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When a person confronts the task of memorizing a 
collection of facts some questions have to be answered 
about how to optimize their learning. Perhaps the most 
important of these questions is how the practices for each 
item should be scheduled. The most basic suggestion from 
psychology is that the practices should be spaced as widely 
as possible. Since Bahrick (1979) it has been clear that wide 
spacing intervals result in better performance after a long 
delay. However, while wide spacing is likely to help, it may 
also be important to consider item differences when making 
practice scheduling decisions. 

Memory items (such as the Japanese-English paired-
associates we have used in this research) are not equally 
difficult for each subject to learn. In postexperimental 
interviews subjects often mention that some items were 
easier to remember because they could find some mediator 
to connect the cue to the response. Further, the data shows 
that some items are on average easier for all subjects. 
Perhaps the cue (the Japanese word) for these items is fairly 
close to some common English word that can be used to 
mediate between the cue and response.  

It is useful to consider how we might optimize learning by 
attending to this variability in item difficulty. For instance, 
if we knew an item was easier we could schedule it less 
often, while if it was more difficult we could schedule it 
more often. This may have two benefits. First, if we did not 
use this procedure and instead gave the items equal practice 
we might expect that some items would be overlearned (the 
easier items) and some items would be learned poorly (the 
harder items). This uneven learning might be undesirable. 
Second, by saving practices on easy items and then 
distributing them to hard items it might be possible to 
achieve gains in performance. 

To attend to this variability requires a model of memory 
that does two things.  First, it needs to describe accurately 
how practice in general leads to recall performance by 
characterizing memory effects due to the frequency, 
recency, and spacing of practices.  Second, to optimize 
performance for individual items, the model needs to be 
able to characterize both initial average difficulty for each 
item (estimated by fitting data from prior experiments, from 
now on referred to as item difficulty) and the difficulty 
particular subjects have with each item (which will need to 
be estimated based on performance with the item over the 

course of each subject’s learning, from now on referred to as 
subject/item difficulty).  

Model 
The model we used, an extension of the Adaptive 

Character of Thought – Rational (ACT-R -- Anderson & 
Lebiere, 1998) theory, captures the three major effects in 
memory. The original ACT-R model captures the recency 
and frequency effects. Our extension of ACT-R (Pavlik and 
Anderson, 2003) captures the spacing effect. Importantly, it 
also models the spacing by practice interaction (that more 
spaced practice causes a larger spacing effect) and the 
spacing by retention interval interaction (that a longer 
retention interval causes a larger spacing effect).  

In the model, memory strength for an item is represented 
by a value called activation which is calculated from the 
frequency, recency and spacing of practices. To capture the 
item difficulty for any item (both the item and subject/item 
components) we added a parameter to the model, β, which is 
added to activation for each item to represent whether the 
item is easy (positive β) or difficult (negative β). Overall β 
for any item is the sum of the item and subject/item 
components. A sigmoidal output function is used to 
calculate probability of recall as a function of activation. 

Optimization 
Our optimization routine supposes that training the lowest 

activation item leads to maximum learning (in terms of 
activation at a delay). This assumption follows from the 
model which describes how the long-run activation 
contribution of each practice depends on the activation for 
the item at the time the practice occurs.  

The optimization procedure for a set of paired-associate 
items begins by presenting both the cue and response for 
each pair in a sequence of study trials. Following this, each 
trial involves the following steps: 

1. Calculate the activation for all items. 
2. Practice the item with the most to gain at recall 

(lowest activation item). 
3. Update estimate of subject/item β for the 

practiced item. 
4. If all trials completed end, else go to step 1. 

The initial introduction of the items is in order from the 
items with lowest βs to the items with the highest βs. After 
each item has been introduced it has a history and the 



routine can calculate its activation, which includes the 
current β estimate for the item (the sum of item and 
subject/item components). After computing the activations 
for all items, the lowest activation item is selected and 
practiced. Each practice is a test of the item, which is 
followed by the correct response if the subject supplies the 
wrong answer. Defining a practice in this way allows us to 
both give practice and assess performance with each trial. 

 The routine uses the performance from each trial to 
update the estimate of subject/item β for the item. The 
routine starts out by assuming a prior distribution f(x) for 
subject/item βs determined in the prior experiment (Pavlik 
and Anderson, 2003). Each time the item is tested the mean 
and variance of this distribution are updated. If S is the 
history of success and failure for an item the posterior 
distribution is calculated according to the Bayesian formula: 
 

 

 
(1) 

where P(S|x) is the probability of S given a value x.  
This procedure allows us to estimate the current 

subject/item β estimate for an item as a function of the 
history of performance with the item. Essentially, what this 
involves is successive shifting and narrowing of our 
subject/item estimate of β as we gather data for an item. 

Experiment 
As a test of this optimization algorithm, we compared it 

with 2 control conditions in a within-subjects design. The 
first control condition scheduled practice using the widest 
possible spacing, while in the second control condition the 
schedule was yoked to the schedule produced for the 
previous subject’s optimized words (the schedules did not 
correspond to the same words for the previous subject.)  

The experiment also had 2 between-subjects conditions. 
In addition to the Japanese-English pairs from the prior 
experiment, we also used a set of Spanish-English pairs. 
While the Japanese stimuli had been designed to prevent 
easy associations, the Spanish language set contained more 
variability. While some words were as difficult as Japanese, 
roughly half of the Spanish set was rather easy with close 
cognates in English.  

Subjects learned 60 pairs in the Japanese condition and 90 
pairs in the Spanish condition. The word pairs for each 
subject were randomized into the three conditions so one-
third of the pairs was designated in each condition. Since we 
had estimates of item βs for Japanese pairs, the optimization 
used these as estimates of the initial item βs. We had no 
initial item β estimates for the Spanish pairs so assumed 0 
values for all these items. 

The experiment took place in two sessions separated by 2 
days. On session 1, subjects went through 360 trials in 
which the 3 within-subject conditions were interleaved. On 
the second session all items were tested twice to determine 
the effects of conditions.  

Because there was little difference between the between-
subjects conditions they were aggregated for analysis. As 

expected, both the wide spacing and optimized conditions 
(Ms = 0.798 and 0.818) performed significantly better than 
the yoked condition (M = 0.726). The difference between 
the optimized and wide conditions was not significant.   

To explore the results of the optimization, for all subjects 
within each within-subjects condition, we calculated the 
correlation of first session percent correct for each word 
with second session percent correct for each word. This 
gave three correlations for each subject, one for each 
condition. These correlations provided a measure of how 
likely a word that was responded to incorrectly on session 1 
would be responded to incorrectly on session 2. With even 
or yoked spacing one might expect the correlation would be 
substantially positive because hard items would still be on 
average harder on session 2. In the optimized condition 
however, to the extent that hard items were given more 
practices and easy items fewer, one should expect that 
session 1 and 2 performance should be uncorrelated.  

Since 10 subjects got 100% correct on session 2 for at 
least one of the conditions it was impossible to calculate one 
or more correlations. Statistical tests were performed on the 
30 subjects with complete data. After showing the overall 
difference was significant using a within subjects ANOVA, 
F(2, 58) = 52.6, p < .001, we ran several t-tests to compare 
mean correlations (Ms 0.54, 0.13 and 0.64 respectively for 
even, optimized and yoked conditions). Both even spacing 
and the yoked condition correlations were significantly 
greater than optimized, ts > 6, ps < 0.001.   

Conclusion 
The results of the experiment showed that the 

optimization routine behaved as expected. While the 
improvement was not significant compared with even 
spacing, the correlations showed that the optimization as it 
currently stands has the desirable property of automatically 
identifying difficult items and giving them more practice at 
the expense of easier items. This property might be 
especially useful in longer term training protocols during 
which extensive overtraining of well learned items would 
result in considerable inefficiency.  

Acknowledgments 
Preparation of this paper was supported by grant N00014-

96-01-1491 from the Office of Naval Research. 

References 
Anderson, J. R. & Lebiere, C. (1998). The atomic 

components of thought. Mahwah. NJ. US: Lawrence 
Erlbaum Associates. Publishers. 

Bahrick, H. P. (1979). Maintenance of knowledge: 
Questions about memory we forgot to ask. Journal of 
Experimental Psychology: General, 108, 296-308. 

Pavlik Jr., P. I., & Anderson, J. R. (2003). An ACT-R model 
of the spacing effect. In F. Detje, D. Dorner & H. Schaub 
(Eds.), Proceedings of the Fifth International Conference 
of Cognitive Modeling (pp. 177-182). Germany: 
Universitats-Verlag Bamberg. 


