cl
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concept that compares model performance between

GOMSL and G2A models. The most complex

model given in Kieras� (1999) GOMSLmanual rep-

resents a text-editing task. It takes up about four
pages – 190 lines of code containing 15 mental

object definitions, 11methods, and two sets of selec-

tion rules. We compare the predictions of this

GOMSL model and its G2A translation against

each other and against user performance from a

small empirical study. The second part of the eval-

uation, in Section 5, applies G2A to a different task

domain, telephone dialing. We compare G2A
model predictions with those of a Fitts� law model

and an ACT-R model generated by hand. In both

parts of our evaluation, G2A performs well, sup-

porting our claims for the value of automated or

partially automated modeling techniques.
5 We thanks Randy Jones, Bob Wray, and Jacob Crossman

for useful discussions in this area.
2. Motivation

It has been argued that detailed task analysis

and cognitive modeling techniques require too

much effort to be practical in developing user

interfaces. The problem has been the difficulty in

creating models, not in their use or applicability.

The techniques have made clear contributions to

HCI, producing both theories of how interaction
can be improved (Byrne & Gray, 2003) and practi-

cal suggestions (Gray, John, & Atwood, 1993).

Further, the work cited in the introduction, espe-

cially the efforts of John et al. (2004) to allow

designers to build models without modeling

knowledge, points toward solutions that make

model construction a natural, unobtrusive part

of the design process.
Scientific and engineering reasons both encour-

age this work. The engineering reasons suggest

that the use of a higher-level language would be

helpful when creating cognitive models of users.

The scientific reasons suggest that higher-level lan-

guages can help explore the relationships between

theories. We take these two types up in turn.

The engineering reasons to use a higher-level
language are based on making model building eas-

ier in several ways. Large models will use the same

constructs in many places (e.g., objects and their

relationships). A compiler can create these con-
structs in a uniform way, and when changes to

the model occur, the compiler can ensure that

the code remains consistent. Model compilers

can help produce models that do not violate expec-
tations about how the architecture will be pro-

grammed, both explicitly by checking for

violations as well as implicitly by only providing

constructs that are appropriate.

Most modeling communities have not seen re-

use as it was originally envisioned by Newell

(1990), but most modeling communities have used

what can now be seen as relatively low-level com-
ponents. A compiler should also support reusable

components because the components are defined

more regularly, and at a higher level.

Finally, higher-level languages offer the ability

to create models more quickly, which has been

noted as a problem by several authors (e.g., Pew

& Mavor, 1998). GOMS, for example, can be per-

haps taught in one to ten hours, and has a 100
page manual. ACT-R, on the other hand, has an

introductory course for graduate students (the

ACT-R Summer School) that relies on a tutorial

manual half again as large and forty hours of

instruction. ACT-R would be useful if more mod-

els could be created using GOMS or a GOMS-like

language because models could be created more

easily, at least initial versions. Indeed, Brooks
(1975) notes that the number of lines of code per

programmer per day does not seem to vary across

languages, so why not use a high level cognitive

modeling language? 5

The scientific reasons for a higher level language

include making the relationships between major

theories more explicit. Previously, ACT-R and

GOMS were seen as related in a straightforward
way, with GOMS being a higher level of represen-

tation that could be related directly and simply to

ACT-R. The translation presented here suggests

that this view is true but too simplistic.

The use of a GOMS-to-ACT-R compiler will al-

low concepts from ACT-R to be included in

GOMS models. ACT-R models incorporate learn-

ing; they include more accurate perceptual and
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motor components; they produce response times

with variance; they incorporate memory effects,

including priming and errors; they support a wider

range of applications such as agents in simula-
tions. With expanded use and a way to automati-

cally translate GOMS concepts into ACT-R

concepts, it may be possible to unify these two the-

ories as different levels of human behavior.
Fig. 1. GOMSL object and top-level method as examples.
3. GOMSL translation

GOMSL syntax is comparable to that of a pro-

cedural programming language Fig. 1 provides an

example. G2A begins by parsing a GOMSL model

into an intermediate representation 6 using a sim-

ple tokenizer and a grammar that we developed,

shown in Fig. 2. In this grammar, symbols in

SMALL CAPITALSMALL CAPITAL letters represent literals, and the

remainder represent variables.
The result of the parsing process is a hierarchical

representation of a GOMSL model. The top-level

object in this hierarchy is a model that contains a

starting goal, a set of methods, a set of selection

rules, and a set of data objects. Methods and selec-

tion rules break down into steps, each of which

breaksdown further intooperators.Wediscuss each

of these types of objects in the subsections below.

3.1. Methods and flow of control

The most convenient place to start in describing

the translation between GOMSL and ACT-R is

with top-level flow of control. 7 AGOMSLmethod

is a sequence of steps, where each step can contain

one or more operators. For example, in Fig. 1 the
first step in the method Edit Document is the

Store operator. The translation process follows
6 For this we adapted an off-the-shelf LALR parser, written

by Mark Johnson, from the online AI Repository at CMU:

http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/

lisp/code/parsing/lalr/lalr.cl.
7 The models produced by G2A include a small number of

ACT-R 4 constructs (Anderson & Lebiere, 1998) that are

deprecated in ACT-R 5; we are working to make the system

ACT-R 5/6 compliant (Anderson et al., 2004).
the hierarchical model representation: GOMSL

methods expand to steps that expand to operators

that are translated into ACT-R productions. A

method thus translates into a sequence of produc-

tions (with a fewcomplications, as describedbelow).

Every production generated by the translation

process begins, like all ACT-R productions, by

retrieving a Goal chunk. The most important pat-
tern associated with this retrieval is the %state

slot. (The names of slots that are manipulated by

the translation process are prefixed by ‘‘%’’ to

avoid possible conflicts with names that a modeler

might use.) This is the same scheme used in ACT-

Simple in its representation of control: every pro-

duction contains a condition test of the %state

slot of a Goal chunk and an action to update that
slot. By manipulating the pattern associated with

the %state slots of a set of productions, a sequen-

tial ordering can easily be imposed on the set. The

productions in Fig. 3 show the basic mechanism.

Step execution, however, is not always sequen-

tial within a method. Decide statements support

branching within a method based on predicate

tests, comparable to if statements in a standard
programming language. If the predicate in a De-

cide statement succeeds, its sequence of opera-

tors is executed in normal fashion. If the

predicate fails, then execution falls through to

the next step in the method. For a Decide state-

http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/code/parsing/lalr/lalr.cl
http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/code/parsing/lalr/lalr.cl
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ment the translation process generates auxiliary

productions that test for predicate failure. The

%state values in the conditions of these produc-
tions are set, in a postprocessing phase, to fall

through to the %state value associated with the

first production for the next step.
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Goto statements are another type of control

structure in GOMSL, allowing arbitrary transfer

of control to labeled steps. Their translation is a

variation on the above process. When a Goto

statement is encountered, the translation process

searches for a step whose label matches the target

of the Goto statement, and the first production for

this step is used to set the %state slot in the con-
ditions of the Goto production.

Each GOMSL method satisfies a goal; instead

of calling operators, a method can ‘‘invoke’’ an-

other method by an Accomplish-goal (AG)

statement. This flow of control translates to an

ACT-R production that creates a subgoal to be

pushed on the goal stack. When a method com-

pletes, it ends with a Return-with-goal-ac-

complished (RGA) statement; this becomes a

pop action in ACT-R. Selection rules, which gov-

ern the choice of methods when more than one

can accomplish a given goal, are translated simi-

larly to Decide statements.

3.2. Objects and working memory

GOMSL supports declarative object representa-

tions, including objects in long termmemory (LTM-

items), objects available through visual processing

(Visual-items), and task descriptions (Task-
items). Each object is a named collection of prop-

erty-value pairs. GOMSL objects are translated di-

rectly into ACT-R chunks. Each generated chunk is

given a unique identifier for reference.
Objects in GOMSL can be brought into working

memory in the form of named tags, such as <cur-

rent_task_name> in Fig. 1. Properties of an ob-

ject stored in a tag are also immediately available

for processing. G2A captures this functionality

via a slot in the Goal chunk for each tag in a

GOMSL program. Changes to the contents of a

tag by a GOMSL operator translate to updates of
the corresponding slot in a Goal chunk.

For convenience, GOMSL allows method argu-

ments to be defined. For example, a method might

be defined as follows:

Method_for_goal:Issue Command using

<command_name>

with the method being activated by a statement in

another method:
Step 2.Accomplish_goal:Issue Com-

mand using Cut.

In other words, when the method for issuing a

command is executed, it should use ‘‘Cut’’ as the

name of the command. The argument <com-

mand_name> here is a pseudo-parameter, rather

than a true parameter in a programming language

sense, because the GOMSL architecture supports
only a single working memory system (as might

be expected in a system that strives for cognitive

plausibility). Instead, named tags are global in

scope. Method calls that involve arguments must

first place all the relevant values into slots associ-

ated with the current Goal object, for retrieval

by the productions of the method. This means that

when a production creates a subgoal, it copies tag
values from the current goal to the subgoal before

pushing it on the stack.

3.3. Operators

GOMSL defines a number of primitive opera-

tors that carry the basic load of modeling perform-

ance. In addition to the control-flow forms shown
in Fig. 2, G2A includes the following actions Key-

stroke, Type-in, Click, Double-click,

Hold-down, Release, Point-to, Home-to,

Speak, Look-for-object-whose, Get-
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task-item-whose, Store, Delete, Recall-

LTM-item-whose, Verify, and Think-of,

encompassing all GOMSL operators except for

Wait-for-object-whose and Wait-for-

auditory-object-whose, which we consider

minor gaps in coverage from an HCI perspective.

(Work addressing these gaps is in progress.)

G2A contains two classes of translations to gen-

erate ACT-R productions. A G-type translation

for a given GOMSL operator creates an equivalent

ACT-R production whose duration is fixed to a

value specified by GOMSL, as shown in Table 1.
There will usually be only one G translation for

any GOMSL operator, and it will result in a rule

that has its performance set explicitly.

A-type translations generate productions that

follow conventional ACT-R idioms, with dura-

tions determined by the ACT-R architecture.

There may be several different A translations for

a single GOMSL operator if different idioms are
appropriate.

The A-type translations in G2A are defined as

follows.

� Home-to takes an argument (mouse or key-

board). Both actions have a direct translation

to individual ACT-R productions.
Table 1

Translated GOMSL operator durations, in seconds

GOMSL operator Duration

Keystroke 0.280

Type-in N keys * 0.050

Click 0.200

Double-click 0.400

Hold-down 0.100

Release 0.100

Point-to 1.100

Home-to 0.400

Look-for-object-whose 1.200

Get-task-item-whose 1.200

Recall-LTM-item-whose 1.200

Store 0.0 or 0.050

Delete 0.0 or 0.050

Verify 1.200

Speak N syllables * 0.150

AG 0.050

RGA 0.050

Times are taken from (Kieras, 1999).
� Keystroke takes a key as input and translates

to two productions. The first moves the right

hand to the keyboard and the second causes

the key to be pressed.

� Type-in takes character string as input. It
translates to a sequence of Keystroke opera-

tors, one for each character.

� Click translates to two productions, the first

for hand movement to the mouse, the second

for clicking the mouse.

� Double-click is like click, except it has two

click productions.

� Double-click/A, Hold-down/A, and
Release/A are translated into ACT-R

Mouse-click actions. ACT-R lacks a direct

implementation of these as single actions, which

has some implications for low-level user mode-

ling, as described in Section 4.3.

� Point-to takes a target of either a literal sym-

bol, an object stored in a tag, or a literal or

object stored in the property of a tag. It expands
to a Hand-to-mouse production followed by

a Move-cursor production, imposing appro-

priate conditions on the manual state. The

G2A translation process generates a location

for the object or literal (if one was not pro-

vided), which is stored for later pointing actions

to the same target. This location is used in the

Move-cursor production. (Numerical screen
coordinates can be used if provided in the

GOMSL model, but this requires specialized

task-specific code.)

� Recall-LTM-item-whose and Get-task-

item-whose both take a list of predicates and

a store tag as arguments. They translate to a

production in which the identifier of a retrieved

object that meets the predicate tests is stored in
the given tag. Fig. 3 provides an example.

A predicate is a comparison between oper-

ands. Comparisons in G2A are limited to tests

of equality or non-equality of symbols. The

first operand to the comparison is a property

of the object to be retrieved. The second is

either a literal, a literal stored in a tag, or a

property associated with an object stored in
a tag. In the first two cases, the production

that is generated includes a pattern that

makes a direct comparison between the object
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property and the literal or tag. In the third

case, an additional buffer is added to the pro-

duction that allows the retrieval of the chunk

corresponding to the identifier stored in the
tag, and access to its properties. Predicates

are processed one at a time until the list of

predicates is exhausted. The last action carried

out by the production is to store the identifier

of the retrieved object in the tag slot (labeled

[current-task] in Fig. 3) of the current

Goal chunk.

� Look-for-object-whose/search. There
are three translations available for this opera-

tor. The modeler chooses depending on the sub-

ject�s expertise and the object location. The first

A-type translation for this operator, takes a list

of predicates and a store tag as arguments. The

translation generates productions that search

through the set of visual objects present until

the desired object is found. These productions
use the standard ACT-R idiom of find/

attend/harvest for visual acquisition. The

harvest production is augmented via the

same predicate processing as with Recall-

LTM-item-whose.

If the visual module could be guaranteed to find

an object that meets all of the predicate tests on

its first try, then the translation would be simi-
lar to Recall-LTM-item-whose. Lacking

this guarantee, however, productions must be

generated for each of the predicates that may

fail. These secondary productions cause the

find production to be fired again, to visit an-

other not-yet-attended visual location. When a

visual object is found that passes all the predi-

cate tests, its identifier is recorded in the tag slot
of the current Goal chunk.

� Look-for-object-whose/direct is an

alternative A-type translation. In many situa-

tions, exhaustive visual search is not carried

out because the user either knows the location

of a visual object already or because the pred-

icates rely on pop-out properties of the object.

For such situations the translation generates a
production that simply moves attention to a

specific visual location (randomly generated,

but recorded for later use, as with

Point-to).
� Look-for-object-whose/none is another

A-type translation, intended to handle situa-

tions where performance is so practiced that

shifts of visual attention are unnecessary. This

translation generates no production and takes
no time.

� Store generates a production that records a

given value (either a literal value, the contents

of a tag, or the property of the contents of a

tag) in a target tag, that is, in the appropriate

slot of a Goal chunk. There is one special case

for translation of Store (and Delete, below),

as dictated by GOMSL. When these operators
occur in the same step as other operators, their

action is merged with the other operators,

which means that they have no independent

duration.

� Delete generates a production that sets the

contents of a given tag to a null (Empty) value.

� Verify/last generates a production that

moves attention to the visual location that was
most recently visited by a

Look-for-object-whose or a Point-to

operator.

Verify/none generates no production, taking

no time.

� Speak generates a production to utter the

argument.

The translations given above have been tested

using 34 examples taken from the GOMSL man-

ual (mostly verbatim, though some correction of

minor syntax errors was necessary.) When the

examples were sufficiently detailed to be executed,

G2A generated executable ACT-R models using

either G- or A-translations.
4. Evaluation: G2A for user modeling

This first part of our evaluation constitutes a
proof of concept of G2A�s functionality. We show

that a model automatically generated by G2A cor-

responds well to an extended GOMSL model

describing a text-editing task, taken from the

GOMSL manual. This is not enough, however;

even if for a given task G2A can produce a model

at a more detailed level than an existing GOMSL
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model, we still want to establish some resulting

benefit of the additional effort. To demonstrate

this, we describe a search process that chooses be-

tween different translations for the same operators,
producing models with different characteristics. In

a small user study, G2A produces models that per-

form considerably better than the GOMSL model

in predicting user performance for the text editing

task with respect to reaction time.

4.1. Comparing GOMSL and ACT-R models

We can test the accuracy of the GOMSL to

ACT-R translation directly by choosing a

GOMSL model, translating it using G translations

for all its operators, and running a timing

comparison.

For our comparison we used the Edit Docu-

ment model from the GOMSL manual (Kieras,

1999). It includes four top-level methods describ-
ing activities in a mouse-based word processing

environment. Copy word involves selecting and

copying a single word and pasting it elsewhere in

the document. Copy arbitrary is a comparable

task for a sequence of words. Delete word in-

volves selecting a word and pressing the delete

key. Move arbitrary is similar to Copy arbi-

trary. All editing actions are through selections
from a pull-down menu. These lower-level activi-

ties are accomplished by the methods given in

the Method column of Table 2.
Table 2

Model predictions for the Edit Document task, in seconds

Method GOMSL (s) G2AG (s) Error (%)

Select-insertion-

point

3.60 4.14 15

Select-word 4.40 4.71 7

Erase-text 6.40 7.25 13

Select-arbitrary-

text

6.70 6.52 �3

Issue-command 9.05 8.55 �6

Paste-selection 12.80 12.84 0

Copy-selection 14.85 14.36 �3

Cut-selection 16.20 15.79 �3

Copy-text 28.85 28.55 �1

Move-text 30.80 29.98 �3

Edit-document 101.20 100.63 �1
To match this model, we set G2A to produce an

ACT-R model using only G-type translations. The

generated model, G2AG, contains five chunk defi-

nitions, 23 chunks, 79 productions, and various
auxiliary constructs, over 1,500 lines of formatted

model code in all, an expansion of 750%.

The GOMSL column in Table 2 shows the

durations per method as given by the GOMSL

model (Kieras & Meyer, 1997, p. 58), and the

G2AG column shows the corresponding values

for the generated ACT-R model. The ACT-R

numbers are averaged over 20 runs, to account
for variation due to random placement of objects

in the environment. The fourth column, labelled

Error, shows that the GOMSL and ACT-R model

predictions are very close, r = 0.999, with small

discrepancies due to parallel execution of visual

and motor actions in ACT-R, plus the automatic

addition to the ACT-R model of hand movements

between keyboard and mouse that are implicit in
the GOMSL model (specifically, in Select-

word and Select-insertion-point). On

average, the predictions of G2AG are within 6%

of the GOMSL method durations, and the overall

task duration prediction is within 1%.

The discrepancies between the two models are

largest in the Select-insertion-point and

Select-word methods. We attribute this to the
greater run-time robustness of GOMSL models.

In the GOMSL model, even if movements of the

hand between the keyboard and mouse to prepare

for key presses or mouse actions are not modeled

explicitly, the GOMSL model will still generate

appropriate predictions. This is the case in the

Edit Document task, which contains no Home-

to operators. In ACT-R, in contrast, if these
preparatory actions are not explicit in a model,

incorrect execution will result. G2A�s limited com-

pile-time processing means that the G translations

for keyboard and mouse actions may generate

superfluous hand-to-home and hand-to-

mouse productions, even if the hand is already

correctly placed.

Table 2 thus presents a straightforward but
non-trivial result: it shows that the hierarchical

relationships between GOMSL methods, flow of

control within the methods, and transfer of infor-

mation between methods are captured in the



8 The peaks in this distribution contain on the order of 100

models that differ from each other internally and yet produce

very similar overall predictions. This indicates the importance

of domain knowledge in automatically generated models, an

issue not addressed here.
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productions generated from the ACT-R model

created by G2A, even if production durations are

fixed.

4.2. Predicting user performance

An obvious next step, staying within the same

task domain, is to see how well these models pre-

dict actual user performance. If we time users car-

rying out the Edit Document task in a standard

word processing application, we find that it takes

only about 18 or 20 s, far less than the 100 s pre-
dicted by the GOMSL and G2AG models. We

can make educated guesses about why these mod-

els perform poorly, but if we believe that they nev-

ertheless correctly represent the basic structure of

the task, we can develop explanations for observed

behavior in a more systematic way with G2A.

The alternative ACT-R (type ‘‘A’’) translations

in the previous section can be thought of as ACT-
R idioms for representing particular activities,

which means that G2A faces the same issues as a

human cognitive modeler: how should one design

an accurate model? G2A can build models by

using the GOMSL model as a stand-in for domain

knowledge and user data, if available, to guide its

decisions. In other words, G2A can carry out a

model-fitting process, automatically evaluating
which assumptions must be changed to determine

which strategies are represented in a model.

To do this, G2A treats the alternative transla-

tions for GOMSL methods as a search space. By

varying the translations that are activated in gener-

ating ACT-R models, G2A explores this search

space, using hill-climbing to identify the best trans-

lation. In hill-climbing, an evaluation function f is
applied to a current state s. The function f is ap-

plied to each of the states neighboring s, and if

any of these successor states produces a better va-

lue, the best of them becomes the new current

state. The process repeats until no successor state

produces a better value than f(s).

A state for the G2A search is a set of transla-

tions, one for each method: Look-for-ob-

ject-whose/direct + Verify/last + Click/

G + � � �. Each translation set produces a unique

model. Successors to a translation set are those

that differ in the translation of one method. For
f, G2A executes the model corresponding to the

current translation set 20 times, collects predic-

tions of the total duration of the Edit Document

task, and computes the difference from a target
duration. (Notice that we cannot directly compare

method execution times, because method bounda-

ries are only implicit in user behavior – all we have

access to is external events.)

To test this idea in practice, we conducted a

small user study. We implemented a simple, instr-

umented text editing application comparable to

Microsoft Notepad, tailored to the Edit Docu-

ment tasks described in the GOMSL manual. A

pilot subject ran ten trials, following the same se-

quence of Copy word, Copy arbitrary, De-

lete word, and Move arbitrary tasks. We

then ran six users through the same procedure as

the pilot subject.

The mean duration of the pilot user�s trials was
16.30 s, which we used as a target for the G2A
search evaluation function. For the search process,

we used both A- and G-type translations, to iden-

tify possible areas where one type of translation is

superior to another (e.g., a given A-type transla-

tion of a mental operator might neglect cognitive

processing that is accounted for by a longer G-type

translation.) Fig. 4 shows the distribution of exe-

cution durations for a sampling of 1,000 different
models in the G2A search space (as a lower bound,

there are 17 operators with at least two transla-

tions, or 131,072 possibilities). The fastest model

completes in about 10 s, the slowest in about

105 s. 8

G2A evaluated only about 50 models in its hill-

climbing search. The model with predictions clos-

est to the pilot data, as determined by G2A�s eval-
uation function, shows no surprises: G2A1 relies on

A-type translations for all mental and visual activ-

ities; it perform no visual search, directing atten-

tion to known locations; it does no verification;

and it uses A-type translations for all motor ac-

tions except Hold-down, for which a G-type
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translation is used. When we compare G2A1�s pre-
dictions of total duration with the performance of

the six users in the study, we find that it also gives

good results. The grand mean duration over the six
users was 18.85 s, with a standard deviation of 1.82

over the six user means. G2A1�s prediction of

19.18 s gives an error of about 2%.

This is also a result worth noting: the ACT-R

model automatically produced by G2A�s optimiza-

tion process reflects decisions that a human mod-

eler might make to capture human performance

in this domain, and its prediction is much more
accurate (and obtained with little additional mode-

ling effort) than that of the original GOMSL

model. G2A1 has about the same predictive power

as comparable automatically generated ACT-R

models for different domains described in the liter-

ature (Salvucci & Lee, 2003; John et al., 2004).
User performance and model predictions for the Edit

Document task, separated by visible actions, in seconds

Action User G2A2 Error

Double-click 0.25 0.20 �20% (0.05 s)

Select Copy 1.48 1.40 �5% (0.08 s)

Set insertion 0.53 1.01 +91% (0.48 s)

Select Paste 1.28 1.18 �8% (0.10 s)

Select sentence 2.16 2.02 �6% (0.14 s)

Select Copy 1.81 1.16 �36% (0.65 s)

Set insertion 0.76 1.01 +33% (0.25 s)

Select Paste 1.62 1.18 �27% (0.44 s)

Double-click 1.35 1.74 +29% (0.39 s)

Press Delete 0.64 1.39 +117% (0.75 s)

Select sentence 2.92 2.00 �32% (0.92 s)

Select Cut 1.82 1.13 �38% (0.69 s)

Set insertion 0.74 0.96 +30% (0.22 s)

Select Paste 1.49 1.18 �21% (0.31 s)
4.3. Refining a model for more detail

G2A1 has obvious built-in limitations. In partic-

ular, the duration of its mouse movements and vis-

ual attention shifts are based on random locations,

rather than an actual environment, and thus its de-

tailed predictions of user actions are artificial and

unlikely to be veridical. Using the data from the

pilot subject, however, it is possible to carry out
a more detailed analysis refining G2A1.

We defined a new search evaluation function

that measures the intervals between keyboard/

mouse events (i.e., stripping out the cumulative

duration of each event), and computes the mean
squared error with the corresponding interval

durations for our pilot user. We also altered the

model generation process to use actual locations

of objects, as measured in our instrumented
application.

The best model produced by the search process

for this set of assumptions, G2A2, is almost identi-

cal to G2A1: it does no visual search and no verifi-

cation, and it relies on A translations for all mental

operators. It varies only in that Double-click is

implemented by a single action translation, rather

than a sequence of mouse clicks.
G2A2�s prediction of overall task duration is

about the same as that of G2A1, 19.03 s. The more

detailed predictions of G2A2 are shown in Table 3,

along with the mean intervals between mouse click

and keystroke events for the six users in the study.

Unfortunately these predictions of G2A2 are not as

good as we might have hoped for. The correlation

between user intervals and G2A2 predictions is
0.754, and the average error in the predictions is

35%. There are two values that are much larger

than the others in Table 3, for the first instance

of selecting the buffer insertion point and for press-

ing the Delete key. The Keypress translation

generates two productions, one that homes the

hand to the keyboard, and another that presses

Delete, based on the distance between the fifth fin-
ger in its home row position and the position of the
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target key. This overestimation is not surprising;

users only pressed a single key during their trials,

and this key is in the top right corner of the key-

board; their movement during this task subse-
quence was much more streamlined. Some details

are obviously not being captured by the model.

If a refined model were able to reduce the two larg-

est overestimates, this would bring the model�s
error down to 24% – still high, but more respectable.

There are two ways we might change G2A2 to

produce such an improvement. First, for consist-

ency with the GOMSL model, we specified user
tasks in the simulation interface to use the same

low-level mouse actions, in particular Double-

click, Hold-down, and Release, for which

our ACT-R translations are known to be inaccu-

rate (all are implemented as mouse-click ac-

tions). We expect that once the missing actions

are developed, validated, and added to the ACT-

R architecture, we will see better results. Second,
it is possible that the structure imposed on ACT-

R productions by GOMSL forms (e.g., GOMSL

methods entail some overhead due to AG and

RGA operators) degrades the accuracy of predic-

tions of a generated model, compared with the pre-

dictions of a ‘‘native’’ ACT-R model. Different

translations that combine or parallelize GOMSL

operators more effectively may help. Both of these
efforts remain for future research and

development.

Despite the limited predictive power of G2A2

at a detailed level, it constitutes another interest-

ing result. G2A2 was produced as a refinement of

G2A1, in a largely automated process that called

for only the small effort of supplying detailed

environment information. Otherwise the process
depended mainly on the GOMSL model for do-

main knowledge and pilot user data to guide

model construction. Existing work on model

translation has not tested model predictions at

the same level of detail as G2A2 (e.g., Salvucci

& Lee, 2003; John et al., 2004), and given this

lack of bench marks we find its performance sur-

prisingly good. The next step will be to apply the
techniques described in this article to other do-

mains to test the generality of the approach. We

discuss just such an exploration in the next

section.
5. Evaluation: Using G2A to compare interfaces

In this section, we describe the application of

G2A to a different task, dialing telephones on a

desktop computer platform. The goal of applying
modeling techniques to the dialing task is to com-

pare the relative efficiency of different telephone

layouts. We draw here on results from Freed

(2003). We focus on the portion of his work that

deals with the duration of the dialing task.

5.1. The experiment environment

The dialing task is simple: pressing a sequence

of ten digits with the mouse on an on-screen tele-

phone interface. Ten different interfaces were used

during the experiment, drawn from a collection of

100 telephone interfaces developed by students for

a user interface course. The ten interfaces were

chosen so that they would have a variety of button

sizes and shapes, colors, numbers of extra features
(in addition to the keypad), and levels of feedback.

A sample of the interfaces, on the same 50% scale,

is shown in Fig. 5.

Nine participants were recruited for the experi-

ment, between the ages of 21 and 45. The dialing

portion of the experiment took about thirty min-

utes for each subject. The experiment environment

consisted of a full-screen application shown on a
seventeen-inch monitor with 1024 · 768 pixels. A

trial began with a single button centered on the

neutral gray screen, labeled ‘‘Go’’. When the user
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pressed the button, a new telephone interface was

presented and the user dialed a number. User ac-

tions were timestamped and logged. Subjects were

asked to dial ten different numbers on each of the
ten phone interfaces, for a total of 100 numbers

dialed. Trials containing errors were removed from

the data during analysis.

The telephone numbers dialed during the exper-

iment are given in Table 4. We performed a statis-

tical analysis of distances between randomly

chosen keys and selected ten numbers that provide

a reasonable range and distribution of movement
distances.

5.2. A Fitts� law model

The simplest theoretical analysis for an inter-

face can be performed using Fitts� law (Fitts,

1954), which relates target size and distance to

movement time. As established in extensive empir-
ical research (MacKenzie, Sellen, & Buxton, 1991;

MacKenzie & Buxton, 1994; MacKenzie, 1995;

MacKenzie, 2003), Fitts� law governs mouse

movement time, relating it to the distance to the

target and the width of the target along the axis

of movement. We use a common formulation of

Fitts� law, MT ¼ aþ b � log2ð2 � D=W Þ, where a

is a reaction time constant, b is a movement time
multiplier, D is the distance to the target, W is

the width of the target along the axis of movement,

and MT is the total predicted movement time. In

our model, a = 0.100 s and b = 0.150 s. D and W

are determined empirically by measurement.

To apply the Fitts� law model to the dialing

task, we need to include the time to press the

mouse button, in addition to movement time. This
number varies across modeling paradigms, but we

adopt the value of 0.200 s, as used in the Key-

stroke Level Model (Card et al., 1983, p. 264),

CMN-GOMS (Card et al., 1983; John, 2003),

and GOMSL (Kieras & Meyer, 1997).
Table 4

Phone numbers dialed

Numbers dialed

814-866-5000 215-654-5785 123-654-7

740-611-9273 412-268-3000 101-010-1
5.3. A native ACT-R model

An ACT-R model developed by Freed (2003)

predicts not only dialing duration but also eye fix-

ations during dialing. The model incorporates rel-
atively detailed productions that control visual

search. For example, the model focuses on a key

(a digit in the number to dial), moves the mouse

pointer to click on it, and then performs an explicit

attention shift left, right, up or down, depending

on the digit to be dialed. The model contains seven

chunk types, 24 chunks, and 67 productions. For

the purposes of comparison, this model took
approximately three weeks to write and test.

The model is designed to use its visual and mo-

tor subsystems in parallel. While the motor com-

ponent of the model moves the mouse and clicks

on a button, the visual component searches the

interface for the next button to dial. Dialing is bro-

ken down into three components: the area code

(three digits), the exchange (three digits), and the
extension (four digits). The model starts by ran-

domly searching for the keypad, and then system-

atically searching within the keypad for each of the

buttons it needs to dial. The model never looks

ahead more than one digit at a time. While the

model searches for the last digit of the area code

on the telephone, it retrieves the exchange from

memory, and when it searches for the last compo-
nent of the exchange, it retrieves the extension.

5.4. A G2A model

To build a G2A model to perform the dialing

task, we began by developing a simple GOMSL

model, which took less than half an hour to write.

The bulk of the model is taken up by the task spec-
ification, the order in which the keys in a telephone

number are pressed. There are only two methods

in the model, as shown in Fig. 6. Dial Number re-

trieves the digits in the number to be dialed,
890 814-234-9657 814-863-5000

010 606-193-3012 103-273-1029



Fig. 6. Abbreviated GOMSL specification of the telephone

dialing task.
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iterating over them in the order the keys are
pressed. Dial Digit moves the mouse cursor to

a specific key and clicks the mouse.

Lacking pilot user results as in Section 4, we

treated the user duration for the first telephone

interface as the target for our G2A analysis. We

also gave G2A information concerning the loca-

tions and sizes of the keys in the interface. The best

model returned by G2A has a duration well above
9 s, much longer than the observed user value of

6.42 s as well as the duration of the Fitts� law
model, and about the same as the median duration

of the native model. The G2A model does no vis-

ual search, no verification, and in general is as fast

as possible using the operator translations de-

scribed in Section 3.3.

Although G2A in its current form cannot pro-
duce models that match user performance for the

target telephone interface, we have an interesting

recourse – we can extend G2A�s set of translations.
The first changes we made were straightforward.
The only motor operators in the model are Click

and Point-to. By default, mouse operators

generated by G2A include a Hand-to-mouse

production in order to avoid potential inconsisten-
cies during model execution. Because the dialing

interfaces in this experiment are completely

mouse-driven, however, no movements are needed

between the mouse and keyboard. We modified

the translations of these operators to remove hand

movement to the mouse and thus reduce execution

time.

The second set of changes was more involved,
drawing on basic techniques in compiler optimiza-

tion: loop unrolling and function inlining. Con-

sider a simple loop in a procedural programming

language, in which a variable j iterates from 1 to

n over the body of the loop. The variable j is tested

and updated n times, and control is transferred

from the end of the loop to its beginning n times.

This overhead can be reduced by unrolling the
loop. For example, if we include two copies of

the body inside the unrolled loop, incrementing j

appropriately between the copies, then we can

cut the overhead for testing and transferring con-

trol in half. If we include n copies of the body of

the unrolled loop, we can dispense with all over-

head aside from updating j, at the cost of requiring

more space for a larger program. We can apply
this technique to the translations in G2A. It is

not straightforward, because loops are only impli-

cit in GOMSL models, but we have developed a

loop-unrolling translation in G2A for specialized

iteration patterns in GOMSL models.

The other optimization technique we applied is

function inlining. In a procedural programming

language, the statements of a function are executed
in sequence. When function a calls function b, a

new context is created by pushing appropriate

information related to b onto the program stack.

When b returns, the stack is popped and a resumes

execution. Inlining a function removes this over-

head by directly including the statements of func-

tion b in the body of function a. Inlining a

function saves the cost of the function call and re-
turn. As with loop unrolling, function inlining

trades space for execution time. G2A�s translation
of AG and RGA operators follows essentially the

same function calling scheme as described above,
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and inlining GOMSL methods produces compara-

ble savings as a result.

Because our loop unrolling and function inlin-

ing translations are not yet completely general,
they are under the modeler�s control rather than

available to the automated search component. In

the case of the dialing task, however, there are only

two possibilities for their application. The loop in

Dial Number can be unrolled, and the method

Dial Digit can be inlined. When G2A performs

both optimizations, the resulting model gives a

duration of 8.02 s for the ‘‘pilot’’ telephone inter-
face with which we are working – still above user

performance of 6.42 s, but as fast as we can expect

to make an ACT-R model without tweaking its

internal parameters or applying a learning compi-

lation procedure, which are still exploratory.

5.5. Model performance

User performance and model predictions for

the experiment are shown in Fig. 7. The lines con-

necting the model predictions are not meaningful,

but are provided so that general patterns can be

seen more easily.

None of the models predict user dialing time

especially well. The Fitts� law model predictions,

however, track changes in dialing time across
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telephones; if we were to increase the constant

duration of a mouse click in the model to 0.365

s, the predictions would overlay the user data al-

most exactly. This suggests that physical motor ac-
tions dominate the telephone dialing task, which is

borne out by research that examines dialing tasks

on other platforms, such as mobile telephones

(Silfverberg, MacKenzie, & Korhonen, 2000).

Though it is less obvious by visual analysis, the

G2A model also tracks changes in dialing time

across telephones well, even if the magnitude of

differences in its predictions is much smaller.
Although the native ACT-R model is not as

good as the Fitts� law and G2A models, 9 it makes

important qualitative predictions that the others

do not. The native ACT-R model makes extreme

predictions for two telephone interfaces for a spe-

cific reason: the model is designed for a button lay-

out in which the top row contains the numbers 1

through 3, the next row 4 through 6, and so forth.
Interfaces #4 and #9 reverse this ordering of rows,

in the fashion of a calculator rather than a stand-

ard telephone. When the native ACT-R model

fails to find a specific button in the expected loca-

tion, its directed visual search degrades to a much

less efficient traversal of the display. Neither the

Fitts� law model nor the G2A model, both of

which ignore patterns in button layout, predicts
a higher dialing duration specifically due to the re-

versed layout, but the increase in dialing duration

in the user data for the two interfaces is partially

explained by the behavior of the native ACT-R

model, and it illustrates the problem solving

behavior such models can resort to with difficult

interfaces.

For a direct comparison between the models,
we have two plausible measures, as shown in

Table 5. Of the two, the rank-order correlation is
9 The poor performance of the native ACT-R model can

partly be explained by the difficulties of interacting with real

interfaces, rather than simulations or specifications as with the

other two models. The native model based its duration

computations on the observed size of the numbers to be

selected in the display, rather than more appropriately on the

size of the buttons that contained the numbers. Its predictions

are thus dominated by the distance between targets, neglecting

their sizes. As a result, our comparison focuses more closely on

differences between the G2A and Fitts� law models.



Table 5

Comparative model performance measures for the dialing task

Performance measure Fitts� law Native ACT-R G2A

Rank-order correlation

(Spearman�s q)
0.879 0.916 0.264

Correlation (Pearson�s r) 0.966 0.905 0.638
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the most important: it allows us to decide which

model gives the most accurate results in predicting

the efficiency of one telephone interface to another.

That is, the more accurately that a model can pre-

dict the relative efficiency of different interfaces,

the more effective it will be as an analysis tool

for choosing between them. For this measure, the

G2A model is superior to either of the others, with
a rank order correlation (q) of 0.916. The Fitts�
law model is close in this regard, with q = 0.879.

The least-squares correlations for both models

are also comparable, at r = 0.966 for the Fitts�
law model and r = 0.905 for the G2A model. 10

The native ACT-R model does not perform as

well.

A skeptical modeler might argue at this point
that what we have done in developing our G2A

model is to strip an ACT-R model down until it

is as close as possible to a Fitts� law model, but this

is not quite right: the G2A model actually pro-

duces better rank-order predictions than the Fitts�
law model, which we attribute to the greater detail

in which interleaved visual and motor operations

are represented. The G2A model has further
advantages, in that as an ACT-R model it can be

extended to explore cognitive issues at lower or

higher levels of detail, for example, whether its vis-

ual search strategy matches user behavior, or how

its processing can be integrated with other tasks or

influenced by behavioral moderators (Ritter, Rei-

fers, Klein, Quigley, & Schoelles, 2004). Integrat-

ing such factors into the modeling process
10 In abstract terms, the duration of the dialing task in a

Fitts� law model consists of a variable duration for each

movement plus a constant duration for each button press. A

GOMSL model breaks down similarly, with identical move-

ment durations but larger constant durations for memory

processing in addition to button presses. The GOMSL model

will thus perform the same as the Fitt�s law model with respect

to our two correlation measures.
without the support of a unified cognitive architec-

ture is problematic.
6. Conclusion

To summarize, G2A takes a GOMSL model as

input and generates an ACT-R model that reflects

the GOMSL model�s flow of control and informa-

tion processing, generating almost identical predic-

tions. G2A can generate alternative models

through an automated search process, which give
good predictions of user performance at a high le-

vel of abstraction and still reasonable predictions

at a more detailed level. We have tested the capa-

bilities of the system in two domains. The resulting

comparisons demonstrate the promise of the ap-

proach. The size and complexity G2A, while not

huge, helps explain why such a system has not

been developed before – one might have imagined
it as an afternoon of work, which it was not. We

expect that with further development and refine-

ment, by ourselves and others, G2A will benefit

the community of researchers interested in cogni-

tive modeling for HCI.

One open research area is related to bracketing

(Kieras & Meyer, 2000). In bracketing a fastest

possible model and a slowest reasonable model
(based on optional or inefficiently executed task

components as well as different human operator

speeds, which we have not explored here) are de-

rived from a base strategy; results can then help

a designer decide, for example, whether the per-

formance demands of a system are likely to sup-

port the wide range of human capabilities. G2A

could contribute to bracketing by generating dif-
ferent models given a base strategy represented

as a GOMSL model. If the fastest and slowest

models are within the search space of G2A�s trans-
lations – an important consideration, but a reason-

able expectation in some domains – then these

might be identified automatically. Work along

these lines could lead to useful extensions to

G2A, first in the form of translations of higher-le-
vel GOMSL methods rather than only primitive

operators, and second in the form of modifications

to internal ACT-R parameters as well as model

structure.
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A different benefit relates to model size and re-

use. The largest models that G2A generates for the

Edit Document task contain about 100 produc-

tions, and nothing prevents us from generating
much larger models for more complex tasks. It is

time-consuming and error-prone to generate mod-

els of this size by hand even if the modeled behav-

ior is completely understood. Adding methods to a

GOMSL model and examining their translation is

straightforward in G2A and easier, in our experi-

ence, than writing ACT-R productions directly.

G2A offers a possible solution for tasks too large
to be handled with conventional ACT-R develop-

ment tools.

Potential benefits of G2A will involve tradeoffs

that can only be determined by further research.

For example, it may be that increasing model

modularity, which makes larger models more fea-

sible, involves a reduction in accuracy. This is sug-

gested by our model refinement efforts, but it is not
clear that this is a necessary implication of G2A

processing. It may happen that abstract tuning of

models via high-level compiler-like directives does

not allow sufficient precision, but again this out-

come is untested. Still, we believe that G2A repre-

sents a promising approach. G2A advances the

state of the art in cognitive model generation and

points to several important areas for further re-
search in HCI.
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