
Spatial Plans, Communication, and Teamwork in Synthetic MOUT Agents

Bradley J. Best
Human-Computer Interaction Institute

Carnegie Mellon University
Christian Lebiere

Micro Analysis and Design, Inc.
bjbest@cmu.edu, cl@cmu.edu

Keywords:

ACT-R, MOUT, Cognitive Architecture, Spatial Representation, Virtual Reality, Unreal

Abstract: Previously we reported on the use of Cognitive Architectures in providing realistic training opponents for
virtual training in military operations in urban terrain (MOUT). That report detailed the use of ACT-R, the Unreal
Tournament platform, a mapping agent for extracting cognitive primitives, and a brief description of a basic scenario
involving agents within the MOUT context. This report extends the former report by describing in detail the spatial
representation used by agents as well as the agents’ reliance on planning, teamwork, and communication and an
authoring tool to support these facilities within the ACT-R cognitive architecture development environment.

1. Using a Cognitive Architecture to Simulate
Opponents in Virtual Environments
The Virtual Technologies and Environments (VIRTE)
program aims to develop and demonstrate leap-ahead
human-immersive technology for naval training. The
goal is to train warriors for increasing complexity and
chaos by supplementing and complementing live
simulations using virtual and wargaming simulations and
other emerging technologies. VIRTE aims to incorporate
current understanding of human behavior and learning
theories into systems, leverage commercially available
advanced technology, evolve this current understanding
into products, and then transition these products to the
naval forces. In a previous paper, we introduced our
effort to improve the cognitive validity of synthetic
soldier entities in simulations. This effort involved the

ACT-R cognitive architecture for modeling and the
Unreal Tournament virtual reality game platform for a
simulation environment. The current report details further
progress on the project including the refinement and
development of robust spatial reasoning, communication,
and teamwork between cognitive agents. [4]

2. Perception in a Virtual Environment
The context an agent experiences depends completely on
the senses it is provided with to perceive that context: the
agent’s reality is the internal representation of those
senses. The ACT-R/MOUT framework currently
provides for visual, auditory, and tactile senses. Some of
the primitives obtained through these senses and their
attributes are listed in Figure 1 below.

Figure 1: Perceptual Primitives

P erception

A uditory Prim itiv es V isual Prim itives Tactile Prim itiv es

Location, type,
volum e

Ricochets

Location, volum eFootsteps

Location, type,
volum e

W eapon Fire

Sender, T extM essages

A ttributesPrim itive

Location, type,
volum e

Ricochets

Location, volum eFootsteps

Location, type,
volum e

W eapon Fire

Sender, T extM essages

A ttributesPrim itive

Identity, locationO bjects

Identity, location, facing d irec tion, speedPeople

Start-p oin t, end-poin t, norm alD oorways

Location , in tersec ting w allsCorners

Start-p oin t, end-poin t, norm alW alls

A ttributesPrim itive

Identity, locationO bjects

Identity, location, facing d irec tion, speedPeople

Start-p oin t, end-poin t, norm alD oorways

Location , in tersec ting w allsCorners

Start-p oin t, end-poin t, norm alW alls

A ttributesPrim itive

In tensity, sourceD am age

O bstacle, norm alCollision

A ttributesPrim itive

In tensity, sourceD am age

O bstacle, norm alCollision

A ttributesPrim itive

The ACT-R/MOUT framework uses architectural features
to describe the visual surroundings of an agent. These
visual primitives include walls, corners (intersections of
walls), doorways, stairwells, and entrances. In addition
there is an extensible set of object primitives including
other agents and items such as weapons, ammunition, and
furniture. Auditory primitives include verbal messages
(encoded as text), and sounds such as weapon fire,
footsteps, etc., which are localized in space. Tactile
inputs are limited to sensing contact with architecture or
objects in the environment. This allows the agent to, for
example, feel its way along a wall, or to stop backing up
when it makes contact with another player.

2.1 Spatial Representation
Many of the senses provide information about localization
in space. In order to perceive, react, navigate, and plan, it
is necessary for the agents to have a robust spatial
representation. The agents use a representation based on
human spatial cognition. Agents can represent things in
two fundamental ways: where something is relative to the
agent’s location, or egocentrically (e.g., something is to
my left); or where something is in absolute terms relative
to a world coordinate system, or allocentrically (e.g.,
something is at a particular latitude/longitude). This
combination of egocentric and allocentric representations

has previously been used successfully in systems such as
TAC-AIR Soar [16]. In addition, the agents’ design is
influenced by Frank’s work on navigation and spatial
reasoning in autonomous robots [7], which also borrows
heavily from studies of human spatial cognition and
incorporates many of the recent advances in specifying a
qualitative spatial representation calculus. [5]

The egocentric representation of an item includes both the
distance to the item and its relative bearing. Distance and
bearing are both represented quantitatively and
qualitatively; these alternative representations are
complementary and provide unique advantages for
processing in certain situations. Quantitative
representations allow for precise reasoning about
geometry, while qualitative representations provide an
advantage for applying reasoning and logic to planning
and decision-making.

In detail, distance is represented both as: 1) absolute
distance to the target, and 2) descriptive distance to the
target. Absolute distance is simply a numerical
estimation of the distance. In psychophysical studies,
human subjects have consistently demonstrated the ability
to generate numerical distance estimates that scale
linearly with increasing distance (i.e., best described by a

Figure 2: Egocentric and Allocentric Representations

North

Ahead

Behind

Wall

Wall

Wall
Outside Corner

Door

Inside Corner

Wall

Left

Right

Near Far Very FarHere

North

Ahead

Behind

Wall

Wall

Wall
Outside Corner

Door

Inside Corner

Wall

Left

Right

Near Far Very FarHere

power function with an exponent of 1) within the ranges
typically encountered in settings such as MOUT [10]. A
descriptive distance, in this implementation, is how
distant something is relative to the current visual horizon,
and ranges across “here” (within 1/8 the distance to the
horizon), “near” (between 1/8 and 1/4 the distance to the
horizon), “far” (between 1/4 and 1/2 the distance to the
horizon), and “very far” (beyond 1/2 the distance to the
horizon). Following work on qualitative spatial calculus
[5], the number of levels of distance is pragmatically
selected to provide an appropriate level of granularity to
afford the desired behavior of the agent.

In the context of this modeling effort, the closest distance,
‘here’, is used to indicate that a particular location is
within the immediate proximity of the agent,
corresponding to the region described by psychological
theory as ‘personal space’. The second two distances,
‘near’ and ‘far’, divide the space used for local navigation
such as walking through doorways and corresponds to
action space. The final distinction, ‘very far’, allows for
organization of behavior relative to very distant objects
and architecture, which fall within ‘vista space’ [6]. The
organization of absolute distance numerically and
qualitative distances logarithmically is consistent with
studies indicating that children commonly represent
numerical quantities using both representations [14], as
well as with recent studies indicating that adults compress
space at larger distances [6]. This logarithmic
compression of numerical intervals provides a simple way
to extend this representation to different domains by
either 1) varying the relative scale (in this case, the
distance to the horizon) to create larger regions
corresponding to the distance labels, or 2) by extending
the scale to include more levels (with each additional
level doubling the distance represented).

Bearing is represented as both: 1) absolute compass
bearing to target relative to current orientation (e.g., 30
degrees to the left, 5 degrees up), and 2) descriptive
bearing to the target. A descriptive bearing may be
“right”, “left”, “ahead”, “behind”, or any of the four
intermediate bearings “ahead right”, “ahead left”, “behind
right”, or “behind left”. See Figure 2 for a diagram of
this. In keeping with studies of human spatial cognition
indicating that humans maintain egocentric
representations with much more accuracy than allocentric
representations, the agents rely extensively on egocentric
representations. [9]

The allocentric representation of an item includes the
location of an item in the world coordinate system (in this
case, x, y, and z) and its orientation relative to that
coordinate system (pitch, yaw, and roll – the angles
relative to the axes). An allocentric representation is
particularly important in reference to maps (which are

typically defined relative to some world coordinate
system), and correspondingly to navigation tasks.

Though this is not immediately obvious, allocentric and
egocentric representations are complementary. The
egocentric representation of an object always has a
corresponding allocentric representation. Many studies of
human spatial cognition have been directed at how people
translate from one representation to the other (e.g., map
following, [9]). In general, the finding in studies of
human spatial cognition is that the egocentric
representation of the world is privileged, and that the
allocentric representation of the world is calculated at a
cost. This is also supported by computational work such
as Agre and Chapman’s seminal work on AI spatial
reasoning systems such as Pengi [1], which showed that
situated, or indexical, representations are simpler for
some calculations.

An example that demonstrates the utility of egocentric
representations is aiming at a target. If player A is
attempting to target a moving player, player B, the
egocentric representation is extremely useful in specifying
the necessary actions of player A. In this case, the
absolute bearing and speed of player B is not as
immediately useful – player A needs to know whether
they are on target, and what rate of rotation (if any) is
necessary to remain on target. This allows writing a rule
for aiming such as the following pseudo-rule:

If there is a selected target whose
bearing to me is greater than 1 degree
then correct my aim by turning towards
the target.

The use of an egocentric representation allows authoring
rules that are semantically transparent. Although it would
be possible to author the same rule using an allocentric
representation, the rule would lose much of its
transparency. Similarly, many of the doctrinal rules for
MOUT can be spelled out clearly using an egocentric
representation. For example, the following describes how
to employ the cross method of clearing a room:

“When employing the cross method, two Marines
position themselves on either side of the entryway.
Each Marine faces into the room covering the corner
of the room opposite his position. On a prearranged
signal, each Marine alternately enters the room. Each
Marine crosses quickly to the opposite corner while
covering the half of the room toward which he is
moving. Once in the near corner, he assumes an
outboard kneeling position to reduce his silhouette
and continues to maintain coverage of his half of the
room.” [11, p. A-34]

3. Navigation
Navigation is one of the most essential tasks an agent
must undertake in a MOUT environment. Navigation is
accomplished through combining basic locomotive
behavior with the immediate results of perception – that
which is perceived at that moment – and interaction with
a memory-based cognitive map of the environment.

Locomotion is simply moving from one location to
another. This is a fundamental behavior that need not be
attended to once it is initiated, and thus may occur in
parallel with other activities. The basic behavior of
locomotion involves commencing movement to a
location, the continuation of that movement while not at
the destination, the abandonment of that movement if an
obstacle is encountered, and the cessation of movement
upon arrival at the destination. In addition, locomotion
can be performed in several modes: walking, running,
stalking, and sidestepping while facing another direction.
Receiving an order or reacting to a new threat can also
interrupt locomotion.

Higher order navigational behavior involves an
interaction of the cognitive map of the environment (the
allocentric reference frame) with the current visual scene
(egocentric cues) and memory for goals and past events
(paths followed and destinations). As such, it represents a
significant theoretical challenge in both cognitive
psychology [9] and robotics [7].

Agents in this simulation use a simple node-link
representation for rooms and pathways between them.
Attacking agents build up a representation of rooms
visited, as well as the episodic trace of items and other
agents seen there. When moving from the current room
through a doorway to a new room, the agent creates a
chunk in declarative memory corresponding to that path.
Defending agents, who are assumed to have intimate
knowledge of the area to be defended, are given a
complete representation of the rooms and pathways
connecting them within a building. This allows them to
fluidly and quickly choose paths for attack and escape
which real defenders would have knowledge of.

Although memory for paths exists in a complete form in
the defenders’ declarative memories, the attackers may be
forced to rely on other methods. In addition to
remembering the path followed, attackers may also
encode individual moves at particular situations. This is
similar to the heuristic applied by some people who
“retrace their footsteps” when trying to find their way.
These previous moves can be actions relative to
landmarks (e.g., turn left at the L-shaped hall), actions
relative to an allocentric frame (e.g., proceed at a compass
bearing of 90 degrees), or actions relative to an egocentric
frame (e.g., turn left 45 degrees). These representations

are complementary, and are typically used by people as
the context allows. Landmarks are often preferred, but in
a situation where landmarks are impoverished, people
quickly adopt the other strategies. If going to a house in a
subdivision where all of the houses look alike, people
commonly depend on memory for the moves such as
“turn left at the second street in the subdivision and go to
the fourth house on the right”. In a combat context, an
allocentric frame such as that encoded in a map is often
used. This is particularly useful in military situations for
exchanging information about threats, destinations, and
movements, since allocentric coordinates such as GPS
coordinates are unambiguous, while egocentric
coordinates depend on knowing the egocentric orientation
of the perceiver and are therefore often less useful.

A concrete example of the interplay of egocentric and
allocentric representations is the interpretation of a spot
report, such as the notification of a hostile encounter. In
this case, the notifying agent translates the location of the
hostile force to allocentric, or world-centered coordinates
(e.g., GPS location) and communicates this location to
friendly forces. An agent receiving the communication
determines if the location of the hostile contact is near
enough, using qualitative distance to reason, to make it
necessary to take action. In this case, if the hostile
contact is proximate, the agent must determine the
egocentric bearing to the contact using the allocentric
coordinates. If the agent receiving word of a proximate
threat is not facing the direction indicated by the spot
report, the agent must turn to face the contact.

Figure 3: Node-link Representation of Rooms and
Pathways and a Plan to Reach a Destination

Hallway Door A Green
Room

Red
Room

Door C

Blue
Room

Door D

Door E

Door B

Current Location

Destination

Plan:
Door A
Hallway
Door C
Red Room
Door D
Blue Room

4. ACT-R
ACT-R is a unified architecture of cognition developed
over the last 30 years at Carnegie Mellon University. At a
fine-grained scale it has accounted for hundreds of
phenomena from the cognitive psychology and human
factors literature. The most recent version, ACT-R 5.0,
is a modular architecture composed of interacting
modules for declarative memory, perceptual systems such
as vision and audition modules, motor systems such as a
manual module, all synchronized through a central
production system (see Figure 4). This modular view of
cognition is a reflection both of functional constraints and
of recent advances in neuroscience concerning the
localization of brain functions. ACT-R is also a hybrid

system that combines a tractable symbolic level that
enables the easy specification of complex cognitive
functions, with a subsymbolic level that tunes itself to the
statistical structure of the environment to provide the
graded characteristics of cognition such as adaptivity,
robustness and stochasticity. [2]

The central part of the architecture is the production
module. A production can match the contents of any

combination of buffers, including the goal, which holds
the current context and intentions, the retrieval buffer
which holds the most recent chunk retrieved from
declarative memory, visual and auditory buffers that hold
the current sensory information, the manual buffer which
holds the current state of the motor module (e.g. walking,
firing, etc), as well as buffers defined specially for the
task. The highest-rated matching production is selected to
effect a change in one or more buffers, which in turn
trigger an action in the corresponding module(s). This
can be an external action (movement, firing, etc) or an
internal action such as requesting information from
memory. Retrieval from memory functions on a similar
manner. A pattern specified in a production is sent for

matching in declarative memory. Each chunk competes
for retrieval, with the most active chunk selected and
returned in the retrieval buffer. The activation of a chunk
is a function of its past frequency and recency of use, the
degree to which it matches the requested pattern, plus
stochastic noise. Those factors confer memory retrievals,
and behavior in general, desirable “soft” properties such
as adaptivity to changing circumstances, generalization to
similar situations, and variability.

Pr
od

uc
tio

ns

(B
as

al
 G

an
gl

ia
)

Retrieval (VLPFC)

B
uf

fe
rs

M
od

ul
es

Declarative Memory
(Temporal/Hippocampus)

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)

Goal (DLPFC)

Visual (Parietal) Manual (Motor cx)

Effector System for
Hands (loosely modeled)

Visual System
(loosely modeled)

Intentional System
(not modeled)

Environment

Figure 4: ACT-R Architecture

4.1 Implementing Planning and Teamwork in ACT-R
Within the framework developed for this project, a set of
productions interprets the schema within the current
context, leading to a literal interpretation of the schema
for that context. In this way, an abstract plan plus a
context results in a set of concrete actions. This allows
the abstract plan to be fairly brief and vague until the
agent actually selects it to be put into action. [13]

The current modeling effort includes plans for a team of
two for clearing: rooms with and without doors, halls, L-
corners, T-intersections, and stairs. In addition, plans are
included for advancing and retreating in a leapfrog style,
and for firing a defensive shot in an attempt to cause
casualties immediately prior to escaping (cut and run). A
sample chart of the interactions of two agents clearing an
L-shaped hallway is presented below in Figure 5.

At each step of the plan, agents perform an action,
communicate, or wait for a predetermined signal or length
of time before moving on to their next action. In this
way, the agents synchronize their actions taking turns
appropriately. The plans the agents adhere to are not ad-
hoc but instead come directly from doctrinal MOUT
documents. Doctrine typically not only specifies how one
agent should be positioned relative to another for
activities such as clearing L-shaped halls but even
specifies the exact language to be used in this situation.
This knowledge is typically a set of steps spelled out in
declarative form with the particular actions, triggers, and
synchronization of action all clearly defined. Given the
cookbook nature of some of these doctrinal maneuvers,
we noticed an opportunity to create an authoring tool to
aid in the conversion of doctrine to cognitive models. [11]

4.2 Authoring Tools
The model for the agents described here was authored like
a typical ACT-R model, that is the knowledge structures,
especially declarative chunks of information and
production rules, were written using an abstract notation
rather typical of production systems. Table 1 presents a
typical example of a production rule and related chunks:

 The production implements the sequential retrieval of a
piece of an action plan, and the declarative chunks
represent some of those action pieces. While the details
of the syntax do not matter, what is important is that
authoring, debugging and maintaining the model is a
highly specialized skill left to knowledge engineers
familiar with the particular formalism in which the agent
is implemented. A very desirable improvement would be
to remove direct involvement with the syntax to allow
subject matter experts to directly author behavioral
models rather than have their knowledge extracted and
codified by knowledge engineers. This would result in a
faster, cheaper and easier development of behavioral
models than the current, specialized, way. We are
currently working toward developing an interface that
would provide a first step toward that end. A simple
mock up to illustrate the issues is provided in Figure 5.

The situation involves two agents, L for Leader and F for
Follower, moving in coordinated fashion through a
sequence of positions and actions. Their various positions
are indicated by an index. Solid arrows between
successive positions indicate movement. Dotted arrows
indicate when an agent waits for the other to have
performed an action (such as reached a position) to
proceed with the next step of its plan. Dashed arrows
indicate synchronized actions between the two agents.
Other codes specific to the domain can be added to the
graphical interface in a modular fashion.

Table 1: ACT-R Syntax of Productions (left) and
Chunks (right)

(p get-next-action
 =goal>
 isa action
 plan =plan
 index =index
 type nil
 argument nil
 =action>
 isa action
 plan =plan
 index =index
 type =type
 argument =argument
==>
 =goal>
 index (1+ =index)
 type =type
 argument =argument)

 (action11
 isa action
 plan 1
 index 1
 type move
 argument l1)
 (action12
 isa action
 plan 1
 index 2
 type wait
 argument go)
(action13
 isa action
 plan 1
 index 3
 type end
 argument none)

Figure 5: Authoring Interface

All those codes transform readily into a piece of the plan
for each agent as encoded in declarative chunks in Table
1. Each chunk contains a number of slot. The index of
the plan, plan, and the index of each action, index, can
easily be supplied automatically by the interface. The
nature of the action, type, depends on the code used in the
graphical interface, e.g. a solid line would translate into a
move action, etc. A list of interfaces codes and associated
actions can simply be encoded into the interface for each
domain. The last slot, argument, is an action qualifier,
such as where to move, e.g. to position L2. This
argument represents the most difficult part of the
mapping, because obviously one does not want to encode
a specific location but instead one that will generalize to
similar situations (in this case, the position nearest the
corner of the L-shaped hallway). Humans, even non-
experts, usually understand readily using a broad common
sense knowledge base the set of spatial relationships
between the various positions and landmarks to generalize
them across situations, e.g. to symmetrical situations. The
challenge before us is to either provide in the model a
sufficient knowledge base of the domain to supply those
spatial relationships automatically, or to provide in the
authoring interface a set of primitives to allow the subject
matter experts to specify the relationships themselves.
More likely, a combination of the two will result, with an
iterative dialog between authoring tool and SME taking
place to disambiguate the generalization of the specific
plan.

4.3 Proceduralization
Plans of action are represented in the form of a list of
declarative chunks (see Table 1 for an instance) each
representing a particular step of action such as moving to
a location, waiting for a partner, firing at a target, etc.

The execution of those plans takes the form illustrated in
Figure 6. Each cycle consists of a production firing
requesting the retrieval of the next step (PR), the retrieval
itself (Ret), then one or more production firings
implementing that course of action (PA).

PR PA PR

Ret

PC

PA

Figure 6: Knowledge Compilation

While production firings are quite rapid (usually taking
about 50 milliseconds), retrieval of a chunk of
information from declarative memory typically take
several hundreds of milliseconds. This corresponds to a
poorly trained opponent who consistently thinks about his
actions rather than simply executing them. To represent a
better trained opponent able to execute plans of action
much more quickly and efficiently, one can take
advantage of a feature of the ACT-R architecture which
compiles consecutive productions, together with an
intervening information request such as retrieval from
memory, into a single production (PC), specialized to the
task at hand, which can then fire much more quickly than
the series of interpretive steps that it replaced.

One feature of declarative retrievals is the ability to
generalize to related situations based on similarities
between components such as distances, angles,
appearances, etc. This is quite useful in applying plans of
action flexibly to situations that do not quite match the
original design. We are currently working on endowing
the production matching process with the same capacities
for generalization to similar situations. In the current
version of ACT-R, the range of application of a
production has to be specified by the modeler, a practice
that is neither robust or efficient, nor compatible with the
use of the production compilation mechanism. Our
modification to the ACT-R architecture allows us,
instead, to specify a prototypical case for matching a
production. This is explained in detail in the following
section.

4.4 Flexibility and Generalization in Production Rule
Pattern Matching

Perhaps the most significant difficulty in authoring
production system models (e.g. expert systems) is
specifying the conditions under which productions can
apply. Because of the lack of a conventional control
structure, it is often difficult for the author to forecast
exactly the full range of symbolic conditions uder which
an action is applicable. Moreover, in dynamic,
approximate and uncertain domains (such as a MOUT
simulation), the all-or-none symbolic conditions (i.e.
either specify a specific value required or else no
restriction on that value) that determine production rules’
applicability have significant limitations in capturing the
loose range of conditions under which a behavior might
be applicable. What is desired is the capability of having
a production specify a canonical case in which an action
is applicable, then have the production system generalize
it to related situations. This is similar to human training
in which an instructor demonstrates a particular technique
but leaves it to the students to learn by experience the
details of its applicability.

A similar restriction on matching chunks of information
in declarative memory has long been recognized and
remediated with the addition of a partial matching
mechanism to memory retrieval. That mechanism allows
chunks that only partially match the desired pattern
specified by a production retrieval request to qualify for
matching. A chunk’s activation, which represents in
ACT-R the likelihood of a chunk being relevant to a
particular situation, is decreased by the amount of
mismatch, thereby reducing the probability of retrieving
that chunk but not eliminating it altogether. The
similarity values used in specifying partial matches
between chunk values can be viewed as a high-level
equivalent to distributed representations (specifically, to
the dot-product between representation vectors) in PDP
networks [12]. It seems logical to implement the same
mechanism for production rule matching, thereby
emphasizing the symmetry between the declarative and
procedural parts of architecture by unifying their
matching mechanisms. Practically, this would allow
pieces of knowledge that were specified and used as
declarative instances to seamlessly transition to
production rules.

Currently, only production rules whose conditions match
perfectly to the current state of various information
buffers (goal, memory retrieval, perceptual, etc) qualify to
enter the conflict set. Since ACT-R specifies that only
one production can fire at a time, the rule with the highest
expected utility is selected from the conflict set as the one
to fire. The utility of a production rule is learned by a

Bayesian mechanism as a function of its past history to
reflect the probability and cost of achieving its goal. In a
manner similar to partial matching in declarative memory,
all rules (subject to types restrictions for tractability
reasons) will now be applicable but the new mechanism
of production rule matching will scale the utility of a rule
by the degree to which its conditions match the current
state of the buffers. Specifically, the scale utility (SUp) of
a rule p is specified as:

SU p = U p + MP ⋅ Simvd

conds
∑

 Figure 7: Scaled Utility Equation

where Up is the usual utility of the rule, and the penalty
term is a product of MP, a mismatch scaling constant, and
Simvd, the similarity between the actual value v present in
a buffer and the desired value d specified in the
production condition, summed over all production
conditions. Similarities are 0 for a perfect match, leading
to no change in production utility, and negative for less-
than perfect matches, leading to decrement in utility that
lowers the probability of the rule being selected with the
degree of mismatch. The mismatch penalty MP can be
seen as a regulating factor, with large values trending
toward the usual all-or-none symbolic matching.

While this architectural extension remains to be fully
exercised, on limited test cases it succeeds in providing
the desired approximate and adaptive quality for
production rule matching. All things being equal,
productions will generalize equally around their ideal
applicability condition. However, productions with
higher utility will have a broader range of applicability,
up to the point where they reach their limits and failures
lower their utility, thereby providing a learning
mechanism for the range of applicability of production
rules. Moreover, the range of applicability of a
production rule will be a function of the presence of
production rules with similar competing conditions. In
the initial learning of a new domain, a few production
rules will be generalized broadly as all-purpose heuristics.
As more knowledge of the domain is accumulated and
new production rules created, the range of application of
those rules will be increasingly restricted.

Using this modification to the ACT-R production-
matching scheme, no ‘hard’ boundaries exist between
conditions for matching productions, and the boundaries
are instead continuous. For example, if production A is
appropriate when a doorway is to the front, while
production B is appropriate when a doorway is to the left
side, both productions may match when a doorway is both
ahead and to the left. While specifying directions such as
‘left’ as a range makes it possible to match a production

in a symbolic system to a range of situations, specifying
‘left’ as a precise direction and allowing productions to
match based on similarity to that condition allows both
cleaner specification of the underlying representation (i.e.,
‘left’ is 90 degrees to the left instead of between 45
degrees and 135 degrees to the left), and easier authoring
of the productions with a reduction in unwanted
interactions between pieces of procedural knowledge. In
this case, if the author later decided a new production,
production C, was appropriate when a doorway was ahead
and to the left, adding the new production C to the system
would result in that production predominating over the
others without any revision of productions A and B.

5. Communication
Planning, as presented above in section 4.1, requires at the
least the ability for agents to signal each other. We have
provided a grammar that the agents use to communicate
that includes signaling, acknowledgment, sending and
receiving orders, communication of intention, and
specification of the type and location of a contact (e.g.,
friendly fire, from location (x,y,z)).

The most fundamental of these, simple communication, is
potentially non-verbal and simply involves the passing of
signals and the acknowledgment of their receipt. For
example, saying “On the count of three, go” requires the
receipt of the signal “three” while ignoring other signals.
In the UT environment, this is implemented by passing
text messages between the agents. Although the agents
could have passed tokens in a coded language, we chose
to use actual English phrases for readability and
extensibility to interactions with human players.

The passing of orders typically involves an instruction to
execute a schematic plan. These plans include actions
such as clearing an L-shaped hallway, supplying covering
fire, moving to a particular location, standing guard,
providing assistance in storming a particular room,
providing covering fire, or retreating from overwhelming
fire. Importantly, for this representational shorthand to
work, both the order sender and receiver must share these
plans. Like real combatants, the agents must know
exactly what to expect from each other to function
effectively as a unit. These schematic plans often depend
on stereotypic doctrinally defined simple
communications. For example, when storming a room,
attackers typically “stack” outside the doorway.
Attackers in front are signaled by the attackers behind that
they are in position to enter the room, obviating the need
to turn away from a potentially hazardous entrance at a
critical moment. Although it is possible for real
combatants to signal each other non-verbally (perhaps in
this case with a touch on the back), agents in this
environment simulate non-verbal messages through the
passing of text messages.

In addition to orders, agents can also share information.
The most common information shared is a spot report of
enemy activity. A spot report includes a brief description
of the enemy forces spotted including their numbers and
armament if known, their location, and their movement (if
any). Other agents may use this information to provide
coordinated ambushes and attacks.

6. Action vs. Reaction
The schematic plans outlined above indicate the system is
capable of goal directed activity. However, in a real-time
system such as this, the environment may change in a way
that is incompatible with the current goal. As an example,
an agent may have a goal to move towards the doorway of
an unexplored room. If an enemy enters the hallway
within sight, the agent clearly should abandon exploration
and deal with the threat. ACT-R 5.0 provides a
mechanism built into the architecture that allows for
interruption by critical events – multiple buffers. In this
case, a buffer is used to keep track of any perceived
threats. Exploratory behavior continues in the absence of
a threat, but once a threat is perceived, the perception of
the threat interrupts the current system goal and forces the
agent to deal with the threat (though the agent could then
choose to ignore the threat, that choice still must be made
explicitly).

Similarly, occasionally it is desirable to simultaneously
pursue two goals, and in effect, “kill two birds with one
stone”. For example, while moving from one location to
another, an informational message may be received.
Although it would be simple to abandon the movement to
handle the incoming transmission, this is clearly not
plausible or desirable. The preferred solution is to
continue the agent’s movement while handling the
transmission. This is also accomplished through the use
of a buffer for keeping track of an initiated movement.
The human behavioral equivalent is driving from place to
place – often once the drive is initiated, other goal-
directed behavior can occur without interrupting the drive.
It is not that the two goals are being serviced at the same
time but that the pursuit of compatible simultaneous goals
can be achieved without simultaneous actions – they can
be interleaved through the use of an architecture like this.

7. Conclusions
Our use of perceptually plausible spatial representations
has two primary benefits: 1) code is much easier to read
when written in terms that are readily understood by non-
programmers, and 2) human behavior is easier to encode
if it can be written in terms that humans would use to
describe their behavior. Typically, authoring not only
becomes qualitatively simpler, but also is also

quantitatively less demanding since symmetrical cases do
not need to be re-authored.

The utility of using these spatial functions is in the ease
with which they can help structure behavior and write
rules. Temporal and spatial aspects of a task often
structure real behavior. One continues doing what one
just was doing, and continues performing that action
where one was just doing it. For example, if a pair of
marines is about to storm a room from the stacked
position, a pseudo-rule for entering the room could be
written as:

If the goal is to storm a room and a door is directly
ahead and near then storm the doorway.

There is no need to carry a pointer around to the doorway
about to be entered. It is the one right in front of the
marine. No real marine would, once stacked, suddenly
head off to a different door. The previous action -- the
temporal component -- and the configuration of things
around the marine -- the spatial component -- fully
determine what is to come next. As a result of this type of
coding, exhibited behavior of the cognitive models is
(appropriately) highly dependent on the context.

A further refinement to the system we are working on is
the use of the ACT-R partial matching facility for spatial
processing. For example, it is arguably more plausible to
think of "ahead" as having a best interpretation and less-
good interpretations that deviate from the prototype. This
allows for very flexible matching that shoots for the best
match but will accept a decent though imperfect match if
no better is available, while also sometimes allowing an
imperfect match to be selected over the better alternative.

This refinement was a result of working with the more
cumbersome method employed by traditional production
systems, in which a symbolic match is a binary condition:
either the conditions match or they do not. To get flexible
behavior as required in a domain such as this from a
strictly symbolic pattern matching system, the conditions
must be flexible. Based on our initial experiences, the
authoring of flexible conditions is difficult at best and
requires careful attention to the potential interactions
among conditions. It is quite possible to author a system
that encounters a situation where no condition applies
exactly, resulting in no match whatsoever despite several
near misses. This is one of the major reasons many
researchers have characterized systems that apply strict
symbolic pattern matching to complex real-world
situations as ‘brittle’. The alternative we are developing
here is instead to employ flexible matching to inflexible
conditions. This greatly simplifies the authoring of
productions as well as their interactions.

Teamwork occurs in the current system both formally and
informally. An example of informal teamwork is an agent
sidestepping behind another friendly agent to get a clear
shot at an enemy. Formal teamwork involves schematic
plans in which two agents each assume a role and work
together according to doctrinal techniques. By having
knowledge about doctrine common between agents,
intricate and flexible teamwork is possible with minimal
communication.

Communication was still, however, a necessary
prerequisite to teamwork. Our early efforts involved
attempting to infer the goals of a teammate based on their
apparent actions. Too often this is a noisy inference, and
simple communication easily remedies it. Among human
combatants the sometimes-apparent lack of
communication turns out to be well-practiced subtle non-
verbal communication; these combatants by necessity
give each other signals that would not be easily perceived
or understood by onlookers. Their common knowledge
comes both from doctrine, and from long hours of training
together.

Achieving the proper balance between goal-directed and
reactive behavior is a challenge. In many cases the only
recourse is to view the behavior produced by the agents
and determine with the assistance of a subject matter
expert whether that behavior is plausible. Often the
subject matter experts identify many behaviors as
plausible but qualify them as more or less likely. ACT-R
provides a useful solution to this dilemma by providing
for stochasticity in action selection. This allows a wide
range of behavior to be exhibited by cognitive models
developed within the ACT-R framework.

Acknowledgements
This work was funded by grant N00014-02-1-0020 from
the Office of Naval Research. We thank Eric Biefield for
his work on developing code for spatial transformations.

References
[1] Agre, P., & Chapman, D. Pengi: An implementation

of a theory of activity. In Proceedings of the sixth
National Conference of the American Association for
Artificial Intelligence (AAAI-87), Morgan Kaufmann,
San Mateo, CA, 1987.

[2] Anderson, J. R., and Lebiere, Christian: The Atomic
Components of Thought, Erlbaum, Mahwah, NJ 1998

[3] Beetz, M.: Plan-Based Control of Robotic Agents,
Lecture Notes in Artificial Intelligence 2554, 2002.

[4] Best, B. J., Scarpinatto, K. C., and Lebiere, C.:
Modeling Synthetic Opponents in MOUT Training
Simulations Using the ACT-R Cognitive
Architecture. In Proceedings of the 11th Conference

on Computer Generated Forces and Behavior
Representation. University of Central Florida, 2002

[5] Clementini, E., Felice, P. D., and Hernandez, D.
Qualitative representation of positional information.
Artificial Intelligence, 95:317-356, 1997.

[6] Cutting, J. E. Reconceiving perceptual space. In
Perceiving pictures: An interdisciplinary approach to
pictorial space, H. Hecht, M. Atherton, & R.
Schwartz, Eds. MIT Press, in press.

[7] Frank, A.: Spatial Communication with Maps:
Defining the Correctness of Maps Using a Multi-
Agent Simulation. Spatial Cognition II pp. 80-99,
2000.

[8] Gillis, P. D.: Cognitive Behaviors for Computer
Generated Command Entities. U.S. Army Research
Institute Technical Report, 2000

[9] Klatzky, Roberta L.: Allocentric and Egocentric
Spatial Representations: Definitions, Distinctions,
and Interconnection, Spatial Cognition pp. 1-18,
1998

[10] Loomis, J. M., & Knapp, J. M. Visual perception of
egocentric distance in real and virtual environments.
In Virtual and Adaptive Environments, L. J. Hettinger
and M. W. Haas, Eds. Erlbaum, Hillsdale, NJ, in
press.

[11] Marine Corps Warfighting Publication (MCWP) 3-
35.3, Military Operations on Urbanized Terrain
(MOUT)

[12] Rumelhart, D.E., & McLelland, J. L. A general
framework for parallel distributed processing. In D.
E. Rumelhart & J. L. Mclelland, Eds., Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition, vol 1, 1986.

[13] Schank, R.C., & Abelson, R.P. Scripts, plans, goals
and understanding. Hillsdale: Erlbaum, 1977.

[14] Siegler, R. S. & Opfer, J. E. The development of
numerical estimation: Evidence for multiple
representations of numerical quantity. Psychological
Science, in press.

[15] Silverman, B. G., Might, R., Dubois, R., Shin, H.,
Johns, M., & Weaver, R.: Toward a human behavior
models anthology for synthetic agent development.
In Proceedings of the 10th Conference on Computer
Generated Forces and Behavior Representation.
Norfolk, VA, 2001

[16] Tambe, M., Johnson, W.L., Jones, R. M., Koss, F.,
Laird, J. E., Rosenbloom, P. S., & Schwamb, K.
Intelligent agents for interactive simulation
environments. AI Magazine, 16, 15-40, 1995.

Author Biographies

BRAD BEST is completing his Ph.D. in Psychology at
Carnegie Mellon University where his graduate career has
focused on simulations of human problem solving in

spatial tasks. He received his B.S. in Computer Science
from the University of Detroit and his M.S. in Computer
Science from Central Michigan University. In his
graduate work there he concentrated on connectionist
models of visual systems. In addition to academic
pursuits, he has spent several years in industry applying
rule-based artificial intelligence to real-world problems.
His main research interest is the development of artificial
intelligence planning systems with spatial components
and their application to complex tasks including
navigation, game playing and problem solving.

CHRISTIAN LEBIERE is a Principal Research
Scientist at Micro Analysis and Design, Inc. He received
his B.S. in Computer Science from the University of
Liege (Belgium) and his M.S. and Ph.D. from the School
of Computer Science at Carnegie Mellon University.
During his graduate career, he worked on the
development of connectionist models, including the
Cascade-Correlation neural network learning algorithm
that has been used in hundreds of scientific, technical and
commercial applications. Since 1990, he has worked on
the development of the ACT-R hybrid cognitive
architecture and is co-author with John R. Anderson of
the 1998 book “The Atomic Components of Thought”.
His main research interest is cognitive architectures and
their applications to psychology, artificial intelligence,
human-computer interaction, decision-making, game
theory, and computer-generated forces.

