
Automated GOMS–to–ACT-R Model Generation

Robert St. Amant (stamant@cs.ncsu.edu)
Department of Computer Science, North Carolina State University

Raleigh, NC 27695 USA

Frank E. Ritter (ritter@ist.psu.edu)
School of Information Sciences and Technology, The Pennsylvania State University

University Park, PA 16802 USA

Abstract

We describe a system, G2A, that produces ACT-R mod-
els from GOMS models containing hierarchical methods,
visual and memory stores, and control constructs. Be-
cause GOMS is a more abstract formalism than ACT-R,
a single GOMS operator might be plausibly translated in
different ways into ACT-R productions (e.g., a GOMS
Look-for operator might be carried out by different vi-
sual search strategies in ACT-R). Given a GOMS model,
G2A generates and evaluates alternative ACT-R models
by systematically varying the mapping of GOMS opera-
tors to ACT-R productions. In experiments with a text
editing task, G2A produces ACT-R models with predic-
tions that are within 5% of GOMS model predictions.
In the same domain, G2A also generates ACT-R mod-
els that give good predictions of overall task duration
for actual users (within 2% error), though the models
are much less accurate at a detailed level.

Introduction
A recent trend has appeared in cognitive modeling for
human-computer interaction: researchers are making the
capabilities of cognitive architectures much more acces-
sible to developers and designers who lack modeling ex-
pertise (Ritter et al., 2003). Salvucci and Lee’s ACT-
Simple (2003) automatically generates ACT-R mod-
els (Anderson et al., in press) from a language simi-
lar to KLM-GOMS. Techniques developed by John et
al. (2004) automatically build ACT-R models (via KLM
and ACT-Simple) from actions demonstrated by inter-
face designers. A system by St. Amant, Horton, and
Ritter (2004), in the domain of cell phone modeling, par-
tially automates the generation of ACT-R models from
the specification of a keypad and menu hierarchy.

The inspiration for the work described in this paper is
ACT-Simple and to a lesser extent TAQL (Yost, 1993).
ACT-Simple demonstrates the feasibility of automatic
translation of a high-level, GOMS-like specification lan-
guage into detailed ACT-R models—an exciting and sig-
nificant achievement. That said, the ACT-Simple trans-
lation process and its results have limitations. Each op-
erator in the source model is transformed into one or
two ACT-R productions in a static translation process.
These productions are chained together in a mostly lin-
ear fashion. The productions make almost no use of the
environment (e.g., all visual processing is represented as
shifts in attention between two fixed locations.) Essen-
tially, the generated ACT-R models have relatively lit-
tle that is “cognitive” about them: there is no input of

information from the environment, there are no mem-
ory retrievals for information processing, and there is
no decision-making. This is not to slight ACT-Simple—
these constraints are mainly dictated by KLM-GOMS,
which is intended to provide a simple, largely external
description of performance.

Our research explores the same basic problem ad-
dressed by ACT-Simple, that of translating high-level
specifications into more detailed cognitive models, but
shifts the focus from simplicity to representational
power. We have built a system, G2A, that translates
models from GOMSL into ACT-R. GOMSL is an ab-
stract but rich modeling language within the GOMS
family (Kieras, 1999). Going beyond the capabilities
of KLM-GOMS, GOMSL allows representation of men-
tal objects, working memory storage, primitive internal
and external operators, composite methods, and various
flow-of-control constructs. G2A supports all of these ca-
pabilities in its translation process. Our goal is to allow
the expression of models as simple as KLM-GOMS mod-
els, while letting modelers add more complexity if it is
needed.

We chose ACT-R as a target language (e.g., rather
than EPIC, Kieras & Meyer, 1997) to leverage exist-
ing work on model translation. We chose GOMSL as
a source language because of a detailed manual docu-
menting its structure and use (Kieras, 1999). G2A has
been tested using 34 examples taken from the GOMSL
manual (mostly verbatim, but with a few syntax correc-
tions). The most complex GOMSL model given takes up
about four pages—190 lines of code containing 15 men-
tal object definitions, 11 methods, and two sets of selec-
tion rules. To match this model, the translation process
generates an ACT-R model of five chunk definitions, 23
chunks, 79 productions, and various auxiliary constructs
(over 1500 lines of formatted model code). The ACT-R
model’s predictions closely match the predictions of the
source GOMSL model. Using the same GOMSL model
as a starting point, G2A can also automatically gener-
ate different models that give reasonable predictions of
actual user performance, based on different assumptions
to match different evaluation criteria.

The goal of developing G2A was not simply to trans-
late GOMS models to ACT-R models, which turned out
to be demanding in programming terms but conceptually
relatively simple.1 Our work provides insight into some

1G2A is available at www4.ncsu.edu/̃ stamant/G2A.



of the more interesting problems faced by the cognitive
modeling community today. How does one go about ex-
tending simple models into more detailed ones? More
generally, what is the space of models appropriate for a
given task and performance data? (With G2A, the “de-
grees of freedom” are related to the flexible mapping of
actions to productions, visual processing, and environ-
ment specification.) How can different, potentially com-
plex models be integrated? (We argue that integrating
high-level specifications is often easier than integrating
detailed models themselves.) How can ACT-R model-
ing concepts be made accessible to novice modelers al-
ready familiar with GOMS formalisms? (G2A provides
an explicit computational account of how some common
ACT-R idioms are used to represent specific behaviors.)
Finally, even if the feasibility of generating ACT-R mod-
els from GOMSL models is not an unexpected result, it
is worthwhile to see such an expectation verified.

GOMSL translation

GOMSL syntax is comparable to that of a procedural
programming language, as shown in Figure 1. For rea-
sons of space, in our discussion we will assume basic fa-
miliarity with GOMS and ACT-R concepts, and we will
not explicitly treat architectural differences; some de-
tails are also elided. G2A begins by parsing a GOMSL
model into an intermediate representation2 appropriate
for further translation as described below.

Methods and flow of control. GOMSL methods are
sequences of steps, where each step can contain one or
more operators. For example, in Figure 1 the first step
in the method Edit Document is the Store operator. G2A
follows ACT-Simple in its representation of control: ev-
ery production contains a condition test of the ?state
slot of a Goal chunk and an action to update that slot.
Sequences of operators are translated into productions
that are ordered by appropriately sequenced ?state val-
ues. Step execution is not always sequential within a
method; Decide statements support branching based on
predicate tests Goto allows arbitrary transfer of control
to labeled steps. These forms are translated to appro-
priately set ?state values in the relevant productions.

Each GOMSL method satisfies a goal; instead of call-
ing operators, a method can “invoke” another method
with an Accomplish-goal (AG) statement. This flow of
control translates to the creation of a subgoal that is
pushed on the goal stack.3 When a method completes,
it ends with a Return-with-goal-accomplished (RGA) state-
ment; this becomes a pop action in ACT-R. Selection
rules, which govern the choice of methods when multi-
ple methods can accomplish a given goal, are translated
similarly to Decide statements.

2For this we used an off-the-shelf LALR parser, written
by Mark Johnson, from the online AI Repository at CMU.

3The models produced by G2A include a small number
of ACT-R 4 constructs (Anderson & Lebiere, 1998) that are
deprecated in ACT-R 5 (Anderson et al., in press); we are
working to make the system ACT-R 5/6 compliant.

LTM item: Cut Command

Name is Cut.

Containing Menu is Edit.

Menu Item Label is Cut.

Method for goal: Edit Document

Step. Store First under <current task name>.

Step Check for done.

Decide: If <current task name> is None, Then

Delete <current task>; Delete <current task name>;

Return with goal accomplished.

Step. Get task item whose Name is <current task name>
and store under <current task>.

Step. Accomplish goal: Perform Unit task.

Step. Store Next of <current task>
under <current task name>;

Goto Check for done.

Figure 1: GOMSL object and method (partial).

Objects and working memory. GOMSL supports
declarative object representations, including objects in
long term memory (LTM-items), objects available through
visual processing (Visual-items), and task descriptions
(Task-items). Each object consists of a named collection
of property–value pairs. GOMSL objects are translated
directly into ACT-R chunks. Each generated chunk is
given a unique identifier for reference.

Objects in GOMSL are brought into working mem-
ory as named tags, such as <current task name> in Fig-
ure 1. Properties of an object stored in a tag are also
immediately available for processing. G2A captures this
functionality via a slot in the Goal chunk for each tag in
a GOMSL program. A change to the contents of a tag
by a GOMSL operator translates to an update of the
corresponding slot in a Goal chunk.

For convenience, GOMSL allows method arguments
(pseudo-parameters) to be defined. These are imple-
mented as implicit Store operators, which record values
in global tags for the information being passed between
methods in AG forms. When a production creates a sub-
goal, it copies tag values from the current goal to the
subgoal before pushing it on the stack.

Operators. GOMSL defines a number of primitive op-
erators that carry the basic load of modeling perfor-
mance. Aside from the control-flow forms mentioned
above, G2A handles Keystroke, Type-in, Click, Double-click,
Hold-down, Release, Point-to, Home-to, Speak, Look-for-
object-whose, Get-task-item-whose, Store, Delete, Recall-
LTM-item-whose, Verify, and Think-of. These encompass all
GOMSL operators except Wait-for-object-whose and Wait-
for-auditory-object-whose, which we expect to add soon.

For most of these operators, G2A contains one G
translation and one or more A translations:

• A-type translations use converted AC-R idioms to gen-
erate productions that perform activities equivalent to
the GOMSL operator. For example, Point-to expands
to a Hand-to-mouse production followed by a Move-
cursor production, imposing appropriate conditions on
the manual state.



• G-type translations use GOMSL-specified duration
values (e.g., a Keystroke requires 280 ms). In most
cases they generate the same productions as A-type
constructs.

Think-of is one exception to this scheme; it only has
a G translation, with the same fixed duration of other
mental and visual operators, 1,200 ms. The creation of
an ACT-R model using G2A requires choosing a specific
A or G translation for each of the operators in a source
GOMSL model. The more complex A translations are
as follows.

Double-click/A, Hold-down/A, and Release/A are trans-
lated into ACT-R Mouse-click actions—ACT-R lacks
a direct implementation of these low-level mouse op-
erations as atomic actions. A Double-click/single-action,
with duration comparable to a G-type translation,
provides a partial workaround.

Point-to/A, as mentioned above, expands to two produc-
tions, taking a target as an argument. This target can
be either a literal symbol, an object stored in a tag, or
a literal or object stored in the property of a tag. The
default G2A translation process generates a random
location associated with the object or literal, which is
stored for later pointing actions to the same target.
This location is used in the Move-cursor production.
(Numerical screen coordinates can be used if provided
in the GOMSL model, but this requires specialized
task-specific code.)

Recall-LTM-item-whose/A and Get-task-item-whose/A both
take a list of predicates and a store tag as arguments,
the first operator returning an LTM-item, the second a
Task-item. The result of the translation is a production
in which the identifier of a retrieved object that meets
the predicate tests is stored in the given tag.
A predicate is a comparison between operands. Com-
parisons in G2A are limited to tests of equality or non-
equality of symbols. The first operand to the compar-
ison is a property of the object to be retrieved. The
second is either a literal, a literal stored in a tag, or
a property associated with an object stored in a tag.
In the first two cases, the production that is gener-
ated includes a pattern that makes a direct compar-
ison between the object property and the literal or
tag. In the third case, an additional buffer is added to
the production that allows the retrieval of the chunk
corresponding to the identifier stored in the tag and
access to its properties. Predicates are processed re-
cursively, one at a time, until the list of predicates is
exhausted. The last action carried out by the produc-
tion is to store the identifier of the retrieved object in
the tag slot of the current Goal chunk. Figure 2 shows
a typical result for a retrieval with a single predicate.

Look-for-object-whose/search takes a list of predicates
and a store tag as arguments. The translation gen-
erates productions that search through the set of vi-
sual objects present until the desired object is found.
These productions use the standard ACT-R idiom of
find/attend/harvest for visual acquisition. The harvest
production is augmented via the same predicate pro-

;;; Get-task-item-whose ((is name [task-name])) [current-task]

(p production86

=goal>
isa goal

[task-name] =[task-name]

?state edit-document-3

=match88>
isa task-item

?id =temp87

name =[task-name]

==>
=goal>

[current-task] =temp87

?state edit-document-4)

Figure 2: Sample generated production.

cessing as with Recall-LTM-item-whose.
If the visual module could be guaranteed to find an
object that meets all of the predicate tests on its first
try, then the translation would be similar to Recall-
LTM-item-whose. Lacking this guarantee, however, pro-
ductions must be generated for each of the predicates
that may fail. In case of failure, these secondary pro-
ductions cause the find production to be fired again, to
visit another not-yet-attended visual location. When
a visual object is found that passes all the predicate
tests, its identifier is recorded in the tag slot of the
current Goal chunk.

Look-for-object-whose/direct is another A-type transla-
tion. In many situations, an exhaustive visual search
is not carried out, because the user either knows the
location of a visual object already, or because the pred-
icates rely on pop-out properties of the object. For
such situations, the translation generates a production
that simply moves the attention to a specific visual lo-
cation (randomly generated by default, but recorded
for later use, as with Point-to.)

Store generates a production that records a given value
(either a literal value, the contents of a tag, or the
property the contents of a tag) in a target tag. There
is one special case for translation of Store (and Delete,
below), as dictated by GOMSL. When these operators
occur in the same step as other operators, their action
is merged with the other operators, which means that
they have no independent duration.

Delete generates a production that sets the contents of
a given tag to a null (Empty) value.

Verify/last generates a production that moves attention
to the visual location that was most recently visited
by a Look-for-object-whose or a Point-to operator. Verify/
none generates no production, taking no time.

The translations we have defined have minor limita-
tions, which we are working to remove. We have also
begun to examine different sets of translations; for exam-
ple, we have reproduced several of the models of Salvucci
and Lee (2003), using the ACT-Simple modeling lan-
guage rather than GOMSL as a source language.



Evaluation

Comparing GOMSL and ACT-R models. We can
directly demonstrate the accuracy of the GOMSL to
ACT-R translation by choosing a GOMSL model, trans-
lating it using G translations for each of its methods,
and running a comparison of execution times. To sim-
plify our comparison here (and in the rest of this section),
ACT-R models are executed using default values for all
parameters, with no base-level learning.

For our comparison we used the Edit Document model
described earlier. This GOMSL model includes four
top-level methods describing activities in a mouse-based
word processing environment, executed sequentially with
no delays between them. Copy word involves selecting
and copying a single word and pasting it elsewhere in
the document. Copy arbitrary is a comparable task for a
sequence of words. Delete word involves selecting a word
and pressing the delete key. Move arbitrary is similar to
Copy arbitrary. All editing actions are executed through
selections from a pull-down menu. These lower-level ac-
tivities are accomplished by the methods given in the
Method column of Table 1.

The GOMSL column shows the durations per method
as given by the GOMSL model (Kieras, 1999, p. 58), and
the G2A/Mg column shows the corresponding values for
the ACT-R model that G2A generated, using a G-type
translation for every GOMSL operator, averaged over 20
runs. The numbers are very close, r = 0.999, with small
discrepancies due to parallel execution of visual and mo-
tor actions in ACT-R, plus the automatic addition to the
ACT-R model of hand movements between keyboard and
mouse that are implicit in the GOMSL model (specifi-
cally, in Select-word and Select-insertion-point). On aver-
age, the predictions of the ACT-R translations are within
5% of the GOMSL method durations, and the overall
task duration prediction is within 1%. This is a straight-
forward but non-trivial result: it shows that the hierar-
chical relationships between GOMSL methods, flow of
control within the methods, and transfer of information
between methods are captured in executing ACT-R pro-
ductions, even if production durations are fixed.

Predicting user performance. An obvious next step,
staying within the same task domain, is to see how well
these models predict actual user performance. If we time
users carrying out the Edit Document task in a standard
word processing application, we find that it takes 20 sec-
onds or less. This value is far from the predictions of the
GOMSL or Mg model. If we believe that these models,
despite their performance, correctly represent the basic
structure of the task, we can develop explanations for
the observed behavior in a systematic way with G2A.

The translation alternatives in the previous section
can be thought of as ACT-R idioms for representing par-
ticular activities. We can then view G2A as facing the
same issues as a human cognitive modeler in construct-
ing an accurate model. Though G2A lacks actual domain
knowledge, it can rely on the GOMSL model of the task,
and in cases involving analysis of an existing system,
G2A may have access to user data. In other words, G2A

Table 1: Model predictions for the Edit Document task.

Method GOMSL G2A/Mg Error
Select-insertion-point 3.60 4.14 15%

Select-word 4.40 4.71 7%
Erase-text 6.40 7.25 13%

Select-arbitrary-text 6.70 6.52 3%
Issue-command 9.05 8.55 6%
Paste-selection 12.80 12.84 0%
Copy-selection 14.85 14.36 3%

Cut-selection 16.20 15.79 3%
Copy-text 28.85 28.55 1%
Move-text 30.80 29.98 3%

Edit-document 101.20 100.63 1%

can carry out a model-fitting process, exploring different
elaborations of the GOMSL task structure.

To do this, G2A treats the alternative translations
of GOMSL operators as a search space. By vary-
ing the translations that are activated in generating
ACT-R models, G2A explores this search space, using
hill-climbing to identify the best translation. In hill-
climbing, an evaluation function f is applied to a cur-
rent state s. The function f is applied to each of the
states neighboring s, and if any of these successor states
produces a better value, the best of them becomes the
new current state. The process repeats until no successor
state produces an improvement in f .

A state for the G2A search is a set of translations,
each chosen from the set of possible translations for a
single operator: Look-for-object-whose/direct + Verify/none
+ Click/G + . . . . Each translation set produces a unique
model. Successors to a translation set are those that dif-
fer in the translation of one GOMSL operator. For f ,
G2A executes the model corresponding to the current
translation set 20 times, collects predictions of the total
duration of the Edit Document task, and computes the
difference from a target duration. (Notice that we can-
not directly compare method execution times, because
method boundaries are only implicit in user behavior—
all we have access to is external events.)

To test this idea, we conducted a small user study.
We implemented a simple, instrumented text editing ap-
plication roughly equivalent to Microsoft Notepad that
supports the Edit Document tasks. A pilot subject ran
ten trials of four tasks (Copy word, Copy arbitrary, Delete
word, and Move arbitrary) that the Edit Document model
also performed. We then ran six users through the same
procedure.

We used the mean total duration of the pilot user’s
trials as a target for the G2A search. G2A evaluated
about 50 models in its search. The best model found,
Mtd, relies on A translations for all mental and visual
activities and most motor actions, performs no visual
search, directing attention to known locations, and does
no verification. Comparing Mtd’s predictions of total du-
ration with the performance of the six users of the study
shows good results. The grand mean duration over the



six users was 18.85 seconds, with a standard deviation of
1.82 over the six user means. Mtd’s prediction of 19.18
seconds gives an error of about 2%.

This result is also worth noting: the ACT-R model
automatically produced by G2A reflects straightforward
decisons that a human modeler might make to capture
human performance in this domain, and its prediction is
much more accurate (and obtained with no further mod-
eling effort) than that of the original GOMSL model.
Mtd has about the same predictive power as compara-
ble generated ACT-R models described in the literature
(John et al., 2004; Salvucci & Lee, 2003).

Refining a model for more detail. Mtd has obvious
built-in limitations. In particular, the duration of its
mouse movements and visual attention shifts are based
on random locations, rather than an actual environment,
and thus its detailed predictions of user actions are un-
likely to be reliable. Using the data from the pilot sub-
ject, however, it is possible to carry out a more detailed
analysis by refining Mtd.

We defined a new search evaluation function that mea-
sures the intervals between keyboard/mouse events (i.e.,
stripping out the cumulative duration to each event),
and computes the mean squared error with the corre-
sponding interval durations for our pilot user. We also
altered the model generation process to use actual lo-
cations of objects, as measured in our instrumented ap-
plication, rather than random values. The best model
produced by the search, Mid, is almost identical to Mtd:
it does no visual search and no verification, and it relies
on A translations for all mental operators. It varies only
in that Double-click is implemented by a single action
translation, rather than a sequence of mouse clicks.

Mid’s prediction of overall task duration is about the
same as that of Mtd, 19.03 seconds. (In general, we
would not expect models generated by different search
evaluation functions to be so similar, but in this domain
it appears that several plausible models are clustered
in the same region of performance.) The more detailed
predictions of Mid are shown in Table 2, along with the
mean intervals between mouse click and keystroke events
for the six users in the study. Unfortunately, these pre-
dictions of Mid are not as good as we might have hoped
for. The correlation between user intervals and Mid pre-
dictions is 0.754, and the average error in the predictions
is 35%. There is no obvious pattern in the error values
shown in Table 2, but if the two largest could be reduced,
this would bring the model’s error down to 24%—still
high, but more respectable.

There are two ways we might improve Mid. First, as
discussed in the previous section, some low-level mouse
actions, such as Double-click, Hold-down, and Release,
have no direct representations in ACT-R; our substitu-
tions are inevitably inaccurate. We expect that once
such actions are developed, validated, and added to the
ACT-R architecture, we will see better results. Second,
it is possible that the structure imposed on ACT-R pro-
ductions by GOMSL forms (e.g., GOMSL methods entail
bookkeeping overhead due to AG and RGA operators) de-
grades the accuracy of predictions of a generated model,

Table 2: User performance on the Edit Document task.

Action User Mid Error
Double-click 0.25 0.20 20% (0.05 s)
Select Copy 1.48 1.40 5% (0.08 s)
Set insertion 0.53 1.01 91% (0.48 s)
Select Paste 1.28 1.18 8% (0.10 s)

Select sentence 2.16 2.02 6% (0.14 s)
Select Copy 1.81 1.16 36% (0.65 s)
Set insertion 0.76 1.01 33% (0.25 s)
Select Paste 1.62 1.18 27% (0.44 s)
Double-click 1.35 1.74 29% (0.39 s)

Press Delete 0.64 1.39 117% (0.75 s)
Select sentence 2.92 2.00 32% (0.92 s)

Select Cut 1.82 1.13 38% (0.69 s)
Set insertion 0.74 0.96 30% (0.22 s)
Select Paste 1.49 1.18 21% (0.31 s)

compared with the predictions of a native ACT-R model.
Translations that combine or parallelize GOMSL opera-
tors more effectively may help.

Despite the limited predictive power of Mid at a de-
tailed level, it constitutes another interesting result. Mid

was produced as a refinement of Mtd, in a largely auto-
mated process that called for only the effort of supply-
ing environment information. Otherwise the process de-
pended mainly on the GOMSL model for domain knowl-
edge and pilot user data to guide model construction.
No existing work on model translation has tested model
predictions at the same level of detail as Mid, and given
this lack of experience we find its performance adequate.

Limitations. One important limitation in our evalua-
tion of Mtd is that it is among the fastest models in the
search space explored by G2A. In other words, if we had
chosen an evaluation function that simply minimized ex-
ecution duration, our results would have been about the
same. Our combination of task and subject pool is thus
less informative than it might be, because our target per-
formance lies at an extreme, allowing little flexibility in
model structure.

We have also neglected one of the most interesting
opportunities for G2A: exploring possible translations of
the Think-of operator. John et al. (2004) have shown that
the placement of mental operators in a keystroke-level
model, a difficult task for human modelers, can be auto-
mated. An elaboration of our search process might insert
ACT-R productions into a model to better match user
durations, but determining exactly what these produc-
tions should do is a much harder problem that requires
domain-dependent reasoning. This is an open issue for
future research.

Discussion
G2A is a work in progress, but it is sufficient to demon-
strate the promise of the approach. We expect that
with further development and refinement by ourselves
and others, G2A can benefit the research community.



There are several avenues worth pursuing. One is
bracketing (Kieras & Meyer, 2000), a tactic that can
guide the iterative modeling process. A fastest pos-
sible model and a slowest reasonable model (based on
optional or inefficiently executed task components) are
derived from a base strategy; results can then help a
designer decide, for example, whether the performance
demands of a system are likely to outstrip human capa-
bilities. G2A could contribute to bracketing by gener-
ating different models given a base strategy represented
as a GOMSL model. If the fastest and slowest models
are within the search space of G2A’s translations—an
important consideration, but a reasonable expectation
in some domains—then these might be identified auto-
matically. Work along these lines could lead to a useful
extension to G2A, in the form of translations of higher-
level GOMSL methods as well as primitive operators.

An idea closely related to bracketing is that model-
ers might associate classes of translations with differ-
ent classes of users. In the same way that a program-
mer sets compiler flags to generate faster or safer exe-
cutable code, sets of translations can be identified with
expert or novice behavior. These translations might go
further than the ones described above, varying internal
ACT-R parameters rather than only model structure. In
such cases, the expert modeler would simply bypass G2A
search to settle directly on a specific model.

Another possible benefit is the use of G2A’s abstrac-
tions in teaching modeling concepts to computer scien-
tists. Operator translations generate sequences of pro-
ductions comparable to those in ACT-R tutorial mod-
ules, though G2A’s productions tend to be much more
specialized. The abstraction of productions into meth-
ods can be thought of as providing a simple, high-level
programming language for model components. Produc-
tions from different methods do not interact with each
other except at the beginning and end of their trans-
lation sequences; information is passed through named,
global slots. These factors make processing in a gener-
ated model much easier to understand. G2A might be
extended to allow user queries (e.g., “What does an ex-
haustive visual search look like in ACT-R?”) by showing
how specific translations are performed.

A final potential benefit relates to model size and
reuse. The largest models that G2A generates for the
Edit Document task contain about 100 productions, and
nothing prevents us from generating much larger models
for more complex tasks. It is time-consuming and error-
prone to generate models of this size by hand even if
the modeled behavior is completely understood. Adding
methods to a GOMSL model and examining their trans-
lation is straightforward in G2A and easier, in our ex-
perience, than writing ACT-R productions directly. If
a task appears to be too large to be handled with con-
ventional ACT-R development tools, or if model require-
ments outgrow GOMS (e.g., a model of visual processing
or learning behavior may be needed), or if a high-level,
procedural tasking language is required to control an ex-
tended experiment, then G2A offers a starting point.

Any potential benefits of G2A will involve tradeoffs

that can only be determined by further research. For
example, it may happen that abstract tuning of models
via high-level compiler-like directives does not allow suf-
ficient precision, but on the other hand it may provide
more control. It may be that increasing model modular-
ity, which makes larger models more feasible, involves a
reduction in accuracy. This is suggested by our model
refinement efforts, but it is not clear that this is a neces-
sary implication of G2A processing. Still, we believe that
G2A represents a promising approach. G2A advances
the state of the art in cognitive model generation and
points to several important areas for further research.

Acknowledgments
Thanks to Thomas Horton, who built the editing appli-
cation and ran the user study. Thanks to Mike Byrne
and two anonymous reviewers for suggesting significant
improvements to this paper. This research was sup-
ported by NSF award IIS-0083281 and by ONR award
N00014-02-1-0021. The information in this paper does
not necessarily reflect the position or policies of the U.S.
government, and no official endorsement should be in-
ferred.

References
Anderson, J. R., Bothell, D., Byrne, M. D. & Lebiere,

C. (in press). An integrated theory of the mind. Psy-
chological Review.

Anderson, J., & Lebiere, C. (1998). The Atomic Com-
ponents of Thought. LEA, Mahwah, NJ.

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger,
K. (2004). Predictive human performance modeling
made easy. Proceedings of CHI ’04, 455–462. ACM.

Kieras, D. E. (1999). A guide to GOMS model usability
evaluation using GOMSL and GLEAN3. Technical
Report, University of Michigan, Ann Arbor, MI.

Kieras, D. E., & Meyer, D. E., (1997). An overview
of the EPIC architecture for cognition and perfor-
mance with application to human-computer interac-
tion, Human-Computer Interaction, 12(4): 391-438.

Kieras, D. E., & Meyer, D. E., (2000). The role of cogni-
tive task analysis in the application of predictive mod-
els of human performance. In Cognitive Task Analy-
sis, Schraagen, J. M., Chipman, S. F., & Shalin, V. L.
(eds.) Lawrence Erlbaum, Mahwah, NJ.

Ritter, F. E., Shadbolt, N. R., Elliman, D., Young,
R., Gobet, F., & Baxter, G. D. (2003). Techniques
for modeling human performance in synthetic envi-
ronments: A supplementary review. Wright Pat-
terson AFB: Human Systems Information Analysis
Center. WWW: //iac.dtic.mil/hsiac/S-docs/SOAR-
Jun03-Front.pdf

St. Amant, R., Horton, T. E., & Ritter, F. E. (2004).
Cognitive modeling for cell phone menu evaluation.
Proceedings of CHI ’04, 343–350. ACM

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive
modeling in a complex cognitive architecture. Pro-
ceedings of CHI ’03, 265-272. ACM.

Yost, G. R. (1993). Acquiring knowledge in Soar. IEEE
Expert, 8(3), 26-34.


