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Abstract

The integration of cognitive models offers interesting
theoretical and practical benefits to the development of
complex models, but at the same time brings up new
challenges that the modeling community is only beginning to
address. In this paper we present our experiences integrating
models and tools for modeling,. Specifically, on the modeling
end, we integrated an ACT-R model of driving with an
independently-built model of cell phone dialing. To do this,
we integrated the driving tool (a minimal-graphics driving
simulator that can be controlled by ACT-R) with a modeling-
by-demonstration tool, CogTool, that also used ACT-R as its
cognitive engine. We found that both the models and tools
required re-working because of the integration. The models
required new motor movements and methods for switching
between tasks. The tools required new specification
techniques for placing prototyped devices in the vehicle and
demonstration techniques for indicating points of task-
switching. Our experiences indicate that while the integration
of cognitive models is indeed an approach worthy of pursuit,
the field may not understand all the ramifications of such
integration until many more integrated models and tools are
developed.

Introduction
People often integrate separate skills in the course of their
everyday lives. For example, a person learns how to drive
separately from learning to use a cell phone, and integrates
these two skills when they use a cell phone while driving.
Likewise, to make building computational cognitive models
of complex domains tractable, a reasonable approach is to
integrate independently-built models of different behavior.
(Here, we are defining “integration”` of models to mean the
joining together of independently-built models of tasks at
approximately the same task size, as opposed to the
“composition” of models from smaller tasks that are
components of a larger task, e.g., the composition of
templates at the level of mouse movements or keystrokes
into large tasks (John & Gray, 1992; John et al., 2002).)

The integration approach has advantages over
constructing complex task models from scratch or even
from smaller components. For example, an expert in a
particular domain can invest time and expertise in producing
a veridical model of an important behavior, and it can be

integrated with models of different behavior by other people
who are not expert in that domain. The first author took this
approach in the early 1990s when modeling the tasks of the
NASA Test Director (the person responsible for assuring
that all tests are conducted on the Space Shuttle before
launch). Because the NASA Test Director’s job involves
substantial verbal communication, we integrated an
independently-developed, in-depth and well-verified model
of natural language comprehension (NL-Soar, Lewis, 1999)
with a hierarchical goal decomposition model of the NTD’s
task knowledge (John, Remington & Steier, 1991; Nelson,
Lehman, & John, 1994a,b). Even when working within a
single cognitive architecture like Soar or ACT-R, the
integration approach is not without difficulties (discussed in
Nelson, Lehman, John, 1994a), because independently-built
models often do not exchange information or pass control in
a way that interleaves the tasks appropriately.

Because this approach is relatively new in computational
cognitive modeling, each new attempt teaches lessons in
how we might proceed with models, methods, and tools to
make integration more successful and easier. This paper
describes our most recent work in integrating stand-alone
Keystroke-Level Models (KLM, Card, Moran & Newell,
1980) of skilled users of information devices with a model
of driving an automobile (Salvucci, Boer & Liu, 2001). In
this work we integrated both models and modeling tools, to
the betterment of both the models and the tools. We will
briefly describe the separate components that contributed to
this work, then describe our experiences integrating the
tools, the resulting models, and an iteration on both the
models and the tools.

Separate Contributing Components
The work reported integrates two models, an ACT-R model
of driving an automobile (Salvucci, et.al., 2001) and a KLM
of dialing a cell phone, and two tools, a “minimally-
graphic” simulated driving environment1 (Salvucci et al.,
2001) and CogTool (John et al., 2004). CogTool is a tool for

                                                            
1 Salvucci maintains two versions of his driving model for
operating a simulator with textured road graphics (see animation at
http://hcil.cs.drexel.edu/projects/drivermodel.html) or the
“minimally-graphic” simulator used here and shown in Figure 2.



cognitive modeling by demonstration focused on HCI tasks,
which itself is an integration of several tools:
Dreamweaver™, the Behavior Recorder (Koedinger,
Aleven & Heffernan, 2003), ACT-Simple (Salvucci & Lee,
2003), and the ACT-R environment (Bothell, 2004).

ACT-RPM and Salvucci’s Model of Driving
The model of driver behavior is an ACT-R model that
integrates control, monitoring, and decision making to
navigate highway environments with traffic. It uses the full
ACT-RPM cognitive architecture, with simulated eyes,
hands, and feet as well as ACT-R’s cognitive processor. For
control, the model employs a two-level model of steering
that uses a “far point” on the road to guide predictive
steering and a “near point” on the road to center the vehicle.
For monitoring, the model encodes its surrounding
environment using ACT-R’s simulated eyes to maintain
situation awareness. For decision-making, the model checks
the current situation and decides when to perform
maneuvers such as lane changes. Thus, the driver model
incorporates both lower-level perception and action for
vehicle guidance and higher-level cognition for awareness
and decision-making. This driver model has been shown to
account for a number of aspects of human highway driving,
including nearing the inner curb during curve negotiation
and switching gaze to the destination lane at the start of a
lane change (see Salvucci et al., 2001).

When the driver model is run in ACT-R, a window opens
with a simulated driving environment. This window
contains a picture of the simulated environment (i.e., the
roadway and other vehicles) from the point of view of the
driver (model).  The far point and near point are indicated
and the model’s point of attention and eye fixation are
displayed. As the model drives, the road appears to move
past the car and the eye fixation point moves as it assesses
the driving situation.

CogTool
The CogTool is a new tool for creating KLMs by
demonstration (John et al., 2004). The KLM technique uses
a very simple framework for modeling skilled performance
on a computer-based task. It was originally described in
Card, Moran, and Newell (1980) and later in Card, Moran,
and Newell (1983, Ch. 8). The KLM makes several
simplifying assumptions that provide more constraint than
other modeling frameworks in cognitive science. For
example, the analyst must specify the method used to
accomplish the particular task of interest, which typically
entails modeling specific task instances. Furthermore, the
specified method is limited to containing only a small set of
pre-established keystroke-level primitive operators. Given
the task and the method, the KLM uses duration estimates
of these keystroke-level operators to predict the time a
skilled user will need to execute the task. The original KLM
included six types of operators: K to press a key or button, P
to point with a mouse to a target on a display, H to home
hands on the keyboard or other device, D to draw a line
segment on a grid, and R to represent the system response

time during which the user has to wait for the system. Each
of these operators has an estimate of execution time, either a
single value, a parameterized estimate (e.g., K is dependent
on typing speed and whether a key or mouse button click,
press, or release is involved), or a simple approximating
function (e.g., Fitts’s Law estimates for P). A final operator,
M, represents the pauses sometimes observed between
users’ actions, presumably to mentally prepare to do that
action or a closely-related series of primitive actions. Using
a single mental operator instead of decomposing it into
different types for different perceptual and cognitive
activities was a deliberate simplification. Card, Moran and
Newell (1983) explored many different levels of granularity
and simplification and determined that this single M was
sufficient for many HCI design problems. The KLM also
includes a set of five heuristic rules for placing mental
operators to account for mental preparation time. An analyst
constructing a KLM by hand starts with Rule 0 which places
Ms before many Ks or Ps, then applies Rule 1 through Rule
4 to remove many of the Ms just placed. If applied
rigorously and consistently, these rules produce a model that
matches skilled execution time to well within 20%.

Despite its simplicity, some user interface (UI) designers
in Human-Computer Interaction see KLM as a relatively
difficult technique to learn and use. Novices creating KLMs
by hand often forget to include all physical operators and
have difficulty placing Ms rigorously and consistently
(John, 1994). CogTool was created in response to these
problems, to make it possible for UI designers to create
KLMs through demonstration on HTML storyboards.
CogTool includes Macromedia Dreamweaver™ extensions
that provide a palette of widgets commonly used in
interactive devices that can be dragged-and-dropped onto a
canvas for WYSIWYG construction of HTML storyboards.
In addition, an image can be used as the basis for a
storyboard and hotspots inserted in that image to simulate
buttons and other interactive devices (see Figure 1). Existing
HTML storyboards that were not constructed with our
widget palette can be converted to work with modeling-by-
demonstration through an “instrument all widgets”
command.

After creating the HTML storyboard, an analyst opens the
storyboard in Netscape, and demonstrates a task while
CogTool’s Behavior Recorder (Koedinger et al., 2003)
watches the demonstration. An export command then
creates a KLM of that task expressed in ACT-Simple, a
simplified language that compiles into ACT-R productions
(Salvucci & Lee, 2003).  The export command inserts Ms
(mental operators) automatically, using new rules based on
specific widgets to implement Card, Moran and Newell’s
heuristics (John et al. 2004). The analyst can then load this
KLM into ACT-R and run the model. ACT-R operates the
HTML storyboard through the Behavior Recorder and
produces a time-stamped trace of its activities that predict
skilled execution of the task.

Although this particular combination of systems into a
single tool for modeling by demonstration is new, it borrows
heavily from previous work (CRITIQUE by Hudson et al.,
1999 and WorldBuilder reported in Remington et al., 2002).
It has been shown to produce valid KLMs for the skilled use



of interactive devices when the CogTool widget palette is
used (John et al., 2004).

Storyboards of physical devices typically use an image of
the device and hotspots to indicate arbitrary interactive
mechanisms, e.g., buttons, knobs and toggle switches.
Tasks on such storyboards are more difficult for the
CogTool to model because images and hotspots
representing different types of mechanisms are all simply
tagged as HTML images and hotspots, not as the devices
they represent. The CogTool cannot distinguish between
them, nor does it possess knowledge about how KLM's rules
for inserting mental operators apply to these arbitrary
devices. In the absence of such knowledge, CogTool places
a mental operator in front of each click on a hotspot, which
is likely to over-predict skilled performance times compared
to human data for arbitrary devices. To address this
problem, we have expanded the CogTool widget set to
include some common UI devices that are not standard
HTML widgets, e.g., pull-down, cascading menus. Work is
continuing to expand valid modeling by demonstration to
other common interactive mechanisms found both on
computer-based devices and physical devices.

We used CogTool to create an HTML storyboard of the
cellular phone used to explore driver distraction in Salvucci,
2001. Demonstrating dialing a telephone number on this
image-and-hotspot storyboard produced a stand-alone model
of dialing with too many mental operators to match human
data, as expected. However, the CogTool produces an
intermediate product, namely ACT-Simple code in a text
file, which can easily be edited by hand to rectify this
problem. The resulting independently-developed model of

cell phone dialing is similar to Salvucci’s (2001) hand-
crafted ACT-R production system.

Integrating the Tools and Models
To make mock-ups of in-vehicle devices as easy to build as
mock-ups of desktop interfaces, we enhanced the CogTool
so that the models it produces can be integrated seamlessly
with the model of driving. Since the CogTool already uses
the ACT-R environment, only a few modifications were
needed to integrate it with the simulated driving
environment.

First, since in-vehicle devices typically use the driver’s
finger, but the HTML mock-up is demonstrated with a
computer mouse, we created an option to export the model
as a non-computer-based device. When exporting the model
as neither a mouse-based device nor a keyboard-based
device, every point-and-click in the demonstration is
translated into a simple point based on Fitts’s Law, without
the click. The original Fitts’s Law was derived with
measurements where a person tapped a target with a stylus
(Fitts, 1954), very similar to a finger tapping the short-travel
buttons or touch-screen commonly used on in-vehicle
devices. This option is also applicable to modeling
interaction with a PDA like a PalmPilot™.

Second, moving to in-vehicle devices required new motor
commands in both ACT-R and ACT-Simple. Previously,
both languages had operators that homed the hands between
keyboard and mouse (KLM’s H), pointed with a mouse
(KLM’s P), and typed with the fingers (KLM’s K). To drive
while operating an in-vehicle device, we had to add homing
between the steering wheel and the device and pressing
buttons with the fingers as described above. Though
arguably not theoretically interesting, these additions
illustrate that new integration and new domains push the
development of modeling architectures to cover new classes
of human behavior.

Third, an HTML mock-up of a device can be drawn to
any scale, but the actual device needs to be placed in the
context of the car’s dashboard so that eye- and hand-
movements can be modeled.  Therefore, we needed to
record the actual dimensions and location of the in-vehicle
device in the storyboard to transmit to the simulator. We
added a standard “first-page” to the HTML storyboard with
labeled text fields into which the analyst enters the size and
location of the device. CogTool reads this first page when
the demonstration is exported, creating code in the
beginning of the ACT-Simple file that tells the ACT-R
environment to place a wireframe of the device in the
driving simulation window when the integrated model is
run. Figure 2 shows the wireframe of the cellphone’s
numeric keypad and function buttons on the dashboard
console in the lower right.

Resulting Models and Iteration of the Models
Using the integrated tool resulted in an integrated model that
ran in ACT-R, displayed the screen shown in Figure 2 so the
integrated behavior could be viewed, and predicted relevant
measures such as average lateral deviation from the center
of the lane and the total time to perform the secondary task

Cell phone is mocked-up
with an image.

Buttons are mocked-up with hotspots.

Symbol denoting that
code for communicating
to the Behavior Recorder
has been included on this
page. It was inserted by
clicking on the CogTool
icon.

Customized
CogTool widget

palette

Figure 1:  Using CogTool’s Dreamweaver™ extensions
to mock up a cell phone.



on the in-vehicle device. Unfortunately, when examining the
traces and the data produced, the first set of models was
insufficient to match human data, or even to be plausible.
However, several reasons for this failure immediately
presented themselves, which were easy to fix and feed back
into the design of the tools.

First, the straightforward integration of the models
inherited a decision-making portion of the driving model
that switched control from driving to the secondary task
(cell phone dialing), when the vehicle’s position on the road
was reasonably close to the center of the lane and stable.
This ability to shift tasks had been included in the driving
model when Salvucci hand-crafted the task knowledge to
dial a cell phone (Salvucci, 2001). This mechanism worked
“out of the box” with the CogTool model. However, the
independently-developed model of cell phone dialing did
not have any mechanism for switching back to driving. The
result was a model that switched to dialing when the driving

Figure 3. Current version of CogTool being used to demonstrate dialing a phone number on a cell phone. The leftmost
window shows the HTML mock-up running in Netscape. The partially-hidden center window shows the Behavior
Recorder running and the state transitions it observed in the demo. The window labeled “Export Behavior Graph” in the
center is a save dialog box that appears when the behavior observed in a demo is exported to ACT-Simple code
(.asb=ACT-Simple Behavior). The rightmost window appears when the Model Launcher portion of CogTool is invoked to
let the analyst easily run the model as either a stand-alone task or an in-vehicle information task while driving.

Monitor Driving
button was placed
in the storyboard
by clicking a new
steering wheel
icon on the
CogTool palette.
The analyst clicks
it to tell the model
to pop back to
driving at this
point in the task.

Checking no boxes tells CogTool that this is not a
computer-based device, but a physical device that is
operated by pressing buttons with fingers.

The analyst demonstrates
the task on the storyboard
while the Behavior Recorder
observes and creates a
state-transition diagram of
the analyst’s actions.

Selecting the Export command from the
File menu, brings up a Save As: dialog
box. The analyst can navigate to the
desired folder and set options about the
type of device being used.

The analyst can choose whether to
perform the task alone or while
driving. CogTool loads the
appropriate code and models, then
executes the task.

Wireframe of the device.
ACT-R’s eyes will look at it

and its right hand will move
to it when doing the

secondary task.

Position of ACT-R’s
right hand when
it is on the wheel

The far point where the
model’s glance resides
when it monitors driving.

ACT-R’s hand in transit to the cell phone

Figure 2. View of ACT-R driving while operating a cell
phone mocked up in CogTool.



was stable, worked exclusively on that task, and drove off
the road! The knowledge of how to interleave secondary
tasks with driving in the general case (e.g., Kurosu, 1994) is
still under-examined in the field of driver distraction and the
subject of further research. However, in response to this
problem, we added a “popping” mechanism in ACT-Simple
that dictates when the secondary model “pops” back to
driving; specifically, the “pop” switches ACT-R’s current
goal to the driving goal, which runs at least one iteration of
vehicle control (i.e., one update of steering angle and pedal
depression, taking roughly 200 ms) and then returns
switches the goal back to the secondary task.  The “pop” can
be considered part of a customized executive control
process similar to that used by EPIC to switch between tasks
in a dual-task environment (see Kieras et al., 2000), or it
could be control knowledge that results from learning in a
dual-task domain. Both approaches result in behavior
similar to our “pop” and match human data in the Wickens'
task, a simple dual task (Lallement & John, 1998).

The initial model’s lack of knowledge of when to return
to driving was compounded by the relatively large mental
operators placed by the CogTool. Card, Moran and Newell
(1980) used a single type of mental operator, M, with a
duration of 1350 ms to denote all operations a skilled user
performed that resulted in pauses between keystrokes or
mouse movements. Thus, M included visual search, recall,
decision-making, verification, and other unspecified
perceptual and mental operations. This simplification
provided a good fit to keystroke data and was sufficient for
an engineering tool to differentiate between different
human-computer interaction designs. The models produced
by the CogTool implement this M by occupying ACT-R’s
cognitive processor for 1200 ms and usually launching an
eye movement that takes 150 ms (totaling Card, Moran and
Newell’s 1350 ms). This is again an approximation that is
sufficient for evaluating different interfaces when they are
simulated as the only task a user is doing. However, when
CogTool models are integrated with the driving model, this
M takes ACT-R’s cognitive processor away from driving far
too long for it to maintain a good match to human data. We
explored breaking this large mental operator up into smaller
pieces that each pop back to driving, working under the
notion that people can interleave their mental operations
with driving, rather than treating the mental operator as one
atomic unit. In this exploration we found that splitting M
into three segments of 400 ms each produced a better fit to
the human driver data (Salvucci et al., 2004).

Iteration of the Tools
After manipulating the models directly in both ACT-Simple
and ACT-R to get a good fit to human data, we can now
feed this information back into the design of the tools. For
example, the CogTool Dreamweaver™ tool palette now
includes an icon that looks like a steering wheel. When this
icon is clicked, it places an HTML button labeled “Monitor
Driving” at the bottom of the page, outside the boundaries
of the mock-up (Figure 3). When demonstrating a task on
the mock-up, the analyst can click on the Monitor Driving
button to indicate that the device model should relinquish
control to driving at this point in the task. This gives the

analyst an easy way to control the interleaving of driving
and the secondary task.

We have also already included the shorter duration mental
operators in CogTool. Now when an M is automatically
inserted in a model, it is also automatically broken into three
400 ms segments with a pop back to driving between the
segments, as was found to fit best to empirical data
(Salvucci et al., 2004).

Because the data on how humans choose to break up
secondary tasks and return to driving is not yet conclusive,
we wish to make it easy for an analyst to explore many
possibilities of when a model pops back to driving from the
secondary task. The Monitor Driving button and the
sequence of three 400 ms mental operators are two
mechanisms already implemented in CogTool for making
this easy. However, we intend to make it possible to
automatically explore many possible combinations of
popping and mental operation durations. Automatic
placement of these operations combined with facilities for
running and analyzing multiple instances of a task should
help researchers quickly explore the space of modeling
styles and parameters.

Finally, when more models and data have yielded
sufficient information with sufficient confidence, we intend
to build heuristics into the CogTool that automatically
create models of in-vehicle devices that interleave with
driving in a plausible manner.

Conclusions
We conclude from this exercise that integrating
independently-built computational models is indeed an
approach worthy of pursuit. However, researchers taking
this approach in the near future will most likely encounter
unforeseen difficulties. Until many more independently-
built models are integrated, the field will not understand all
the ramifications of integration, nor will it be able to build
integrated tools that support this style of modeling in
general.

In both the NASA Test Director model mentioned in the
introduction and the in-vehicle models described here, the
issue of how control is passed from one model to the other
arose in unforeseen ways. This issue is likely to continue to
be a major challenge until either a theory of general task
integration is developed, validated, and incorporated into
integration tools, or we convince ourselves that such a
general theory is not viable and many examples of domain-
specific solutions populate our field. As a third possibility,
models may be developed of how people learn to integrate
two well-practiced tasks, as was investigated by Chong
(1997). In any case, the integration approach to cognitive
modeling clearly has both scientific and engineering
implications, and will continue to spur improvement and
development of theoretical cognitive architectures and also
application to real-world complex tasks.
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