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In defining state/action pairs for reinforcement learning of
the Tetris task, we seek to recognize known game states, as
well as to learn new ones according to relevant game
features. We propose a model of cognition that uses
categorization as a mechanism to sort such features into
appropriate state-types, and an attention mechanism based
on predicted values of each state as a method for deciding
which states/features are relevant.

Reinforcement Learning, Categorization, and
Spreading Activation

Models of reinforcement learning (RL) have proven to be
successful in learning and predicting values of actions given
a particular state of the world (Sutton & Barto, 1998).
Models of categorization, on the other hand, have been
shown to learn and recognize world states with great
precision (Medin & Schaffer, 1978). Finally, models of
spreading activation, such as ACT-R, have had the most
success in matching human memory recall time and
accuracy, as well as explaining human priming capabilities
(Anderson & Lebiere, 1998).

We have developed a theory for a general model of
cognition based on these three mechanisms — CB-Mineral.
CB-Mineral (CB) is a Categorization-Based Memory
Network with Reinforcement Learning. It is a specialized
neural network in which the number of hidden-layer nodes
and their interconnections are not predefined, nor are
connection weights trained using supervised learning.
Rather, memory nodes, connections, and connection weights
are incrementally added, consistent with categorization and
reinforcement-learning rules.

The State Recognition Problem

Complex dynamic environments, such as Tetris, pose
problems for computational modeling. In pairing action sets
with system states, the difficulty for production systems, as
well as for stand-alone RL models, is in learning new
system states (in production systems like ACT-R, the left-
hand side, “If X”, of any production, “If X, Do Y, is the
qualitative equivalent of State in a State/Action pair). It
would be both awkward and cognitively implausible for a
modeler to hardcode every possible qualitatively unique
world-state for a dynamic environment, even one as simple
as Tetris.

Categorization models and various connectionist
approaches do very well at mapping abstract features from
the environment to distinct categories. However, even our
hybrid model that uses such methods to establish the state of
the world prior to using RL still requires some sort of a
heuristic mechanism to decide when categories are created.

CB Implementation

The CB memory network starts its lifecycle with just the
perception and the action nodes. Perception nodes are
assigned to represent individual contours and locations in
the world, as well as pleasure and pain. Action nodes are
assigned to various keystrokes and internal commands.

At every tic, the perception module sends signals to the
perception nodes, which then activate their subclass nodes.
The activation spreads according to connection weights
down to the action nodes, which act directly upon the world.

Categorization

Currently, all highly activated objects are considered to be
in Working Memory. CB creates a new memory node for
every distinct set of objects in WM. This memory node
becomes a subclass to each of the objects in WM (Ex: {—}
+ {|} = {—.|}). If two or more objects in WM share
common features, a superclass object is formed for these
objects (Ex: {M, location 1, moving down} A {H, location
2, moving down} = {ll, moving down}). Each object can
have superclasses and subclasses. For example, each Tetris
piece (tetronimo) is a subclass to its contours, and is a
superclass to its rotation states and falling patterns.

Action Values, State Values, and Connection
Strengths

Unlike the traditional RL algorithms that only have a single
reward value regardless of whether it is negative or positive,
CB records both pain and pleasure values, similar to the way
ACT-R records successes and failures.

The value of an action depends on the values of the states
that follow that action and the strengths of connections to
those states. A given state’s value (love/fear), in turn, is
based on its connection strength to the pleasure and pain
nodes.



The strength of connection between any two memory
nodes is determined by the strength of activation of the two
nodes at the time when both are in WM at the same time.

Current Work

It has become apparent that not all highly activated
memory nodes should be placed in WM. We are currently
looking to construct a separate WM buffer that would serve
as the blackboard of the mind. The memory elements placed
in this buffer would be only the most relevant (according to
some heuristic other than activation level) of the highly
activated objects.

We refer to Attention as the mechanism responsible for
deciding which of the activated memory objects are sent to
WM. CB would attend only the most loved and the most
feared of the activated memory elements. This would drive
the model to reflect upon and learn about only the most
relevant task features.

Learning Tetris States

At the start of the game, CB would only “see” a blank
board, the contours of the border, and the first falling
tetronimo (see Figure 1). Each piece of the contour activates
a perception node pre-assigned to detect that particular
shape at that particular location, as well as a perception node
for that location, and one for that shape.

Figure 1. CB Tetris board.

The subclass created out of the co-activated contours
makes up what we can semantically translate as that
tetronimo (in that rotation state). As the tetronimo moves
down one notch, the new combination of active perception
nodes is recorded as another object, and so forth. The
multiple instances of the tetronimo become the superclasses
of an object that may be semantically translated as the
“tetronimo falling pattern”.

As this pattern is observed multiple times, all the
superclass-subclass connections in the memory network are
strengthened. With enough connection strength, each
“tetronimo” memory object will be activated with just a few
distinctive features, and that, in turn, will activate the
“tetronimo falling pattern” object. With the creation of the
WM buffer, each such object will be pushed into WM for
reflection, and all its superclasses — the instances of the
falling pattern — will be activated, as well.

Imagination and Planning

The ability to “imagine” future positions of a pattern, as
described above, may be the key to planning and decision-
making. The model could then keep the bottom of the Tetris
board in WM, while mentally going through the various
possible states of the current tetronimo in search of a
combined state with highly valued responses (as per the
rules of RL). The opposite planning pattern may occur as
well — the model could also keep the tetronimo in WM,
while going through possible states of the board. These two
search patterns would be the decision searches for CB in the
Tetris task.

Data

Both of the above CB planning patterns were observed in an
informal analysis of human eye data during the Tetris task.
Collected eye-gaze data suggests that after every newly
observed state, subjects quickly search for a complementary
object.

After gazing at a new pattern at the bottom of the board,
subjects quickly gaze at the top piece to see if it fit into the
last observed “hole” in that pattern. Subjects also searched
through the bottom of the board for an appropriate “hole”
immediately after observing the new tetronimo at the top,
with quicker response times when the “hole” matched the
tetronimo. We are still looking to do more rigorous analysis
of the collected data prior to forming any conclusions.

Summary

In combining the state recognition capabilities of
categorization with state prediction of spreading activation
and trial-and-error learning of RL, we design the CB-
Mineral memory network. The Working Memory buffer and
the Attention mechanism are currently being implemented
to complete the architecture. Upon completion, CB will be
capable of exploring and mastering Tetris as a sample
complex dynamic environment. A preliminary look at
human eye data suggests a qualitative match to the predicted
cognitive flow of the model, leaving the doors open for
future research.
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