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Abstract

Reasoning about and with time has never been studied
extensively in the context of cognitive architectures. We
present a temporal reasoning system that can make accurate
predictions for two classic interval estimation experiments by
Rakitin et al. (1998) and Penney et al. (2000). The system is
implemented as an additional module for ACT-R. In
combination with ACT-R’s other mechanisms, it makes
accurate predictions about experiments that go beyond just
estimating time. We demonstrate this by modeling data from a
choice-reaction task by Grosjean et al. (2001).

Temporal Reasoning

Despite the fact that most cognitive architectures make
predictions about time, they do not support models that
reason about time itself. People on the other hand usually
have a good sense of the passage of time, and use this
capability, often implicitly, to handle time intervals in their
reasoning. The classical example is approaching a traffic
light that turns from green to yellow. The decision drivers
are faced with is whether to brake or drive on, which
depends on their (earlier established) sense of time about
when the light will turn red. A sense of time may also be
necessary in the coordination of multi-tasking. For example,
when driving a car and keying a number on a cell-phone at
the same time, it is necessary to keep track of elapsed time
between consecutive checks of the road condition. In
interaction with computers, it is not uncommon that some
time elapses between the user’s input and the computer’s
response, especially when it concerns the internet. It is
important for the user to be able to assess whether the
waiting time is reasonable, because an interval that is too
long might indicate a problem (either in the software or the
user’s understanding of the interface).

When one wants to model the estimation of time intervals
in a cognitive architecture, the important question to ask is
whether or not interval timing is an architectural feature or
something that can be modeled with an appropriate set of
knowledge. The only way to keep track of time in the
context of the ACT-R architecture' (Anderson & Lebiere,
1998) is explicit counting, making it almost impossible to
account for tasks in which an implicit sense of time partly
determines behavior. Even more, experimental results
indicate that humans can assess time intervals when explicit
counting is discouraged or forbidden. There are also

! Note that time is used for utility calculations. However, ACT-R
has no direct access to subsymbolic quantities.

biological and neuropsychological reasons to favor an
architectural solution. It is well-known from the behaviorist
literature that animals can learn time intervals. For example,
if rats or pigeons receive a reward when they press a bar,
they quickly learn to anticipate this. However, when this
reward is only given every 30 seconds, the rats will increase
their bar-pressing when the 30 second deadline approaches,
clearly showing a sense of the duration of the time interval
(Gibbon, 1977).

More recent neuropsychological research suggests that
there are particular areas in the brain related to the
estimation of time intervals. Based on several studies,
Matell and Meck (2000) have constructed a model of
interval timing, which we summarize in Figure la. The
general idea is that certain stimuli can synchronize neurons
in a certain region of the cortex, effectively acting as a
starting sign. As each of the neurons produces its own
particular pattern of activation in time, each moment in time
is associated with an unique pattern of activation. These
patterns are recognized by striatal spiny neurons, whose
activations are then integrated by certain basal ganglia
output nuclei (globus pallidus, entopeduncular nucleus and
substantia nigra reticulata), and then relayed to the thalamus
for behavioral expression.
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Figure 1. Matell and Meck (2000) model and the general
ACT-R production matching schema

The neural mechanisms proposed by Matell and Meck
show a close resemblance to the mappings from ACT-R
onto the brain, shown in Figure 1b. ACT-R assumes several
cortical buffers corresponding to the goal, retrieval,



perceptual and motor systems. The contents of these buffers
are matched in the striatum, after which one production rule
is selected in the pallidum. The thalamus then takes care of
the execution of the production rule, which can for example
reset the internal time. We therefore propose to model time
estimation by adding an extra module to ACT-R that
implements the perception of time. Mapping the M&M
model onto ACT-R produces a model in which most
systems correspond to general architectural areas, with the
exception of the special-purpose temporal buffer and
module.

The Temporal Module

The general idea, based on Matell and Beck (2000), is that
an internal timer can be started explicitly to time the interval
between two events. Matell and Beck hypothesized that a
start event resets the cortical neurons. Given that different
neurons have different associated firing patterns, each point
in time is characterized by a different subset of firing
neurons. Therefore, at any given point in time, the state of
the neurons is a representation of the time passed since the
resetting of the clock. Since some neurons have a greater
periodicity than others, similar durations will be associated
with similar patterns. As coarse time-grained neurons are
the main determiners of the time elapsed for longer
intervals, timing becomes less precise for longer durations.

To approximate this process in the simulation we
represent the current neural pattern by an integer. A reset
event sets this integer to zero, after which it is increased as
time progresses. The idea is that the temporal module acts
like a metronome, but one that starts ticking slower and
slower as time progresses. The interval estimate is based on
the number of ticks the metronome has produced. More
precisely, the duration of the first tick is set to some start
value:

t, = starttick

Each tick is separated from the previous tick by an interval
that is a times the interval between the previous two ticks.
Each interval has some noise drawn from a logistic
distribution added to it. The distribution of this noise is
determined by the current tick-length.

t,, = at, +noise(mean =0,sd = b- at,)

We have estimated values for the parameters in these
equations on the basis of an optimal fit to the first
experiment, interval estimation. There we found 11 ms for
start tick, 1.1 for @, and 0.015 for b. These values also
provided excellent fits to the other experiments discussed in
this paper.

The starting of the timer is triggered by a production
action. This timer generates incremental timestamps that
virtually represent firing neurons. The current state of the
timer can be matched in the condition of a production. This
match can take two forms. The first form is reading out the
current value of the timer. This occurs when the variable

being matched is not yet bound to a value. In that case the
variable is instantiated to contain the current value of the
timer. If we store this time pattern in the goal or in
declarative memory, it can be saved for future use. This
future use is also the second form of using the patterns: by
matching the temporal buffer to a specific value. The match
only succeeds if the buffer (approximately) has the value we
try to match, thereby making it possible to have production
rules “wait” until their time to fire.

Example: Estimate and Reproduce a Time Interval

Suppose we want to reproduce a time interval, as
represented in the first horizontal bar in Figure 2, that is
defined as the time between the start of a trial and the
moment a light comes on.
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Figure 2. Illustration of the temporal module

A first production will start the timer:

(p start-learn IF the goal is to reproduce
=goal> an interval
isa reproduce-interval
state begin

=> THEN
+temporal> initiate the time module
isa time
=goal> AND wait

state wait)

The “+temporal>" on the right hand side initiates the time
module by resetting the internal timer. After the timer has
been reset, it starts recording the increasing ticks as shown
in the second bar of Figure 2. As soon as the light comes on,
a second production rule fires and reads out the current tick
value:

(p respond-to-light IF the goal is to reproduce a

=goal> pattern and we are
isa reproduce-interval waiting
state wait

AND a visual stimulus
has been found

=visual-location>
isa visual-location

=temporal> AND the current time is
isa time time
ticker =time

==> THEN

=goal> store time in the goal
time =time
state wait-again

+temporal> AND restart the timer
isa time)




As the temporal module’s state is in the interval between
tick 5 and 6, the value read from the buffer will be 5. Now
that we have a pattern, a new production rule can initiate the
key-press after approximately the same amount of time has
elapsed. Note that in the above production rule, the time
module is reset again, so a new series of ticks, represented
in the bottom bar of Figure 2, is initiated. As soon as the
temporal state resembles the stored value, in the example in
Figure 2 slightly later due to noise, the production rule
below initiates a key press.

(p respond-to-predicted-light
=goal>
isa reproduce-interval
state wait-again

IF the goal is to reproduce
an interval and we are
waiting for interval time
to pass

time =time

=temporal> AND the temporal buffer
isa time has reached value time
ticker =time

==> THEN
+manual> press the key
isa press-key
=goal>

state done)

The estimation process here seems to under predict the
interval because the real time is rounded down to the lower
tick (integer) value. In practice this effect is much smaller
than the effect of the noise.

Model of Interval Estimation

In interval estimation experiments, participants are exposed
to a certain time interval a number of times, and are then
asked to reproduce it. We modeled Experiment 3 from
Rakitin et al. (1998). In this experiment participants were
first trained on a certain time interval (8, 12 or 21s).
Training consisted of 10 trials in which a blue rectangle
appeared on the screen, which changed to magenta when the
time interval had elapsed. In the 80 test trials they had to
predict the interval by pressing a key when they expected
the rectangle to change color. In 25% of the test trials the
rectangle changed color when the interval had elapsed. The
results are based on the remaining 75%, in which the
rectangle stayed blue. Participants were forbidden to count.

Figure 3-5 show the scaled density plots of the responses
(triangles). The peak of the distribution is at the appropriate
time, the variance grows with the length of the interval, and
the distribution is slightly skewed. The distributions satisfy
the so-called scalar property of time estimate, in that the
variance in the estimates grows linearly with the duration of
the interval.

The model of this experiment closely resembles the
example model outlined in the previous section. The
learning phase is used to estimate the number of ticks in the
interval (the model takes the average of the ten
presentations), and during the testing phase the model waits

until the appropriate number of ticks has passed. We
estimated the three model parameters (multiplication factor,
initial tick and noise) to obtain the best (least-squares) fit
(shown by the solid lines).
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Figure 3. Data (triangles) and model (line) for 8 seconds
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Figure 4. Data (triangles) and model (line) for 12 seconds

. /\
/ A

X _,..»-’/ ¥

T T T T T
0 10 20 30 40

Figure 5. Data (triangles) and model (line) for 21 seconds
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The fit between model and data is overall very good. The
only aspect of the data that the model does not predict is the
tail of the distribution for the 8 and 12 second conditions. In
Experiment 1 of Rakitin et al. (1998), which is similar to
Experiment 3, the tails of the distributions are much shorter.
We therefore decided to leave the temporal mechanisms as
simple as possible and to let further experience with the
temporal buffer determine if an extension is necessary.



Model of Bisection Experiments

Another paradigm in time perception are so-called bisection
experiments. In these experiments, participants are first
trained on two time intervals, one short interval and one
long interval. After this learning phase, they are exposed to
new time intervals that are either equal to the short or the
long interval, or somewhere in-between. Participants are
then asked to judge whether the presented interval is closer
to the short or to the long interval. We will model
Experiment 2 from Penney, Gibbon and Meck (2000). In
this experiment, three short-long pairs of intervals were
used: 3 and 6 seconds, 2 and 8 seconds, and 4 and 12
seconds. In the training phase 10 tones of either the short or
the long duration were presented to the participant. After
that participants were tested for 100 trials, 30% of which
were anchor point intervals (short or long), and 70% were
tones of intermediate duration.

The model uses the training phase to determine the timing
for both the short and the long interval. During testing, it
times the presented interval, and then compares the value to
both anchor intervals. If the value is closer to that of the
short interval, it chooses that, if it is closer to the long
interval, it decides that it is long. The parameters for the
model are identical to that of the earlier fitted interval
estimation experiment, that is, they have not been estimated
anew for these data.

Figures 6-8 show the results of the experiment and the
model. A property of both participants’ behavior and the
model’s predictions is the fact that the interval that is judged
long 50% of the times is shorter than the mean of the short
and long interval. For example, in the 2-8 second version of
the task (Figure 7), the 50% point is at 4 seconds instead of
5. The model explains this by the fact that its “ticks”
increase in duration: there are approximately the same
number of ticks between 2 and 4 seconds as between 4 and
8 seconds.

Role of timing in choice-reaction tasks

The previous two models show the validity of the temporal
module, but they do not go beyond estimation and judgment
of time intervals. To show that the temporal module has
more than marginal value for an integrated cognitive
architecture, we will now examine an experiment in which
timing is important, but where it is not the focus of the
experiment. It concerns a choice-reaction time experiment
by Grosjean, Rosenbaum and Elsinger (2001, Experiment
1).

The experiment itself is straight-forward: on each trial a
“+”-like figure appeared on the screen, of which the vertical
line was always in the same place, but the horizontal either
had two-thirds of its length to the left or to the right of the
vertical line. Participants were instructed to press the “d”
key if the horizontal line would be more towards the left, or
the “k” key when it would be more towards the right.

The manipulation in this experiment was the inter-
stimulus interval (ISI), here defined as the elapsed time
between the key press of the previous trial and the
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Figure 6. Proportion of “long” responses for intervals
between 3 and 6 seconds
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Figure 8. Proportion of “long” responses for intervals
between 4 and 12 seconds

presentation of the next trial. Each block consisted of 16
trials. This ISI was kept constant for the first 15 trials, but
was changed on trial 16. More specifically, there were three



conditions: Shortened: the ISI on trial 1-15 was 700 ms,
while the IST on trial 16 was 467 ms, Control: the ISI in all
the trials was 467 ms, and Lengthened: the ISI on trial 1-15
was 350 ms, while the ISI on trial 16 was 467 ms. Figure 9
shows the reaction times for these conditions per trial.
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Figure 9. Results of the Grosjean et al. (2001) experiment

The strongest effect in the results is the increased reaction
time on trial 16 in the shortened condition. Apparently, there
is an advantage of knowing when the stimulus will arrive,
and when it arrives early this advantage is cancelled. In our
model we assume that the advantage of knowing when and
where the stimulus will arrive allows one to start attending
the stimulus at just the right time. In ACT-R, attending a
stimulus normally takes two steps. First, it is detected that
there is something on the screen (a visual-location). Then a
production rule has to fire to direct attention to this location.
Firing a production rule takes 50 ms, so this is the amount
of time we can save if we can direct attention to the right
location at the right time. Let us examine the model in more
detail.
First, a rule starts the timer, and waits for the stimulus:

=visual-location> AND there is a visual

isa visual-location stimulus
=temporal> AND time fime has
isa time elapsed
ticks =time
==> THEN
+visual> attend the visual

isa visual-object stimulus
screen-pos =visual-location
=goal>
time =time
loc =visual-location
status wait-visual

AND store the time and
the location of the visual
stimulus in the goal

Other rules then handle the visual stimulus and make the
appropriate key presses. On the next trial, the model uses
the stored time and location to estimate when the stimulus
will appear, and already starts the attention process:

(p expect-visual-location IF the goal is a choice-
=goal> reaction-task and we are
isa crt waiting, and the previous
status waiting stimulus came up at time
time =time time and location /loc
loc =loc
=temporal> AND time time has elapsed
isa time
ticks =time
==> THEN
+visual> attend location /oc
isa visual-object
screen-pos =loc
=goal>
status wait-visual)

(p start-timer
=goal>
isa crt
status start
=> THEN
+temporal> start the timer and wait
isa time
=goal>
status waiting)

IF the goal is a choice-
reaction-task

When a stimulus appears on the screen, the model starts
attending it, but at the same time it stores the time and
location on which it appears in the goal:

(p found-visual-location
=goal>
isa crt
status waiting

IF the goal is a choice-
reaction-task and we are
waiting

This rule can fire before the stimulus comes up, and can
therefore, in principle, save up to 50 ms. Let us examine in
some more detail how the model manages to do this. If the
expect-visual-location rule is to be of any benefit, it has to
fire before found-visual-location. If the time estimate would
be completely accurate, this would never happen: both rules
would have their conditions satisfied at the same time.
However, timing is inaccurate. Suppose the value in the
timing buffer is 20 after the first stimulus presentation. For
the next trial, the expect-visual-location can fire when the
temporal buffer becomes 20. If this happens before the
stimulus comes up (because the timer is a bit faster than the
previous time), then expect-visual-location will fire, and
will produce some benefit on the reaction time. However, if
the timer is slow on this trial, found-visual-location will fire,
because the stimulus appears before the timer runs out. In
that case, the value of the timer is lower at the moment the
stimulus appears, for example 19. The found-visual-location
rule stores this new value in the goal. Therefore there is a
downward pressure on the value of the time estimate until
this value consistently causes expect-visual-location to fire
before found-visual-location.




For the model results we have used the same temporal
module parameters as in the previous models, and used the
default ACT-R parameters for all other modules. Figure 10
shows the results of the model. There is a 25 ms difference
between all the model’s predictions and the data. Although
we could have easily mended this by lowering the visual-
attention parameter from 85 ms to 60 ms, defending this by
the fact that this 85 ms normally also includes a here
unnecessary eye-movement, we chose to leave the results as
they first came out of the model. The model reproduces the
main effect in the data, that is, the slower reaction time on
trial 16 when the ISI is shortened, but also shows two other
effects present in the data. A first effect is that in the
lengthened condition the reaction time on trial 16 is slightly
faster than the reaction time for the control condition. This
can be explained by the fact that if the predicted time on
trial 16 is shorter than the ISI, the model will always save
the full 50 ms, while in the control condition it can be less.
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Figure 10. Results of the model for Grosjean et al. (2001)

A second effect that the model produced was the small
difference in reaction times on trials 6 to 15. It appears that
the longer the ISI, the shorter the reaction time, an effect
normally attributed to the need to prepare for the next trial.
As the model needs no preparation, but also shows the
effect, this model offers a different explanation for this
stereotypical effect: with the shorter ISI’s, the model is
more accurate in estimating the interval. However, in this
case being accurate is counter-productive. Inaccuracies in
the time estimate will cause the model to lower its value of
the time estimate. The lower this value, the higher the gain
in reaction time (up to 50 ms).

Discussion

The temporal module we propose is a simplification of the
neural model that Matell and Meck (2000) outline. Instead
of complex neural patterns ordinary integers are used.
Nevertheless it matches the behavior shown in experiments.
The integers in the temporal buffer can be considered to act
isomorphically to the more complex patterns in a neural

implementation. It is not clear to what extend the neural
representation allows all the operations that can be done on
integers (comparison, subtraction, etc.). We therefore are
careful in specifying what can and cannot be done with the
values in the temporal buffer, currently limiting the actions
to simple comparisons.

The temporal buffer is not the answer to all issues
regarding time. It can be used for intervals up to a minute,
but certainly not for longer intervals. Its performance can
however be augmented by the appropriate cognitive
strategies. For example, by allowing a model to count, it can
become much more precise in its estimations, mirroring
human performance.

The model of the Grosjean et al. data produces some
surprising explanations, and poses some new questions. One
assumption is that it is no problem to attempt to attend a
location early. Why don’t people do that all the time?
Maybe the attention process is effortful, and people try to
avoid expending too much effort. Another explanation
might be that by already attending a certain location, other
new information may be missed. This is irrelevant in this
particular experiment, but may be important in general.
Indeed, ACT-R will normally automatically attend new
stimuli, provided that the visual system is available. This
means that timing the onset of a stimulus is a good strategy
because other stimuli can be attended to in the period before
the stimulus, and visual attention can be directed to the right
location at exactly the right time.
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