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Abstract

Learning to make good choices in a probabilistic environment
requires that the Decision Maker resolves the tension between
exploration (learning about all available options) and
exploitation (consistently choosing the best option in order to
maximize rewards). We present a mathematical learning
model that makes selections in a repeated-choice probabilistic
task based on the expected payoff associated with each option
and the information gain that will result from choosing that
option. This model can be used to analyze the relative impact
of exploration and exploitation over time and under different
conditions. It predicts the aggregated and individual learning
trajectories of participants in various versions of the task
sufficiently well to support our basic argument: Information
gain is a valid and rational criterion underlying human
decision making. Future modeling work will be addressing
the exact nature of the interaction between exploration and
exploitation.

Introduction

Decision makers are often placed in novel situations that
offer them a finite variety of choices. They know that each
of the choices is associated with some probability of leading
to a positive outcome, but they don’t know what these
probabilities are. They might also know that making a
choice will constrain the available choices in the subsequent
decision cycle, but, again, they don’t quite know in which
manner this will happen. All they know is that they will
have n opportunities to make one choice at a time, and that
the long-term goal is to maximize accumulated rewards.
Each Decision Maker has to resolve the tension between
exploration (learning about the payoffs of the options, which
is achieved by selecting them and observing the outcome)
and exploitation (consistently choosing the best option).
Maximizing rewards depends on accurate payoff estimates
and therefore on sufficient information. On the other hand,
this exploration must eventually be discarded in favor of
consistently choosing the best option if the goal is to be met.
This example shows that exploration is a necessary
prerequisite of probability learning. It also shows that the
benefit of exploration depends on the amount of information
that has already been accumulated. Therefore, it will not
remain constant over time. We are convinced that it is
possible to predict the relative impact of exploration and
exploitation under different conditions over time, and that
this relative impact varies in interaction with the

probabilistic structure provided in the environment. The
model we present here provides an implementation of this
basic idea.

In the context of decision making research, the
representation of probabilistic information/learning has been
somewhat understudied, partly because probabilistic
representations are often assessed by eliciting one-shot
probability estimates from participants instead of observing
changes in their actual behavior (see Gigerenzer, 1994, for a
critique of the notion of single-event probabilities).
Additionally. following a long history of models of
probability learning (e.g. Estes, 1964;), recent cognitive
models of heuristics or decision making algorithms that rely
on probabilistic cues often provide participants with the
explicit probabilities from the outset (Broeder, 2000; Payne,
Bettman and Johnson, 1993; Rieskamp & Hoffrage, 2000)
or assume that the representations have already been formed
(models often achieve this during a separate “training
phase”) and are ready to be used. In ACT-R (Anderson &
Lebiere, 1998), the selection of cognitive operators
(production rules) is based on their “expected utility”, which
is partly determined by estimates of the probability of
success associated with that operator (the other components
being “cost/ effort” and noise). This expected utility can
gradually be learned by experience. Information gain, i.e.
the increase in knowledge about the payoff-structure of the
system, does not play an explicit role in utility learning and
operator selection in any of these models right now.

The model presented in this report proposes a definition of
information gain and an explanation of information gain and
estimated payoffs interactively influence decision making.
The model also explains how the relative impact of
information gain and estimated payoffs on decision making
changes over time.

Before describing the model and its predictions in more
detail, we will provide a description of the task in which it
was developed and tested, a repeated-choice probability
learning task with immediate and delayed rewards.
Afterwards, we will present the fit between some model
predictions and behavioral data, compare this fit to that of a
version of the model that does not take information gain
into account, and explore future directions for refining the
model.



A Probabilistic Learning Task

A version of the task that was used for developing this
model has previously been used by Brown and Lovett
(2001) in order to assess people’s ability to learn to prefer
long-term over short-term benefits. In that context, it has
been dubbed a “Single Player Version of the Prisoner’s
Dilemma (PD)”. However, the particular connotations of the
PD-game are of less relevance for the present work and
might be confusing here. For this reason, we will simple be
referring to the “Probabilistic Learning Task (PLT)”.

Figure 1 shows a schematic overview of the PLT, including
its underlying rewards and constraints structure. Participants
go through the task at the computer. They are presented with
four options in the form of four closed doors, two red ones
and two green ones (in the figure, the dark doors in the top
row are both red). In the instructions, participants are given
the following pieces of knowledge about the task ahead of
them: They know that they are asked to make a series of
choices, selecting one door at a time. They need a key to
open a door of the same color, and they are given a red key
at the beginning of the task. By opening a door, the current
key will be given up. Upon opening a door, two things will
happen: The participants may or may not receive a reward
(5§ “points”). Additionally, they will receive a new key that
will be either red or green. This key will constrain their
available options in the subsequent trial, because red keys
open only red doors and green keys open only green doors.
Finally, participants are told that the goal in this game is to
gain as many points as possible.

Upper Left (UL): Upper Right (UR):

p(reward)=0.6 p(reward)=0.8
. Key: Red . Key: Green
Door Color: red Door Color: Red

Bottom Left (BL): Bottom Right (BR):
p(reward)=0.2 p(reward)=0.4
Key: Red Key: Green
Door Color: Green Door Color: Green

Figure 1: Overview of the choices and their outcomes in the
PLT. The outcomes are shown for clarification. Participants
have to learn them .

It may be noted that green doors have a lower probability of
reward than red doors. However, the upper right red door
(UR), which has a higher reward probability than the upper
left red door (UL) gives a green key. To solve the game,
participants have to learn that UL has the highest payoff
probability in the long run, even though its immediate
rewards are less probable than those of UR. The behavioral
manifestation of having solved the game is to choose UL
consistently, disregarding the other options.

Before being able to solve the game, participants must learn
the reward-probabilities associated with each door and the
association between door and keys (the latter connection is
deterministic). Participants complete a total of 200 trials in
one session with this task.

The “Expected Utility Differences (EUDs)” in Two
Versions of the Task

Given the constraint of the keys, there are three sequences
of choices that can be done repeatedly: Choosing UL a
number of times, choosing first UR and then BL, and
Choosing BR repeatedly. These three strategies can be
evaluated in terms of the payoffs associated with the
involved doors. In the PLT, the expected values of the
strategies follow the following general constraint:

2*payoff(UL) > payoff(UR)+payoff(BL) >2*payoff(BR)

The payoff probabilities of the doors can be manipulated to
characterize different versions of the PLT, which differ in
the extent of the “greater than” relation. This relation is
called the “Expected Utility Difference” (EUD). Inserting
the reward probabilities from fig. 1 in the equation above
and multiplying the outcome with five (because of the
“points” that form the reward) yields

2%(0.6*5) > (0.8*5+0.2%5) > 2%(0.4%5), or
0.6>0.5>04

Therefore, the EUD in this scenario is 1 (in [arbitrary] tenth
of an expected point units). The other version of the PLT we
are interested in has the following probabilities of reward
(the mapping of keys to doors is identical): P(reward
UL)=0.8, p(reward UR)=0.9, p(reward BL)=0.1, p(reward
BR)=0.2. This results in an EUD of 3. Brown and Lovett (in
preparation) have found that participants find it very hard to
learn how to solve the game when the EUD is 1, while many
more participants are able to learn the solution when the
EUD is 3. The onset of learning is also much earlier in that
condition. Interestingly, this effect is independent of the
specific probabilities that are used to form the EUDs
(Brown & Lovett, 2001). This justifies our decision to
regard the EUD 1 and 3 versions of the task as two truly
distinct conditions, and to compare the behavior of the
model to human behavior under exactly these two
conditions.

Description of the Model

Like participants, our model for learning probabilities and
making choices in the PLT starts out with very little
knowledge. The only initial constraint on its selection is the
required mapping between keys and doors of the same
color. Like participants, it will be making 200 choices, and
learn about the probabilistic reward structure of the system
during the process of making the choices and from the
feedback following them.

At each “choice point”, there are two available options (two
doors matching the color of the key). The model selects the
option that has a higher current evaluation. The following
three factors contribute to the overall evaluation of each

option:

(1) The current estimate of the probability of receiving
a reward upon opening that door.

2) The current estimate of the value of the key that

will be given by that door, weighed by a parameter relating



the importance of future rewards to that of immediate
rewards.

3) A measure of information gain, that expresses how
much knowledge of the characteristics of all available
options, i.e. of the system as a whole, will increase as a
consequence of “opening that door”. This is weighed by a
parameter that grades the importance of information gain.

A formal definition of the model’s selection S at time t is:

S, =max(E,,E ),

it?

where E;i and E; are the evaluations of the two available
choices i and j at time t. The evaluation of both options is
analogously computed as

E - successes,,
.= .
" successes, + failures,

B
+k*max(A;———* +C, )+ Cc*N7’

The first term is the estimate of the probability of success of
door i at time t. The second term is the value of the key
given by the door, weighed by the parameter k. The value of
a key is the estimate of the best future rewards that can be
expected from having that key. This is either the current
estimate of the repeatable cell whose door matches the
current key (denoted by A), or the expected value of
alternative sequences that starting with the current key but
will give a different key (denoted here by the average of the
expected value of the door that can be opened with the
current key and will itself yield a different key (B) and the
current value of that different key (C). The third term,
finally, denotes the information gain associated with
choosing door i at time t, weighed by the parameter c¢. This
measure simply decreases as a power function of Ny, the
number of times door i has already been chosen at point t.
This expresses the assumption that we learn something
about the system each time we make a choice (which is true,
because we get feedback), but that this information shows
marginally decreasing returns. The selection of a power
function to represent this effect quantitatively is partly based
on the fact that the posterior distributions of the reward
probabilities associated with the four doors are beta
distributions, the variance of which decreases as a power
function of additional observations. This characteristic of
the posterior probability distribution of an event again
points to the crucial interaction between exploration and
exploitation we are trying to capture here: the accuracy of
the estimates, both of the reward-probabilities and the value
of the keys, critically depends on sufficient exploration,
more specifically: a sufficiently large number of
observations. However, the impact of exploration does not
remain constant, but instead decreases systematically:
rapidly in the beginning, marginally later on.

The model presented is a learning model in the sense that all
estimates are updated after each choice, as is the
information gain measure associated with that choice. It
does not use noise; the only sources of variability are
changes in the estimates, which in turn are caused by the
probabilistic feedback, and changes in the information gain

measure, which leads the model to abandon familiar options
and explore less familiar ones.

The parameters in the model (k, ¢) are basically free
parameters that can be adjusted to reflect a different impact
of future rewards (k) or Information Gain (c), either under
different circumstances or even between (simulated)
participants. However, in all simulations presented here,
they have been kept constant throughout, with /=3 and ¢=4.

Some Basic Predictions and Mechanisms

As the relative impact of the two competing components of
the evaluations changes with time, the learning and behavior
of the model can be describes as follows (note that they are
not assuming discrete stages but continuous changes, the
segmentation in the following paragraph was made to serve
clarification):

(1 Pure exploration. Choices will be made based on
the Information Gain measure, i.e. choices that have not yet
been explored will be explored. When ¢=4, the estimates of
the actual payoffs (which are initialized to 0.5) are still too
small to counteract this during the first few cycles (i.e. until
a sufficient number of experiences has been accumulated).
2) Early, inaccurate Estimates. Because the measure
of Information Gain decreases relatively rapidly in the
beginning, the actual estimates of the reward probabilities
and the key values begin to impact the models choices.
However, due to the probabilistic feedback, and the fact that
they are still based on relatively few observations, the
estimates might not reflect the true ranking of the options,
particularly in conditions where EUD=1. Two forces
counteract these inaccurate representations. First, by
choosing the currently best option repeatedly, the model
gathers information that corrects its estimate. Now
previously lower-ranked options can compete again for
selection. Second, by exercising its bias towards the less
explored options, it obtains a more accurate estimate of their
payoff probabilities as well. Consequently, the model
quickly recovers from initial false estimates. Now, the
model has established estimates of the reward probabilities
that are robust enough to remain unfazed by the occasional
“failure”-feedback. The model will then consistently chose
the option with the highest estimated long-term payoff

3) Familiarity breeds contempt. Flexibility is
maintained for a while beyond this point, because, as one
option, or a combination of two options, is chosen
repeatedly, its information gain measure decreases, while
that of the other options remains constant. Thus, there is the
chance that the model abandons an option again in favor of
another, particularly if this competitor has a similar
expected payoff. It is clear how appropriate this behavior is
in the task described here, where the EUD between choices
are sometimes as close as 1 unit, and the chance to
“accidentally” settle on the wrong solution is pronounced.

4) Optimal choices with Intermissions. Eventually, the
model will learn to solve the game, because its estimates are
becoming more and more accurate. However, because of the
dynamics described in the previous section, the model will
continue to explore alternative options. The Intervals
between these “exploration fits” also follow a Power
Function: the number of experiences between “exploration



fits” becomes much longer each time, until they are so
widely spaced as to be without any relevance anymore.

We will examine how the model learns and behaves under
different EUD-conditions of the task described here in the
next section.

Comparison Between Model and Data

The data to which we compare the behavior of our model
were collected by Brown and Lovett (in preparation). A
total of 80 participants worked on the version of the PLT
described in this paper (for related work using a
deterministic version, see Brown & Lovett, 2001). 60
Participants worked under the EUD 1 condition (participants
were collapsed from different groups that used different sets
of probabilities to form an EUD of 1, because the specific
probabilities had no effect on behavior, as reported by
Brown & Lovett, 2001). 20 Participants worked under a
EUD = 3 condition. The reward probabilities for both
groups are given in Table 1.

Table 1: Reward Probabilities in the EUD1 and EUD3

conditions.
UL UR BL BR
EUD=1 | p=0.6/0.7/0.8 p=0.8/0.9/0.9 p=0.2/0.3/0.5 p=0.4/0.5/0.6
EUD=3 p=0.8 p=0.9 p=0.1 p=0.2

Participants’ choices in both groups were recorded on a trial
by trial basis. Choices of UL and BL, which are the choices
that yield the “better key” (red) were coded as “1”, to
indicate subjects’ attention to the keys, as opposed to the
immediate rewards (which would favor UR and BR,
respectively, choosing these options was recorded as “0”).
Based on the binary raw data, the proportion of “choosing
left” was computed for each of the 200 trials. Note that only
a repeated choice of UL can lead to a proportion > 50%. An
increase above that level is thus indicative of choosing the
solution, UL, more often than not. Finally, the proportions
were averaged over ten-trial blocks, resulting in 20 ten-trial
blocks that depict the aggregated learning trajectory for all
participants. Additionally, response latencies were obtained
for all trials.

It was our goal to have the model produce data of the same
format as the empirical data. To this effect, we implemented
it in a spreadsheet and recorded each of the 200 choices it
made per run, coding them the same way the human data
were coded. We produced 3*20 model runs under the EUD1
condition, using the probabilities given in table 4, and 60
model runs using the EUD3 condition, also using the same
probabilities. The results of these model runs were
aggregated in the same manner as the human data. The
model (obviously) was constrained to open doors with the
appropriate key in the same manner as humans were. Its
choices were based on the evaluations elaborated in the
preceding section.

We will first present and comment on the correspondence
between model and data for both EUD conditions on the
aggregate level. However, the quality of a model can also be

assessed by determining how well its individual runs
resemble the individual learning trajectories of participants,
particularly when behavior is very variable, as is the case
here. Therefore, we present some comparisons between
individual participants and individual model runs that show
that the model can produce a range of behavior consistent
with that shown across the sample of participants. A note on
the parameters: The values of k=3 and c=4 were chosen to
obtain a good the fit to the data in EUD1. They were kept
constant for all other comparisons, including the ones on the
individual level.

EUDI1 and EUD 3: aggregate learning trajectories

It is easy to see how the behavior of the model differs under
different EUD conditions. When the EUD is 1, i.e. very low,
the model needs more trials to arrive at estimates that are
accurate enough to warrant exploitation of one option.
However, the small advantage associated with the winner,
combined with the model’s bias towards exploration, limits
the stability of behavior under this condition. While the
model will eventually converge to solving the game even
under this condition, it is, like humans, often unable to do so
within the 200 trials allotted in the experimental task
described here. However, if the EUD is as high as 3,
learning is considerably sped up: the accuracy of the
estimates increases faster, because the variability in binary
feedback is lower as the probability of success (or 1 vs. 0)
becomes more extreme. and the gap between the two
options’ estimates increases faster. Exploration continues to
be beneficial under this condition, but is more rare, as the
differences between the estimates are pronounced enough to
lead to appropriate exploitation and to counteract the impact
of the information gain measure.

Figure 2 shows the (aggregated) learning trajectories of data
and model under conditions 1 and 3. The difference between
the groups is captured nicely by the model, especially the
logarithmically shaped learning curve in the EUD 3
condition. Note that neither humans nor model arrive at
100% exploitation of UL under EUD 3. This reflects (in the
model) the response to the probabilistic feedback and the
ensuing recurrent, brief “exploration bursts”. Note
particularly the downward dip in the final four 10-trial-
blocks that is shared by empirical and model data. In the
model, this is the consequence of having chosen the
solution, UL, a considerable number of times. As a
consequence, its information gain Measure has decreased
sufficiently to allow the competitors a few more
explorations: familiarity breeds contempt. Neither humans
nor model show much learning under the EUD 1 condition,
for the reasons outlined above.

An even more powerful test of the validity of our model, in
particular our claim that a component of information gain is
essential for understanding and predicting human behavior,
is a comparison between the data and a version of our model
that sets ¢c=0, thereby completely eliminating the component
of information gain. The results of this comparison are
shown in Fig. 3.
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Figure 2: Model and Data Curves under EUD1 and EUD3
conditions.

The “no-info-gain” model does not capture the learning
under the EUD3 condition. Levels of “choosing left” remain
constant during all trials for this model. Even more
importantly, the “no-info-gain” model operates without
noise, and therefore does not exhibit any variability over
time. The fact that the proportion of choosing left remains
below 100% for the no-info-gain-model is an artifact of this:
Some model runs always choose UL from the beginning,
others always choose ER-BL throughout all trials. No
changes occur, because none of these options has a bad
enough payoff to jolt the model out of its inertia. The same
inflexible behavior is true for the EUD1 version of the no-
info-gain-model.
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Figure 3: Predictions of a model without information gain.

This begs the question whether the addition of noise to the
evaluation mechanism wouldn’t have the same effect as the
notion of explicit information gain. This is still an issue for
future exploration, especially since there are two kinds of
noise that can play a role here: The estimates themselves
can be noisy, or the selection process that operates on them
can involve noise, the subtle difference between these two
concepts of noise, and possible integrations with the present
model are the objective of future work. Here, the following
argument can be made against the use of noise and in favor
of the notion of information gain proposed here. Cognitive
models of probability matching within the ACT-R
framework have to assume an extremely high level of noise
in order to capture the observation that there is still
variability in participants behavior after a large number of
experiences. We will show examples of this kind of
behavior in the current task in the next section, and show

how our model can reproduce this without assuming any
noise. We will address this issue again in the discussion.

Individual Participants and Individual Model Runs

Another measure of a model’s quality that goes beyond the
comparison of average curves involves the inspection of
individual model runs with individual subjects. Especially in
tasks that cause a high variability in behavior, this is
interesting, because it enables us to inspect the flexibility of
both model and humans. Therefore, we inspected whether
we could identify individual model runs, in the set that fed
the average curves shown in Fig. 2, that match the learning
trajectories of individual subjects.

One characteristic of the model, both in the EUD 1 and the
EUD3 condition, is that it can exhibit relatively “gradual”
learning. Essentially, the model settles on a “current best”
based on the current estimates, and is drawn away from it
again by increasingly correct estimates (which perhaps
reveal that the option it has settled on is not that superior
after all, as well as the decrease in that option’s information
gain relative to the that of the other options. It gradually
converges towards an increased choice of the true best, in
this case UL. Figure 4 shows an example of this, the model
being matched to participant 126.

EUD3 part 126 ("gradual learning to choose UL"),
data and model
1
% — 2 N
=
3 /
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g |[=——data
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g
-
0
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10-trial block
Figure 4

We can see similar patterns of learning in individual model
runs under the EUDI condition, even though the model
does, on average, hardly learn. One striking and frequent
pattern under the EUD1-condition, and one that we believe
is hard to capture by a model that uses only noise as
variability-inducer, is the complete abandonment and later
re-uptake of the option UL. This pattern, which we call
spikes (one of many examples is shown in Fig. 5) is due to
two factors: Firstly, the quality of UL as “best” choice is
less clear in EUD1 that in EUD2, so its estimate will remain
closer to that of its competitors, occasionally falling below
them. Secondly, the advantage that UL might have over the
other options in terms of expected payoff is not big enough
to counter the fact that its information gain measure will
decrease as it is chosen more often, falling below that of the
competitors: Familiarity breeds contempt. These two factors
taken together model the fact that, under EUDI, the model
can’t establish sufficient “trust” in an option in order to
exploit it: As it repeatedly chooses UL, its estimate remains
mediocre, at the same time, the other options begin to seem
more attractive again. If there is one option that has been
explored particularly rarely, this option will promise a high
information gain and will be chosen for a couple of trials,



until it has been established that its current estimate is below
the UL and its information gain has decreased. The result is
a “spike”, as the one seen below. Fig. 6 shows one of the
many examples of this pattern that can be found in the data
and in the set of model runs. Here, one model run is
matched to participant 293.

EUD1, part 293 ("spikes"), data and model
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Figure 6.

Discussion

It has been our goal to demonstrate that Information gain,
not just actual payoffs, can drive Decision Making in a
probabilistic environment. To this end we have created a
model that learns to make choices in a probability learning
task, choosing among options based on its estimates of their
actual payoffs and the information gain associated with
selecting that option. Upon detecting that this model fits
human behavior much better than a model that ignores
information gain, we ask ourselves two questions: Is the
behavior of such a model rational? And: Is the model
correct? The answer to the first question is, in our opinion, a
clear “yes”. Exploration is appropriate in probabilistic
environments, because it increases the accuracy of the
probabilistic representations. The model, like humans, is
able to adjust its amount of exploration to the structure of
the probabilities, abandoning exploration early when they
are easier to discriminate. Its need for exploration prevents
the model from being stuck with the wrong choices, but this
need is also systematically related to the structure of the
environment, such that its impact will be smaller the fewer
data are needed to arrive at reliable estimates.

But: Is the model as it stands now correct? This is unlikely.
It has only recently been formulated and has only been
tested with the datasets reported here. We regard the present
version of the model as a skeleton containing the elements
we believe are essential for explaining human choices and
learning in a probabilistic situation. However, as the word
“skeleton” suggests. augmentation is clearly called for. For
instance, it is likely that the value of exploration, i.e. of
information gain, varies from situation to situation. It is
even more likely that Humans themselves can adapt its
importance to different situational demands. Essentially, this
calls for modeling work regarding systematic changes in the
c parameter. Another open question concerns the precise
definition of Information Gain. Right now it is a “raw”,
content independent indicator of how much we have learned
by making a choice, and it always decreases according to
the same function. This is a strong assumption, which must

be tested empirically. It remains to be seen whether the
monotonous decrease of Information Gain remains adequate
to model behavior in situations with, e.g., non-stationary
probabilities. Human adjustment to this additional
complexity will certainly pose another challenge.

Finally, the view put forth in this paper is that choices in
probabilistic environments can be influenced by the explicit,
active wish to explore. This notion is partially at odds with
models that only assume a noisy estimation, or a noisy
choice process in order to account for variability in
behavior. A comparison between these two approaches can
be resolved on two different levels: Experiments can be
designed in which the two models make clearly distinct
predictions, and formal analyses of both model can be
conducted to reveal how the two models might “fit”
different situations, and under which circumstances their
choices converge. These efforts might lead toward a more
complete theory of how these two drives of exploration and
exploitation might be interacting in driving human behavior,
an endeavor of which the model reported here merely
scratches the surface.
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