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Abstract: Previously we reported on the use of Cognitive Architectures in providing realistic training opponents for 
virtual training in military operations in urban terrain (MOUT).  That report detailed the use of ACT-R, the Unreal 
Tournament platform, a mapping agent for extracting cognitive primitives, and a brief description of a basic scenario 
involving agents within the MOUT context.  This report extends the former report by describing in detail the spatial 
representation used by agents as well as the agents’ reliance on planning, teamwork, and communication and an 
authoring tool to support these facilities within the ACT-R cognitive architecture development environment. 
 
1. Using a Cognitive Architecture to Simulate 
Opponents in Virtual Environments 
The Virtual Technologies and Environments (VIRTE) 
program aims to develop and demonstrate leap-ahead 
human-immersive technology for naval training.  The 
goal is to train warriors for increasing complexity and 
chaos by supplementing and complementing live 
simulations using virtual and wargaming simulations and 
other emerging technologies.  VIRTE aims to incorporate 
current understanding of human behavior and learning 
theories into systems, leverage commercially available 
advanced technology, evolve this current understanding 
into products, and then transition these products to the 
naval forces.  In a previous paper, we introduced our 
effort to improve the cognitive validity of synthetic 
soldier entities in simulations.  This effort involved the 

ACT-R cognitive architecture for modeling and the 
Unreal Tournament virtual reality game platform for a 
simulation environment.  The current report details further 
progress on the project including the refinement and 
development of robust spatial reasoning, communication, 
and teamwork between cognitive agents. [4] 
 
2. Perception in a Virtual Environment 
The context an agent experiences depends completely on 
the senses it is provided with to perceive that context: the 
agent’s reality is the internal representation of those 
senses.  The ACT-R/MOUT framework currently 
provides for visual, auditory, and tactile senses.  Some of 
the primitives obtained through these senses and their 
attributes are listed in Figure 1 below. 
 

Figure 1: Perceptual Primitives 
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The ACT-R/MOUT framework uses architectural features 
to describe the visual surroundings of an agent.  These 
visual primitives include walls, corners (intersections of 
walls), doorways, stairwells, and entrances.  In addition 
there is an extensible set of object primitives including 
other agents and items such as weapons, ammunition, and 
furniture.  Auditory primitives include verbal messages 
(encoded as text), and sounds such as weapon fire, 
footsteps, etc., which are localized in space.  Tactile 
inputs are limited to sensing contact with architecture or 
objects in the environment.  This allows the agent to, for 
example, feel its way along a wall, or to stop backing up 
when it makes contact with another player. 

2.1 Spatial Representation 
Many of the senses provide information about localization 
in space.  In order to perceive, react, navigate, and plan, it 
is necessary for the agents to have a robust spatial 
representation.  The agents use a representation based on 
human spatial cognition.  Agents can represent things in 
two fundamental ways: where something is relative to the 
agent’s location, or egocentrically (e.g., something is to 
my left); or where something is in absolute terms relative 
to a world coordinate system, or allocentrically (e.g., 
something is at a particular latitude/longitude).  This 
combination of egocentric and allocentric representations 

has previously been used successfully in systems such as 
TAC-AIR Soar [16].  In addition, the agents’ design is 
influenced by Frank’s work on navigation and spatial 
reasoning in autonomous robots [7], which also borrows 
heavily from studies of human spatial cognition and 
incorporates many of the recent advances in specifying a 
qualitative spatial representation calculus. [5] 
 
The egocentric representation of an item includes both the 
distance to the item and its relative bearing.  Distance and 
bearing are both represented quantitatively and 
qualitatively; these alternative representations are 
complementary and provide unique advantages for 
processing in certain situations.  Quantitative 
representations allow for precise reasoning about 
geometry, while qualitative representations provide an 
advantage for applying reasoning and logic to planning 
and decision-making. 
 
In detail, distance is represented both as: 1) absolute 
distance to the target, and 2) descriptive distance to the 
target.  Absolute distance is simply a numerical 
estimation of the distance.  In psychophysical studies, 
human subjects have consistently demonstrated the ability 
to generate numerical distance estimates that scale 
linearly with increasing distance (i.e., best described by a 

Figure 2: Egocentric and Allocentric Representations 
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power function with an exponent of 1) within the ranges 
typically encountered in settings such as MOUT [10].  A 
descriptive distance, in this implementation, is how 
distant something is relative to the current visual horizon, 
and ranges across “here” (within 1/8 the distance to the 
horizon), “near” (between 1/8 and 1/4 the distance to the 
horizon), “far” (between 1/4 and 1/2 the distance to the 
horizon), and “very far” (beyond 1/2 the distance to the 
horizon).  Following work on qualitative spatial calculus 
[5], the number of levels of distance is pragmatically 
selected to provide an appropriate level of granularity to 
afford the desired behavior of the agent.   
 
In the context of this modeling effort, the closest distance, 
‘here’, is used to indicate that a particular location is 
within the immediate proximity of the agent, 
corresponding to the region described by psychological 
theory as ‘personal space’.  The second two distances, 
‘near’ and ‘far’, divide the space used for local navigation 
such as walking through doorways and corresponds to 
action space.  The final distinction, ‘very far’, allows for 
organization of behavior relative to very distant objects 
and architecture, which fall within ‘vista space’ [6].  The 
organization of absolute distance numerically and 
qualitative distances logarithmically is consistent with 
studies indicating that children commonly represent 
numerical quantities using both representations [14], as 
well as with recent studies indicating that adults compress 
space at larger distances [6].  This logarithmic 
compression of numerical intervals provides a simple way 
to extend this representation to different domains by 
either 1) varying the relative scale (in this case, the 
distance to the horizon) to create larger regions 
corresponding to the distance labels, or 2) by extending 
the scale to include more levels (with each additional 
level doubling the distance represented). 
 
Bearing is represented as both: 1) absolute compass 
bearing to target relative to current orientation (e.g., 30 
degrees to the left, 5 degrees up), and 2) descriptive 
bearing to the target.  A descriptive bearing may be 
“right”, “left”, “ahead”, “behind”, or any of the four 
intermediate bearings “ahead right”, “ahead left”, “behind 
right”, or “behind left”.  See Figure 2 for a diagram of 
this.  In keeping with studies of human spatial cognition 
indicating that humans maintain egocentric 
representations with much more accuracy than allocentric 
representations, the agents rely extensively on egocentric 
representations.  [9] 
 
The allocentric representation of an item includes the 
location of an item in the world coordinate system (in this 
case, x, y, and z) and its orientation relative to that 
coordinate system (pitch, yaw, and roll – the angles 
relative to the axes).  An allocentric representation is 
particularly important in reference to maps (which are 

typically defined relative to some world coordinate 
system), and correspondingly to navigation tasks. 
 
Though this is not immediately obvious, allocentric and 
egocentric representations are complementary.  The 
egocentric representation of an object always has a 
corresponding allocentric representation.  Many studies of 
human spatial cognition have been directed at how people 
translate from one representation to the other (e.g., map 
following, [9]).  In general, the finding in studies of 
human spatial cognition is that the egocentric 
representation of the world is privileged, and that the 
allocentric representation of the world is calculated at a 
cost.  This is also supported by computational work such 
as Agre and Chapman’s seminal work on AI spatial 
reasoning systems such as Pengi [1], which showed that 
situated, or indexical, representations are simpler for 
some calculations. 
 
An example that demonstrates the utility of egocentric 
representations is aiming at a target.  If player A is 
attempting to target a moving player, player B, the 
egocentric representation is extremely useful in specifying 
the necessary actions of player A.  In this case, the 
absolute bearing and speed of player B is not as 
immediately useful – player A needs to know whether 
they are on target, and what rate of rotation (if any) is 
necessary to remain on target.  This allows writing a rule 
for aiming such as the following pseudo-rule: 
 

If there is a selected target whose 
bearing to me is greater than 1 degree 
then correct my aim by turning towards 
the target. 

 
The use of an egocentric representation allows authoring 
rules that are semantically transparent.  Although it would 
be possible to author the same rule using an allocentric 
representation, the rule would lose much of its 
transparency.  Similarly, many of the doctrinal rules for 
MOUT can be spelled out clearly using an egocentric 
representation.  For example, the following describes how 
to employ the cross method of clearing a room: 
 

“When employing the cross method, two Marines 
position themselves on either side of the entryway. 
Each Marine faces into the room covering the corner 
of the room opposite his position. On a prearranged 
signal, each Marine alternately enters the room. Each 
Marine crosses quickly to the opposite corner while 
covering the half of the room toward which he is 
moving. Once in the near corner, he assumes an 
outboard kneeling position to reduce his silhouette 
and continues to maintain coverage of his half of the 
room.” [11, p. A-34] 

 



3. Navigation 
Navigation is one of the most essential tasks an agent 
must undertake in a MOUT environment.  Navigation is 
accomplished through combining basic locomotive 
behavior with the immediate results of perception – that 
which is perceived at that moment – and interaction with 
a memory-based cognitive map of the environment. 
 
Locomotion is simply moving from one location to 
another.  This is a fundamental behavior that need not be 
attended to once it is initiated, and thus may occur in 
parallel with other activities.  The basic behavior of 
locomotion involves commencing movement to a 
location, the continuation of that movement while not at 
the destination, the abandonment of that movement if an 
obstacle is encountered, and the cessation of movement 
upon arrival at the destination.  In addition, locomotion 
can be performed in several modes: walking, running, 
stalking, and sidestepping while facing another direction.  
Receiving an order or reacting to a new threat can also 
interrupt locomotion. 
 
Higher order navigational behavior involves an 
interaction of the cognitive map of the environment (the 
allocentric reference frame) with the current visual scene 
(egocentric cues) and memory for goals and past events 
(paths followed and destinations).  As such, it represents a 
significant theoretical challenge in both cognitive 
psychology [9] and robotics [7]. 
 
Agents in this simulation use a simple node-link 
representation for rooms and pathways between them.  
Attacking agents build up a representation of rooms 
visited, as well as the episodic trace of items and other 
agents seen there.  When moving from the current room 
through a doorway to a new room, the agent creates a 
chunk in declarative memory corresponding to that path.  
Defending agents, who are assumed to have intimate 
knowledge of the area to be defended, are given a 
complete representation of the rooms and pathways 
connecting them within a building.  This allows them to 
fluidly and quickly choose paths for attack and escape 
which real defenders would have knowledge of. 
 
Although memory for paths exists in a complete form in 
the defenders’ declarative memories, the attackers may be 
forced to rely on other methods.  In addition to 
remembering the path followed, attackers may also 
encode individual moves at particular situations.  This is 
similar to the heuristic applied by some people who 
“retrace their footsteps” when trying to find their way.  
These previous moves can be actions relative to 
landmarks (e.g., turn left at the L-shaped hall), actions 
relative to an allocentric frame (e.g., proceed at a compass 
bearing of 90 degrees), or actions relative to an egocentric 
frame (e.g., turn left 45 degrees).  These representations 

are complementary, and are typically used by people as 
the context allows.  Landmarks are often preferred, but in 
a situation where landmarks are impoverished, people 
quickly adopt the other strategies.  If going to a house in a 
subdivision where all of the houses look alike, people 
commonly depend on memory for the moves such as 
“turn left at the second street in the subdivision and go to 
the fourth house on the right”.  In a combat context, an 
allocentric frame such as that encoded in a map is often 
used.  This is particularly useful in military situations for 
exchanging information about threats, destinations, and 
movements, since allocentric coordinates such as GPS 
coordinates are unambiguous, while egocentric 
coordinates depend on knowing the egocentric orientation 
of the perceiver and are therefore often less useful. 
 
A concrete example of the interplay of egocentric and 
allocentric representations is the interpretation of a spot 
report, such as the notification of a hostile encounter.  In 
this case, the notifying agent translates the location of the 
hostile force to allocentric, or world-centered coordinates 
(e.g., GPS location) and communicates this location to 
friendly forces.  An agent receiving the communication 
determines if the location of the hostile contact is near 
enough, using qualitative distance to reason, to make it 
necessary to take action.  In this case, if the hostile 
contact is proximate, the agent must determine the 
egocentric bearing to the contact using the allocentric 
coordinates.  If the agent receiving word of a proximate 
threat is not facing the direction indicated by the spot 
report, the agent must turn to face the contact. 

Figure 3: Node-link Representation of Rooms and 
Pathways and a Plan to Reach a Destination
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4. ACT-R 
ACT-R is a unified architecture of cognition developed 
over the last 30 years at Carnegie Mellon University.  At a 
fine-grained scale it has accounted for hundreds of 
phenomena from the cognitive psychology and human 
factors literature.    The most recent version, ACT-R 5.0, 
is a modular architecture composed of interacting 
modules for declarative memory, perceptual systems such 
as vision and audition modules, motor systems such as a 
manual module, all synchronized through a central 
production system (see Figure 4).  This modular view of 
cognition is a reflection both of functional constraints and 
of recent advances in neuroscience concerning the 
localization of brain functions.  ACT-R is also a hybrid 

system that combines a tractable symbolic level that 
enables the easy specification of complex cognitive 
functions, with a subsymbolic level that tunes itself to the 
statistical structure of the environment to provide the 
graded characteristics of cognition such as adaptivity, 
robustness and stochasticity. [2] 
 
The central part of the architecture is the production 
module.  A production can match the contents of any 

combination of buffers, including the goal, which holds 
the current context and intentions, the retrieval buffer 
which holds the most recent chunk retrieved from 
declarative memory, visual and auditory buffers that hold 
the current sensory information, the manual buffer which 
holds the current state of the motor module (e.g. walking, 
firing, etc), as well as buffers defined specially for the 
task.  The highest-rated matching production is selected to 
effect a change in one or more buffers, which in turn 
trigger an action in the corresponding module(s).  This 
can be an external action (movement, firing, etc) or an 
internal action such as requesting information from 
memory.  Retrieval from memory functions on a similar 
manner.  A pattern specified in a production is sent for 

matching in declarative memory.  Each chunk competes 
for retrieval, with the most active chunk selected and 
returned in the retrieval buffer.  The activation of a chunk 
is a function of its past frequency and recency of use, the 
degree to which it matches the requested pattern, plus 
stochastic noise.  Those factors confer memory retrievals, 
and behavior in general, desirable “soft” properties such 
as adaptivity to changing circumstances, generalization to 
similar situations, and variability. 
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4.1 Implementing Planning and Teamwork in ACT-R 
Within the framework developed for this project, a set of 
productions interprets the schema within the current 
context, leading to a literal interpretation of the schema 
for that context.  In this way, an abstract plan plus a 
context results in a set of concrete actions.  This allows 
the abstract plan to be fairly brief and vague until the 
agent actually selects it to be put into action.  [13] 
 
The current modeling effort includes plans for a team of 
two for clearing: rooms with and without doors, halls, L-
corners, T-intersections, and stairs.  In addition, plans are 
included for advancing and retreating in a leapfrog style, 
and for firing a defensive shot in an attempt to cause 
casualties immediately prior to escaping (cut and run).  A 
sample chart of the interactions of two agents clearing an 
L-shaped hallway is presented below in Figure 5. 
 
At each step of the plan, agents perform an action, 
communicate, or wait for a predetermined signal or length 
of time before moving on to their next action.  In this 
way, the agents synchronize their actions taking turns 
appropriately.  The plans the agents adhere to are not ad-
hoc but instead come directly from doctrinal MOUT 
documents.  Doctrine typically not only specifies how one 
agent should be positioned relative to another for 
activities such as clearing L-shaped halls but even 
specifies the exact language to be used in this situation.  
This knowledge is typically a set of steps spelled out in 
declarative form with the particular actions, triggers, and 
synchronization of action all clearly defined.  Given the 
cookbook nature of some of these doctrinal maneuvers, 
we noticed an opportunity to create an authoring tool to 
aid in the conversion of doctrine to cognitive models. [11] 

4.2 Authoring Tools 
The model for the agents described here was authored like 
a typical ACT-R model, that is the knowledge structures, 
especially declarative chunks of information and 
production rules, were written using an abstract notation 
rather typical of production systems.  Table 1 presents a 
typical example of a production rule and related chunks: 
 

 The production implements the sequential retrieval of a 
piece of an action plan, and the declarative chunks 
represent some of those action pieces.  While the details 
of the syntax do not matter, what is important is that 
authoring, debugging and maintaining the model is a 
highly specialized skill left to knowledge engineers 
familiar with the particular formalism in which the agent 
is implemented.  A very desirable improvement would be 
to remove direct involvement with the syntax to allow 
subject matter experts to directly author behavioral 
models rather than have their knowledge extracted and 
codified by knowledge engineers.  This would result in a 
faster, cheaper and easier development of behavioral 
models than the current, specialized, way.  We are 
currently working toward developing an interface that 
would provide a first step toward that end.  A simple 
mock up to illustrate the issues is provided in Figure 5. 
 
The situation involves two agents, L for Leader and F for 
Follower, moving in coordinated fashion through a 
sequence of positions and actions.  Their various positions 
are indicated by an index.  Solid arrows between 
successive positions indicate movement.  Dotted arrows 
indicate when an agent waits for the other to have 
performed an action (such as reached a position) to 
proceed with the next step of its plan.  Dashed arrows 
indicate synchronized actions between the two agents.  
Other codes specific to the domain can be added to the 
graphical interface in a modular fashion. 

Table 1: ACT-R Syntax of Productions (left) and 
Chunks (right) 

(p get-next-action 
   =goal> 
      isa action 
      plan =plan 
      index =index 
      type nil 
      argument nil 
   =action> 
      isa action 
      plan =plan 
      index =index 
      type =type 
      argument =argument 
==> 
   =goal> 
      index (1+ =index) 
      type =type 
      argument =argument) 

 (action11 
  isa action 
  plan 1 
  index 1 
  type move 
  argument l1) 
 (action12 
  isa action 
  plan 1 
  index 2 
  type wait 
  argument go) 
(action13 
  isa action 
  plan 1 
  index 3 
  type end 
  argument none) 



Figure 5: Authoring Interface 
 
All those codes transform readily into a piece of the plan 
for each agent as encoded in declarative chunks in Table 
1.  Each chunk contains a number of slot.  The index of 
the plan, plan, and the index of each action, index, can 
easily be supplied automatically by the interface.  The 
nature of the action, type, depends on the code used in the 
graphical interface, e.g. a solid line would translate into a 
move action, etc.  A list of interfaces codes and associated 
actions can simply be encoded into the interface for each 
domain.  The last slot, argument, is an action qualifier, 
such as where to move, e.g. to position L2.  This 
argument represents the most difficult part of the 
mapping, because obviously one does not want to encode 
a specific location but instead one that will generalize to 
similar situations (in this case, the position nearest the 
corner of the L-shaped hallway).  Humans, even non-
experts, usually understand readily using a broad common 
sense knowledge base the set of spatial relationships 
between the various positions and landmarks to generalize 
them across situations, e.g. to symmetrical situations.  The 
challenge before us is to either provide in the model a 
sufficient knowledge base of the domain to supply those 
spatial relationships automatically, or to provide in the 
authoring interface a set of primitives to allow the subject 
matter experts to specify the relationships themselves.  
More likely, a combination of the two will result, with an 
iterative dialog between authoring tool and SME taking 
place to disambiguate the generalization of the specific 
plan. 

4.3 Proceduralization 
Plans of action are represented in the form of a list of 
declarative chunks (see Table 1 for an instance) each 
representing a particular step of action such as moving to 
a location, waiting for a partner, firing at a target, etc.  

The execution of those plans takes the form illustrated in 
Figure 6.  Each cycle consists of a production firing 
requesting the retrieval of the next step (PR), the retrieval 
itself (Ret), then one or more production firings 
implementing that course of action (PA). 
 

PR PA PR

Ret

PC

PA

 
Figure 6: Knowledge Compilation 

 
While production firings are quite rapid (usually taking 
about 50 milliseconds), retrieval of a chunk of 
information from declarative memory typically take 
several hundreds of milliseconds.  This corresponds to a 
poorly trained opponent who consistently thinks about his 
actions rather than simply executing them.  To represent a 
better trained opponent able to execute plans of action 
much more quickly and efficiently, one can take 
advantage of a feature of the ACT-R architecture which 
compiles consecutive productions, together with an 
intervening information request such as retrieval from 
memory, into a single production (PC), specialized to the 
task at hand, which can then fire much more quickly than 
the series of interpretive steps that it replaced.   
 
One feature of declarative retrievals is the ability to 
generalize to related situations based on similarities 
between components such as distances, angles, 
appearances, etc.  This is quite useful in applying plans of 
action flexibly to situations that do not quite match the 
original design.  We are currently working on endowing 
the production matching process with the same capacities 
for generalization to similar situations.  In the current 
version of ACT-R, the range of application of a 
production has to be specified by the modeler, a practice 
that is neither robust or efficient, nor compatible with the 
use of the production compilation mechanism.  Our 
modification to the ACT-R architecture allows us, 
instead, to specify a prototypical case for matching a 
production.  This is explained in detail in the following 
section. 



4.4 Flexibility and Generalization in Production Rule 
Pattern Matching 
 
Perhaps the most significant difficulty in authoring 
production system models (e.g. expert systems) is 
specifying the conditions under which productions can 
apply.  Because of the lack of a conventional control 
structure, it is often difficult for the author to forecast 
exactly the full range of symbolic conditions uder which 
an action is applicable.  Moreover, in dynamic, 
approximate and uncertain domains (such as a MOUT 
simulation), the all-or-none symbolic conditions (i.e. 
either specify a specific value required or else no 
restriction on that value) that determine production rules’ 
applicability have significant limitations in capturing the 
loose range of conditions under which a behavior might 
be applicable.  What is desired is the capability of having 
a production specify a canonical case in which an action 
is applicable, then have the production system generalize 
it to related situations.  This is similar to human training 
in which an instructor demonstrates a particular technique 
but leaves it to the students to learn by experience the 
details of its applicability. 
 
A similar restriction on matching chunks of information 
in declarative memory has long been recognized and 
remediated with the addition of a partial matching 
mechanism to memory retrieval.  That mechanism allows 
chunks that only partially match the desired pattern 
specified by a production retrieval request to qualify for 
matching.  A chunk’s activation, which represents in 
ACT-R the likelihood of a chunk being relevant to a 
particular situation, is decreased by the amount of 
mismatch, thereby reducing the probability of retrieving 
that chunk but not eliminating it altogether.  The 
similarity values used in specifying partial matches 
between chunk values can be viewed as a high-level 
equivalent to distributed representations (specifically, to 
the dot-product between representation vectors) in PDP 
networks [12].  It seems logical to implement the same 
mechanism for production rule matching, thereby 
emphasizing the symmetry between the declarative and 
procedural parts of architecture by unifying their 
matching mechanisms.  Practically, this would allow 
pieces of knowledge that were specified and used as 
declarative instances to seamlessly transition to 
production rules. 
 
Currently, only production rules whose conditions match 
perfectly to the current state of various information 
buffers (goal, memory retrieval, perceptual, etc) qualify to 
enter the conflict set.  Since ACT-R specifies that only 
one production can fire at a time, the rule with the highest 
expected utility is selected from the conflict set as the one 
to fire.  The utility of a production rule is learned by a 

Bayesian mechanism as a function of its past history to 
reflect the probability and cost of achieving its goal.  In a 
manner similar to partial matching in declarative memory, 
all rules (subject to types restrictions for tractability 
reasons) will now be applicable but the new mechanism 
of production rule matching will scale the utility of a rule 
by the degree to which its conditions match the current 
state of the buffers.  Specifically, the scale utility (SUp) of 
a rule p is specified as: 
 
SU p = U p + MP ⋅ Simvd

conds
∑   

 Figure 7: Scaled Utility Equation 
 
where Up is the usual utility of the rule, and the penalty 
term is a product of MP, a mismatch scaling constant, and 
Simvd, the similarity between the actual value v present in 
a buffer and the desired value d specified in the 
production condition, summed over all production 
conditions.  Similarities are 0 for a perfect match, leading 
to no change in production utility, and negative for less-
than perfect matches, leading to decrement in utility that 
lowers the probability of the rule being selected with the 
degree of mismatch.  The mismatch penalty MP can be 
seen as a regulating factor, with large values trending 
toward the usual all-or-none symbolic matching. 
 
While this architectural extension remains to be fully 
exercised, on limited test cases it succeeds in providing 
the desired approximate and adaptive quality for 
production rule matching.  All things being equal, 
productions will generalize equally around their ideal 
applicability condition.  However, productions with 
higher utility will have a broader range of applicability, 
up to the point where they reach their limits and failures 
lower their utility, thereby providing a learning 
mechanism for the range of applicability of production 
rules.  Moreover, the range of applicability of a 
production rule will be a function of the presence of 
production rules with similar competing conditions.  In 
the initial learning of a new domain, a few production 
rules will be generalized broadly as all-purpose heuristics.  
As more knowledge of the domain is accumulated and 
new production rules created, the range of application of 
those rules will be increasingly restricted. 
 
Using this modification to the ACT-R production-
matching scheme, no ‘hard’ boundaries exist between 
conditions for matching productions, and the boundaries 
are instead continuous.  For example, if production A is 
appropriate when a doorway is to the front, while 
production B is appropriate when a doorway is to the left 
side, both productions may match when a doorway is both 
ahead and to the left.  While specifying directions such as 
‘left’ as a range makes it possible to match a production 



in a symbolic system to a range of situations, specifying 
‘left’ as a precise direction and allowing productions to 
match based on similarity to that condition allows both 
cleaner specification of the underlying representation (i.e., 
‘left’ is 90 degrees to the left instead of between 45 
degrees and 135 degrees to the left), and easier authoring 
of the productions with a reduction in unwanted 
interactions between pieces of procedural knowledge.  In 
this case, if the author later decided a new production, 
production C, was appropriate when a doorway was ahead 
and to the left, adding the new production C to the system 
would result in that production predominating over the 
others without any revision of productions A and B. 
 
5. Communication 
Planning, as presented above in section 4.1, requires at the 
least the ability for agents to signal each other.  We have 
provided a grammar that the agents use to communicate 
that includes signaling, acknowledgment, sending and 
receiving orders, communication of intention, and 
specification of the type and location of a contact (e.g., 
friendly fire, from location (x,y,z)). 
 
The most fundamental of these, simple communication, is 
potentially non-verbal and simply involves the passing of 
signals and the acknowledgment of their receipt.  For 
example, saying “On the count of three, go” requires the 
receipt of the signal “three” while ignoring other signals.  
In the UT environment, this is implemented by passing 
text messages between the agents.  Although the agents 
could have passed tokens in a coded language, we chose 
to use actual English phrases for readability and 
extensibility to interactions with human players. 
 
The passing of orders typically involves an instruction to 
execute a schematic plan.  These plans include actions 
such as clearing an L-shaped hallway, supplying covering 
fire, moving to a particular location, standing guard, 
providing assistance in storming a particular room, 
providing covering fire, or retreating from overwhelming 
fire.  Importantly, for this representational shorthand to 
work, both the order sender and receiver must share these 
plans.  Like real combatants, the agents must know 
exactly what to expect from each other to function 
effectively as a unit.  These schematic plans often depend 
on stereotypic doctrinally defined simple 
communications.  For example, when storming a room, 
attackers typically “stack” outside the doorway.  
Attackers in front are signaled by the attackers behind that 
they are in position to enter the room, obviating the need 
to turn away from a potentially hazardous entrance at a 
critical moment.  Although it is possible for real 
combatants to signal each other non-verbally (perhaps in 
this case with a touch on the back), agents in this 
environment simulate non-verbal messages through the 
passing of text messages. 

 
In addition to orders, agents can also share information.  
The most common information shared is a spot report of 
enemy activity.  A spot report includes a brief description 
of the enemy forces spotted including their numbers and 
armament if known, their location, and their movement (if 
any).  Other agents may use this information to provide 
coordinated ambushes and attacks. 
 
6. Action vs. Reaction 
The schematic plans outlined above indicate the system is 
capable of goal directed activity.  However, in a real-time 
system such as this, the environment may change in a way 
that is incompatible with the current goal.  As an example, 
an agent may have a goal to move towards the doorway of 
an unexplored room.  If an enemy enters the hallway 
within sight, the agent clearly should abandon exploration 
and deal with the threat.  ACT-R 5.0 provides a 
mechanism built into the architecture that allows for 
interruption by critical events – multiple buffers.  In this 
case, a buffer is used to keep track of any perceived 
threats.  Exploratory behavior continues in the absence of 
a threat, but once a threat is perceived, the perception of 
the threat interrupts the current system goal and forces the 
agent to deal with the threat (though the agent could then 
choose to ignore the threat, that choice still must be made 
explicitly). 
 
Similarly, occasionally it is desirable to simultaneously 
pursue two goals, and in effect, “kill two birds with one 
stone”.  For example, while moving from one location to 
another, an informational message may be received.  
Although it would be simple to abandon the movement to 
handle the incoming transmission, this is clearly not 
plausible or desirable.  The preferred solution is to 
continue the agent’s movement while handling the 
transmission.  This is also accomplished through the use 
of a buffer for keeping track of an initiated movement.  
The human behavioral equivalent is driving from place to 
place – often once the drive is initiated, other goal-
directed behavior can occur without interrupting the drive.  
It is not that the two goals are being serviced at the same 
time but that the pursuit of compatible simultaneous goals 
can be achieved without simultaneous actions – they can 
be interleaved through the use of an architecture like this. 
 
7. Conclusions 
Our use of perceptually plausible spatial representations 
has two primary benefits: 1) code is much easier to read 
when written in terms that are readily understood by non-
programmers, and 2) human behavior is easier to encode 
if it can be written in terms that humans would use to 
describe their behavior.  Typically, authoring not only 
becomes qualitatively simpler, but also is also 



quantitatively less demanding since symmetrical cases do 
not need to be re-authored.   
 
The utility of using these spatial functions is in the ease 
with which they can help structure behavior and write 
rules.  Temporal and spatial aspects of a task often 
structure real behavior.  One continues doing what one 
just was doing, and continues performing that action 
where one was just doing it.  For example, if a pair of 
marines is about to storm a room from the stacked 
position, a pseudo-rule for entering the room could be 
written as: 
 

If the goal is to storm a room and a door is directly 
ahead and near then storm the doorway. 
 

There is no need to carry a pointer around to the doorway 
about to be entered.  It is the one right in front of the 
marine.  No real marine would, once stacked, suddenly 
head off to a different door.  The previous action -- the 
temporal component -- and the configuration of things 
around the marine -- the spatial component -- fully 
determine what is to come next.  As a result of this type of 
coding, exhibited behavior of the cognitive models is 
(appropriately) highly dependent on the context. 
 
A further refinement to the system we are working on is 
the use of the ACT-R partial matching facility for spatial 
processing.  For example, it is arguably more plausible to 
think of "ahead" as having a best interpretation and less-
good interpretations that deviate from the prototype.  This 
allows for very flexible matching that shoots for the best 
match but will accept a decent though imperfect match if 
no better is available, while also sometimes allowing an 
imperfect match to be selected over the better alternative. 
 
This refinement was a result of working with the more 
cumbersome method employed by traditional production 
systems, in which a symbolic match is a binary condition: 
either the conditions match or they do not.  To get flexible 
behavior as required in a domain such as this from a 
strictly symbolic pattern matching system, the conditions 
must be flexible.  Based on our initial experiences, the 
authoring of flexible conditions is difficult at best and 
requires careful attention to the potential interactions 
among conditions.  It is quite possible to author a system 
that encounters a situation where no condition applies 
exactly, resulting in no match whatsoever despite several 
near misses.  This is one of the major reasons many 
researchers have characterized systems that apply strict 
symbolic pattern matching to complex real-world 
situations as ‘brittle’.  The alternative we are developing 
here is instead to employ flexible matching to inflexible 
conditions.  This greatly simplifies the authoring of 
productions as well as their interactions. 
 

Teamwork occurs in the current system both formally and 
informally.  An example of informal teamwork is an agent 
sidestepping behind another friendly agent to get a clear 
shot at an enemy.  Formal teamwork involves schematic 
plans in which two agents each assume a role and work 
together according to doctrinal techniques.  By having 
knowledge about doctrine common between agents, 
intricate and flexible teamwork is possible with minimal 
communication. 
  
Communication was still, however, a necessary 
prerequisite to teamwork.  Our early efforts involved 
attempting to infer the goals of a teammate based on their 
apparent actions.  Too often this is a noisy inference, and 
simple communication easily remedies it.  Among human 
combatants the sometimes-apparent lack of 
communication turns out to be well-practiced subtle non-
verbal communication; these combatants by necessity 
give each other signals that would not be easily perceived 
or understood by onlookers.  Their common knowledge 
comes both from doctrine, and from long hours of training 
together. 
 
Achieving the proper balance between goal-directed and 
reactive behavior is a challenge.  In many cases the only 
recourse is to view the behavior produced by the agents 
and determine with the assistance of a subject matter 
expert whether that behavior is plausible.  Often the 
subject matter experts identify many behaviors as 
plausible but qualify them as more or less likely.  ACT-R 
provides a useful solution to this dilemma by providing 
for stochasticity in action selection.  This allows a wide 
range of behavior to be exhibited by cognitive models 
developed within the ACT-R framework. 

Acknowledgements 
This work was funded by grant N00014-02-1-0020 from 
the Office of Naval Research.  We thank Eric Biefield for 
his work on developing code for spatial transformations. 

References 
[1] Agre, P., & Chapman, D.  Pengi: An implementation 

of a theory of activity.  In Proceedings of the sixth 
National Conference of the American Association for 
Artificial Intelligence (AAAI-87), Morgan Kaufmann, 
San Mateo, CA, 1987. 

[2] Anderson, J. R., and Lebiere, Christian: The Atomic 
Components of Thought, Erlbaum, Mahwah, NJ 1998 

[3] Beetz, M.: Plan-Based Control of Robotic Agents, 
Lecture Notes in Artificial Intelligence 2554, 2002. 

[4] Best, B. J., Scarpinatto, K. C., and Lebiere, C.: 
Modeling Synthetic Opponents in MOUT Training 
Simulations Using the ACT-R Cognitive 
Architecture.  In Proceedings of the 11th Conference 



on Computer Generated Forces and Behavior 
Representation.  University of Central Florida, 2002 

[5] Clementini, E., Felice, P. D., and Hernandez, D.  
Qualitative representation of positional information.  
Artificial Intelligence, 95:317-356, 1997. 

[6] Cutting, J. E.  Reconceiving perceptual space.  In 
Perceiving pictures: An interdisciplinary approach to 
pictorial space, H. Hecht, M. Atherton, & R. 
Schwartz, Eds. MIT Press, in press. 

[7] Frank, A.: Spatial Communication with Maps: 
Defining the Correctness of Maps Using a Multi-
Agent Simulation.  Spatial Cognition II pp. 80-99, 
2000. 

[8] Gillis, P. D.: Cognitive Behaviors for Computer 
Generated Command Entities.  U.S. Army Research 
Institute Technical Report, 2000  

[9] Klatzky, Roberta L.: Allocentric and Egocentric 
Spatial Representations: Definitions, Distinctions, 
and Interconnection, Spatial Cognition pp. 1-18, 
1998 

[10] Loomis, J. M., & Knapp, J. M.  Visual perception of 
egocentric distance in real and virtual environments.  
In Virtual and Adaptive Environments, L. J. Hettinger 
and M. W. Haas, Eds.  Erlbaum, Hillsdale, NJ, in 
press. 

[11] Marine Corps Warfighting Publication (MCWP) 3-
35.3, Military Operations on Urbanized Terrain 
(MOUT)   

[12] Rumelhart, D.E., & McLelland, J. L.  A general 
framework for parallel distributed processing.  In D. 
E. Rumelhart & J. L. Mclelland, Eds., Parallel 
Distributed Processing: Explorations in the 
Microstructure of Cognition, vol 1, 1986. 

[13] Schank, R.C., & Abelson, R.P. Scripts, plans, goals 
and understanding. Hillsdale: Erlbaum, 1977. 

[14] Siegler, R. S. & Opfer, J. E. The development of 
numerical estimation: Evidence for multiple 
representations of numerical quantity.  Psychological 
Science, in press. 

[15] Silverman, B. G., Might, R., Dubois, R., Shin, H., 
Johns, M., & Weaver, R.:  Toward a human behavior 
models anthology for synthetic agent development.  
In Proceedings of the 10th Conference on Computer 
Generated Forces and Behavior Representation.  
Norfolk, VA, 2001 

[16] Tambe, M., Johnson, W.L., Jones, R. M., Koss, F., 
Laird, J. E., Rosenbloom, P. S., & Schwamb, K.  
Intelligent agents for interactive simulation 
environments.  AI Magazine, 16, 15-40, 1995. 

Author Biographies 
 
BRAD BEST is completing his Ph.D. in Psychology at 
Carnegie Mellon University where his graduate career has 
focused on simulations of human problem solving in 

spatial tasks.  He received his B.S. in Computer Science 
from the University of Detroit and his M.S. in Computer 
Science from Central Michigan University.  In his 
graduate work there he concentrated on connectionist 
models of visual systems.   In addition to academic 
pursuits, he has spent several years in industry applying 
rule-based artificial intelligence to real-world problems.  
His main research interest is the development of artificial 
intelligence planning systems with spatial components 
and their application to complex tasks including 
navigation, game playing and problem solving.  
 
CHRISTIAN LEBIERE is a Principal Research 
Scientist at Micro Analysis and Design, Inc. He received 
his B.S. in Computer Science from the University of 
Liege (Belgium) and his M.S. and Ph.D. from the School 
of Computer Science at Carnegie Mellon University.  
During his graduate career, he worked on the 
development of connectionist models, including the 
Cascade-Correlation neural network learning algorithm 
that has been used in hundreds of scientific, technical and 
commercial applications.  Since 1990, he has worked on 
the development of the ACT-R hybrid cognitive 
architecture and is co-author with John R. Anderson of 
the 1998 book “The Atomic Components of Thought”.  
His main research interest is cognitive architectures and 
their applications to psychology, artificial intelligence, 
human-computer interaction, decision-making, game 
theory, and computer-generated forces. 


