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Abstract

This article describes the Adaptive Control of Thought–Rational (ACT–R) cognitive architecture
(Anderson et al., 2004; Anderson & Lebiere, 1998) and its detailed application to the learning of alge-
braic symbol manipulation. The theory is applied to modeling the data from a study by Qin, Anderson,
Silk, Stenger, & Carter (2004) in which children learn to solve linear equations and perfect their skills
over a 6-day period. Functional MRI data show that: (a) a motor region tracks the output of equation so-
lutions, (b) a prefrontal region tracks the retrieval of declarative information, (c) a parietal region tracks
the transformation of mental representations of the equation, (d) an anterior cingulate region tracks the
setting of goal information to control the information flow, and (e) a caudate region tracks the firing of
productions in the ACT–R model. The article concludes with an architectural comparison of the compe-
tence children display in this task and the competence that monkeys have shown in tasks that require ma-
nipulations of sequences of elements.

Keywords: mathematics; cognitive architecture; education; learning; problem solving;  comparative
psychology; brain imaging

1. Introduction

Adaptive Control of Thought–Rational (ACT–R; Anderson et al., in press; Anderson &
Lebiere, 1998) is most fundamentally a theory of central cognition. One function of this article
is to present an overview of that theory. This article also presents an illustrative application of
the theory to algebra equation solving. Algebra equation solving is a uniquely human cognitive
activity and provides a relatively well-contained opportunity to address the question of what is
unique about human cognition. I compare the requirements of this task with the requirements
of other sequential tasks that nonhuman primates have been shown capable of performing. The
article emerges with a tentative proposal for what is unique about human cognition, from the

Cognitive Science 29 (2005) 313–341
Copyright © 2005 Cognitive Science Society, Inc. All rights reserved.

Requests for reprints should be sent to John R. Anderson, Psychology Department, Carnegie Mellon University,
Pittsburgh, PA 15213. E-mail: ja@cmu.edu



framework of the ACT–R theory. Such comparative analyses relate to issues of brain realiza-
tion, and this article also describes the preliminary mapping of components of the ACT–R the-
ory onto brain regions. This mapping has enabled the use of functional MRI (fMRI) data to in-
form theory development.

2. The ACT–R architecture

According to the ACT–R theory, cognition emerges through the interaction of a number of
independent modules. Fig. 1 illustrates the modules relevant to algebra equation solving:

1. A visual module that might hold the representation of an equation such as 3x – 5 = 7.
2. A problem state module (sometimes called an imaginal module) that holds a current

mental representation of the problem. For instance, the student might have converted
the original equation into 3x = 12.

3. A control module (sometimes called a goal module) that keeps track of one’s current in-
tentions in solving the problem—for instance, one might be trying to apply the unwind
strategy described later.

4. A declarative module that retrieves critical information from declarative memory such
as that 7 + 5 = 12.

5. A manual module that programs the output such as x = 4.

Each of these modules is capable of massively parallel computation to achieve its objec-
tives. For instance, the visual module is processing the entire visual field and the declarative
module searches through large databases. However, each of these modules suffers a serial bot-
tleneck such that only a little information can be put into a buffer associated with the mod-
ule—a single object is perceived, a single problem state represented, a single control state
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maintained, a single fact retrieved, or a single program for hand movement executed. Formally,
each buffer can only hold what is called a chunk in ACT–R, which is a structured unit bundling
a small amount of information. ACT–R does not have a formal concept of a working memory,
but the current state of the buffers constitutes an effective working memory. Indeed, there is
considerable similarity between these buffers and Baddeley’s (1986) working memory “slave”
systems.

Communication among these modules is achieved via a procedural module (production sys-
tem in Fig. 1). The procedural module can respond to information in the buffers of other mod-
ules and put information into these buffers. The response tendencies of the central procedural
module are represented in ACT–R by production rules. For instance, the following might be a
production rule for transforming an equation:

IF the goal is to solve the equation
and the equation is of the form Expression – Number1 = Number2
and Number1 + Number2 is Number3 has been retrieved

THEN transform the equation to Expression = Number3

This production responds when the control chunk encodes the intention to solve an equa-
tion, as shown in the first line; when the problem state chunk represents an equation of the ap-
propriate type—second line—for example, 3(x – 2) – 4 = 5; when a chunk encoding an arith-
metic fact has been retrieved from memory—see third line—in this case 4 + 5 = 9; and
appropriately changes the problem representation chunk—see fourth line—in this case to 3(x –
2) = 9.

The procedural module is also capable of massive parallelism in sorting out which of its
many competing rules to fire, but like the other modules it has a serial bottleneck in that it can
only fire a single rule at a time. Because it is responsible for communication among the other
modules, the production system comprises the central bottleneck (Pashler, 1994) in the
ACT–R theory. Therefore, cognition can be slowed when there are simultaneous demands to
process information in distinct modules. As already noted, the other modules themselves can
also be bottlenecks. All of the bottlenecks are in the communication among modules; within
modules things are massively parallel. (Fig. 3, later in the paper, illustrates in some consider-
able detail how this parallelism and seriality mix.) Documenting the accuracy of this character-
ization of human cognition has been one of the preoccupations of research on ACT–R (for in-
stance, Anderson, Taatgen, & Byrne, 2004).

In addition to the overall flow of control, major concerns of ACT–R involve the “internal
components” (declarative memory, production memory, control state, and problem state).
With respect to peripheral modules (and ACT–R has more than just the visual and manual
modules represented here) we have been content to implement approximations that capture the
major results documented in the literature. Indeed, much of ACT–R’s perceptual–motor sys-
tem is a reimplementation of Executive-Process Interactive Control’s (EPIC; Meyer & Kieras,
1997) perceptual–motor system. Following EPIC’s lead we have found that we cannot under-
stand central cognition unless we have reasonably accurate models of its interface with the ex-
ternal world. For a substantial fraction of the ACT–R community, particularly those concerned
with human–computer interaction issues, this perceptual–motor system is critical.
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The central declarative memory and the procedural production system have substantial sim-
ilarities. Selection among different declarative memories proceeds by means of computations
on continuously valued activation quantities, and selection among productions proceeds by
means of continuously valued utility computations. These computations give ACT–R many of
the graded properties considered virtues of connectionist systems and avoid the sharp edges as-
sociated with symbolic systems. Indeed, there was a connectionist implementation of ACT–R
(Lebiere & Anderson, 1993). However, the theory also has an important symbolic level that
plays a critical role in accounting for such things as the acquisition of competence in algebra.
The distinction between the symbolic level of facts and productions and the subsymbolic level
of activations and utilities is critical to the ACT–R theory.

Until recently, the problem state and the control state were merged into a single goal system.
There have been a number of developments to improve ACT–R’s goal system (Altmann &
Trafton, 2002; Anderson & Douglass, 2001), and this is another development. There were two
reasons for choosing to separate control state (goal buffer) and problem state knowledge
(imaginal buffer). First (and this was the source of the idea to separate the two aspects), our im-
aging data indicated that the parietal region of the brain reflected changes to problem-state in-
formation, but the anterior cingulate reflected control-state changes. Later, this article elabo-
rates on the neural basis for this distinction. Second, the distinction offered a solution to a
number of nagging problems we had with the existing system that merged the two types of
knowledge. One problem was that our goal chunks often seemed too large, violating the spirit
of the claim that chunks were supposed to only contain a little information. This is because
they contained both problem-state information and control-state information, which could
both involve a number of elements.1 Also, the control information was getting in the way of
storing useful information about the problem solution in declarative memory. For instance,
arithmetic facts such as 3 + 4 = 7 might represent the outcome of a counting process or of an ef-
fort to comprehend a sentence. Because the control information was separate and would be dif-
ferent in the case of these two sources for the same arithmetic fact, we effectively were creating
parallel memories storing the same essential information. Now, with control and problem state
separated, the differences between the counting and comprehension can be represented in dif-
ferent control chunks, whereas the common result would be represented identically in a single
problem solution chunk. By factoring control information away (in what we are now calling
the goal module), one can accumulate abstract memories of the information achieved in the
problem state.

3. Algebra equation manipulation

With this brief overview of the ACT–R theory, let us turn to algebra equation solving, which
is a domain that offers special opportunities for understanding the nature of human intelli-
gence. Although there are now a number of demonstrations of basic arithmetic competence in
other primates, it would be generally conceded that algebra is a uniquely human capability. Al-
gebraic expressions and the operations that can be performed on them represent a domain of
substantial cognitive complexity, but unlike many human accomplishments (such as natural
language) it is a domain that can be tractably characterized and studied. In the first year of high
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school algebra with an investment of typically less than 200 hr, suitably prepared students can
learn to take a sequence of symbols such as

4 = x *[(x + 8) + 7] (1)

and rewrite it into the form

x2 + 15x – 4 = 0 (2)

in preparation for using the quadratic formula, which they can also apply. Interestingly, stu-
dents come to prefer writing this out directly without writing any intermediate expres-
sions—despite the urging of some mathematics teachers not to do so. Children have such a fa-
cility at manipulating these representations in their heads that it is easier to do the operations
mentally than to write out intermediate expressions.

Before continuing this discussion, it is important to make a couple of caveats. First, I am not
implying that the ability to engage in such symbol manipulation is the most important part of
first-year high school algebra, nor that students spend the majority of their 200 hr mastering this.
The goal of the algebra course is to relate multiple representations of mathematical relations (in-
cluding graphical and verbal) to enable flexible problem solving (Koedinger, Anderson, Hadley,
& Mark, 1997). Just being able to engage in such manipulations would be a rather useless skill
unless students could relate such manipulations to other things, especially real-world problems.
Nonetheless, even though such algebraic manipulations are a small part of the complete picture,
they already establish a high level of complexity to human cognition—a level of complexity that
is all the more remarkable given that it is mastered in such a brief period of time.

Second, being able to achieve this competence depends critically on what has already been
established in earlier grades—in particular, knowledge of arithmetic facts, fractional represen-
tations, and how to parse expressions such as the previous example. Students struggle if they
arrive in algebra without these prerequisites. Thus, the modeling task in this article is to ac-
count for the acquisition and performance of algebraic transformations, assuming the back-
ground of such knowledge.

As the previous example illustrates, algebra manipulation is basically a string manipulation
task in which one string of symbols is transformed into another. The final section of this article
considers what might be uniquely human about this string manipulation task versus other se-
quential skills that nonhuman primates can do.

The experiment to be modeled in detail looks at the learning of a particularly reduced ver-
sion of algebra symbol manipulation—solving of simple linear equations—converting expres-
sions such as

3x – 5 = 7 (3)

into x = 4. (4)

These sorts of equations can be solved by what has been called the unwind strategy. Such
equations have a number on one side and an expression with a single occurrence of the variable
on the other. The variable can be isolated by inverting each operation (in the previous example
the “ – 5” is eliminated by adding 5, and the “3*” by dividing by 3)—peeling away the layers of
the expression until the variable is exposed. Many equations do not immediately start out in
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this form but can be simplified so that they are in the appropriate form. The model in this article
assumes that the equations are already in a form to which the unwind strategy can immediately
apply. The earliest instruction on equation solving tends to focus on such problems and teaches
students the justifications for these transformations as well as providing practice on how to
perform them, although students are typically not taught to think of this as a general unwind
strategy but rather as a series of more specific operations. We have found, however, that begin-
ning students are quite capable of understanding the general unwind principle and its justifica-
tion and can use it with its full generality.

In the experiment to be modeled in detail (Qin et al., 2004) 10 students ages 11 to 14 spent 6
days practicing solving such equations. The first day (Day 0) they were given private tutoring
on this class of equations, using the unwind principle, and practiced paper and pencil solutions
of such problems with a private human tutor. On the remaining 5 days they practiced on a com-
puter the solution of three classes of equations:

0-step: e.g., 1x + 0 = 4 (5)

1-step: e.g., 3x + 0 = 12, 1x + 8 = 12 (6)

2-step: e.g., 7x + 1 = 29 (7)

Each day they went through 10 computer-administered blocks of such equations. Each
block consisted of 16 trials with four instances of the four possible types of equations (there are
two subtypes for the 1-step equations). Fig. 2 presents their latency and the predictions of a
model that will now be described.
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4. The ACT–R model

The ACT–R model begins with a set of declarative instructions, given in Table 1, which en-
code the unwind strategy. To illustrate how these instructions2 apply to example equations, first
consider a simple 0-step equation such as:

1*x + 0 = 2 (8)

These instructions imply a sequence of operations that can be summarized:

Instruction 1a: Create image “ = 2”
Instruction 2b: Unwind right “1*x + 0”
Instruction 3a: Focus on “1*x” and unwind it
Instruction 2c: Unwind left “1*x”
Instruction 4a: Focus on “x” and unwind it
Instruction 2a: The answer is 2

While for a 2-step equation such as

7*x + 3 = 38 (9)

they imply a sequence of operations that can be summarized:

Instruction 1a: Create image “ = 38”
Instruction 2b: Unwind right “7*x + 3”
Instruction 3b: Change image to “ = 38 – 3” and then to “ = 35” and focus on “7*x” and
unwind it.
Instruction 2c: Unwind left “7*x”
Instruction 4b: Change image to “ = 35/7”, and then to “ = 5” and focus on x and unwind it.
Instruction 2a: The answer is 5

Fig. 2 shows that ACT–R is able to reproduce the speedup seen in the participants. The key
to understanding this speedup in the ACT–R model is to understand how the previous instruc-
tions were interpreted. These instructions are encoded as declarative structures, and ACT–R
has general interpretative productions for converting these instructions to behavior. For in-
stance, there is a production rule that retrieves the next step of an instruction:

IF one has retrieved an instruction for achieving a goal
THEN retrieve the first step of that instruction

There are also productions for retrieving particular arithmetic facts such as

IF one is evaluating the expression “a operator b”
THEN try to retrieve a fact of the form “a operator b = ?”

Using such general instruction-following productions is laborious and accounts for the slow
initial performance of the task.

Although multiple types of learning are occurring in this experiment, it is mainly production
compilation that is accounting for the speedup (see Taatgen, 2005, this issue; Taatgen & An-
derson, 2002). This is a process by which new production rules are learned that collapse what
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was originally done by multiple production rules. In this situation the initial instruc-
tion-following productions are compiled over time to produce productions to embody proce-
dures that efficiently solve equations. For instance, the following production rule is acquired:

IF the goal is to unwind an expression
and the expression is of the form “subexpression + 0”

THEN focus on the subexpression

Fig. 3a illustrates a typical trial at the beginning of Day 1, and Fig. 3b illustrates a typical
trial at the end of Day 5. In both cases the model is solving the 2-step equation, 7*x + 3 = 38.
The figure illustrates when the various modules were active during the solution of the equation
and what they were doing. The Day 1 trial (Fig. 3a) takes 6.1 sec and the Day 5 trial (Fig. 3b)
takes 4.1 sec. However, these do not reflect the extremes of the learning curve according to
ACT–R. The very first trial on Day 0 takes 8.4 sec in the model. With an infinite amount of
practice, the model would take 1.7 sec during which it would only read the equation and type
the answer, having compiled the answer into production rules for that problem. Still, the con-
trast between parts a and b of Fig. 3 gives a sense for what is happening over the course of
learning. It is worth emphasizing a number of general features of the activity in the figure be-
fore discussing the detail of what is happening in individual buffers:

Multiple modules can be active simultaneously. For instance, early on in Fig. 3 there is a
point where the goal module is noting that it is implementing the unwind strategy, an image of
the right-hand side of the equation (“ = 38”) is being encoded in the imaginal buffer, the next
step in the unwind strategy is being retrieved, and the visual system is encoding the left-hand
side of the equation. Certain of these activities tend to be on the critical path because they are
taking longer than the other processes, and further processing has to wait for them to complete.
In these cases, the times of the other operations have no effect on total time. For instance, often
the visual encoding of the equation is holding up other operations and the durations of these
other operations do not matter.
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Table 1
English rendition of instructions given to ACT–R model for equation solving

1. To solve an equation, encode it and
a. If the right side is a number, then imagine that number as the result, and focus on the left side and unwind it.
b. If the left side is a number, then imagine that number as the result, and focus on the right side and unwind it.

2. To unwind an expression
a. If the expression is the variable, then the result is the answer.
b. If a number is on the right unwind-right.
c. If a number is on the left unwind-left.

3. To unwind-right, encode the expression (of the form “subexpression operator number”) and
a. If the operator is + or – and the number is 0, then focus on the subexpression and unwind it.
b. Otherwise invert the operator, imagine it as the operator in the result, imagine the number of the

expression as the second argument in the result, evaluate the result, and then focus on the subexpression
and unwind it.

4. To unwind-left encode the expression (of the form “number operator subexpression”) and
a. If the operator is * and number 1 then focus on the subexpression and unwind it.
b. Otherwise check that the operator is symmetric, invert the operator, imagine it as the operator in the result,

imagine the number as the second argument in the result, evaluate the result, and then focus on the
subexpression and unwind it.
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Much of the speedup in processing is driven by collapsing multiple steps into single steps. A
particularly dramatic instance of this is noted in Fig. 3 where five production firings, five re-
trievals, two control settings of the goal, and two imaginal transformations are compressed into
one production, one retrieval, one control setting, and one imaginal transformation.3 Produc-
tion compilation can compress these internal operations without limit. What it cannot collapse
are the external operations such as visual encodings or manual operations. These external op-
erations define the bounds of the compilation. Although the example in Fig. 3 shows multiple
productions being collapsed, the actual learning process proceeds slowly in ACT–R and takes
all 5 days to achieve the transformation in Fig. 3. Given enough practice ACT–R would col-
lapse all equation solving simply into a series of visual encodings and manual operations, and
there would be no effect of equation complexity (nor any real thought occurring). However, to
do so ACT–R would have to essentially build into production rules the capacity to recognize
each possible equation and produce its solution. The combinatorics of this are so overwhelm-
ing (so many different possible equations) that it would never happen in the normal course of
learning to solve equations.

A second, lesser source of speedup is the reduction of retrieval times. This reflects an increase
in the base-level activation of the facts used in this experiment and as such it is an example of
subsymbolic activation learning. This subsymbolic learning is a relatively minor contributor to
the learning inFig.2 for tworeasons.First, thebasic instructionsgetusedoverandoveragainand
are already strongly encoded during Day 0, and there is not that much room for further speedup.
Second, the arithmetic facts do not repeat very often over the course of the experiment and are
getting little practice. In other situations, subsymbolic activation processes can be a major player
inperformance.However,over theperiodof timestudied in thisexperiment, themajor learning is
happening at the symbolic level in terms of creating new production rules.

Now let us consider what is happening in each of the modules as the model goes from Day 1
to Day 5:

1. Visual: On both days four encoding operations take place, which each take 300 msec.
Each encoding has the resolution to pick up two terms in the expression. Therefore, the first en-
codes Exp = 38, where Exp denotes what cannot be analyzed. The second analyzes this into
Exp + 3, the third into 5 * Exp, and the final encodes the x.

2. Procedural: The number of productions fired reduces substantially over the 5
days—from 26 to 11 in the example in Fig. 3. This reflects the compilation of productions into
ones that do more work. Many of the productions, even on Day 1, were compiled from the orig-
inals that were used on Day 0. Each production takes 50 msec according to the ACT–R theory.4

3. Retrieval: Most of the retrievals in Fig. 3 involve retrieval of steps of instruction, and
these decrease dramatically from 24 to 9 in the specific example. These instructions are illus-
trated as taking about 50 msec, but this is only approximate. There are also two long retrievals
of arithmetic facts. As noted earlier, all of these retrievals are speeding up with time, but the
speedup effect is most apparent for the arithmetic facts.

4. Goal: The goal holds information about control state. Different points in the problem
solving can have identical patterns in the other buffers, and it is the responsibility of the goal
buffer to keep track of what to do next. As I elaborate later, the major control issue is keeping
track of when it is time to retrieve and when it is time to unwind. The number of control settings
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changes relatively little over the course of the experiment, decreasing from 10 to 8 in the spe-
cific example.

5. Imaginal: The imaginal, or problem state, buffer holds a partial representation of the
equation. The number of changes to this buffer shows a small drop in Fig. 3 from nine to seven.
The reduction reflects cases when two imaginal operations are collapsed into a single one.

6. Manual: The manual programming does not change over the course of the experiment. A
single final finger press is needed that takes 250 msec to program and execute.

5. Use of brain imaging to provide converging data

The complexity of the picture in Fig. 3 provides a striking contrast to the simplicity of the data
in Fig. 2. It is hard to justify all those boxes and assumptions on the basis of three simple learning
curves. Reflecting this, past theories that we have developed (e.g., Anderson, Reder, & Lebiere,
1996) have often been cast much simpler, not because we thought things were that simple but be-
cause we were keenly aware of the assumptions-to-data ratio. However, in honest moments with
ourselves we knew more was going on. Indeed, Fig. 3 probably underrepresents the true com-
plexity. Although for many purposes ignoring this complexity is fine, it left us with a picture of
mathematics learning that may have failed some of our theory-based efforts to improve mathe-
matics learning. It isbetter tohaveacomplete theoryanddeterminewhichdetails arenot relevant
and can be ignored, rather than simply never considering the details in the first place.

Brain-imaging data allow us to track these individual components in more detail. Although
it still does not provide all of the converging evidence one would want, it goes a long way to
justifying the detail in Fig. 3. The study reported in Fig. 2 was actually performed in an fMRI
scanner on Days 1 and 5. The trials took 21.6 sec on all days, to facilitate analysis on the scan-
ner days. On the scanner days, an image of much of the brain was taken each 1.2 sec. During
the first 1.2 sec, children looked at a fixation point. Then they had up to 10 scans or 12 sec to
complete solving the equation, and they pressed a key giving an answer as soon as they had
solved the equation. These 10 scans were followed by an additional 7 scans or 8.4 sec to let the
hemodynamic response to the equation go down to baseline. Students gave their answer in a
data glove in which they pressed one of the 5 fingers on their right hand to indicate an answer of
1 to 5 (all problems had these numbers as answers).

5.1. Regions of interest

We have now completed a large number of fMRI studies of many aspects of higher level
cognition (Anderson, Qin, Sohn, Stenger, & Carter, 2003; Anderson, Qin, Stenger, & Carter,
2004; Qin et al., 2003; Sohn, Goode, Stenger, Carter, & Anderson, 2003; Sohn et al., in press),
and based on the patterns over these experiments we have made the following associations be-
tween a number of brain regions and modules in ACT–R. In this article we are concerned with
five brain regions and their ACT–R associations:

1. Caudate (procedural): Centered at Talairach coordinates x = –5, y = 9, z = 2, this is a
subcortical structure.
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2. Prefrontal (retrieval): Centered at x = –40, y = 21, z = 21, this includes parts of
Brodmann Areas 45 and 46 around the inferior frontal sulcus.

3. Anterior cingulate (goal): Centered at x = –5, y = 10, z = 38, this includes parts of
Brodmann Areas 24 and 32.

4. Parietal (problem state or imaginal): Centered at x = –23, y = –64, z = 34, this includes
parts of Brodmann Areas 39 and 40 at the border of the intraparietal sulcus.

5. Motor (manual): Centered at x = –37, y = –25, z = 47, this includes parts of Brodmann
Areas 3 and 4 at the central sulcus.

It is important to emphasize that we had these regions defined and associated with ACT–R
modules before performing this experiment. Thus, the research we are reporting here contrasts
with the more typical practice of performing exploratory analyses to find what regions give
significant changes in activation and trying to interpret their significance after the fact. As such
this confirmatory approach is not subject to the issue of trying to correct for false alarms that
haunts the exploratory approach.

It is worth briefly noting the past reports in which we identified these regions and associated
them with the particular modules in the ACT–R theory. The original publication in the series
(Anderson et al., 2003) was focused on looking for the brain correlates of the Anderson, et al.
(1996) ACT–R model for algebra equation solving in adults. The two experiments in that article
performed exploratory analyses that converged on regions close to the prefrontal, parietal, and
manual regions defined previously. Based on that study, we defined these previously mentioned
regions and conducted a number of studies focused on verifying their properties. Across these
studies we maintained the exact same Talairach definition of these regions. The studies by An-
derson et al. (2004), Anderson et al. (in press), & Qin et al. (2003) were focused on better separat-
ing of parietal and prefrontal activities (which are often highly correlated) and confirming that
theprefrontalwasmoreassociatedwith retrievaland theparietalwasmoreassociatedwith repre-
sentational changes. That research also showed that these regions responded to the number of re-
trievals and representational changes and not to the duration of time that the retrieval products or
representations were held during the problem solving. Interestingly, we found that the motor re-
gion was involved in rehearsal of the results to bridge delay periods, not the parietal or prefrontal
regions. The research by Sohn et al. (2003) and Sohn et al. (2005) used the fan effect to confirm
that theprefrontalandnot theparietal regionrespondedto timetoperformanindividual retrieval.

Although all of these published articles only reported on the prefrontal, parietal, and motor
regions, we did collect data on predefined anterior cingulate cortex (ACC) and caudate regions
in all of these studies. Our interest in the ACC was forced by the fact that exploratory studies
kept revealing that it showed strong effects from the experimental manipulations. The caudate
region of the basal ganglia area only sometimes showed significant effects in the exploratory
analysis, and we will see it suffers from a rather poor signal-to-noise ratio. However, our inter-
est in it was driven by our association of the basal ganglia with the production system (Ander-
son et al., in press) and by other published reports associating the basal ganglia with procedural
memory (Ashby & Waldron, 2000; Hikosaka eti al., 1999; Poldrack, Prabakharan, Seger, &
Gabrieli, 1999; Saint-Cyr, Taylor, & Lang, 1988).

Although we have our own independent evidence for the associations of these regions with
the ascribed ACT–R functions, it certainly is the case that the ascriptions are consistent with
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other ideas in the literature. As noted previously, our interest in the caudate was basically
driven by other research reports. Others (Dehaene, Piazza, Pinel, & Cohen, 2003; Reichle,
Carpenter, & Just, 2000) have found a parietal region that reflects imagery and visual represen-
tation, and a number of researchers (Buckner, Kelley, & Petersen, 1999; Cabeza, Dolcos, Gra-
ham, & Nyberg, 2002; Donaldson, Petersen, Ollinger, & Buckner, 2001; Fletcher & Henson,
2001; Lepage, Ghaffar, Nyberg, & Tulving, 2000; Wagner, Maril, Bjork, & Schacter, 2001;
Wagner, Paré Blagoev, Clark, & Poldrack, 2001) have found a strong memory response in the
vicinity of our prefrontal region.

The situation in the literature with respect to the ACC is complex. A number of theorists
have postulated that it is involved in controlling cognition, much as is being proposed here. For
instance, Posner & Dehaene (1994) have described the ACC as “involved in the attentional re-
cruitment and control of brain areas to perform complex tasks” (p. 76). D’Esposito et al. (1995)
have identified it with Baddeley’s (1986) central executive and Posner & DiGirolamo (1998)
have related it to Norman & Shallice’s (1986) SAS. However, there are other theories of the
ACC. One theory relates it to error detection. This is supported by the error-related negativity
in event-related potentials that has been observed when errors are made in speeded response
tasks (e.g., Falkenstein, Hohnsbein, & Hoorman, 1995). Dehaene, Posner, and Tucker (1994)
were able to localize the error-related negativity as residing within the ACC. However, ACC
activity occurs in many more situations than just when there are errors, and another interpreta-
tion of its activity is that it is just a reflection of task difficulty as indexed by errors or reaction
time (Paus, Koski, Caramanos, & Westbury. 1998). On the other hand, it does not always re-
spond to task-difficulty factors that affect latency (we will see in our experiment that it reflects
number of transformations but not practice). Carter, et al. (2000) argued that the real function
of the ACC is monitoring for conflict among potential responses and that other regions of the
cortex actually respond to the conflict once detected. MacDonald, Cohen, Stenger, and Carter
(2000) found that in a Stroop task, when participants are warned that it will be a difficult color
trial, there is greater activation in the prefrontal region in preparation for the task. In contrast,
when the actual Stroop task is presented the ACC responds to a difficult color trial. Thus, they
argue that, unlike the Posner and Dehaene proposal, the prefrontal cortex, and not the ACC, is
responsible for control and that the ACC, rather, monitors for conflict, such as that which oc-
curs in the Stroop task. This conflict is often interpreted as conflict among competing re-
sponses, and this interpretation is applicable to the Stroop task. However, in our more complex
tasks ACC activity reflects transformations and retrievals that do not involve any overt re-
sponses or competitions among responses. Sohn, Albert, Jung, Carter, & Anderson (2004) re-
ported a study in which the ACC is clearly involved in controlling attention and not just moni-
toring conflict. Unlike the MacDonald et al. (2000) experiment, it is highly active in
preparation for an upcoming cognitive task, and its activation varies with the anticipated diffi-
culty of that task. At the end of this article we elaborate on the function for the ACC in the
ACT–R model.

We should also comment on the restriction of these regions to the left hemisphere. In the
case of the motor region this restriction is obvious because participants are responding with
their right hand. We and the other researchers we mentioned have found stronger responses in
the left parietal and left prefrontal in these kinds of symbolic tasks. The restriction to the left
caudate and left ACC is largely done for consistency, but more often than not the response is
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stronger in the left region. This is somewhat surprising in the case of the ACC because the left
and right ACC regions are adjacent to each other.

Given that these regions reflect their ascribed function so well, one is tempted to assume that
the function is actually performed in that cortical region. Although this is a plausible inference
that many make, it is not necessary to the logic of our approach. We only require that we have a
brain region whose activity reliably reflects a particular information processing function. Even
if we assume that the function is performed in that region, there is no reason to suppose that its
activity will only reflect that function. Nonetheless, we have been fortunate over the series of
studies that we have performed that the regions seem to be rather pure indicators of their as-
cribed functions.

Finally, there is no claim that the ascribed function is restricted to these regions. With re-
spect to retrieval we suspect there was a similar response in the hippocampus, but our scanning
parameters in this experiment did not include the hippocampus, and it appears not to give as
strong a signal when we do. With respect to the control, it is almost certain that dorsolateral,
prefrontal structures play a role in control as well as the ACC. With respect to the caudate, we
would expect to find a similar response in other structures connected to the basal ganglia, par-
ticularly the dorsal thalamus (and indeed we often do). Elsewhere (Anderson et al., 2004) we
have reviewed proposals (Amos, 2000; Frank, Loughry, & O’Reilly, 2000; Houk & Wise,
1995; Wise, Murray, & Gerfen, 1996) that the basal ganglia perform functions similar to those
that we ascribe to the production system. Finally, note that our list of five regions does not con-
tain a region that corresponds to the visual module. This is because our scanning parameters
also did not include the relevant visual regions. Other studies have found the expected re-
sponses in the visual cortex with visual presentation and the auditory cortex with auditory pre-
sentation (Sohn et al., in press).

5.2. Predicting the BOLD response

We have developed a methodology for relating the profile of activity in modules such as
those in Fig. 3 to blood-oxygen-level-dependent (BOLD) responses from the brain regions that
correspond to these modules. Fig. 4 illustrates the proportion of time that a particular module
was active at various points during a trial on Day 1 (Part a) and Day 5 (Part b) for the two-step
equations. These numbers would be directly obtainable from Fig. 3, except that Fig. 4 reflects
the average engagement over the whole day not just at the beginning of Day 1 (Fig. 3a) and the
end of Day 5 (Fig. 3b). The basic model we have developed of the BOLD response claims that
while a module is engaged, it is producing a hemodynamic response in the corresponding re-
gion. We have adopted the standard gamma function that other researchers (e.g., Boyton,
Engel, Glover, & Heeger, 1996; Cohen, 1997; Dale & Buckner, 1997; Glover, 1999) have used
for the BOLD response. If the module is engaged it will produce a BOLD response t time units
later according to the function:

where m governs the magnitude, s scales the time, and the exponent a determines the shape of
the BOLD response such that with larger a the function rises and falls more steeply. The time to
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peak for the BOLD response is a*s, and the magnitude area under the curve is m*s*Γ(a) where
Γ is the gamma function, [Γ(a) = (a – 1)!]. Fig. 5 illustrates the effect of different choices of
time scale and exponent on the shape of the BOLD response. To facilitate comparison, the
magnitude parameters for the curves in this figure have been set so that the maximum response
is 1 for all functions. As can be observed, a larger a produces a quicker rise and fall, whereas a
larger s stretches the duration of the BOLD response.

The BOLD response accumulates whenever the region is engaged. Thus, if f(t) is an engage-
ment function giving the probability that the region is engaged at time t, then the cumulative
BOLD response can be obtained by convolving the two functions:

This is the observed BOLD response. Its area is proportional to the total time that the region
is engaged. Thus, if a module is active for T sec, then the area under the BOLD response is
T*m*s*Γ(a).
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Fig. 4. The degree of engagement of the various modules during a trial on Day 1 (part a) and Day 5 (part b).
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In summary, a model for the time course (Fig. 3) of this task yields engagement functions
f(t) such as those in Fig. 4. By convolving the engagement functions with the BOLD function
one can obtain predictions for the BOLD response in the regions associated with the modules.
Most of the parameters of this model are set according to prior values established for ACT–R,
but fitting the latency in Fig. 2 did require estimating parameters for the time to encode the
equation and the duration of the retrievals. Having now committed to the time course of each
module, predictions immediately follow for the time course of the cumulative BOLD response.
The exact height and shape of the BOLD response depends on the magnitude (m), the scale (s),
and the exponent (a) for the region that corresponds to that module. However, the strong pa-
rameter-free prediction is that the relative areas under the BOLD responses in two conditions
for a region will reflect the relative amounts of time this region is engaged in these two condi-
tions. Thus, the BOLD response provides a direct check on assumptions about the amount of
time various modules are engaged in doing a task.
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Fig. 5. An illustration of the impact of different choices of the exponent (a) and time scale on the shape of the
hemodynamic function. To facilitate comparison, the magnitude parameter (m) has been scaled so that all of these
functions have a maximum of 1.0.

Table 2
Parameters estimated and fits to the BOLD response

Motor/
Manual

Prefrontal/
Retrieval

Parietal/
Imaginal

Cingulate/
Goal

Caudate/
Procedural

Magnitude (m) 0.531 0.073 0.231 0.258 0.207
Exponent (a) 3 3 3 3 3
Scale (s) 1.241 1.545 1.645 1.590 1.230
Correlation .975 .963 .969 .981 .975
Chi-square (105 df) 88.93 82.60 95.21 123.27 81.03



Table 2 gives the estimated parameters for the BOLD response and Fig. 6 shows how well
this model predicts the BOLD responses in the six conditions achieved by crossing day and
number of steps of transformation for each of the five associated regions. To simplify matters
and to make the functions more comparable, the exponent of the BOLD response was set to 3
for all regions. To keep the data presentation readable and get better estimates, Fig. 6 either av-
erages over days or over conditions.5

5.3. Characterizing the differences among the brain regions

The first impression one probably gets from Fig. 6 is that the BOLD responses for the five
regions look a lot alike. All show a characteristic hemodynamic response that goes up and co-
mes down with the trial structure. Furthermore, most regions show a stronger response for
more transformations and a stronger response on Day 1. This is quite characteristic of imaging
results where disparate regions of the brain give quite similar responses to the material. With-
out a strong theory to guide one’s expectations, one is in danger of missing the differences and
concluding that the whole brain (or at least those regions that respond—not all regions in the
brain respond to the task structure in this experiment) is reflecting a global response to the task.
However, if one knows where to look, there are characteristic differences. Although this one
experiment does not reveal all the differences in the behavior of all five regions, it does reflect
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Fig. 6. Use of module behavior to predict percent increase in BOLD response in various regions: (a) Manual mod-
ule predicts motor region; (b) Retrieval Module predicts prefrontal region; (c) Control/Goal module predicts ante-
rior cingulate region; (d) Imaginal/Problem State module predicts parietal region; (e) Procedural module predicts
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Fig. 6. (continued)
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Fig. 6. (continued)



many of the important differences that we have identified over our experiments. These are enu-
merated in the following paragraphs.

First, and most apparent, in Fig. 6a the motor region is giving basically the same hemo-
dynamic response in all conditions. The effect of the slower conditions is to delay when that
hemodynamic response occurs. This is what would be expected given a relatively strong un-
derstanding of what regions of the brain control the hand. Although the motor region is trans-
parently giving a different response than the other regions (both on theoretical and observa-
tional grounds), its correlation with the BOLD responses in other regions averages .66. Thus
even it might be confused with the other regions unless one had a theory to tell one where to
look to find the relevant differences.

Two of the other regions have distinct signatures. The prefrontal region (Fig. 6b) is distin-
guished by the very weak response it generates in the case of 0 steps. According to the
model this case involves some brief retrievals of instructions but no retrieval of number
facts. We have often modeled this condition by assuming no retrieval and predicted a flat
function, but a slight rise can be discerned. The striking feature of the anterior cingulate
(Fig. 6c) is that there is almost no effect of learning, whereas there is a robust effect of num-
ber of steps on magnitude of the response. The goal component in ACT–R is engaged in
maintaining the state at points where the system is engaged in a retrieval of an arithmetic
fact (this is because the retrieval buffer cannot be used to hold the next step). Every time it
engages in retrieval of an arithmetic task it must note this so that it will wait for the fact be-
fore going on. Once the fact is retrieved it must reset the state so that it can proceed with un-
winding. Thus, the number of retrieval operations is one factor influencing the number of
state-setting operations in the goal buffer. The number of arithmetic retrievals changes in
this experiment with the number of steps in solving the equation because each step requires
retrieval of a fact. However, there is little reduction in these retrievals with practice. In prin-
ciple, with enough practice they would eventually drop out, but there are so many individual
facts that they just do not repeat enough in equation solving. In other research on learning
(Qin et al., 2003) where retrievals did not involve a large database, we did find a substantial
learning effect over 5 days in the anterior cingulate.

The other two regions (the parietal in Fig. 6d and the caudate in Fig. 6e) can be distin-
guished from the other three regions because they lack the features that identify the other
three. However, there is little difference in the response that we see in these two regions.
They approximately reflect the average response of all the areas, showing substantial effects
of both number of steps of transformations and delay. There is a subtle difference between
the two with the caudate showing a relatively larger effect of days and the parietal showing a
relatively larger effect of steps. The caudate is fit according to the number of rules, which
naturally increases with steps and decreases with days. These steps often are accompanied
by changes in the problem representation, and this is why the two regions are so strongly
correlated. We find differences between these two regions in experiments that vary modality
of presentation from visual to aural with the parietal responding less to auditory presentation
than visual and the caudate responding more (Sohn et al., 2005). Note in the comparisons of
Fig. 6d and 6e, that the caudate gives a relatively weak response and has a poorer
signal-to-noise ratio. This is unfortunate because according to the theory it should be the
one region that is involved in all cognitive tasks, reflecting the number of production rules
fired.
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5.4. Assessing goodness of fit

The figures contain measures of correlations between the predictions and observed behav-
ior. These are averaged over either days or operations, but Table 2 gives correlations among all
108 points for each region. Although this is a conventional measure of quality of fit, it has a
number of problems. For instance, correlation is only sensitive to whether the shapes match up
and not to whether the actual predicted numbers match up.

The quantitative correspondence can be assessed by the chi-square statistics in the table,
which measure the degree of mismatch against the noise in the data. They are calculated as

where the denominator is estimated from the interaction between conditions and participants.
This has 105 df, calculated as 108 minus the three parameters estimated for the BOLD func-
tion. By this measure all of the areas are being modeled as well as can be expected because they
all yield nonsignificant chi-squares (it would have to be 130 or greater to be significant at the
.05 level). However, the chi-square statistic is not a perfect measure of fit for a number of rea-
sons. First, it depends on the assumption that errors in individual points are independent, which
is unlikely in this case. Second, it depends on the assumption that the gamma function is ex-
actly the correct characterization of the BOLD response. Both of these problems reflect the
fact that this measure may weight fitting the exact shape of the curves too much.

Anderson et al. (2003) offered an alternative measure of goodness of fit that avoids this con-
cern with curve shape and parameter estimation. It simply tests whether the areas under the
curves are in proportion to the time a module is active. They proposed calculating the follow-
ing measure of proportionality:

where Ti is the amount of time a region is engaged in a condition and Ai is the amount of area
under the BOLD response. In this experiment, the summations are over the six conditions de-
fined by crossing the three levels of equation complexity with the 2 days of practice. This is
like R2 in some ways but has some differences. As a simple example of the differences consider
the relation between the numbers 10, 11, and 12 and 0, 1, and 2. They have an R2 of 1 but a pro-
portionality of only .67 because the first set of numbers is almost equal proportionally, but the
ratio of the second set is quite different. As another example, the numbers 10, 11, and 12 and
the numbers 10, 12, and 10 have an R2 of 0 but a proportionality of .987. One can calculate a de-
gree of proportional misfit, which we call misproportionality, as 1 – Proportionality. These
misproportionalities are reported in Table 3a, and one can observe that in all cases the region is
best fit by its assigned module.
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As a different approach, Table 3b reports the outcome of trying to fit each module to each re-
gion’s activation profile and calculating a chi-square measure of misfit. With 105 df the
5-percentile tails for the chi-square distribution are at 82 and 130. As we noted with respect to
Table 2, all the modules give acceptable fits (less than 130) to their ascribed regions. A few
other modules give acceptable fits to other regions, although not as good. In particular, the
modules other than the manual module all give approximately equal fits to the parietal and
caudate regions. As noted, these regions approximately show the average response of all the re-
gions. Note in Table 3 that the misproportionalities almost perfectly predict the chi-squares
down a particular column (a column holds constant the noise in the data that determines the de-
nominator for the chi-square).

In summary, the good fit of the model to the BOLD responses does not depend on the esti-
mation of the parameters that characterize the BOLD function. Part (a) of Table 3 establishes a
parameter-free measure of strength of association between ACT–R component and brain re-
gion and part (b) establishes that parameter estimation cannot make other components fit other
brain regions. Except for trying to distinguish between the parietal and caudate, whose re-
sponses were not well discriminated by this experiment, the proposed associations provide a
much better explanation of the data than any alternative set of associations.

6. The capacity for re-representation: A uniquely human trait?

Having now analyzed in some detail the nature of one instance of algebra symbol manipula-
tion, I would like to close by reflecting on the question of what in these processes might be
uniquelyhuman.For thispurpose itwouldbeuseful todescribeanexampleofserialbehavior that
has been observed in the Rhesus Macaques monkey (Terrace, Son, & Brannon, 2003). In the ex-
periment reportedbyTerraceet al.,monkeys learned four7-itemlistsofpictures.Onanyparticu-
lar trial the monkeys were shown one set of seven pictures randomly arrayed on the screen, and
they had to select them in the correct order. They were able to achieve over 65% correct reproduc-
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Table 3
Correlation between various modules and the BOLD response in various brain regions

Motor Prefrontal Cingulate Parietal Caudate

a. Misproportionalities
Manual 0.011 0.308 0.100 0.263 0.119
Retrieval 0.326 0.017 0.059 0.041 0.061
Goal 0.103 0.119 0.006 0.113 0.040
Imaginal 0.212 0.069 0.026 0.035 0.033
Procedural 0.190 0.109 0.049 0.037 0.023

b. Chi Squares
Manual 88.93 452.05 724.66 426.40 333.89
Retrieval 493.22 82.60 350.32 101.88 133.13
Goal 255.91 194.94 123.27 171.74 111.01
Imaginal 384.66 125.66 210.47 95.21 101.82
Procedural 347.05 163.76 286.28 114.93 81.03



tion of the entire lists—a number that would compare favorably with humans in similar circum-
stances. Terrace et al. offered a number of varieties of evidence to argue that the monkeys are op-
erating off a declarative representation of the list order and not some type of procedural
representation. For instance, monkeys can correctly order two items from different lists that they
haveneverseenpairedbefore.Theseserial tasksare interestingbecause theybearcertainsuperfi-
cial similarities to algebra symbol manipulation. In algebra symbol manipulation a child is
shown one array of symbols (the equation) and must produce another array of symbols (the solu-
tion—in our task we reduced this to a single key press, but it is typically more complex as in the
example of writing of the quadratic expression at the beginning of this article). Similarly, the
monkey is shown one array of symbols and must produce a sequence of symbols or actions.

Although the performance of monkeys in these serial tasks is in many ways remarkable,
there is a significant difference in the behavioral capacity involved in transforming algebraic
equations and that involved in manipulating serial lists. The most obvious difference is in the
generativeness of the child’s algebraic capacity. The child is capable of responding to an arbi-
trary number of new expressions. Even simply using the unwind strategy to solve equations,
children are capable of solving an infinite number of equations. Moreover, the generativeness
in algebraic symbol manipulation goes beyond this—for instance, a child can factor, expand,
and do many other operations to transform one string of symbols into another. This kind of
generativeness has much in common with the generativeness of natural language, the most fre-
quently mentioned instance of human intellectual superiority. However, as noted in the intro-
duction, unlike language, the formal properties of algebraic manipulation are more or less
completely understood. Also as the reported experiment illustrates, it is much easier to experi-
mentally study the learning of algebra.

Although the differences between the child’s algebraic symbol manipulation and the mon-
key’s serial reproduction may seem obvious, the challenge is to identify what in the ACT–R ar-
chitecture is associated with this difference. Before addressing this question, I should ac-
knowledge an alternative hypothesis that the difference just reflects prior knowledge: Children
successful at algebra understand a number system, know their number facts, know how to
parse these expressions, and know how to follow instructions. The only factor in this list that
can be discounted with certainty is the importance of number knowledge because people are
quite capable of learning artificial algebras (e.g., Blessing & Anderson, 1996; Qin et al., 2003)
that have no numeric reference. Also, recent research has expanded upward our estimate of pri-
mates’understanding of number (see Hauser & Spelke, in press, for a review). The other differ-
ences might support the argument that monkeys would be capable of doing algebra if it were
practical to teach them this skill and its prerequisite background knowledge. I cannot disprove
this possibility, but it seems unlikely. Moreover, it does turn out that there is a significant
ACT–R architectural capability required for algebraic manipulation that is not required for the
serial reproduction tasks.

ACT–R models for the serial reproduction tasks require visual, manual, and retrieval buffers
that work in formally similar ways to the models for the algebraic tasks. These, then, cannot be
the source of the differences. However, these buffers in themselves do not allow the mental
re-representation that is key to algebraic symbol manipulation. Although children can perform
these re-representations on paper, writing out transformation after transformation, and thus
saving themselves the need for mental re-representation, they prefer to do it mentally as long as
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things do not get so complex as to exceed their capacity to hold a representation of the critical
algebraic material.

Fig. 7 illustrates the transformations in Fig. 3, somewhat simplified and designed to make
salient the key architectural issues rather than to be faithful to all the details of the learning sim-
ulation. As in Fig. 3 the equation being solved is 7*x + 3 = 38. The simplified mental image of
the equation just holds the intermediate result, but it is the critical piece of information in that it
is what is not supported by external information. For instance, at one point the image in Fig. 7
holds an internal representation of 35 that is intermediate between the original equation and the
final answer of 5. Being able to hold onto such an internal representation, detached from either
stimulus or action, is critical to the model’s algebraic competence. It is tempting to point to the
parietal cortex as what is enabling this algebra problem solving, because the parietal cortex is
what seems to be holding the image of the intermediate result. The region of parietal cortex that
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Fig. 7. A representation of the basic buffer operations required to implement the unwind strategy in ACT–R to
solve the equation 7*x + 3 = 38.



corresponds to the imaginal module does not appear to have a homologue in the monkey brain
(Zilles & Palomero-Gallagher, 2001).

Although there may be some special properties to the human ability to hold such intermedi-
ate results, it is not totally discontinuous from the ability of the monkey. This becomes appar-
ent when one tries to develop an ACT–R model for the monkey task of ordering two items from
two lists. Terrace et al. (2003) showed a generative capacity to the monkey’s serial knowledge
in that it can take a pair of elements from different lists, which it has not seen together, and cor-
rectly order it with high accuracy. Fig. 8 is a similar flowchart for a putative ACT–R model that
I developed for this ordering task. The model assumes that the monkey retrieves the location of
each item in the pair and creates an image that synthesizes the two locations and then picks the
item that is first in this image. Although the imaginal ability in this example may not have all of
the flexibility of human imagery in equation manipulation, it seems essential to be able to have
some internal synthesis of the two objects to make an appropriate decision. I could not figure a
way to do this in ACT–R without such an internal representation. A comparison of Figs. 7 and
8 should make clear that the two tasks do not differ in their capacity demands on the imaginal
representation. Both require a relatively small amount to be held in this working memory. In
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Fig. 8. A representation of the basic buffer operations in ACT–R required to implement the serial ordering task.



fact, the algebra task really requires holding just one number at any time, whereas two items
have to be synthesized in the image for the serial task.

Comparing Figs. 7 and 8, however, reveals a striking difference. The model in Fig. 8 does
not require any state tests against the goal buffer. I could have built a model that included such
state tests (and perhaps such models are appropriate for humans doing this task), but it was un-
necessary. The conditions for the firing of the individual productions are determined by the
states of the other buffers. Specifically, the presentation of the stimulus is the condition for the
look-left production; the encoding of the left element is the condition for the retrieve-left pro-
duction that requests the position of the left element in its list; the retrieval of an element and an
empty image is the condition for the encode-left production that positions the left element in
the image and requests retrieval of the right element; the retrieval of an element and an incom-
plete image is the condition for the encode-right production that similarly places the right ele-
ment; the completion of the image is the condition for the production that selects the first ele-
ment; and the manual selection of that element is the condition for the second production that
selects the second element.

In contrast, because of the iterative nature of the unwind algorithm, it is not possible to find
unique states of the nongoal modules for each production in the algebra model. The model is
faced with multiple situations where it has focused on an element in the equation, has retrieved
an arithmetic fact, and has an image of an intermediate result. Without the help of the control
element in the goal it would not know whether it is time to retrieve another arithmetic fact or
perform another transformation of the equation. Therefore, it sometimes skips retrievals or
transformations and other times repeats them. In this model repeats are innocuous, but skips
mean it fails to solve the problem. For instance, if the model that does not use the control infor-
mation, faced with the equation 3x + 9 = 15, it sometimes responds 6 because it omitted retriev-
ing 6/3 = 2 or because it omitted to use the fact when retrieved.6

This goal buffer has been tentatively associated with the anterior cingulate. The anterior
cingulate is particularly active in studies where participants have to direct their behavior in a
way that violates typical response tendencies. As noted in the introduction, it is particularly ac-
tive in dealing with conflict in the Stroop task during color naming (Carter et al., 2000). We
discussed there the various theories of what is behind this activity. The anterior cingulate has
undergone major evolutionary changes that are only found in humans and the closely related
great apes (Allman, Hakeem, Erwin, Nimchinsky, & Hof, 2001). These changes, which in-
clude a new class of spindle-shaped cells in strongest concentration in the human anterior
cingulate, appear to be related to the ability to achieve appropriate behavior in the presence of
conflicting stimuli.

So where does this leave the question of what enables the human-unique aspects of algebra
problem solving? The critical mental ability seems to be that of re-representation in situations
where neither the external situation nor the other internal buffers indicate what to do next.
Re-representation in the algebra example involves this alternation between retrieval and trans-
formations of the internal representation, ending finally in a response. One needs some sort of
state information to indicate what to do next in a series of steps of re-representation The ante-
rior cingulate is not the only neural structure to have unique properties in the human brain, but
it is one of the players in higher level human cognition, and the role it plays seems to be that of
maintaining a control state in the presence of ambiguous or conflicting information.
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Notes

1. Although the control states in this article will be simple they can contain information
about steps, substeps, and other notes such as whether a borrow exists in a subtraction
problem.

2. There are a number of comments to make on these instructions. First, these instructions
already reflect a distillation of the basic axioms of algebra about doing the same opera-
tion to both sides and collapsing results. The basic axioms generate a large search space
of possible transformations and students are typically given guidance as to how to select
the appropriate transformations (as the students in our experiment were). Second, the
instructions require further elaboration to deal with cases such as (6 – subexpression) =
3 or (6 / subexpression) = 3, where there is an asymmetric operator with the subexpres-
sion on the right. We did not present any such problems to our students. Third, they treat
the special “+0” and “1*” constructions as special cases. Students were given instruc-
tions to do so.

3. Although this is a particularly dramatic example of production compilation, there are
many other instances in Fig. 3 that I have not noted to avoid overly cluttering the figure.

4. Note that Fig. 3 sometimes gives different productions the same name—the goal in
these naming conventions is just to try to indicate the basic function of the rule and dif-
ferent rules are learned with similar functions

5. In fact, none of the regions showed a significant interaction between practice and num-
ber of steps or between practice, number of steps, and scan.

6. These problems can be avoided if one puts control information into the image but then
this looses the separation of control state and problem state.
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