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Abstract

Streaks of past outcomes, for example of gains or losses in the stock market, are one source of information for a

decision maker trying to predict the next outcome in the series. We examine how prediction biases based on streaks

change as a function of length of the current streak. Participants experienced a sequence of 150 flips of a simulated coin.

On the first of a streak of heads, participants showed positive recency, meaning that they predicted heads for the next

outcome with a greater-than-baseline probability. As streak length increased, positive recency first decreased but then

increased again, producing a quadratic trend. We explain these results in terms of outcome-prediction processes that are

sensitive to the historical frequency of streak lengths and that make heuristic assumptions about changes in bias of the

outcome-generating process (here, the coin). An ACT-R simulation captures the quadratic trend in positive recency, as

well as the baseline heads bias, in two experimental conditions with different coin biases. We discuss our memory-based

model in relation to a model from the domain of economics that posits explicit representation of an ‘‘urn’’ from which

events are sampled without replacement.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A streak of repeated outcomes can be an impor-
tant source of information for decision makers try-
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ing to predict the outcome of the next event. For

example, asked to predict whether the global aver-

age temperature will increase or decrease next
year, a decision maker who has access to historical

records may predict an increase simply on the ba-

sis of past trends. A bias of this form, in which a

streak of past outcomes is taken as evidence that

the next outcome (or measurement) will be in kind,

is often referred to as positive recency. In terms of
ed.
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the decision-maker�s causal reasoning, one could

imagine that a long streak of temperature increases

induces a belief that an underlying causal mecha-

nism is at work (warming due to greenhouse gases,
for example). This causal mechanism will then

govern changes in next year�s measurement as well

(modulo extraneous variance).

Of course, whether the decision maker makes

this or the opposite prediction will depend on pre-

cisely how he or she represents the mechanism pro-

ducing the streak. If the decision maker happens to

work for the current Bush administration, he or
she may well understand historical increases in

the global temperature in terms more similar to

the well-known gambler�s fallacy, in which a gam-

bler takes a streak of undesirable outcomes as evi-

dence that his or her luck will soon change. More

generally, a bias of this form, in which a streak of

outcomes is taken as evidence that the next out-

come will be opposite, is often referred to as nega-
tive recency. In the case of gambling, each gamble

is an independent event, so there is no causal

mechanism linking the outcomes (hence the fal-

lacy). However, there are situations in which neg-

ative recency is a rational bias, namely when

outcomes are sampled without replacement. For

example, rats and other foraging animals have a

bias against returning to the location where they
found food on a previous trial (Olton, 1978). The

underlying causal model is, presumably, that food

at a given location is depleted before it is replaced;

if this model is correct, then negative recency is

adaptive.

In this paper we examine how recency biases

change as a function of streak length. That is, we

are interested in how the length of a streak, up
to and including the most recent outcome, affects

the decision maker�s prediction concerning the

next outcome. An experimental paradigm appro-

priate for addressing such issues involves a two-

choice prediction task (similar studies complete

with simulations include, e.g., Lebiere, Gray, Salv-

ucci, & West, 2003; Lovett, 1998). In the standard

experiment with this kind of paradigm, the partic-
ipant is asked on each trial to predict the outcome

of an event such as a coin flip. The ‘‘coin’’ typically

has a bias toward one outcome or the other, of

which the participant is not informed. The ques-
tion of interest often has to do with probability

learning – how the participant�s bias to predict

one outcome or the other changes over time. The

usual finding is that participants ‘‘match’’ rather
than ‘‘maximize’’, meaning that over many trials

their bias tends to asymptote at the level of the

bias in the event generator; for example, if the

‘‘coin’’ is biased to produce 75% heads, then par-

ticipants will, by the end of a session, predict heads

on roughly 75% of trials. Under a maximizing

strategy, participants would come to predict heads

100% of the time, once they detected a bias, so a
matching strategy is too difficult to explain using

the simplest rules of rational choice.

Probability learning studies have thus shown

that people are to some extent sensitive to base

rates and changes in base rates, and adjust the

frequency of their predictions accordingly, if sub-

optimally. Base rates, though related to streaks,

are a distinct source of information, with different
dynamics that may make them more or less appro-

priate to a given decision-making scenario. Thus, a

probability learning experiment involving a biased

coin might track changes in the bias to predict

heads as experience with the biased coin grows.

We are interested in tracking changes in the bias

to predict heads as a streak of heads increases in

length, from one head (following a tail), to two
consecutive heads, and so on. Thus, in terms of

the gambler�s fallacy, we are interested in how

the strength of the gambler�s bias might change

as a function of number of losses. Similarly, in

terms of the hot-hand heuristic (Burns, 2004a), in

which streaks of successes serve as an adaptive

allocation cue, we are interested in how the

strength of the team�s bias to give the ball to one
shooter is affected by that shooter�s recent success
at scoring.

Apart from the empirical question of whether

decision makers respond to streaks, there is also

an important theoretical question relating streaks

to base rates. Both reflect any biases toward one

outcome or the other in the outcome-generating

process; the base rate of that outcome will be higher,
and streaks of that outcome will be longer and

more frequent. However, if the bias in the out-

come-generating process happens to change, as a

function of a shift in environmental characteristics,
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for example, the base rate will change only gradu-

ally in response. In contrast, the probability of a

streak of a given length will change much more

quickly. For example, a sudden increase in the
heads bias of a virtual coin can immediately pro-

duce a streak of heads that is much longer than

any that the decision maker experienced under

the old bias; the base rate, which represents the

overall historical frequency of heads, will change

much more slowly. Thus, streak statistics are the

more sensitive measure of change in the environ-

ment, and may play an important role in the deci-
sion making of adaptive organisms, particularly

when there is variability in the bias of the out-

come-generating process (Burns, 2004a).

In the next section, we describe an experiment

in which participants experienced a series of coin

flips and were asked after each flip to predict

whether or not the next outcome would be heads.

Dependent measures were (1) the overall frequency
of heads predictions, and (2) the frequency of

heads predictions conditional on length of heads

streak (the frequency of heads predictions after

one head, after two heads, and so on). We then

present a model that accounts for the resulting

patterns of conditional heads predictions in terms

of simple memory-based decision processes; the

model has available a strategy in which it asks
itself whether it has seen a streak of this length be-

fore, and bases its prediction based on what is re-

trieved from memory. The general discussion

relates our memory-based model to a formal mod-

el from the economics literature.
2. Experiment

In our experiment, each participant experienced

a series of 150 coin flips, and was asked after each

flip to predict the outcome of the next flip. Aiming

to both replicate and generalize our results, we

used two different ‘‘coins,’’ each with a different

bias towards coming up heads (60% or 75%). Par-

ticipants in both groups were told that there might
be a bug in the computer program generating the

coin flips, such that the outcome of one flip might

influence the outcome of the next; the nature of the

bug was not specified, but the goal was to invite
participants to view flips in causal terms, such that

some underlying mechanism might be responsible

for streaks of heads. Burns (2002) found this

instruction to be effective in manipulating partici-
pants� beliefs about the randomness of the out-

come-generating process. To draw their attention

to the bias in the coin, participants were asked

periodically to report a count of heads since their

last report.

We also collected a measure of working mem-

ory span, given that this appears to affect what

information people draw from sequences of events.
Empirically, people with shorter spans can be bet-

ter at detecting correlations between events (Kar-

eev, Lieberman, & Lev, 1997). One explanation

of this finding is that small samples are more likely

to be extreme, and therefore are more likely than

large samples to exceed a given detection threshold

(for a mathematical analysis, see Kareev, 2000).

For our purposes, the relevant implication is that
people with small memory spans may be more

likely to detect spurious correlations, so may be

more likely to make inferences about sequential

dependencies between events in our prediction task

and therefore predict, on the basis of such per-

ceived dependencies, that a given streak is likely

to continue. We return to this link between per-

ceived dependency and positive recency later, in
context of our memory model.
3. Method

3.1. Participants

73 students recruited from the Michigan State
University subject pool were randomly assigned

to one of two conditions; 37 were assigned to a

coin with a 75% heads bias, and 36 were assigned

to a coin with a 60% heads bias.

3.2. Materials and procedure

Participants performed the working-memory
task first, and then the two-choice prediction task.

Both tasks were administered on-line using PCs

programmed in JavaScript to control standalone

web pages.
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The working memory task, based on the oper-

ation span task of Kane et al. (2004), required

participants to remember words while verifying

the accuracy of arithmetic equations. To-be-re-
membered words were presented one at a time

for one second each. Each word was followed

by a question of the form, ‘‘Is (6 · 2) � 5 = 7?’’.

Participants mouse-clicked a ‘‘yes’’ button if the

equation was correct or a ‘‘no’’ button if it was

not. The equation always consisted of a parenthe-

sized multiplication as the first term, followed by

the addition or subtraction of a constant. Partic-
ipants were asked to respond accurately to the

equations as quickly as they could, but were not

given a time limit. Responding to the equation

triggered onset of the next word. Equations and

words alternated until participants were asked

to recall all words from the current sequence in

the correct order by typing them into a text

box. Sequences varied from two to six words
long, with two sequences of each length, but with

only one sequence of length two. Thus, the total

number of words was 38.

After performing the working memory task,

participants read on-line instructions describing

the two-choice prediction task:

In this experiment you will observe the result of
a series of penny tosses. Before each toss, you

will be asked to try to predict what you think

the result of each toss will be. You can take as

long as you like for this, but there is nothing

to be gained by waiting. The result of each toss

should be random, but the coin may be biased

towards heads or tails, and there may be a

bug in the program such that one flip may influ-
ence the result of the next flip. After selecting

‘‘heads’’ or ‘‘tails’’, you will see the result of

the coin toss. Every so often, we will ask you

some questions about the task, including how

many ‘‘heads’’ have been flipped since we last

asked. (You can�t keep a written record, so

you have to remember this.)

Participants then had an opportunity to ask

questions, after which they predicted the outcome

of a training flip. This and subsequent coin flips

unfolded as computer animations each taking
3 s. Predictions for the outcome of each flip were

made by clicking one of two buttons labeled

‘‘heads’’ and ‘‘tails’’.

Participants then observed 150 flips, without
knowing how many flips there would be. Every

30 flips they were interrupted and asked the fol-

lowing four questions:

1. How many times has the coin come up heads?

2. How well do you think you are doing at the task?

Responses were given using a scale from 1 (very

poorly) to 7 (very well).
3. How random do you think have been the flips pro-

duced by the program? Responses were given

using a scale from 1 (not at all random) to 7

(completely random).

4. If you have an idea about any error in how the

program generates flips, please write it below.

Responses were entered in a free-form text box.

The purpose of questions (3) and (4) was to fo-

cus participants on the possibility that some

underlying mechanism could be responsible for

producing streaks of heads.

3.3. Design and analyses

For the two-choice prediction task, participants
were assigned to one of two groups, which differed

in the heads bias of the coin (75% or 60%); the two

groups were analyzed separately. The first 50 trials

of each session were excluded from analysis, as is

standard in probability learning experiments

(e.g., Estes, 2002). Across remaining trials, we

measured the overall baseline prediction bias to-

wards heads, and, as described below, the condi-

tional prediction bias, or the bias to predict heads

as the next outcome conditional on the length of

the heads streak to that point. Conditional predic-

tion biases were submitted to analysis of variance

(ANOVA) with length of heads streak as the inde-

pendent variable. The length variable had levels 1

to 8 in the 75% condition and levels 1 to 5 in the

60% condition, reflecting the constraint that each
experimental session had to contain at least one in-

stance of a given length for that length to be in-

cluded as a level; the 75% condition produced

more long streaks, so more lengths were included.
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For the working-memory task, a recalled word

was scored as correct only if it was given in the

correct position in the sequence. To examine the

relation between working memory capacity and
performance in the two-choice prediction task

(conditional prediction biases, in particular), we

assigned each participant to one of three groups

according to their score on the working memory

task. Boundaries for low, medium, and high

capacity were determined from an independent

sample of 498 participants, recruited from the

same subject pool, to which the working memory
task had been administered (from unpublished

data set, Burns, 2004b). This large sample allowed

us to validate the working memory task, which

had similar reliability and correlations with intelli-

gence (based on ACT scores) as other measures of

verbal working memory (Kane et al., 2004). We

partitioned this sample into three equal-sized

groups, producing boundary scores (out of a pos-
sible high score of 38 words correct) of 21 and lower

for low capacity, 22–28 for medium capacity, and

29 and higher for high capacity. Applied to our 73

participants, this partition produced group sizes in

the 75% condition of 12 low, 9 medium, and 16

high capacity participants, and in the 60% condi-

tion of 9 low, 13 medium, and 14 high capacity

participants.
4. Results

Fig. 1 (filled bars) shows the baseline bias to

predict heads. The difference in baselines across
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Fig. 1. Baseline bias to predict heads for the 75% and 60% coin

bias conditions.
the two groups reflects the difference in bias of

the coin, with participants more likely to predict

heads when the heads bias was greater.

Figs. 2 and 3 (left panels) show conditional pre-
diction biases for 75% and 60% conditions, respec-

tively. The x-axis represent streak length: 1 means

one head after a tail, 2 means two consecutive

heads after a tail, etc. The y-axes represent condi-

tional prediction biases expressed in terms of devi-

ation from baseline bias. For example, a value of 2

for streak length 1 would indicate that the bias to

predict heads after a streak of one head was 2%
greater than the baseline bias to predict heads (in

that coin-bias condition). Positive values thus indi-

cate positive recency – a greater-than-baseline ten-

dency to predict that a streak will continue – and

negative values indicate negative recency.

For the 75% condition, the main effect of streak

length on conditional prediction bias was reliable,

F(7,238) = 3.4, p < 0.03, as was the quadratic
trend, t(238) = 2.4, p < 0.03. For the 60% condi-

tion, the main effect of streak length was not relia-

ble, p = 0.164, but the quadratic trend was,

t(140) = 2.6, p < 0.02.

With working memory capacity added as a fac-

tor to the ANOVAs, the interactions of capacity

and streak length were not reliable. Nonetheless,

Fig. 4 suggests that differences in working memory
capacity explain some of the variance in condi-

tional prediction bias in the 60% condition (no

clear patterns emerged in the 75% condition).

The left panels show conditional prediction biases

for low, medium, and high capacity groups, and

the indication is that participants with smaller

capacity have a greater tendency to exhibit positive

recency. We return to these effects later in discuss-
ing our model, where we present a theoretical rea-

son to believe that working memory capacity

should have reliable effects when tested with suffi-

cient statistical power.
5. A memory model

We explain the U-shaped pattern in Figs. 2 and 3

in terms of use of the historical frequency of streak

lengths as a heuristic. In particular, we assume that

if the decision maker is experiencing a streak, and
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can recall encountering a longer streak in the past,

he or she exhibits positive recency, on the assump-

tion that the past predicts the future. If, on the other

hand, the decision maker is unable to recall any
streak at all, he or she assumes that the current

streak reflects a change in the environment that

has made a streak of the current length more prob-

able – and again exhibits positive recency. This logic

is common in decision-making models predicated

on representativeness and related heuristics. In par-

ticular, Rabin (2002) argues that decision makers

‘‘overinference’’ based on streaks, meaning that a
streak that is unusually long in their experience

leads them to overestimate the bias toward that out-

come in the outcome-generating process, relative to

the estimate that would be produced by pure Baye-

sian updating (with its infinite historical window).

Viewing this overinferencing in adaptive terms, it

maymake sense in a changeable environment to fac-

tor a new experience into one�s beliefs about the
frequencies with which different outcomes are gen-

erated, and perhaps experiment with revised beliefs

in future decisions.

Our model is implemented in the ACT-R cogni-
tive theory (version 4.0, described in Anderson &

Lebiere, 1998), which incorporates in a variety of

ways the notion that the past predicts the future;

we exploited the declarative memory mechanism,

in which the activation and availability of memory

elements is linked to their statistical patterns of use

in a given task environment. The model fits are

shown in Figs. 1–3. The empirical data are noisy,
and replications currently under way will help to

smooth out the curves, but the figures show that

the model qualitatively captures the quadratic

trends.

Our model-fitting strategy was to fit the baseline

and conditional prediction biases from the 75%

condition (Fig. 1, left, and Fig. 2), then to vary

the smallest possible number of parameters (which
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turned out to be one) to fit the baseline prediction

bias from the 60% condition (Fig. 1, right).

Encouragingly, this one parameter change concur-

rently produced the fit to the conditional predic-

tion biases in the 60% condition (Fig. 3),

suggesting that the model is capturing basic

sources of variation in the human response to

the different conditions.
6. A process-level view

Here we describe the processes that execute on

individual trials, as the model observes an outcome
(heads or tails) and makes a prediction for the next

outcome, and link them to the U-shaped pattern in

conditional prediction bias. In a later subsection,

we examine the model�s predictions for the effects

of working memory capacity.

On most trials, the model stochastically selects

one of three processes to predict the next outcome.

Two of these processes are simple; one guesses
heads and one guesses tails (regardless of the cur-

rent outcome). Guess-heads is biased to be selected

more frequently than guess-tails, reflecting the bias

of the coin being flipped; the probability learning

that produces this bias is of secondary interest

here, and we currently do not attempt to model it.
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The third process, heuristic-predict, is more

complex, implementing the frequency-based heu-

ristics sketched above. If this process is selected

on a given trial, it spans the next several trials,
exiting when the current streak terminates; while

this process is active, guess-heads and guess-tails

are locked out. The intuition is that the model

can wave in and out of using frequency heuristics

to guide its decision making, but when it waves

in, it remains focused on that heuristic until the

current streak ends. While active, the frequency-

heuristic process is responsible for updating a
count of the current streak in the model�s mental

focus of attention, retrieving past streak lengths

from memory as guidance for predicting the next

outcome, and, when the streak is over, encoding

the length of the just-ended streak in episodic

memory. All such streak lengths are represented

as distinct items in ACT-R�s declarative memory.

On a given trial, having first updated its count
of the length of the current streak, the heuristic-

predict process then tries to retrieve a streak length

from memory; that is, it tries to retrieve any streak

length encoded by heuristic-predict in the past.

The retrieval is primed by the length of the current

streak; thus, if the model has tracked four heads in

a row, memories for streaks of length four will be

more active, other things being equal, than memo-
ries for streaks of other lengths. This associative

activation diminishes with integer distance from

the current count, with length-four memories

receiving more than length-three and length-five

memories, which in turn receive more than

length-two and length-six memories.

Three decision rules govern how the heuristic-

predict process maps the outcome of an attempted
memory retrieval to a prediction for the next coin

flip. Successful retrieval is not guaranteed, but if a

streak length is retrieved, the model compares the

length it represents to the length of the current

streak. If the retrieved length is longer than the

current length, the model takes this as reason to

expect the current streak to continue, so it predicts

a repeat of the current outcome. If the retrieved
length is the same as or shorter than the current

length, the model takes this as reason to expect

the current streak to end, so it predicts the oppo-

site of the current outcome. Finally, if retrieval
fails altogether, the model takes this as evidence

that the current streak is unusually long, and again

predicts a repeat of the current outcome. Recap-

ping the logic, the notion is that it may make sense,
in a changeable environment, for the decision ma-

ker to be open to the possibility that the rate at

which an outcome is generated has changed. Here,

although there is no explicit revision of beliefs

about the environment, there is a decision rule that

interprets a retrieval failure as evidence of a novel

circumstance.

Each of the three prediction processes – guess-
heads, guess-tails, and heuristic-predict – is associ-

ated with a probability of being selected on a given

trial (when heuristic-predict is not already active).

These three parameters were among those adjusted

to fit the 75% data. Having fit those results, we

held all parameters constant in fitting the 60%

data, except the probability of selecting guess-tails.

This was increased, reflecting greater frequency of
tails outcomes given the drop to a 60% heads bias

in the coin.
7. An implementation-level view

Here we briefly describe the implementation of

the model, in terms of ACT-R constructs. The
model code is available for downloading at

http://www.msu.edu/~ema/streaks.

The simpler prediction processes – guess-heads

and guess-tails – are each represented by one

ACT-R production. The selection probability of

each production is represented using ACT-R�s
production utility parameters, which are the inputs

to the conflict resolution scheme in this particular
production system (selection probabilities are

therefore represented only indirectly, in terms of

utilities).

The heuristic-predict process is represented by a

set of productions operating on a variety ofmemory

representations. The process is initiated by a start-

countproduction,which competes in conflict resolu-

tion with guess-heads and guess-tails. If start-count
is selected on a given trial, it enables an increment-

count production on the following trials, and even-

tually a stop-count production, which is selected in

response to the outcome that ends the streak.

http://www.msu.edu
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Stop-count is responsible for encoding a declarative

memory element representing the length of the

streak when it ended. On trials on which heuristic-

predict is active – that is, on trials after start-count
has fired to activate the process but before stop-

count has fired to terminate it – guess-heads and

guess-tails are excluded from conflict resolution.

The predictive component of the heuristic-

predict process begins with a retrieve-streak

production, triggered once the increment-count

production has fired on the current trial.

Retrieve-streak attempts to retrieve some streak
length encoded by stop-count in response to a past

streak. This retrieval attempt can fail, if no poten-

tial target�s activation level is above a threshold

that is a system parameter. The retrieval attempt

can succeed with any streak length in memory that

is active enough, with the most active streak length

at that instant being the one that satisfies the

retrieval request. Therefore, activation dynamics,
reflecting decay, priming, and transient noise,

govern which streak length is retrieved. Decay,

characterized by ACT-R�s base-level learning

mechanism, means that older streaks have less acti-

vation and thus are less likely to be retrieved; this

suggests, as a test of the model, engineering partic-

ular distributions of streak lengths within a session

to see if model and humans respond in similar
ways.

Priming (associative activation) flows from the

current streak length, stored in the system�s mental

focus of attention, to all streak lengths in memory,

weighted by their integer distance from the current

streak length. Thus, as described above, if the cur-

rent streak is of length four, past streak lengths of

four receive the most associative activation, past
streak lengths of three and five the next most,

etc. This priming gradient plays a critical role in

producing the quadratic trend in conditional heads

predictions. Longer streaks are less frequent than

shorter ones, so as the current streak grows, the

probability of retrieving any streak length from

memory decreases, because fewer streak lengths re-

ceive the maximum amount of priming (which
may be necessary to bring a target above thresh-

old). Failure to retrieve a streak length triggers

one of the decision rules described above, namely

to predict continuation of the streak, on the
assumption that the bias of the outcome-generator

may have suddenly changed. If the next outcome is

as predicted, the heuristic-predict process will con-

tinue to be active, and will ultimately encode a
long streak in memory. Thus, the second and later

instances of a long streak will be less likely to trig-

ger this particular decision rule, given the model�s
prior experience.

Note that the heuristic-predict process is generic

with respect to outcome, meaning that in principle

another test of the model would be against the

empirical biases in tails predictions.
The model performs the same 150 trials as do

human subjects, so in this sense its task environ-

ment is veridical; however, we did not try to match

the timing parameters of the experiment, so, for in-

stance, there is currently no account of three-

second duration of the animated coin flip. We

would expect, though, that the changes required

accommodate the actual time course of the exper-
iment would be absorbed by existing model

parameters.

The parameters adjusted to fit the 75% data

(baseline and conditional predictions) include the

utilities of guess-heads, guess-tails, and start-

count; the activation threshold for retrievals

(ACT-R�s :rt); and two parameters (peak and

slope) that determine the gradient with which
priming flows from the current streak length to

the same and other streak lengths in memory. To

then fit the 60% data, we adjusted only the

guess-tails utility; this utility was increased, con-

sistent with the decrease in the heads bias of the

coin. The ACT-R decay parameter (:bll) was set

to its default value of 0.5, and the activation noise

(:ans) and utility noise (:egs) parameters were both
set to 0.3.
8. Effects of working memory capacity

Fig. 4 compares empirical conditional predic-

tion bias, broken out by memory capacity, with

simulation results from the model (right panels).
To alter the model�s effective memory capacity,

we varied an ACT-R parameter (goal activation,

or :ga) that previous work has linked to individual

differences in working memory capacity (Lovett,
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Reder, & Lebiere, 1999). (We used values of 0.8,

1.0, and 1.2 for low, medium, and high capacity

respectively. The default value is 1.0, so the middle

right panel in Fig. 4 simply repeats the right panel
of Fig. 3.) As the model�s working memory capac-

ity decreases, its tendency to exhibit positive re-

cency increases. Importantly, this is qualitatively

consistent with the finding, mentioned earlier, that

people with shorter memory spans are more likely

to detect correlations between events represented

in memory (Kareev et al., 1997), perhaps because

smaller samples are more likely than large samples
to be extreme (Kareev, 2000). In the model, the

heuristic-predict decision rule is triggered in re-

sponse to detection of a streak that seems unusu-

ally long; with a smaller working memory

capacity, the model is less likely to retrieve a streak

of similar length from memory even if such a

streak length is stored there, and thus more likely

to consider the current streak to be unusually long
(and, by the logic of heuristic-predict, expect the

streak to continue).

Visual inspection of Fig. 4 suggests that effects

of working memory capacity on the model�s per-

formance are capturing some of the variance in

the empirical data. To provide some quantitative

support, we conducted a crude maximum-

likelihood analysis, computing measures of fit
(root mean squared error, or RMSE) for each var-

iant of the model to each group of participants and

asking which variant produced the best fit. For

each group of participants, the model variant with

the corresponding capacity level was the one that

provided the best fit. For low capacity partici-

pants, RMSE for the low capacity model was

1.72; for the medium-capacity model it was 4.19,
and for the high-capacity model it was 6.92. For

medium capacity participants, RMSE for the med-

ium capacity model was 5.23; for the high capacity

model it was 5.32, and for the low capacity model

it was 7.07. Finally, for high capacity participants,

RMSE for the high capacity model was 4.05; for

the medium capacity model it was 4.43, and for

the low capacity model it was 6.64. Thus, at least
in terms of descriptive statistics, variations in the

model�s working memory capacity do seem to cap-

ture some variance in the empirical data, though

the amount of empirical data for each level of
memory capacity was quite small. More generally,

however, there is a theoretical basis for expecting

that, in future studies with greater statistical

power, the empirical interaction effect of working
memory capacity and streak length on conditional

prediction bias should prove to be reliable.
9. General discussion

Previous attempts to reconcile positive and neg-

ative recency heuristics in a single model (Rabin,
2002) have appealed to the law of small numbers.

This ‘‘law’’ is a belief, named by analogy to the law

of large numbers, that the frequency of events in a

sample should match the frequency of those events

in the population (Tversky & Kahneman, 1971).

The law of small numbers affords one explanation

of the gambler�s fallacy (negative recency), in

which, for instance, a series of red outcomes on a
roulette wheel leads the gambler to bet on black

next. The black outcome is thought to be necessary

to ‘‘even out’’ the preceding streak of red out-

comes in the current (relatively small) sample.

Although the law of small numbers is a fallacy

in the context of gambling, where events are inde-

pendent and sampling is with replacement, it has

some validity when events are sampled without
replacement, even if they are independent (Rabin,

2002). If a red ball is drawn from an urn contain-

ing red and black balls and not replaced, then the

probability of the next ball being black is higher

than it was before the red ball was drawn. For

large urns this effect is minimal, but a decision ma-

ker applying the law of small numbers effectively

sets the urn size to be quite small, such that each
new outcome in a streak warrants a relatively large

update in expectations concerning the next out-

come. Thus, the longer a streak of reds becomes,

the further the decrease in the subjective probabil-

ity that the next ball will be red. Thus, the law of

small numbers, applied to an outcome generator

in which events are sampled from a (small) urn, of-

fers one explanation of the decrease in positive re-
cency across shorter streak lengths in Figs. 2 and 3.

The law of small numbers may also explain the

upward trend in positive recency that follows the

initial downward trend. Rabin (2002) proposes that
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as a streak grows, there is not only Bayesian updat-

ing of the probability of the next ball being red or

black, but also updating of beliefs about the relative

proportions of reds and blacks in the urn. As more
and more red balls are drawn, the decision maker

comes to believe that there are more red balls in

the urn thanhe or she previously thought. This effect

should be greater for decision makers applying the

law of small numbers, because the smaller the (men-

tal) urn, the less likely the subjective probability of a

streak of a given length. The smaller the urn, there-

fore, the more a streak indicates that the decision
maker�s beliefs about relative proportions of red

balls and black balls in the urn need revision. Thus,

as more and more red balls are drawn, the expecta-

tion that the next ball will be red should begin to in-

crease again, at the point where the decision maker

revises his or her subjective probability of reds and

blacks in the urn. Rabin�s is not a process model,

so how these different forms of Bayesian updating
may interact is unclear. Our model thus builds on

his work by offering a precise formulation of how

positive and negative recency interact.

Rabin (2002) draws support for his model from

evidence that investors tend to under-react to a

firm�s financial prospects in the short term and to

over-react in the long term. Empirically, stock

prices tend to auto-correlate positively in the short
term (a period of months), which can be interpreted

tomean that investors insufficiently react to good or

bad news. This is a form of positive recency, to the

extent that it reflects a willingness to bet that recent

trends in stock price will continue – for example,

that a firm with a low stock price will continue to

have a low stock price, despite a recent money-mak-

ing breakthrough. On the other hand, stock prices
tend to auto-correlate negatively in the medium

term (a three- to five-year horizon), suggesting, for

example, that such breakthroughs are factored only

belatedly into investor decisions. This is a form of

negative recency, to the extent that it reflects a will-

ingness to accept that less recent trends in stock

price may now reverse themselves. Qualitatively,

then, there appears to be a mapping from Rabin�s
analysis of investor data, couched in terms of his

urnmodel, to ourU-shaped curve, whichwe explain

in terms of memory processes. Of course, investor

behavior unfolds over much longer time spans than
the sequential decision used in the present study, so

the underlying memory dynamics may change

(Anderson, Fincham, & Douglass, 1999), and may

in fact make different predictions about how deci-
sions makers respond to streaks.

As a model, the law of small numbers by itself is

problematic in that it can equally well explain pos-

itive and negative recency, as we outlined above,

and thus has no predictive power (Burns & Cor-

pus, 2004). Similarly, it seems unlikely that people

really think in terms of ‘‘urns’’ (Rabin, 2002),

although this is a representational hypothesis that
remains to be tested. In our model we have tried to

explain the U-shaped curve in terms of basic cog-

nitive processes, linked ultimately to memory. A

mapping could be made between urn size and

memory capacity, and from different types of

Bayesian updating to different reactions to differ-

ent recall events. Thus, our model can be viewed

as putting cognitive processing flesh on previous
verbal theories. Whether its memory processes

and simple decision rules generalize to account

for use of recency biases in other decision-making

tasks, and across longer time spans, are important

questions for future research.

Finally, although any number of different mod-

els could presumably explain the curves shown in

Figs. 2 and 3, we have presented preliminary evi-
dence, in Fig. 4, linking the shapes of these curves

to working memory capacity. This is converging

evidence that memory is implicated in a basic

way in decision makers� responses to streaks, and

suggests a future line of inquiry in which memory

load and related manipulations could be used to

test specific quantitative predictions of the model.
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