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Abstract

Reasoning about and with time has never been studied

extensively in the context of cognitive architectures. We

present a temporal reasoning system that can make accurate

predictions for two classic interval estimation experiments by

Rakitin et al. (1998) and Penney et al. (2000). The system is

implemented as an additional module for ACT-R. In

combination with ACT-R’s other mechanisms, it makes

accurate predictions about experiments that go beyond just

estimating time. We demonstrate this by modeling data from a

choice-reaction task by Grosjean et al. (2001).

Temporal Reasoning

Despite the fact that most cognitive architectures make

predictions about time, they do not support models that

reason about time itself. People on the other hand usually

have a good sense of the passage of time, and use this

capability, often implicitly, to handle time intervals in their

reasoning. The classical example is approaching a traffic

light that turns from green to yellow. The decision drivers

are faced with is whether to brake or drive on, which

depends on their (earlier established) sense of time about

when the light will turn red. A sense of time may also be

necessary in the coordination of multi-tasking. For example,

when driving a car and keying a number on a cell-phone at

the same time, it is necessary to keep track of elapsed time

between consecutive checks of the road condition. In

interaction with computers, it is not uncommon that some

time elapses between the user’s input and the computer’s

response, especially when it concerns the internet. It is

important for the user to be able to assess whether the

waiting time is reasonable, because an interval that is too

long might indicate a problem (either in the software or the

user’s understanding of the interface).

When one wants to model the estimation of time intervals

in a cognitive architecture, the important question to ask is

whether or not interval timing is an architectural feature or

something that can be modeled with an appropriate set of

knowledge. The only way to keep track of time in the

context of the ACT-R architecture
1
 (Anderson & Lebiere,

1998) is explicit counting, making it almost impossible to

account for tasks in which an implicit sense of time partly

determines behavior. Even more, experimental results

indicate that humans can assess time intervals when explicit

counting is discouraged or forbidden. There are also

                                                            
1
 Note that time is used for utility calculations. However, ACT-R

has no direct access to subsymbolic quantities.

biological and neuropsychological reasons to favor an

architectural solution. It is well-known from the behaviorist

literature that animals can learn time intervals. For example,

if rats or pigeons receive a reward when they press a bar,

they quickly learn to anticipate this. However, when this

reward is only given every 30 seconds, the rats will increase

their bar-pressing when the 30 second deadline approaches,

clearly showing a sense of the duration of the time interval

(Gibbon, 1977).

More recent neuropsychological research suggests that

there are particular areas in the brain related to the

estimation of time intervals. Based on several studies,

Matell and Meck (2000) have constructed a model of

interval timing, which we summarize in Figure 1a. The

general idea is that certain stimuli can synchronize neurons

in a certain region of the cortex, effectively acting as a

starting sign. As each of the neurons produces its own

particular pattern of activation in time, each moment in time

is associated with an unique pattern of activation. These

patterns are recognized by striatal spiny neurons, whose

activations are then integrated by certain basal ganglia

output nuclei (globus pallidus, entopeduncular nucleus and

substantia nigra reticulata), and then relayed to the thalamus

for behavioral expression.
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Figure 1. Matell and Meck (2000) model and the general
ACT-R production matching schema

The neural mechanisms proposed by Matell and Meck

show a close resemblance to the mappings from ACT-R

onto the brain, shown in Figure 1b. ACT-R assumes several

cortical buffers corresponding to the goal, retrieval,



perceptual and motor systems. The contents of these buffers

are matched in the striatum, after which one production rule

is selected in the pallidum. The thalamus then takes care of

the execution of the production rule, which can for example

reset the internal time. We therefore propose to model time

estimation by adding an extra module to ACT-R that

implements the perception of time. Mapping the M&M

model onto ACT-R produces a model in which most

systems correspond to general architectural areas, with the

exception of the special-purpose temporal buffer and

module.

The Temporal Module

The general idea, based on Matell and Beck (2000), is that

an internal timer can be started explicitly to time the interval

between two events. Matell and Beck hypothesized that a

start event resets the cortical neurons. Given that different

neurons have different associated firing patterns, each point

in time is characterized by a different subset of firing

neurons. Therefore, at any given point in time, the state of

the neurons is a representation of the time passed since the

resetting of the clock. Since some neurons have a greater

periodicity than others, similar durations will be associated

with similar patterns. As coarse time-grained neurons are

the main determiners of the time elapsed for longer

intervals, timing becomes less precise for longer durations.

To approximate this process in the simulation we

represent the current neural pattern by an integer. A reset

event sets this integer to zero, after which it is increased as

time progresses. The idea is that the temporal module acts

like a metronome, but one that starts ticking slower and

slower as time progresses. The interval estimate is based on

the number of ticks the metronome has produced. More

precisely, the duration of the first tick is set to some start

value:

t0 = starttick

Each tick is separated from the previous tick by an interval

that is a times the interval between the previous two ticks.

Each interval has some noise drawn from a logistic

distribution added to it. The distribution of this noise is

determined by the current tick-length.

tn+1 = atn + noise(mean = 0,sd = b atn )

We have estimated values for the parameters in these

equations on the basis of an optimal fit to the first

experiment, interval estimation. There we found 11 ms for

start tick, 1.1 for a , and 0.015 for b. These values also

provided excellent fits to the other experiments discussed in

this paper.

The starting of the timer is triggered by a production

action. This timer generates incremental timestamps that

virtually represent firing neurons. The current state of the

timer can be matched in the condition of a production. This

match can take two forms. The first form is reading out the

current value of the timer. This occurs when the variable

being matched is not yet bound to a value. In that case the

variable is instantiated to contain the current value of the

timer. If we store this time pattern in the goal or in

declarative memory, it can be saved for future use. This

future use is also the second form of using the patterns: by

matching the temporal buffer to a specific value. The match

only succeeds if the buffer (approximately) has the value we

try to match, thereby making it possible to have production

rules “wait” until their time to fire.

Example: Estimate and Reproduce a Time Interval

Suppose we want to reproduce a time interval, as

represented in the first horizontal bar in Figure 2, that is

defined as the time between the start of a trial and the

moment a light comes on.

Figure 2. Illustration of the temporal module

A first production will start the timer:

(p start-learn

  =goal>

    isa reproduce-interval

    state begin

==>

    +temporal>

        isa time

    =goal>

         state wait)

IF the goal is to reproduce

an interval

THEN

initiate the time module

AND wait

The “+temporal>” on the right hand side initiates the time

module by resetting the internal timer. After the timer has

been reset, it starts recording the increasing ticks as shown

in the second bar of Figure 2. As soon as the light comes on,

a second production rule fires and reads out the current tick

value:

(p respond-to-light

  =goal>

    isa reproduce-interval

    state wait

  =visual-location>

    isa visual-location

  =temporal>

     isa time

     ticker =time

==>

  =goal>

     time =time

     state wait-again

  +temporal>

     isa time)

IF the goal is to reproduce a

pattern and we are

waiting

AND a visual stimulus

has been found

AND the current time is

time

THEN

store time in the goal

AND restart the timer



As the temporal module’s state is in the interval between

tick 5 and 6, the value read from the buffer will be 5. Now

that we have a pattern, a new production rule can initiate the

key-press after approximately the same amount of time has

elapsed. Note that in the above production rule, the time

module is reset again, so a new series of ticks, represented

in the bottom bar of Figure 2, is initiated. As soon as the

temporal state resembles the stored value, in the example in

Figure 2 slightly later due to noise, the production rule

below initiates a key press.

(p respond-to-predicted-light

  =goal>

    isa reproduce-interval

    state wait-again

    time =time

  =temporal>

    isa time

    ticker =time

==>

   +manual>

      isa press-key

  =goal>

      state done)

IF the goal is to reproduce

an interval and we are

waiting for interval time

to pass

AND the temporal buffer

has reached value time

THEN

press the key

The estimation process here seems to under predict the

interval because the real time is rounded down to the lower

tick (integer) value. In practice this effect is much smaller

than the effect of the noise.

Model of Interval Estimation

In interval estimation experiments, participants are exposed

to a certain time interval a number of times, and are then

asked to reproduce it. We modeled Experiment 3 from

Rakitin et al. (1998). In this experiment participants were

first trained on a certain time interval (8, 12 or 21s).

Training consisted of 10 trials in which a blue rectangle

appeared on the screen, which changed to magenta when the

time interval had elapsed. In the 80 test trials they had to

predict the interval by pressing a key when they expected

the rectangle to change color. In 25% of the test trials the

rectangle changed color when the interval had elapsed. The

results are based on the remaining 75%, in which the

rectangle stayed blue. Participants were forbidden to count.

Figure 3-5 show the scaled density plots of the responses

(triangles). The peak of the distribution is at the appropriate

time, the variance grows with the length of the interval, and

the distribution is slightly skewed. The distributions satisfy

the so-called scalar property of time estimate, in that the

variance in the estimates grows linearly with the duration of

the interval.

The model of this experiment closely resembles the

example model outlined in the previous section. The

learning phase is used to estimate the number of ticks in the

interval (the model takes the average of the ten

presentations), and during the testing phase the model waits

until the appropriate number of ticks has passed. We

estimated the three model parameters (multiplication factor,

initial tick and noise) to obtain the best (least-squares) fit

(shown by the solid lines).
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Figure 3. Data (triangles) and model (line) for 8 seconds
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Figure 4. Data (triangles) and model (line) for 12 seconds
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Figure 5. Data (triangles) and model (line) for 21 seconds

The fit between model and data is overall very good. The

only aspect of the data that the model does not predict is the

tail of the distribution for the 8 and 12 second conditions. In

Experiment 1 of Rakitin et al. (1998), which is similar to

Experiment 3, the tails of the distributions are much shorter.

We therefore decided to leave the temporal mechanisms as

simple as possible and to let further experience with the

temporal buffer determine if an extension is necessary.



Model of Bisection Experiments

Another paradigm in time perception are so-called bisection

experiments. In these experiments, participants are first

trained on two time intervals, one short interval and one

long interval. After this learning phase, they are exposed to

new time intervals that are either equal to the short or the

long interval, or somewhere in-between. Participants are

then asked to judge whether the presented interval is closer

to the short or to the long interval. We will model

Experiment 2 from Penney, Gibbon and Meck (2000). In

this experiment, three short-long pairs of intervals were

used: 3 and 6 seconds, 2 and 8 seconds, and 4 and 12

seconds. In the training phase 10 tones of either the short or

the long duration were presented to the participant. After

that participants were tested for 100 trials, 30% of which

were anchor point intervals (short or long), and 70% were

tones of intermediate duration.

The model uses the training phase to determine the timing

for both the short and the long interval. During testing, it

times the presented interval, and then compares the value to

both anchor intervals. If the value is closer to that of the

short interval, it chooses that, if it is closer to the long

interval, it decides that it is long. The parameters for the

model are identical to that of the earlier fitted interval

estimation experiment, that is, they have not been estimated

anew for these data.

Figures 6-8 show the results of the experiment and the

model. A property of both participants’ behavior and the

model’s predictions is the fact that the interval that is judged

long 50% of the times is shorter than the mean of the short

and long interval. For example, in the 2-8 second version of

the task (Figure 7), the 50% point is at 4 seconds instead of

5. The model explains this by the fact that its “ticks”

increase in duration: there are approximately the same

number of ticks between 2 and 4 seconds as between 4 and

8 seconds.

Role of timing in choice-reaction tasks

The previous two models show the validity of the temporal

module, but they do not go beyond estimation and judgment

of time intervals. To show that the temporal module has

more than marginal value for an integrated cognitive

architecture, we will now examine an experiment in which

timing is important, but where it is not the focus of the

experiment. It concerns a choice-reaction time experiment

by Grosjean, Rosenbaum and Elsinger (2001, Experiment

1).

The experiment itself is straight-forward: on each trial a

“+”-like figure appeared on the screen, of which the vertical

line was always in the same place, but the horizontal either

had two-thirds of its length to the left or to the right of the

vertical line. Participants were instructed to press the “d”

key if the horizontal line would be more towards the left, or

the “k” key when it would be more towards the right.

The manipulation in this experiment was the inter-

stimulus interval (ISI), here defined as the elapsed time

between the key press of the previous trial and the

3-6 sec discrimination
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Figure 6. Proportion of “long” responses for intervals
between 3 and 6 seconds

2-8 sec discrimination
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Figure 7. Proportion of “long” responses for intervals
between 2 and 8 seconds

4-12 sec discrimination
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Figure 8. Proportion of “long” responses for intervals
between 4 and 12 seconds

presentation of the next trial. Each block consisted of 16

trials. This ISI was kept constant for the first 15 trials, but

was changed on trial 16. More specifically, there were three



conditions: Shortened: the ISI on trial 1-15 was 700 ms,

while the ISI on trial 16 was 467 ms, Control: the ISI in all

the trials was 467 ms, and Lengthened: the ISI on trial 1-15

was 350 ms, while the ISI on trial 16 was 467 ms. Figure 9

shows the reaction times for these conditions per trial.
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Figure 9. Results of the Grosjean et al. (2001) experiment

The strongest effect in the results is the increased reaction

time on trial 16 in the shortened condition. Apparently, there

is an advantage of knowing when the stimulus will arrive,

and when it arrives early this advantage is cancelled. In our

model we assume that the advantage of knowing when and

where the stimulus will arrive allows one to start attending

the stimulus at just the right time. In ACT-R, attending a

stimulus normally takes two steps. First, it is detected that

there is something on the screen (a visual-location). Then a

production rule has to fire to direct attention to this location.

Firing a production rule takes 50 ms, so this is the amount

of time we can save if we can direct attention to the right

location at the right time. Let us examine the model in more

detail.

First, a rule starts the timer, and waits for the stimulus:

(p start-timer

   =goal>

     isa crt

     status start

==>

   +temporal>

      isa time

   =goal>

     status waiting)

IF the goal is a choice-

reaction-task

THEN

start the timer and wait

When a stimulus appears on the screen, the model starts

attending it, but at the same time it stores the time and

location on which it appears in the goal:

(p found-visual-location

   =goal>

     isa crt

     status waiting

IF the goal is a choice-

reaction-task and we are

waiting

   =visual-location>

     isa visual-location

   =temporal>

     isa time

     ticks =time

==>

   +visual>

     isa visual-object
     screen-pos =visual-location

   =goal>

     time =time

     loc =visual-location

     status wait-visual

AND there is a visual

stimulus

AND time time has

elapsed

THEN

attend the visual

stimulus

AND store the time and

the location of the visual

stimulus in the goal

Other rules then handle the visual stimulus and make the

appropriate key presses. On the next trial, the model uses

the stored time and location to estimate when the stimulus

will appear, and already starts the attention process:

(p expect-visual-location

   =goal>

     isa crt

     status waiting

     time =time

     loc =loc

   =temporal>

     isa time

     ticks =time

==>

   +visual>

     isa visual-object

     screen-pos =loc

   =goal>

     status wait-visual)

IF the goal is a choice-

reaction-task and we are

waiting, and the previous

stimulus came up at time

time and location loc

AND time time has elapsed

THEN

attend location loc

This rule can fire before the stimulus comes up, and can

therefore, in principle, save up to 50 ms. Let us examine in

some more detail how the model manages to do this. If the

expect-visual-location rule is to be of any benefit, it has to

fire before found-visual-location. If the time estimate would

be completely accurate, this would never happen: both rules

would have their conditions satisfied at the same time.

However, timing is inaccurate. Suppose the value in the

timing buffer is 20 after the first stimulus presentation. For

the next trial, the expect-visual-location can fire when the

temporal buffer becomes 20. If this happens before the

stimulus comes up (because the timer is a bit faster than the

previous time), then expect-visual-location will fire, and

will produce some benefit on the reaction time. However, if

the timer is slow on this trial, found-visual-location will fire,

because the stimulus appears before the timer runs out. In

that case, the value of the timer is lower at the moment the

stimulus appears, for example 19. The found-visual-location

rule stores this new value in the goal. Therefore there is a

downward pressure on the value of the time estimate until

this value consistently causes expect-visual-location to fire

before found-visual-location.



For the model results we have used the same temporal

module parameters as in the previous models, and used the

default ACT-R parameters for all other modules. Figure 10

shows the results of the model. There is a 25 ms difference

between all the model’s predictions and the data. Although

we could have easily mended this by lowering the visual-

attention parameter from 85 ms to 60 ms, defending this by

the fact that this 85 ms normally also includes a here

unnecessary eye-movement, we chose to leave the results as

they first came out of the model. The model reproduces the

main effect in the data, that is, the slower reaction time on

trial 16 when the ISI is shortened, but also shows two other

effects present in the data. A first effect is that in the

lengthened condition the reaction time on trial 16 is slightly

faster than the reaction time for the control condition. This

can be explained by the fact that if the predicted time on

trial 16 is shorter than the ISI,  the model will always save

the full 50 ms, while in the control condition it can be less.

0.365

0.385

0.405

0.425

0.445

6 11 16

Trial

R
ea

ct
io

n
 T

im
e 

(s
)

Shortened

Control

Lengthened

Figure 10. Results of the model for Grosjean et al. (2001)

A second effect that the model produced was the small

difference in reaction times on trials 6 to 15. It appears that

the longer the ISI, the shorter the reaction time, an effect

normally attributed to the need to prepare for the next trial.

As the model needs no preparation, but also shows the

effect, this model offers a different explanation for this

stereotypical effect: with the shorter ISI’s, the model is

more accurate in estimating the interval. However, in this

case being accurate is counter-productive. Inaccuracies in

the time estimate will cause the model to lower its value of

the time estimate. The lower this value, the higher the gain

in reaction time (up to 50 ms).

Discussion

The temporal module we propose is a simplification of the

neural model that Matell and Meck (2000) outline. Instead

of complex neural patterns ordinary integers are used.

Nevertheless it matches the behavior shown in experiments.

The integers in the temporal buffer can be considered to act

isomorphically to the more complex patterns in a neural

implementation. It is not clear to what extend the neural

representation allows all the operations that can be done on

integers (comparison, subtraction, etc.). We therefore are

careful in specifying what can and cannot be done with the

values in the temporal buffer, currently limiting the actions

to simple comparisons.

The temporal buffer is not the answer to all issues

regarding time. It can be used for intervals up to a minute,

but certainly not for longer intervals. Its performance can

however be augmented by the appropriate cognitive

strategies. For example, by allowing a model to count, it can

become much more precise in its estimations, mirroring

human performance.

The model of the Grosjean et al. data produces some

surprising explanations, and poses some new questions. One

assumption is that it is no problem to attempt to attend a

location early. Why don’t people do that all the time?

Maybe the attention process is effortful, and people try to

avoid expending too much effort. Another explanation

might be that by already attending a certain location, other

new information may be missed. This is irrelevant in this

particular experiment, but may be important in general.

Indeed, ACT-R will normally automatically attend new

stimuli, provided that the visual system is available. This

means that timing the onset of a stimulus is a good strategy

because other stimuli can be attended to in the period before

the stimulus, and visual attention can be directed to the right

location at exactly the right time.
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