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Abstract: The ACT Programming Tutor is a practice environment that provides
assistance to students as they write short computer programs. The tutor is
constructed around a set of several hundred programming rules called the ideal model
that allows the program to solve the exercises along with the student and provide
immediate feedback on student actions. This paper evaluates the tutor's student
modeling procedure, called knowledge tracing. As the student works, the tutor
maintains an estimate of the probability that the student has learned each rule in the
ideal model. This paper examines whether this assessment of the student's
knowledge state predicts posttest performance. Given the set of leaming probabilities
computed for each student in knowledge tracing, we can try to predict students’
accuracy in completing the posttest exercises. Students’ actual posttest performance
was well fit by these predictions at the level of both complete exercises and
individual goals.

This paper describes an assessment of student modeling in the ACT Programming Tutor. One of the
promises of artificial intelligence in education is increased leaming rates. By modeling students’ knowledge state
we should be able to tailor feedback and task sequencing to the individual student, enabling the student to
achieve a higher level of understanding from a given time investment. The ACT Programming Tutor maintains
a student model and uses this information to guide exercise sequencing. The tutor attempts to provide an
appropriate number and type of practice exercises to help each student achieve mastery of the curriculum as
quickly as possible.

In this paper we examine the validity of the tutor's student modeling process in predicting performance
outside the tutoring environment. The tutor provides immediate feedback on each student action and requires
immediate correction of errors, so the student always remains on some correct solution path. The question is
whether the student model, derived from performance in this constrained environment, predicts students’
programming performance when they are on their own in a no-feedback posttest environment analogous to real-
world programming.

The ACT Programming Tutor

The ACT Programming Tutor is a practice environment for students leaming to program in Lisp, Prolog or
Pascal (Anderson, Corbett, Fincham, Hoffman, & Pelletier, 1992). The Lisp and Prolog modules are presently
employed to teach a self-paced introductory programming course at Camegie Mellon University. The Pascal
module is in use in an introductory programming course in a Pittsburgh high school. The tutor presents
exercises that require students to write short programs. Figure 1 depicts the computer screen at the beginning of
the first Lisp exercise. The problem description appears in the window at the upper left and the student enters
the program in the code window immediately below. The coding interface is similar to a structure editor. In the
figure the student has just entered the Lisp operator car. The symbol <EXPRO> is not Lisp code; rather it is a
syntactic symbol which represents the argument to car. The student will replace this goal reminder with a Lisp
expression, in this exercise the literal list (c d e). Error feedback and help messages appear in the window at the
lower left. As mentioned above, the tutor provides immediate feedback on a symbol-by-symbol basis and
requires immediate error correction. Thus, the student always remains on a recognized solution path.
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The skill meter in the upper right corner of Figure 1 represents the focus of this study. This window
displays the tutor's model of the student's knowledge state. As described immediately below, this model
consists of a set of rules for writing programs. As the student works, the tutor maintains an estimate of the
probability that the student has learned each rule in the set, in a process we call knowledge tracing. Each rule
that has been introduced in the curriculum is represented by a bar graph in the skill meter. The bar graph depicts
the probability that the student has leamed the rule. In the figure, this probability is .50 for three of the rules,
but has risen to .80 for the rule the student has just exercised. In this paper we describe an experiment that
evaluates this student modeling process.
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Figure 1. The APT Programming Tutor interface at the beginning of a Lisp exercise.
The Cognitive Model

A central assumption underlying the tutor is that a cognitive skill such as programming can be modeled as a
set of independent production rules (Anderson, Conrad, & Corbett, 1989). The Lisp, Pascal and Prolog modules
in the programming tutor are each constructed around a set of several hundred language-specific rules for writing
programs called the ideal student model. These rules essentially model performance at the grainsize of individual
code symbols. For example, the following two rules (in English form) are introduced in the first Lisp lesson:

IF the goal is to extract the first element of a list,
THEN code a function call to car
and set a goal to code the list.

IF the goal is to exiract the nth element of a list,

THEN code a function call to car
and set a goal to move the element to the front of the list.
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The tutor attempts to match the student's action at each step in solving an exercise to an applicable rule in the
ideal student model in a process we call model tracing. If a match is found, the assumption is made that the
student has applied an analogous cognitive rule and the tutor's internal representation of the problem state is
updated accordingly. If not, the tutor notifies the student of the error.

The Learning Model

The ideal model also serves as an overlay model of the individual student's knowledge state (Goldstein,
1982). In addition to a cognitive model, knowledge tracing requires leaming and performance assumptions. For
this purpose the tutor assumes a simple two-state learning model. Each coding rule is either in the learned state
or the unlearned state. In knowledge tracing, the tutor maintains a probability estimate that the student has
learned each rule in the ideal model. At each opportunity to apply a rule, the probability that the student knows
the rule is updated, contingent on the accuracy of the student’s action. The Bayesian computational procedure is
a variation of one described by Atkinson (1972) that employs two learning parameters and two performance
parameters, displayed in Table 1. The value of each parameter is allowed to vary across production rules in the
model and is estimated empirically from earlier tutor data. See Corbett and Anderson (1992b) for complete
details on the model and computations.

Table 1
The leaming and performance parameters employed in knowledge tracing.

pLO The probability a rule is in the learned state prior to the first opportunity to apply the
rule (i.e., from reading the text).

pT The probability a rule will make the transition from the unlearned to the learned state
following an opportunity to apply the rule '

pG The probability a student will guess correctly if the applicable rule is in the unleamed
state

pS The probability the student will slip and make an error when the applicable rule is in
the leamed state

Mastery Learning

The tutor uses the knowledge tracing mechanism in an attempt to implement mastery learning. Each lesson
in the tutor is divided into sections in which a smali set of programming rules is introduced. Students
complete a set of required exercises in each section that cover the rules being introduced, then continue working
on remedial exercises in the section until the learning probability of every rule in the section has reached a
criterion value, 0.95.

Student Modeling Validity

The remediation mechanism passed a minimal validity test when first introduced. Posttest scores were
higher when knowledge tracing was in operation (Anderson, Conrad & Corbeit, 1989). Recently we have begun
examining the validity of knowledge tracing in more detail. While the goal of knowledge tracing is to infer a
student’s knowledge state, the assumptions of the model can also be used to predict student accuracy at each goal
(step) in completing the tutor exercises. When a set of best fitting parameter estimates is used, the correlation
of actual and expected error rates across the goals in a tutor lesson is quite high, on the order of 0.85 - 0.90
(Corbett & Anderson, 1992a, 1992b).

The tutor's knowledge tracing mechanism has also been shown to have some posttest predictive validity,
although we have been limited to a fairly coarse analysis previously. For each student we have computed the
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mean of the final learning probabilities (the probabilities that the student has leamed the rules) and correlated
this mean with posttest score across subjects. This correlation was reliable in one study, r = 0.47 (Corbett &
Anderson, 1992b). However, if students practice with the tutor until reaching the mastery criterion, the final
leaming probabilities are tightly distributed between 0.95 and 1.0 and there is little potential for a predictive
relationship.

The purpose of this study is to perform a more rigorous assessment. The analyses to date have been derived
from course data. While we could examine the correlation of learning probabilities and posttest scores as
described above, we were not able to predict absolute performance in the course’s posttest environment for a
variety of reasons. In the current study, students take postiests with a structure editor that is virtually identical
to the tutor, except that no help is provided. This editor has three useful qualities: (1) symbols (atoms) are the
basic unit of code entry, as in the tutor, (2) the editor ensures that the student’s code is syntactically well-formed
and (3) the editor generates a complete trace of the students’ actions.

This posttest environment should enable us to make absolute performance predictions at the level of whole
exercises and at the level of individual goals in completing the posttest. An analysis at the level of individual
posttest goals is of interest for two reasons. First, it represents a fine-grained analysis of the predictive validity
of student modeling in the tutor. Second, it affords us an opportunity to begin applying the knowledge tracing
model to environments in which students are not channeled onto a correct solution path through immediate
feedback and error correction. We have implemented a number of non-immediate feedback tutors in the past that
have a variety of attractive features (Corbett & Anderson, 1989, 1990, 1991). While the analysis becomes more
complicated, it should be possible to generalize knowledge tracing to such environments.

The Design of the Study

Students in this experiment worked through the early sections of the ACT Programming Tutor Lisp
curriculum and completed three posttests. The study is designed to assess the posttest predictive validity of the

tutor's knowledge tracing procedure.

Subjects

Twenty college students were recruited for pay. The students’ mean Quantitative and Verbal SAT scores were
615 and 568 respectively. These students had taken an average of 1.8 programming courses previously in high
school and/or college, but were not familiar with Lisp.

The Curriculum

The curriculum in this study introduces two data structures, atoms (symbols) and lists (ordered hierarchical
groupings of atoms), function calls (operations) and function definitions. The curricalum is divided into six
sections. The first section introduces three extractor functions, car, cdr and reverse, that return components of or
a transformation of a list. The second and third sections introduce three constructor functions, append, cons and
list that build new lists. In the fourth section extractor algorithms are introduced - nested functions calls that
apply successive extractor functions to extract components of lists. In the fifth section students learn to define
new functions that employ these extractor algorithms. In the sixth section students define functions that
employ both constructor and extractor functions. These six sections contain a total of sixty-four required
exercises. Each of these exercises involves anywhere from two to fourteen coding steps for a total of 345
programming steps or goals, each of which corresponds to a cognitive rule firing. The cognitive model for this
portion of the curriculum contains sixty-eight rules.

Procedure

Students worked through the curriculum at their own pace. In each section students read text describing
Lisp, then completed a set of required exercises that cover the programming rules being introduced. In the first
five sections, students then completed remedial exercises as needed to bring all production rules introduced in the
section to a mastery criterion {(minimum learning probability of 0.95). In the final section, students completed
a fixed set of exercises with no remediation. This fixed set contained twice the minimum number of exercises
that is required to bring all rules to criterion if no errors are made.
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Following the first, fourth and sixth sections students completed a posttest. The posttests contained six,
twelve and fifteen programming exercises respectively. These exercises are similar to the ones completed with
the tor. The quiz interface was a structure editor, identical to the tutor interface, except that (1) students can
freely edit their code and (2) no help is available.

Results

Students completed an average of 18 remedial exercises in addition to the 64 required exercises. The number
of remedial exercises ranged from 3 to 63. The posttest results of one student were lost because of technical
difficulties.

Internal Validity

We can use the knowledge tracing model to predict accuracy at each goal (step) as students work with the
tutor. Students complete 345 coding goals across the sixty-four required tutor exercises. The probability that
student s will respond correctly at goal i is given by the following performance equation:

PCis = plrs '.(1 -pSp) + (1 - pLrs) * pGr

That is, the probability that student s will successfully apply an appropriate coding rule 7 at step i across the
exercises is the sum of two products: (1) the probability that rule 7 is currently in the leamned state for student s
times the probability of a correct response if the rule is in the learned state, and (2) the probability that rule 7 is
not currently in the learned state for student s times the probability of a correct guess if the rule is not in the
learned state.

To assess the iniemal validity of the knowledge tracing process we examined the tutor protocol files and
traced each student's performance goal-by-goal through the curriculum. At each of the 345 goals in the required
exercises, we first predicted the probability of a correct response given the applicable rule, then applied the the
knowledge tracing procedure to update the leamning probability for the applicable rule. We did not fit (predict
accuracy for) the remedial exercises, however we did update learning probabilities at these goals, just as the ttor
would.

The leamning and performance parameter estimates built into the tutor, yielded a strong correlation of actual
and expected accuracy rates across the 345 goals, r = 0.75, p < .0001. The mean squared error in the fit was
0.01. In an effort to maximize the internal validity of the model, we employed a curve fitting program to
generate the best fitting parameter estimates for each rule. As before, we fit the goals in the required exercises
and traced both the required and remedial exercises. These best fitting parameter estimates yielded somewhat
greater internal validity; actual and expected accuracy values correlated 0.90 and the mean squared error of the fit
was .0001. We used these best fitting parameter estimates, rather than the estimates built into the tutor, in
assessing posttest predictive validity.

Posttest Exercise Predictions

In principle we can predict response accuracy at each goal in the posttest with the above performance
equation just as in the tutor. We can use the final probability pLrs computed for each rule and subject in
knowledge tracing to predict whether subject s will successfully apply rule r when needed in the posttest. In
applying the performance equation to the posttests, we assume the same performance parameter estimates PSr
and pGr as in the tutor, and make the simplifying assumption that no leaming is occurring during the posttest,
(pTr = 0).

If production rules are independent as the model assumes, then we can derive one straightforward accuracy
prediction. The probability that a student will complete an exercise correctly is given by

npCi

the product of the probabilities that the student will respond correctly at each successive goal in solving the
exercise.
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For each student and each posttest we computed (1) the proportion of exercises actually completed correctly
and (2) the mean expected probability of completing each exercise comrectly. The average of these statistics
across subjects is displayed in Table 2. (The standard deviation of these means is presented in parentheses). In
addition the comrelation and mean squared error of the actual and expected measures across subjects is displayed.
As can be seen the knowledge tracing and remediation model predicts the mean performance of the group quite
well. The actual and expected values are quite similar across all three posttests. Students are performing
somewhat better than expected in the second posttest and somewhat worse in the third posttest. The correlation
of actual and expected values across subjects is negligible in the first two posttests, but is substantial in the
third posttest (r = 0.68, p < .0001). In the first five sections of the curriculum students practiced with the tutor
until reaching mastery criterion. Consequently there is little variability in learning probability estimates across
students in these sections and little potential for a predictive relationship in the first two posttests. In the final
section however, students completed a fixed set of exercises and the estimates of the students knowledge state
varied more substantially. Under these circumstances, the probability estimates the student had learned the
coding rules are highly predictive of individual differences in students’ posttest performance.

Table 2
Actual and expected proportion of exercises completed correctly across
subjects in each of the three posttests.

Mean Probability Correct
Actual Expected I MSE
Posttest 1 .89 88 -26 .01
10 (01
Posttest 2 .89 .80 20 .02
(.13) (.003)
Posttest 3 55 .61 .68 .06
(:26) (02)

Posttest Coding Goal Predictions

In attempting to predict accuracy at each goal in the posttest exercises, decisions must be made about how to
score actions when a student has left a recognizable solution path. We used a relatively simple scheme with
three rules: (1) if a student makes a mistake at one goal in the (hierarchical) goal tree, we continue tracing
actions at sibling goals; (2) if a student makes a within-category error (substituting one constructor function for
another or one extractor for another), we continued tracing descendent goals; and (3) if a student makes a non-
categorical error, tracing of descendents is suspended, but resumed if the error is corrected. This scoring scheme
is somewhat overly strict. If the student makes a single error, e.g., omitting the outermost of nested extractor
functions, or perhaps inverting the the order of nested extractor functions, each action in the series may be scored
as incorrect.

For each student and each posttest we computed (1) the proportion of goals correctly satisfied across all
exercises and (2) the mean expected probability of correctly satisfying a goal across exercises. The average of
these statistics across subjects is displayed in Table 3. (The standard deviation of these means is presented in
parentheses). In addition the correlation and mean squared error of the actual and expected measures across
subjects is displayed. The overall pattern of results is quite similar to Table 2. The actual and expected accuracy
rates are quite similar across the three tests, although students are underperforming expectations on the third
posttest. Actual and expected accuracy is uncorrelated for the first two tests again, but very strongly correlated
for the third test, r = 0.80, p < .0001.
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Table 3-
Actual and expected proportion of goals satisfied correctly across

subjects in each of the three posttests.
Mean Probability Comrect
Actual Expected r MSE
Posttest 1 94 94 =22 004
(.06) (.005)
Posttest 2 94 93 .10 01
09 (.002)
Posttest 3 83 93 80 03
(.15) (01
Discussion

The model that underlies knowledge tracing again provided a good fit to accuracy data in the tutor. More
importantly, the knowledge tracing model also provided a good fit to posttest accuracy data. The model predicted
mean posttest accuracy across subjects quite well at both the level of complete exercises and individual
programming goals. Moreover, when the probability of having learned the rules varied substantially across
subjects, in the case of the third test, the model was quite sensitive to individual differences among students in
posttest performance for both exercises and individual goals. It should be noted that these predictions were based
on best-fitting leaming and performance parameters for this group of subjects and so these results represent an
upper bound on the predictive validity of knowledge tracing. We have made substantial changes in the cognitive
rule set between studies to date, so we have yet to observe how well a set of parameter estimates generalizes
across different groups of students.

There are some indications in the data that knowledge tracing can be refined further. First, the actual
accuracy rates are substantially more variable across subjects than the expected accuracy rates. In part this is
expected due to sampling variability, but it may also result in part from holding learning and performance
parameters constant across subjects. In using best fitting parameter estimates for the group as a whole the
model will tend to underestimate the knowledge state of students who are doing well and overestimate the
knowledge state of students doing poorly, thus reducing the variability in expected accuracy rates.. We have
observed related phenomena in earlier studies (Corbett & Anderson, 1992ab). By dynamically adjusting the four
learning and performance parameters as the student works through the tutor exercises it should be possible to
improve the model's sensitivity to individual differences.

Predictive accuracy may also be enhanced by incorporating a retention factor into knowledge tracing. On
average students performed slightly below expectation on the third posttest, but this effect is largely attributable
to forgetting. Each posttest was cumulative and eight of the exercises on the third posttest were similar to the
exercises on the second posttest. Students averaged only 60% correct on these exercises. This is a substantial
drop from the 89% success rate achieved with similar exercises on the second posttest rate and substantially less
the the 77% success rate predicted by the model. Meanwhile students performed slightly better than predicted
on the remaining seven exercises in the third test that reflected the final two tutor sections (50% actual success
vs 41% predicted success). This suggests that we need to incorporate a retention factor into knowledge tracing,
particularly since forgetting may contribute to individual differences in postiest performance.

In summary, the general pattern of results is encouraging confirmation of the knowledge tracing procedure.
The model's success in predicting posttest performance at the level of individual goals (rule applications)
suggests that knowledge tracing need not be limited to immediate feedback environments that constrain students
to remain on recognized solution paths. While immediate error correction simplifies the process, student
modeling can be pursued in less constrained environments to the extent that (1) the relative independence of task
subgoals can be specified and (2) the tutor can recognize when the student recovers from an error and moves back
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onto a solution path. In the case of programming in particular, such flexibility also makes it possible to trace
students' program testing and debugging skills. If the code generation model embedded in the current tutors is
supplemented with a code testing and debugging model, then students’ movement off a recognizable code
generation path would become the occasion to monitor their error detection and recovery skills.
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