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Abstract

We present & model of transitive inference (T1) using
ACT-R which strengihens the hypothesis that Ti is not
dependent on underlying sequential ordering of stimuli,
but rather on the learning of productions. We neverthe-
less find a weakness in the ACT-R sub-symbolic learning
system and suggest improvements

Introduction

The last decade has shown an increasing hody of work
indicating that ACT-R (Andeirson and Lebiere, 1998)
can be used to model human learning in an impressive
variety of tasks. However, ACT-R hag been slow to gain
acceptance in mainstieam experimental psychology as
useful model, possibly because it does not seem a very
good cortelate to the physical learning systemns we find
in the brain

In previous and concuirent work, we have been ex-
ploring another mode! of task learning which also scems
at frst blush artificial and not particularly parsimo-
nious, but hss also shown an impressively tight At to
human and animal experimental data otherwise unac-
counded for This is the Harris (1988) production-ule-
stack model of one of the main testbeds of task learning
in the animal literature, the transitive inference task
We developed the two-tier medel {Bryson, 2001; Bryson
and Leong, 2004), which accounts for all of the Harris
model’s data, while extending the model to account for
both learning and failing to learn this task (& common
outcome in live subjects) We've also lound polential
neurclogical correlates for the two-tier model

The two-tier model hypothesises two learning systems:
one for connecting perceptuai contexts to actions, and
another for prioritising which of those perceptual con-
lexts to attend to if more than one are present simulta-
neously We realised that this model had similar aspects
to ACT-R, which also has two learning systems, one sym-
bolic and one stalistical We therefore decided to apply
ACT-R to the tiansitive inference leasning task Our re-
sults show that ACT-R is far better than the standaid
TI models at accounting for the particular {and some-
what controversial) data set that prompted the Harris
{1988) modet, and for some individuals provides a bet-
ter model than Harris (1988}, though for others it can-
not. Qur results lead us to belleve that the two-tier
mode} is the hest existing model of transitive inference,

although ACT-R is close enough that it is probably fix-
able. ACT-R demonstrates one significant simplification
over the two-tier hypothesis, and has one important dif-
ference from real mammaiian tasl learning

Transitive Inference

Transitive inference (T1) formally relers to the process
of reasoning whereby one infers that if; for some quality,
A> Band B> C, then A > C In some domains, such
as integers o1 heights, this property wili held for any
A, B or €, though for others it does not (see Wiight,
2001, for a recent discussion). T is classically described
as an example of concrete operational thought (Piaget,
1954) That is, children become capable of doing TI
when they become capable ol mentally performing the
physical manipulations they would use to determine the
correct answer, a stage they reach at approximately the
age of seven In the case of T, this manipulation involves
ordering the objects into a sequence using the rules 4 >
B and B > C, and then observing the relative location
of A and C

Since the 1970’s, however, apparent TI has been
demonstrated in much younger children {Bryant and
Trabasso, 1971) and a variety of animals, from mon-
keys (McGenigle and Chalmers, 1977) to pigeons {Fersen
et al., 1991} — not normally ascribed with concrele oper-
ational abilities. The behaviour of choosing A from AC
without training after having previously been trained
to select A rom AB and B from BC is consequently
sometimes 1eferred to as “transitive performance”, and
whether it implies sequential ordering at all is now an
open issue

The main motivation for not considering TI in animals
to be based on a sequentiai structure Is a dataset due to
McGonigle and Chatmers (1977), which they have sub-
sequently replicated both with menkeys and children
This data set concerns what happens if subjects demon-
strating T1 are asked to select between three items rather
than two Some individuals show significant, systematic
degradation in performance, which cannot be explained
by a sequential model Some researchers hiave dismissed
the triad data as resulting from confusion in the sub-
iects due to the extra items. These criticisms were dealt
with in a replication by McGonigle and Chalmers (1992)
which provided the main data set used in this paper
and by Harris and MeGonigie (1994) The fact that the
systematicity of the degradation has now been success-
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fully accounted for furthes validates this data set This
data concerns monkeys trained on 4 adjacent pairs drawn
from a 5 item sequence, AB, BC,CD,DE.

The Models

Due to space constiaints we will not review the more
traditional, sequence-based or simple-associative models
of T1, but see furthe: (Wynne, 1998; Bryson and Leong,
2004). These models cannot account for the triad data
set.

Harris and McGonigle

Harris (1988) showed that both pair and triad T1 perfor-
mance could be accounted for if we assume that monkeys
learn a production rule stack. A production rule is a ba-
sic Al representation which connects a stimulus to a re-
sponse. A stack is a prioritised list. In the Hairis model,
each monkey leains one rule per possible stimulus, or
up to 5 rules in total One of two actions is associated
with each rule, either seleci or avoid I a subject applies
the rule A—s(A) (see A implies select A), then it will
simply pick up A, regardiess of whether other items are
preseni However, if a subject applies the rule A-—a(A)
it wili pick up anything duf A I more than one other
item is present, the subject is at chance for which object
it will pick up If more than one rule could apply, then
whichever rule is higher in the stack (has higher priority)
will be applied.

Although Harris' hypothesis may seem obscure, it
shows a remarkable match to the data If one assumes
that rules are limited to the case that the action refeis
1o the object attended to, then only 16 of the 1920
{10 x 8 x 6 x 4} possible stacks of four rules operate
correctly on ail Lraining pairs (Hartis and McGonigle,
1994). All 16 of these stacks also correctly perform TI
on all pairs automatically, thus already accounting for
one of the mysteries of transitive performance.

The degradation some subjects display on the triad
tests is a consequence of the random aspect of the
avoid rules In fact, triads can be used to discrimi-
nate which rule stack an individual subject has learnt
For example, a stack that consists entirely of selects
(s{A),s(B),s{C) .. .} will never make any errors. One
that starts with a{ E) will be at chance between the other
two options whenever E is present in a triad

Table 1 shows ali of the peossible discriminable stacks
as identified by Harris and McGonigle (1994) Because
only the highest-priority applicable rule fires and there
are alwoys at least two applicable rules {since there are
at least two stimuli), there is no way to diseriminate the
two lowest-prioity rules using triad performance These
stacks therefore only reflect the top three rules of the
stacks

The Two-Tier Model

A successiully trained two-tier model creates a 1eplica-
tion of the production-rule-stack model {Bryson, 2001}
However, the two-tier model is dynamic, and as such
gives us insight into why animals have trouble learning
the initial pairs for the TI task, the sorts of mistakes they
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Table 1: FEnumeration of Hanis and McGonigle Stacks

Rule Depth Ruie Depth
# 1 2 3 # 1 2 3
1 | s(A) s(BY s(O) |5 |alBE) s(A) s(B)
2 | s(A) s(B) o) 6 | a(E) s(A) a(D)
3 1 s(A) a(BE) s(B) || 7 | a(E) a(D) s(A)
4 1s(A) ofE} oD)}| 8 | a(E) a(D} a{C}

Table 2: Primate T1 tzaining régime (Chalmers and Me-
Gonigle, 1984; McGonigle and Chalmers, 1992)

F1 | Each pair in erder {DE, CTD, BT, AB) repeated
until 9 of 10 most recent trials are correct
Reiect if requires over 200 trials total

PZa | 4 el each palr Tn order, Criteria: 32 consecutive
Lrials correct, Reject i requires over 200 trials totai

T35 2 ol each pair in order. Criteriai 16 consecutive
tyiads correct. Reject il requires over 200 tripls total

F2c ¢ | of each pair in order Criteria: JU consecutive
trials correct. No rejection criteria

P3| T of each pair randomly ordered
Criteria: 24 consecutive trials correct
Reject if requires over 200 trials total

T Pair and triad testing

may make, and the impaet of t1aining régimes. The first
tier of the two-tier model is a single-vector neural net-
work {NN) which learns the prioritisation of the stimuli
The second tier is a set of small two-item vectors which
each learn o associate an action with one of the stimuli
The learning rule lor the NNs is a slight simplification of
standard delta learning (Widrow and Hoff, Jr, 1960)

Simuiations using the two-tier model show artificial
subjects successfully leaining the training data only
about 25% of the time when training pairs are presented
in a random order However, swilching to the train-
ing 1égime applied by McGonigle and Chalmers (1992)
shown in Table 2, which is standard for primates, the
success 1ate increases to about 75%, which Is compara-
bie to live subjects {Bryson and Leong, 2004).

Further, the sorts of errors made by artificial subjects
failing to learn are consisten$ with those shown by live
subjects — they tend to confuse the middle pairs. Anal-
ysis of the networks shows that this is nearly always a
consequence of misptioritising the rules 1epresenting the
end pairs  An agent can guarantee it always selects A
in the pair AB {the only pair A appears in) by leaining
a{B), and there is a great inclination to learn about mid-
die rules because these are the ones that have the most
data {and the most conlusing data, since 5 is sometimes
rewarded but sometimes penalised ) Howeves, there are
no successful stacks which do not have one end point or
the other at the highest priority (see Table 1) The train-
ing 1égime greatly increases the probability of learning
correct prioritisation For further details see Bryson and
Leong (2004)



ACT-R

As for the above models, ACT-R. also learns production
rules, but any number of these 1ules may have their pre-
conditions for firing satisfied at any given time. In this
case, ACT-R’s conflict-sesolution system selects the 1ule
with highest ufility value

Rule utilities are changed by ACT-R's sub-symbolic
processing system It is pessible to atfach success o
Jailure tags Lo productions and when such a rule is fired,
ACT-R backtracks to discover which rules fired previ-
ously and inciements or decrements their utilities respec-
tively More precisely, the utility of a rule is given by:

U=PG~C+els) (1)

where @ is the goa! value, C is the expected cost, e(s) is
the expecied gain noise and P is the expected probability
of success:

Successes

Successes + Failures

(2)

In our experiments, rather than make arbitrary changes
to ACT-R’s many available parameters in an attempt
to best fit the data, we have used mostly defaults. The
most notable exception to this is thal we set the initial
Failure count to 1 which, along with ACT-R’s default
setting of 1 for Successes!, gives an initial probability of
suceess of 0 5. This change was also made by Belavkin
and Ritter {2008) in their Dancing Mouse model. To
maximise the number of successful agents, we also tried
a range of values for s (which affects the variance of Lhe
noise (unction}, finally deciding upon s = 1.

One trial consists of two or three items displayed on-
screen which the agent encodes into its goal buffer. The
goal state is then changed, enabling it to make decisions
about which item to pick {see below) Once an item has
been picked, either a reward or no reward is displayed
appropriantely, the agent notes its success or failure re-
spectively and the next trial begins

We have tested two dilferent approaches to solving the
T1 problem in ACT-R. In the first, the select and avoid
rules for each item are independent, concurrent candi-
dates for execution. For three displayed items, this cor-
responds to six conflicting rules thal have their precon-
ditions satisfied Henceforth we refer to this approach as
ACT-R-1.

In the second, the agent must foeus on a displayed
itemn belore either selecting or avoiding it, as in the two-
tier model This results in an extra stage of conflict-
resolution {or the agent With three options there are
at first three candidate focus rules whose actions alter
the agent’s goal state. This, in turn, satisfies two further
rules; select and eveid for the focus-item We call this
approach ACT-R-2

Results

As with the two-tier model and live subjects, our ACT-R
model produces both agents that successfully learn the
task and agents that do not 44 of the 100 agents tested

"The default is Failures = 0 =6 Pipu = 1

with ACT-R-1 successluily passed the training régime.
This compaies to 35% of those using ACT-R-2, or 75%
of those using the two-tier system  We examine these
groups sepasately

Successful Agents

The stack model proposed by Hairis and MceGonigle
(1994} attempts to fit the McGonigle and Chalmes
(1977} triad data to any of the eight discriminable cor-
rect stacks (Table 1). In contiast, the ACT-R agents
learn only two possible solutions.

There are two rules which are always successful [or all
paits: s(A) and a(E)} This means that, provided these
rules are discovered by the agent, their utilities will begin
to converge to maximal, given by:

Jim (PG ) )
= lim ( Successes ) c—c

L0 \ Successes 4+ Failures

. 1
= rl-l-ngo (1 4 Faihires ) G-C

SHCressLs
= G-C

lim U =
{0

where t is the number of trials, and G and C remain
constant at ACT-R delault values throughout. Therelore
any successful ACT-R agent will have these fwo rules at
highest priority. This eliminates half of the Hairis and
McQGonigle stacks, leaving 3, 4, 5 and 6 (Table 1}

In addition, because the top-two rule utilities are con-
verging to the same value, il becomes essentially ar-
bitrary (in fact, governed by the expected gain noise)
whether s(A) or a(E) occupies the top stack position fo:
any given choice. In other words, the ACT-R agents deo
not leain a totally ordered stack, but effectively a pair
of stacks. The two possible pairs are:

Hybrid Stack 1 (HS1):  s(A)e{F)s(B) & a{E)s(A)s(B)
Hybrid Stack 2 (H82):  s{A)a(E)a{D) & a{E)s{A)a(D)

Table 3 shows each triad with the expected percenlage
of trials in which each itern in that tiiad is chosen These
probabilities are the same for both Hybsid Stacks, except
for the triad BCD In this case, the format is HS1 / BS2
A 75%/25% split oceurs when both A and E are present
in the triad. We assume that half the time s{A} has top
priority and is thus selected. Otherwise, a(E) has top
priority, giving an even chance of A or the other item
being selected

Talking into account the noise added to the system,
this model weli describes the behaviour of many of the
ACT-R agents In 45% of cases, one of the Hybrid Stacks
fitted the agent's distribution better than any of the in-
dividual stacks, and a further 47% were best ftted by
Stack 5; a contributor to HS1

Failed Agents

Despite these encouraging results, a majority of the
ACT-R agents failed the training régime (Table 2), which
is not true of the monkeys (albeil theie were only seven
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Table 3: Projected percentage cholce distributions for
Hybrid Stack 1/ 2

Tyiad | A B C b E
ABC | 100 ] ] - -
BCD | - 100/ 50 0/5 0/0 -
BDE - 50 - 80 ¢
CDE - - 50 80 O
BCE - 50 50 “ 0
ABD [ 160 g - 0 -
ACD | 100 - 0 0 -
ADE | 75 - - 25 0
ABE 5 25 - " 0
ACE | 75 - 25 - 0
Mean | 525 225 /175 125/175 125 O

test subjects) or children {Chalmers and McGonigle,
1984) Virtuaily ail of the agents which [ailed did so
al stage P2a {Table 2), typically having seen less than
300 training pairs in total. Thete are two exceptions for
both ACT-R models which failed at P3

To best understand why agents fail, we examine each
training pair and determine what causes agents to pick
the wrong item:

AB Since s(A) almost always has a high utility, enors
on this pair tend to be caused by interference {rom
s(B), whose utifity is driven up by its success on pair
BC. Ironically, then, it is agents who are too successful
tao soon who [ail because of this pair, training stage
P2a having the most stringent pass criferia

BC C is picked when s(C) is too high relative to 5{B)
or, less frequently, a{C). Occasionally a(B) adds to
this interference but, due to the success of s{A), rarely
attains a high enough atility

CT The symmetiic ease of BC Here a{C)/a(D} inter-
ference is the chief cause of error (see Figure 1)

DE As for AB, if a{D) is discovered early o be a good
rule, it interferes with a{E) causing small but signifi-
cant errois in P2a

For some agents (around 25%), failure is a result of
a combination of the above interferences If many of
the interfering rules are interdependent {eg s(B), s(C),
a{C), a(D)} then this can lead to a more even distiibu-
tion of errors acress all training pairs Conversely, if two
sets of independent rules {eg  s(A}, a(B), a(D}), a(E))
are interfering, often iwo training pairs are consistently
incotrect, with little or no error on the other two

As Tables 4 and 5§ show, agents confuse the middie
pairs far more often than the end pairs {see also Anal-
ysis). This, in turn, is most often the result of s(C) and
a(C), both of which perform incorrectly for one of the
middle pairs  We have 1estricted these daia to the last
200 trials carried out by the failed agent. This focuses
on the specific phase of training at which the agent faifed
and removes the noisiest cheices, made during P1

200 00 600 800
Trials

Figure 1: a(C) and a(D) fight for controt of the pair CD

Table 4: Aggregate percentage etror on each pair

Group AB BC CD DE | Mean
ACT-R-1| 6 2 30 7 17
ACT-R-2 G 43 39 9 24

Table 5: Percentage distiibution of failed agents

Modal Frror Pair
Group AB BC CD DE
ACT-R-1| 2 39 bd 5
ACT-R-2| © 42 50 8

Analysis

For ease of statistical comparison, we applied the x* test
in the same way as Harris and McGonigle (1994): by
excluding item B, which (usually) has an expected value
of 0.

For three of the five individual test subiects for whom
McGonigle and Chalmess {1977) triadic dats is avail-
able, one of the hybrid stacks fits better than any of the
eight others (Table 6). As explained in the Successful
Agents section above, and in contiast with the Harris
and McGonigle stacks, the hybrid stacks do nob repre-
sent a total ordering Thus it would seem that neither do
some monkeys form a total ordering, and their choices
cannot be perfectly modelled by a simple production-
rule system For Bump and Brown, however, our model
is rejected (p < 0.01), suggesting that other monkeys
do come up with a total ordering, which cannot be well
medeiled in ACT-R

The two-tier model does support both models, al-
though its admittedly simplistic learning rule tends to
favour the total ordering These results suggest that
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Table 6: Comparison of individual triadic choice data
(1977) with both Hyid and Harrig’ Stack models

A B C D E| ¥ p{Q)
Bill 55 17 24 8 0 - -
HS82 525 175 175 125 0| 21 ns
S4d 60 i5 15 6 0| 28 n.5.
Blue 55 25 14 G 0 - -
HS1 525 225 125 125 0| 40 ns
53 60 20 16 10 0| 4.9 n.s.
Bump | 53 34 8 4 1 - -
HS1 826 225 125 125 01133 <001
52 GO 30 5 5 0 34 n.s.
Brown | 36 29 24 11 0 - -
H52 825 175 175 125 01153 <001
37 a5 25 25 15 01 1.8 .5,
Roger 31 26 G 17 O - -
HS1 525 225 125 125 0 586 ns
55 45 25 15 15 0 65 < 01

an improved priority-learning rale for either the two-tier
model o1 ACT-R could result in a highly accurate model
of T1 and possibly task learning in general

There were just five monkeys who passed criteria and
s0 were included in the triad phase of the 1877 exper-
iment These five only represented three of the eight
stacks in Table 1. This may render the grouped data
unrepresentative, but cur ACTVR model still dispiays a
better correlation than Harris and McGonigle {1994) of
a~choices, as shown in Table 7, where o represents the
correct, choice in a given triad (see also Table 8)

Table 7: Correlation of a-choices Lo group data

Group r P

ACT-R-1 D688 p< 005
ACT-R-2 0692 p< 005
Hybrid Stack Model | 0616 p <01
H & M Stack Model | 0.634 p < 0.05

Upon closer examination of the choices made fm
each triad, we see ACT-R closely matching the monkey
data for those triads which do not contain the item B
(Tabie 8). For thase that do, ACT-R makes more mis-
takes, suggesting that the monkeys do not have a{E)
at as high a priotity. This might reflect a primate bias
against baving identical priorities for rules.

There may be o good reason for favouring priorities
over utilities for ordering rules For example, there is
no circumstance in which an ACT-R agent can reach a
stable enough solution to reduce error to zero. Suppose
such a situation was attained Then every decision made
would result in success and thus increase the utility of
the executed rule Eventually, these rules (of which there

must be at least three to produce a correct stack) would
converge upon the same value (see Equation 3 above)
But since no three rules in a correct stack are indepen-
dent for all triads, they will start Lo interfere with each
other, causing error to be re-introduced.

This phenomenon is best demonstrated by examining
the errors of agents who did not take part in stiuctured
training, but were presented with the training paizs in a
random order Here, as is usual, the s{A} and a(B) rules
have high, convergent utilities (these rules are indepen-
dent for ail t2aining pairs). Then the utility of one (or
both) of the other successful rules, 5(B) and a{D), will
also start to converge This results in errors made on the
end pairs since s(B) interferes with s(A) for AB (Figuie
2) and a{D) interferes with a(E) for DE. Neither s(C) nor
a{C} can atlain a high utility, because they will perform
incorrectly on one of the middle pairs (BC and CD) The
final result is that the middle pairs are chosen consis-
tently correctly, whereas the end pairs have small errors
(typically around 15%) This certainly seems somewhat
biologically implausible, and contradicts the End-Anchor
Effect (Bryant and Trabasso, 1971; Wynne, 1998)

20

Ustility

— g[A}
-~ 5(B)
8 1. i 1
0 200 400 600
Trials

Figure 2: Interference with s{A) prevents the utility of
s{B) reaching above a certain level

Conclusions and Further Work

The ACT-R models lack in their ability to represent sta-
ble, totally ordered stacks, which some :eal subjects ap-
pear to form. On the other hand, the Harris and MeGo-
nigle (1994} stacks fack the flexibility to represent more
dynamic solutions to the TI preblem For this reason
we conclude that the two-tier model is the best exist-
ing model of TT On the other hand, the fact that there
is no significant difference between ACT-R-1 (where no
initiai item focus is requited) and ACT-R-2 (where this
focus is required) implies that the two-tier model can be
simplified to allow arbitrary numbers of stimulus action
pairings, as is the deflault case in ACT-R
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Table 8: Percentage of items selected - triadic analysis

Triad Monkeys ACT.R-1 ACT-R-2 | Hybiid Stack Model | H & M Stack Model
affy a 8 yla B8 yl|lao g y]la 8 Y o ¥
ARC 80 18 2|8 17 0 |8 14 G100 O 0 94 6 0
BCD W 2 4770 29 13172 26 2|7 25 0 75 25 4]
BDE (66 34 0159 35 6 186 37 6| 53 50 0 63 38 0
CDE G2 38 0149 41 10:48 44 7| 53 8O 0 56 44 0
BCE {78 22 058 42 0 15 42 0| 50 50 0 63 38 0
ABD 80 20 04179 21 0 8 20 0|100 0O 0 88 13 0
ACD 8 12 2790 9 0 91 8 O |i00 0O 0 88 13 0
ADE 186 14 0172 24 4 71 26 4| 75 25 0 2 0
ABE 8 12 0,68 32 0 70 36 O 75 25 0 T 26 Q
ACE 80 20 076 24 0174 2B O T 25 0 ™25 0
Means ; 78 22 1|70 28 2 71 27 2| 75 25 0 7H 25 0

There are several obvious next steps First, as stated
in the Imtroduction, the learning rules for priorities in
both the two-tier model and ACT-R need improvement,
though in different ways. We will be focusing on im-
proving the two-tier model, but wouid be happy to see
or support ACT-R being modified to reflect these re-
sults. Also, we suggest two possible improvements to
the ACT-R model Allowing ACT-R to compile its own
system of rules from a minimal starting set (Ande:son
and Lebiere, 1998) may provide a more natural solution,
although interpreting the underlying decision processes
would be more difficult  Starting with a high initial noise
would allow the agents to always discover and benefit
from the most successful rules, while rapidly reducing
this roise level (in conjunction with the entropy of sue-
cess {Belavkin and Ritter, 2003)) would be necessary in
order to obtain a stable enough solution fo pass stage
2a of the training régime

The other chvious next step would be to collect and
analyse more triad festing results acrass a laiger number
of primates For our pu:pases, it would be useful to have
triad testing on subjects who fail TT training as well as
those who succead We are investigating collaborations
in this area

The greatest significance of this work s that it gives
fuither evidence for a nop-sequence-based representation
underlying the TT task and further supports the utility
of the McGonigle and Chalmers (1977) triad data set.
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