
Learning to Choose the Most Effective Strategy: Explorations in Expected Value

Wayne D. Gray, Michael J. Schoelles, & Chris R. Sims
Cognitive Science Department

Rensselaer Polytechnic Institute

[grayw, schoem, simsc] @rpi.edu

Abstract

Small variations in how a task is designed can lead humans to

tradeoff interaction-intensive for memory-intensive strategies.

In this paper we introduce one such task, Blocks World, and

present empirical data that shows such tradeoffs. Our attempts

to model the acquisition of these tradeoffs using the default

ACT-R conflict resolution mechanisms have met with failure.

We have now run our model using four different methods for

tallying a strategy’s success and failure. For each run, we

discuss the formulation of expected value used for conflict

resolution and the reasons why the model does or does not

match the human data.

Introduction

Few, if any, tasks are so new as to require the invention of
strategies that have never been used by the task performer.
Hence, in most situations, settling on a strategy or set of
strategies for performing a task is not so much a matter of
learning new strategies as it is learning which strategy, out
of a set of already acquired strategies, works best in the
current task environment.

This paper is motivated by our attempts to model strategy

selection in Blocks World using ACT-R. First we introduce

Blocks World and the empirical phenomena we seek to

model. Second, in ACT-R, the expected value equation

(Anderson, Bothell, Byrne, & Lebiere, in press; Anderson &

Lebiere, 1998) determines which of two or more alternative

strategies will be selected. We present data from a model

that uses the default expected value equation and discuss

why we found this mechanism inadequate for modeling

Blocks World. Third, we layout and discuss three alternative

bases for calculating expected value and present data from

the original model run with each of these alternatives. We

discuss how each alternative influenced model behavior as

well as its fit or misfit to the empirical data. Fourth and

finally, we summarize our work and draw conclusions

regarding both the Blocks World task specifically, as well as

our three alternative bases for calculating expected value.

Blocks World

Blocks World is a simple task that has been used to study
the trade-off between interaction-intensive and memory-
intensive strategies (Ballard, Hayhoe, & Pelz, 1995; Fu &
Gray, 2000; Gray & Fu, 2000). The task is to copy a pattern
of colored blocks shown in the Target window to the
W orkspace window, using the colored blocks in the
Resource window (for our version see Figure 1).

The Blocks World Studies

Each trial begins with a random placement of 8 colored

blocks into empty spaces (defined by an invisible 4 x 4 grid)
in the Target window. Unlike Figure 1, during the study all
three windows are covered by gray windows. In our studies
the gray windows that cover the Resource window and the
Workspace window vanish as soon as the cursor enters
those windows. The between-Ss manipulation varies how
effortful it is to uncover the Target window. Across three
studies (a brief description of the first is available as Fu &
Gray, 2000, the other two are not published) we have varied
difficulty “intuitively”, by varying the Fitts’ Law Index of
Difficulty, and by lockout time.

Figure 1. The blocks world task at the start of a new trial. In

the actual task all windows are covered by gray boxes and at
any time only one window can be uncovered. (The labels do
not appear in the actual task. The Start/Stop button is shown
at the lower right.)

Subjects were asked to do 40 (E1) or 48 (E2-3) trials.

Each trial continued until they had correctly duplicated in

the Workspace window the pattern (color and location) of

blocks shown in the Target window.

The human and model data reported here are based on the

version of Blocks World used in our third study. In that

study the costs of opening the Target window were varied

by increasing the lockout time (i.e., the delay in uncovering

the Target window after the cursor had been moved into it).

The three conditions reported have a 0 (0-Lock), 400 (400-

Lock), and 3,200 (3200-Lock) millisecond lockout time.

Strategies

To access the information in the Target window subjects

could adopt either an interaction-intensive or a memory-

intensive strategy. An extreme interaction-intensive strategy

would entail uncovering the Target window to obtain color

information for a single block, obtaining that block from the

Resource window, another uncovering of the Target

window to obtain the block’s position information, followed

by placing the block in the Workspace window. In contrast,

an extreme memory-intensive strategy would entail one look

at the Target window to encode both color and position for

all 8 blocks.

We did not expect to find either extreme strategy to be

popular with our subjects. However, as the cost of accessing

information in the Target window increased, we expected to

find that subjects shifted from more interaction-intensive

strategies to more memory-intensive ones.

The Blocks World Results

For the current report, our measure of performance is the

number of blocks correctly placed after the first, but before

the second, uncovering of the Target window. At the time of

the first uncovering, each of the lockout conditions has 8

blocks that have to be placed. Our empirical data shows that

the number of blocks placed on the first uncovering varies

significantly between conditions. Hence, on subsequent

uncoverings, the number of remaining to-be-placed blocks

differs between conditions.

Likewise, as it takes some time for the models and

humans to settle on stable strategies, we only report data for

trials 25-48. The process of “settling in” is interesting but

beyond the scope of this short report.

There were 18 subjects in each of the three conditions.

For these subjects, Figure 2 shows that as lockout time

increases, the number of blocks placed in the Workspace

window increases. Human subjects are clearly trading off

interaction-intensive for more memory-intensive strategies.

Failure to Pick a Good Strategy: Issues in

Credit Assignment and Expected Value

In data reported in Fu and Gray (2000), we showed that as
the costs of opening the Target window increased subjects
spent more time with the window open before going off to
place the blocks. As the number of blocks placed also
increased, the obvious inference is that the increased time
spent with the Target window open, reflects increased time
spent encoding a larger number of blocks.

To capture human adaptation to the cost of opening the

Target window, we implemented a set of 8 DO-strategies.

These strategies, DO-1 through DO-8, varied in the number

of blocks they encoded per opening of the Target window.

After each round of encoding, the model would go to the

Resource window and attempt to retrieve the memory

(declarative memory element or DME) of an encoded, but

not-yet-placed block. If a DME was retrieved, a block of

that color was picked up from the Resource window and

placed in the Workspace window. After placing a block in

the Workspace window the model tried to retrieve another

DME of another encoded, but not-yet-placed block. When

no more DMEs of not-yet-placed blocks could be retrieved,

the model picked a new DO-strategy according to its

expected value and another round began. A trial ended with

all 8 blocks correctly placed in the Workspace window.

Model Details

The above description generally characterizes our modeling
approach. This section provides further details on the
construction and operation of our model.

Limits on DO-strategies. On reflection, it will be clear that

all DO-strategies could encode their full range of blocks on

the first uncovering of every trial, but not thereafter. For

example, if on the first round of encoding, DO-4 fired,

encoded 4 blocks, and placed 3, on the next round only 5 to-

be-placed blocks would remain. Hence, on round 2, DO-5,

DO-6, DO-7, and DO-8 would all encode 5 blocks. At best

this would blur the distinction between DO-strategies. At

worst, it seems cognitively implausible that, for example,

people would fire a strategy to encode 8 blocks when only 1

block remained to be placed. To avoid this problem we

wrote our model so that a DO-strategy would compete only

if the number of to-be-placed blocks was greater than or

equal to the strategy’s DO-number (i.e., if 4 blocks

remained, only DO-4, DO-3, DO-2, and DO-1 would be in

the conflict set).

Calculating Expect Value. The DO-strategies compete

with each other based on their expected value. ACT-R’s

expected value equation is:

EV = PG C + / noise Equation 1

P reflects the probability that a production has been

successful in the past. P is simply calculated as the ratio:

P =
successes

successes+ failures()
Equation 2

G is a constant expressed in units of time. G is loosely

thought of as the number of seconds that a person would be

willing to pursue a given goal. The default value of G is 20.

C is a ratio of the sum of all past efforts attributed to the

production divided by all past uses:

C =
efforts

successes+ failures()
Equation 3

Finally, noise adds variability to the expected value, but

rather than constituting unexplained variability it seems to

be an essential element. Too little noise leads the system to

prematurely settle on strategies that gain an early advantage

in P and C. Too much noise prevents the model from

settling on any strategy, regardless of the values of P and C.

Credit Assignment. The credit assignment issue is “when”

– when are the parameters in the expected value equation

updated? These quantities could be updated for all

productions once per trial; that is, after all 8 blocks are

placed. However, as our model interacts with the same

software as our humans interact with, many hundreds of

productions fire on each trial. Indeed, we counted 762

productions firings on a randomly sampled trial that took

128 seconds of ACT-R time to complete. (This count

includes many refirings by some productions.) As all trials

ended successfully, each production fired on a trial would

have the value of its successes updated by one. (If it fired

multiple times, it would receive multiple updates.) Each

production fired on a trial would have its efforts

incremented by the difference in ACT-R time between when

it was selected and the end of the trial. (If it fired multiple

times, its efforts would be updated for each firing by the

difference between firing time and trial end time.)

Perhaps more to the point, placing 8 blocks entails a

number of different DO-strategies firing a number of

different times. This is the problem of structural credit

assignment. Given a number of competing strategies, to

what extent should each be credited with contributing to the

final success of the trial? Updating all productions at the end

of each trial would make it extremely difficult for credit

assignment to properly credit the success, failure, and cost

of any given DO-strategy. (Note that due to forgetting, the

higher DO-strategies seldom, if ever, placed their complete

allotment of encoded blocks.)

Rather than updating credit assignment once per trial, we

updated it once per firing of a DO-strategy. Credit

assignment time began ticking when a DO-strategy was

selected. Time ended when the model could no longer

retrieve the DME of a not-yet-placed block.

Model Runs. One model was run with four different

schemes for updating successes and failures. For

convenience, we refer to the model when it is running a

particular updating scheme as, e.g., “the Success-Weighted

model.” However, each of these “models” used the same

production rules, the same DMEs, and the same settings for

all ACT-R parameters. The only change between models is

in the updating of successes and failures that are discussed

in the next section.

With two exceptions, all ACT-R parameters were left at

their defaults. Specific parameters
1
 important to our model

include enable subsymbolic computations (:esc t); enable

randomness (:er t); optimize learning (:ol t); parameter

learning (:pl t); and base level learning (:bll 0.5). Although

we make special mention of these parameters, this set is

required by any model in which expected value and

declarative memory activation is learned. They are all set to

their default values. Our two exceptions do not have definite

default values. We set activation noise (ans) to 0.23 and

expected gain noise (egs) to 0.3. Activation noise is the

noise added and subtracted to the activation of a DME on

each retrieval attempt. The value we picked is within the

normal range of this parameter and is one that we have used

in other studies. Expected gain noise is the noise added and

subtracted to the expected value of a production each time it

appears in a conflict set (see Equation 1). The value we

picked is within the range that we typically use in models

(0.25 to 0.50). The setting of both egs and ans were done a

priori – neither were tuned to the particular results of our

models.

Problems in Updating Successes and Costs

The default scheme for calculating expected values based on

1
 The only detailed discussion of ACT-R parameters that we

know of is in Anderson and Lebiere (1998). Updated

documentation, ACT-R5parameters.doc, can be retrieved from

http://act-r.psy.cmu.edu/tutorials/.

successes, failures, and costs does not reproduce the data.
The number of blocks placed by the model that used ACT-
R’s default scheme for updating successes and failures (the
Vanilla model) is plotted at the bottom of Figure 2. It can be
seen that this model differs quantitatively (RMSE = 2.26) as
well as qualitatively from the human data. By the 25th trial,
only one block is being placed in each lockout condition. As
this is preliminary work, we are more concerned with the
qualitative mismatch in trends across lockout conditions
than with the quantitative mismatch in absolute number of
blocks placed. Why does the number of initial blocks placed
not increase for the higher lockout conditions?

Unfortunately, the answer to our question is as obvious as

it is basic to the ACT-R calculation of expected value. As

each round ends with a success, the value of P stays at 1.0.

The expected value is driven entirely by the costs. As we go

from DO-1 to DO-8 the model spends more time encoding

blocks, more time getting blocks from the Resource

window, and more time placing blocks in the Workspace

window. For the higher DO-strategies the costs soar and the

expected value plummets (see Table 1).

Table 1: Expected values after 48 trials for DO-strategies 1-8
by lockout condition in the Vanilla ACT-R model

Lockout 1 2 3 4 5 6 7 8

0 8.4 4.8 3.8 1.9 0.4 -1.0 -6.0 -4.7

400 8.1 5.1 4.0 3.7 -1.0 -1.5 -6.3 -6.7

3200 5.3 2.5 0.6 1.4 -1.0 -2.4 -9.8 -9.5

We believe that the failure to capture the qualitative

trends reflects a fundamental flaw with the default ACT-R

mechanism for credit assignment in tasks involving a

sequence of steps over a time period of secs to 10s of secs.

We elaborate this argument in the next section.

Weighting Successes and Failures

As success in Blocks World is defined as correctly placing 8
blocks in the Workspace window, the Blocks World
paradigm allows us to define partial success in terms of the
number of blocks placed. Hence, if a DO-strategy places
one block into the Workspace window it is less successful
than a DO-strategy that places four blocks.

Table 2: Three weighting schemes for changing ACT-R's
system for calculating expected value.

P C

Weighting Success Failure Success Failure

Success-Weighted Yes No Yes No

All-Weighted Yes Yes Yes Yes

Mixed-Weighted Yes Yes Yes No

Prior models of ACT-R have apparently not had to deal

with such nuances. In thinking about how to overcome this

limit to ACT-R we generated a number of schemes that

weight the updating of the successes and failures parameters

by the number of blocks placed. Three of these schemes are

discussed below and shown in Table 2.

Implementing these schemes required adding a hook to

ACT-R’s parameters learning function to bypass the

normal updating of the successes and failures parameters

with the updates required by each scheme. The hook

function is called by the parameters learning function for

each production in the sequence.

Success-Weighted

The most basic change is to vary the count of successes to
reflect the number of blocks correctly placed. This update is
shown in the first row of Table 2.

As the current model almost always successfully places at

least one block, the Success-Weighted update is equivalent

to dropping “failures” from the calculation of P (compare

Equation 2 and 4) and C (compare Equation 3 and 5). This

change has the effect of setting P to one.

P =
successes

successes

 Equation 4

C =
efforts

successes
Equation 5

The effect of our change is to increase the denominator of

C. Rather than adding one to successes each time a DO-

strategy has fired, our change adds in the number of blocks

that have been successfully placed. (For example, if DO-3

places 3 blocks successes will be incremented by 3. Hence,

the cost in terms of the additional time required to encode

and place multiple blocks is amortized over the number of

blocks actually placed.

All-Weighted

An alternative update would be to weight both the number
of successes and the number of failures that an update
returns. This alternative is shown in the 2

nd
 row of Table 2.

For All-Weighted, the equations for P and C are the same

as the default equations shown in Equations 2 and 3.

However, All-Weighted differs from the default in two

ways. First, both successes and failures can be updated on a

given round. Second, the number of successes and failures is

weighted by the amount of the goal accomplished or

attempted. As per the Success-Weighted scheme, All-

Weighted increases the denominator of C and P by the

number of blocks correctly placed (columns 2 and 4 of

Table 2). However, unlike Success-Weighted, failures are

also credited (columns 3 and 5). Failures are defined as the

difference between the number of blocks encoded versus the

number of blocks placed (DO-number minus number-

placed). If, for example, DO-8 fires and encodes 8 blocks

but places only 3, then DO-8 will be credited with 3

successes and 5 failures.

Unlike Success-Weighted, All-Weighted affects the value

of P by differentially changing both the numerator and

denominator (as per Equation 2). A DO-strategy that

encodes more blocks than it can retrieve from memory will

be severely punished by a decrease in P (the denominator

increases faster than the numerator).

On the other hand, regardless of the number of successes

and failures, for a given DO-strategy, All-Weighted equally

increments the denominator of C (see Equation 3). For

example, if DO-6 fires, encodes 6 and places 6, 6 successes

will be added to the denominator for C. If the next time DO-

6 fires it encodes 6 but places 3, the denominator will again

be incremented by 6 (3 successes + 3 failures).

It would be one thing if All-Weighted were neutral with

respect to the effect of success and failure on C; however, it

seems to reward failure. If 6 blocks are encoded and only

one is placed, then the time (and therefore effort) between

initiating the strategy and finishing the strategy is less than

if 6 blocks were placed, but the effect on the denominator is

the same. Counterintuitively, for the same DO-strategy,

costs are reduced more by an early failure than by an

eventual complete success.

Mixed-Weighted

Mixed-Weighted is an alternative to All-Weighted that
simply drops the count of failures from the denominator of
costs. The expected value equation for Mixed-Weighted
borrows its calculation of P from Equation 2 and its
calculation of C from Equation 5. As per All-Weighted, if a
DO-strategy promises more than it can deliver, then it is
punished by a reduction in P. As per Success-Weighted,
costs are reduced in proportion to the amount of the goal
accomplished. Credit is not given for promises, only for
results.

Model Data: Comparing Weighting Schemes
2

The four models differ only in the scheme they use for
counting successes and failures. In all other respects, in
terms of productions, DMEs, and all other parameters, the
models are identical.

Success-Weighted Model. As Figure 2 shows, unlike

Vanilla ACT-R, the Success-Weighted model is not

absolutely flat and consistently overshoots human

performance. However, it is fair to say that Success-

Weighted is a poor fit both qualitatively and quantitatively

to the human data (RMSE = 1.42).

Table 3: Expected values after 48 trials for DO-strategies 1-8
by lockout condition in the Success-Weighted model

Lockout 1 2 3 4 5 6 7 8

0 7.1 8.8 10.0 10.2 10.3 10.4 10.2 9.9

400 6.3 8.1 9.4 10.2 10.4 10.4 10.1 9.8

3200 3.6 6.1 7.7 9.0 9.4 9.5 9.4 9.1

Across all three lockout conditions (see Table 3) the

expected values of the smallest DO-strategies, DO-1 and

DO-2, is much below that of the other DO-strategies. Post-

hoc comparisons show that the comparison of DO-1 and

DO-2 versus DOs3-8 was significant [F (1, 105) = 1816, p <

.0001] and accounted for 83% of the variance due to DO-

Strategy. DO-3 is close to the higher DOs for 0-Lock, it

begins diverging slightly for 400-Lock, and by 3200-Lock it

is still close, but 1.3 units of expected value away from the

next highest expected value. Hence, the three lockout

conditions are relying on essentially the same pool of DO-

strategies with the slight increase in number placed for 400-

Lock and 3200-Lock due to the less frequent use of DO-3 in

favor of a slightly increased use of the higher DO-strategies.

All-Weighted Model. Compared to the Vanilla and

Success-Weighted models, the All-Weighted model is a

much better fit. As shown by Figure 2, this is the first model

2
 For each of the three models reported here, the model was run

six times for each of the three lockout conditions.

that comes close to capturing the qualitative and quantitative

(RMSE = 0.60) trends in the human data.

Table 4: Expected values after 48 trials for DO-strategies 1-8
by lockout condition in the All-Weighted model

Lockout 1 2 3 4 5 6 7 8

0 6.4 8.1 7.8 9.0 7.9 7.5 7.0 6.8

400 5.5 7.8 8.9 8.5 7.4 7.1 7.3 6.3

3200 2.6 4.9 6.8 8.1 8.0 7.6 6.6 6.7

Across the DO-strategies the difference between the

maximum and minimum expected value varied from 2.6 for

0-Lock, to 3.4 for 400-Lock, and 5.5 for 3200-Lock (see

Table 4). Post-hoc comparisons showed that DO-1 and DO-

2 had a much lower expected value for 3200-Lock than did

the other DO-strategies [F (1, 35) = 67.7, p < .0001] with

this comparison accounting for 79% of the variance due to

DO-strategy. This same comparison accounted for 15% of

the variance for 400-Lock and 4% of the variance for 0-

Lock. Hence, in contrast to the Success-Weighted model, it

is clear that for the All-Weighted model a different mix of

DO-strategies was favored across the three lockout

conditions.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 500 1000 1500 2000 2500 3000 3500

Lockout Time in Msec

#
 o

f
 B

lo
c
k
s
 P

la
c
e
d

humans Vanilla ACT-R Mxd-Wghtd

Success-Wghtd All-Wghtd

Trials 25-48

Figure 2: Blocks placed following the first uncovering of the
Target window for Humans versus four ACT-R models.

Except for the use of different systems for weighting
successes and failures, all models use the same parameters
and same productions.

Mixed-Weighted Model. The Mixed-Weighted model is

the best fitting of the three both qualitatively and

quantitatively. Quantitatively it has the smallest RMSE

(0.44). Qualitatively, this model shows the greatest increase

in blocks placed across lockout conditions. The difference

between number of blocks placed at 0-Lock versus 3200-

Lock is 1.84 for humans (see Figure 2), 0.79 for Mixed-

Weighted, 0.66 for All-Weighted, and 0.09 for Success-

Weighted.

In terms of expected value, performance in the 3200-

Lock condition is dominated by DOs3-6 (see Table 5). The

expected value of these DO-strategies were quite similar.

The next closest DO-strategy was 0.50 expected value units

below this range. In contrast, for 400-Lock the both DO-2

and DO-8 were within the same range of expected value as

DOs3-6. For 0-Lock, DO-2 fell within the range of values

shown across DOs3-6. Hence, compared to Success-

Weighted and All-Weighted, for the Mixed-Weighted model

as lockout time increases the extreme DO-strategies (high as

well as low) are less likely to be selected.

Table 5: Expected values after 48 trials for DO-strategies 1-8
by lockout condition in the Mixed-Weighted model

Lockout 1 2 3 4 5 6 7 8

0 6.7 8.5 9.1 8.4 8.3 8.0 7.0 6.5

400 5.5 7.7 8.9 7.9 8.3 7.2 7.0 7.2

3200 2.7 6.0 6.9 7.1 6.9 6.9 6.4 6.3

Comparing Models. Across the four models the number

placed gets closer and closer qualitatively and quantitatively

to the human data, and the pattern of expected values for the

DO-strategies begins to seem like a reasonable reflection of

what humans must be doing.

The default, or vanilla, ACT-R model simply cannot

handle these data. A strategy is either a success or a failure.

If it places at least one block it is successful. The vanilla

model was entirely driven by costs to an exclusive use of

DO-1 over all runs of the model for trials 25-48. (Note that

this model was so consistent that we only did three runs for

each condition. In contrast, each of the other models was

run six times per condition.)

The Success-Weighted model reduced the costs of the

higher DO-strategies by the number of blocks they

successfully placed. This cost reduction sufficed to boost the

expected value of all higher DO-strategies. The expected

values for DOs4-8 fell within 0.46 expected value units of

each other for 0-Lock, within 0.56 for 400-lock, and within

0.52 for 3200-lock. Hence, the number placed was much

higher than for the Vanilla model, but the number placed did

not vary between lockout conditions.

The All-Weighted model punished strategies that

encoded more than they placed by lowering their P value,

but worked against itself by reducing costs based solely on

the number encoded. This bias in reducing costs actually

worked to favor strategies that encoded a lot but placed

little. (More detail on this aspect has to await a fuller report

in which we examine and report changes in P and C across

models.) This all worked to favor DO-strategies in the range

of DO-3 on up.

Like the All-Weighted model, the Mixed-Weighted

model punished strategies that encoded more than they

placed by lowering their P value. Unlike that model, it only

reduced costs for the number of blocks actually placed. This

combination worked to favor DO-strategies in the range of

DO-4 to DO-6 over both the lower and higher strategies.

The Mixed-Weighted model provided the best qualitative

and quantitative fit to the empirical data.

Discussion and Conclusions

We divide this section into a brief discussion of alternative
changes to expected value computations, conclusions about
our work on the expected value equation, and conclusions
about our model of Blocks World.

Other Changes to the Expected Value Equation

Rather than changing how successes and failures are
calculated, our initial instinct was to change G – the value of
the goal. It made much sense to us that if the value of
completing a trial was worth, say 24, then the value of
placing each block would be worth 3. (A strategy that
placed 3 blocks would have its G incremented by 9 units.)

Whatever the merits of this scheme, unlike P and C, G

does not accumulate separately for each production. Rather,

G is a global value that is applied equally to calculate the

expected value for each item in the conflict set. To

experiment with G would require learning G. This would

require more extensive changes to the current version of

ACT-R (5.0) than the changes reported in this paper.

Other than our work, the only work we know that

explores changes in ACT-R’s calculation of expected value

is that of Belavkin and colleagues. Whereas our work

focuses on discriminating among strategies, Belavkin’s

work is focused more on changes in the range of expected

values considered as the model gains expertise within a

domain (Belavkin & Ritter, 2003) or on when to give up on

a strategy (Belavkin, 2003).

Conclusions for calculations of expected value

This research into the parameters of the ACT-R expected
value equation arose out of failure in trying to fit a model to
the Blocks World data. As soon as we ran the model with
ACT-R’s default expected value settings (the Vanilla
model) we realized that unless we could amortize costs and
punish strategies that encoded more than they could place
that we could not hope to fit the human data. The problem
stemmed from the sparse reinforcement in the Blocks World
environment, as well as the binary nature of success or
failure in ACT-R. This dilemma prompted us to explore the
space of expected values equations generated by changes in
how successes and failures were counted and accumulated.

Our Mixed-Weighted model provides the best fit to our

data and we believe it makes the most intuitive sense. For

problems such as Blocks World where eventual success can

be easily quantized into smaller units, it makes sense to us

to reward and punish strategies based on how much of the

problem they succeed in solving.

Conclusions for Blocks World

Although we believe the Mixed-Weighted model is a
general solution to similar problems, we do not believe that
we have adequately modeled the Blocks World data.

Under the Mixed-Weighted scheme, a key to a strategy’s

success or failure is its ability to retrieve from memory the

items it has encoded. Currently we have run our models

with optimized learning on (:ol t). This is the default for

ACT-R models. However, in related research (Sims & Gray,

2004) we have come to believe that optimized learning

overestimates the amount that can be retrieved in situations

like the Blocks World where there is a long interval between

an item’s early encoding and rehearsal versus its later

retrieval.

Indeed, for the larger DO-strategies there is a sizable

period of time between the encoding and rehearsal of the

first encoded block and the encoding and rehearsal of the

last block on that round; this period, of course, precedes the

long placement period. We believe that more realistic

forgetting might work to drive the 0-Lock condition to rely

more on lower DO-strategies so that the number placed for

0-Lock declines to somewhere closer to the human data (see

Figure 2). Contrarily, more forgetting may drive the higher

lockout conditions (such as 3200-Lock) to use fewer of the

larger DO-strategies and more of the middle DO-strategies.

We expect that this shift would have the counterintuitive

effect of boosting number placed for 3200-Lock from its

current 3.7 blocks to someplace closer to the 4.2 blocks of

the humans in this condition.

Acknowledgments

The work reported was supported by a grant from the Office
of Naval Research ONR #N000140310046. Additional
support was provided by a subcontract to Rensselaer
Polytechnic Institute from contract #MDA-904-03-C-0408
to Booz Allen Hamilton from the Advanced Research and
Development Activity (ARDA). Thanks to Wai-Tat Fu for
running human subjects as well as many other contributions
to this project.

References

Anderson, J. R., Bothell, D., Byrne, M. D., & Lebiere, C. (in

press). An integrated theory of the mind. Psychological

Review.

Anderson, J. R., & Lebiere, C. (Eds.). (1998). Atomic

components of thought. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995).

Memory representations in natural tasks. Journal of

Cognitive Neuroscience, 7(1), 66–80.

Belavkin, R. V. (2003). Conflict resolution by random

estimated costs. In D. Al-Dabass (Ed.), Proceedings of the

17th European Simulation Multiconference (pp. 105-110).

Nottingham, UK.

Belavkin, R. V., & Ritter, F. E. (2003). The use of entropy

for analysis and control of cognitive models. In F. Detje,

D. Dorner & H. Schaub (Eds.), Fifth International

Conference on Cognitive Modeling.

Fu, W.-T., & Gray, W. D. (2000). Memory versus

perceptual-motor tradeoffs in a Blocks World task. In L.

R. Gleitman & A. K. Joshi (Eds.), Twenty-second Annual

Conference of the Cognitive Science Society (pp.

154–159). Hillsdale, NJ: Lawrence Erlbaum Associates.

Gray, W. D., & Fu, W.-T. (2000, November). Memory

versus perceptual-motor tradeoffs in a Blocks World task.

Conference of the Psychonomics Society, New Orleans.

Sims, C. R., & Gray, W. D. (2004). Episodic versus

semantic memory: An exploration of models of memory

decay in the serial attention paradigm. In M. C. Lovett, C.

D. Schunn, C. Lebiere & P. Munro (Eds.), 6th

International Conference on Cognitive

Modeling–ICCM2004. Pittsburgh, PA.

