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Abstract
Streaks of past outcomes, for example of gains or losses in
the stock market, are one source of information for a decision
maker trying to predict the next outcome in the series.  We
examine how prediction biases based on streaks change as a
function of length of the current streak.  Participants
experienced a sequence of 150 flips of a simulated coin.  On
the first of a streak of heads, participants showed positive
recency, meaning that they predicted heads for the next
outcome with a greater-than-baseline probability.  As streak
length increased, positive recency first decreased but then
increased again, producing a quadratic trend.  We explain
these results in terms of outcome-prediction processes that are
sensitive to the historical frequency of streak lengths and that
make heuristic assumptions about changes in bias of the
outcome-generating process (here, the coin).  An ACT-R
simulation captures the quadratic trend in positive recency, as
well as the baseline heads bias, in two experimental
conditions with different coin biases. We discuss our
memory-based model in relation to a model from the domain
of economics that posits explicit representation of an “urn”
from which events are sampled without replacement.

Introduction
A streak of repeated outcomes can be an important source of
information for decision makers trying to predict the
outcome of the next event.  For example, asked to predict
whether the global average temperature will increase or
decrease next year, a decision maker who has access to
historical records may predict an increase simply on the
basis of past trends. A bias of this form, in which a streak of
past outcomes is taken as evidence that the next outcome (or
measurement) will be in kind, is often referred to as positive
recency.  In terms of the decision-maker’s causal reasoning,
one could imagine that a long streak of temperature
increases induces a belief that an underlying causal
mechanism is at work (warming due to greenhouse gases,
for example). This causal mechanism will then govern
changes in next year’s measurement as well (modulo
extraneous variance).

Of course, whether the decision maker makes this or the
opposite prediction will depend on precisely how he or she
represents the mechanism producing the streak.  If the
decision maker happens to work for the current Bush
administration, he or she may well understand historical
increases in the global temperature in terms more similar to
the well-known gambler’s fallacy, in which a gambler takes
a streak of undesirable outcomes as evidence that his or her

luck will soon change.  More generally, a bias of this form,
in which a streak of outcomes is taken as evidence that the
next outcome will be opposite, is often referred to as
negative recency.  In the case of gambling, each gamble is
an independent event, so there is no causal mechanism
linking the outcomes (hence the fallacy).  However, there
are situations in which negative recency is a rational bias,
namely when outcomes are sampled without replacement.
For example, a rat in a maze, reflecting instincts of foraging
animals, usually has a bias against returning to the location
where it found food on the previous trial.  The rat’s causal
model is, presumably, that food at a given location is
depleted before it is replaced; if this model is correct, then
negative recency is adaptive.

In this paper we examine how recency biases change as a
function of streak length.  That is, we are interested in how
the length of a streak, up to and including the most recent
outcome, affects the decision maker’s prediction concerning
the next outcome.  An experimental paradigm appropriate
for addressing such issues involves a two-choice prediction
task (Estes, 2002; for simulations, see, e.g., Lebiere, Gray,
Salvucci , & West., 2003; Lovett, 1998). In the standard
experiment with this kind of paradigm, the participant is
asked on each trial to predict the outcome of an event such
as a coin flip.  The “coin” typically has a bias toward one
outcome or the other, of which the participant is not
informed.  The question of interest often has to do with
probability learning – how the participant’s bias to predict
one outcome or the other changes over time.  The usual
finding is that participants “match” rather than “maximize”,
meaning that over many trials their bias tends to asymptote
at the level of the bias in the event generator; for example, if
the “coin” is biased to produce 75% heads, then participants
will, by the end of a session, predict heads on roughly 75%
of trials.  Under a maximizing strategy, participants would
come to predict heads 100% of the time, once they detected
a bias, so a matching strategy is to difficult to explain using
the simplest rules of rational choice.

Probability learning studies have thus shown that people
are to some extent sensitive to base rates and changes in
base rates, and adjust the frequency of their predictions
accordingly, if sub-optimally.  Base rates, though related to
streaks, are a distinct source of information, with different
dynamics that may make them more or less appropriate to a
given decision-making scenario. Thus, a probability
learning experiment involving a biased coin might track
changes in the bias to predict heads as experience with the



biased coin grows.  We are interested in tracking changes in
the bias to predict heads as a streak of heads increases in
length, from one head (following a tail), to two consecutive
heads, and so on.  Thus, in terms of the gambler’s fallacy,
we are interested in how the strength of the gambler’s bias
might change as a function of number of losses.  Similarly,
in terms of the hot-hand heuristic (Burns, 2004), in which
streaks of successes serve as an adaptive allocation cue, we
are interested in how the strength of the team’s bias to give
the ball to one shooter is affected by that shooter’s recent
success at scoring.

Apart from the empirical question of whether decision
makers respond to streaks, there is also an important
theoretical question relating streaks to base rates.  Both
reflect any biases toward one outcome or the other in the
outcome-generating process; the base rate of that outcome
will be higher, and the occurrence and length of streaks of
that outcome will be more frequent.  However, if the bias in
the outcome-generating process happens to change, as a
function of a shift in environmental characteristics, for
example, the base rate will change only gradually in
response. In contrast, the probability of a streak of a given
length will change much more quickly.  For example, a
sudden increase in the heads bias of a virtual coin can
immediately produce a streak of heads that is much longer
than any that the decision maker experienced under the old
bias; the base rate, which represents the overall historical
frequency of heads, will change much more slowly.  Thus,
streak statistics are the more sensitive measure of change in
the environment, and may play an important role in the
decision making of adaptive organisms, particularly when
there is variability in the bias of the outcome-generating
process (Burns, 2004).

In the first section below, we describe an experiment in
which participants experienced a series of coin flips and
were asked after each flip to predict whether or not the next
outcome would be heads.  Dependent measures were (1) the
overall frequency of heads predictions, and (2) the
frequency of heads predictions conditional on length of
heads streak (the frequency of heads predictions after one
head, after two heads, and so on).  In the second section, we
present a model that accounts for the resulting patterns of
conditional heads predictions in terms of simple memory-
based decision processes; the model has available a strategy
in which it asks itself whether it has seen a streak of this
length before, and bases its prediction based on what is
retrieved from memory.  The discussion relates our
memory-based model to a formal model from the economics
literature.

Experiment
In this experiment, each participant experienced a series of
150 coin flips, and was asked after each flip to predict the
outcome of the next flip.  Aiming for replication with some
generality, we manipulated the coin’s bias towards heads,
between subjects. Participants were told that there might be
a bug in the computer program generating the coin flips,
such that the outcome of one flip might influence the
outcome of the next; the nature of the bug was not specified,
but the goal was to invite participants to view flips in causal

terms, such that some underlying mechanism might be
responsible for streaks of heads. Burns (2002) found this
instruction to be effective in manipulating participants’
beliefs about the randomness of the outcome-generating
process. Finally, participants were asked periodically to
report a count of heads since their last report, to draw their
attention to the bias in the coin.

Method
Participants were 71 students recruited from the Michigan
State University subject pool. They were randomly assigned
to one of two conditions that differed in the heads-bias of
the coin being flipped (75% or 60%).

Participants first read instructions indicating that they
would observe a virtual coin being flipped, and would be
asked after each flip to predict the next outcome:

In this experiment you will observe the result of a series
of penny tosses. Before each toss, you will be asked to try
to predict what you think the result of each toss will be.
You can take as long as you like for this, but there is
nothing to be gained by waiting. The result of each toss
should be random, but the coin may be biased towards
heads or tails, and there may be a bug in the program such
that one flip may influence the result of the next flip.
After selecting “heads” or “tails”, you will see the result
of the coin toss.  Every so often, we will ask you some
questions about the task, including how many “heads”
have been flipped since we last asked. (You can’t keep a
written record, so you have to remember this.)

After asking any questions they had, participants then
predicted the result of a training flip, and observed the flip
itself – a computer animation that unfolded over 3 sec.

Participants experienced then 150 flips, without knowing
how many flips there would be. Every 30 flips they were
interrupted and asked four questions:

(1) How many times has the coin come up heads?
(2) How well do you think you are doing at the task?

Responses were given using a scale from 1 (very poorly) to
7 (very well).

(3) How random do you think have been the flips
produced by the program? Responses were given using a
scale from 1 (not at all random) to 7 (completely random).

(4) If you have an idea about any error in how the
program generates flips, please write it below. Responses
were entered in a free-form text box.

Questions (3) and (4) were meant to focus participants on
the possibility that some underlying mechanism could be
responsible for producing streaks of heads.

In the analyses below, the first 50 trials were excluded, as
is standard in probability learning experiments (Estes,
2002).

Results and Discussion
Figure 1 shows the baseline bias to predict heads, measured
over all trials (filled bars).  The difference in baseline
prediction bias across conditions mirrors the change in bias
of the coin.

Figures 2 and 3 show conditional prediction bias for 75%
and 60% conditions, respectively.  The x-axes represent



streak length; 1 means one head after a tail, 2 means two
consecutive heads after a tail, etc.  The scale of the x-axes
differs because we restricted our analysis to streak lengths
represented at least once in every participant’s session;
longer streaks are more frequent with a more biased coin, so
the scale is wider for the 75% condition. The y-axes
represent recency biases, expressed in terms of deviation
from baseline prediction bias.  For example, a value of 2 for
streak length 1 would indicate that the bias to predict heads
after a streak of one head was 2% greater than the baseline
bias to predict heads.  Positive values thus indicate positive
recency – a greater-than-baseline tendency to predict that a
streak will continue – and negative values indicate negative
recency.

Analyses of variance confirmed the quadratic trends for
length of heads streak apparent in Figures 2 and 3,
t(140)=2.6, p<.02 for the 60% condition and t(238)=2.4,
p<.03, for the 75% condition.

A Model
We explain the U-shaped pattern in Figures 2 and 3 in terms
of use of the historical frequency of streak lengths as a
heuristic.  In particular, we assume that if the decision
maker is experiencing a streak, and can recall encountering
a longer streak in the past, he or she exhibits positive
recency, on the assumption that the past predicts the future.
If, on the other hand, the decision maker is unable to recall
any streak at all, he or she assumes that the current streak
reflects a change in the environment that has made a streak
of the current length more probable – and again exhibits
positive recency.  This logic is common in decision-making
models predicated on representativeness and related
heuristics.  In particular, Rabin (2002) argues that decision
makers “overinference” based on streaks, meaning that a
streak that is unusually long in their experience leads them
to overestimate the bias toward that outcome in the
outcome-generating process, relative to the estimate that
would be produced by pure Bayesian updating (with its
infinite historical window).  Viewing this overinferencing in
adaptive terms, it may make sense in a changeable
environment to factor a new experience into one’s beliefs
about the frequencies with which different outcomes are
generated, and perhaps experiment with revised beliefs in
future decisions.

Our model is implemented in the ACT-R cognitive theory
(version 4.0; Anderson & Lebiere, 1998), which
incorporates in a variety of ways the notion that the past
predicts the future; we exploited the declarative memory
mechanism, in which the activation and availability of
memory elements is linked to their statistical patterns of use
in a given task environment. The model fits are shown in
Figures 2 and 3.  The empirical data are noisy, and
replications currently under way will help to smooth out the
curves, but the figures show that the model qualitatively
captures the quadratic trends.

Our model-fitting strategy was to fit the baseline and
conditional prediction biases from the 75% condition
(Figure 1, left, and Figure 2), then to vary the smallest
possible number of parameters (which turned out to be one)
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Figure 1:  Baseline heads predictions.
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Figure 2:  Percent heads predictions above baseline for the 75% condition (see text), 
conditional on length of heads streak.



to fit the baseline prediction bias from the 60% condition
(Figure 1, right).  Encouragingly, this one parameter change
concurrently produced the fit to the conditional prediction
biases in the 60% condition (Figure 3), suggesting that the
model is capturing basic sources of variation in the human
response to the different conditions.

A Process-Level View
Here we describe the processes that execute on individual
trials, as the model observes an outcome (heads or tails) and
makes a prediction for the next outcome.

On most trials, the model stochastically selects one of
three processes to predict the next outcome.  Two of these
processes are simple; one guesses heads and one guesses
tails (regardless of the current outcome).  Guess-heads is
biased to be selected more frequently than guess-tails,
reflecting the bias of the coin being flipped; the probability
learning that produces this bias is of secondary interest here,
and we currently do not attempt to model it.

The third process, heuristic-predict, is more complex,
implementing the frequency-based heuristics sketched
above.  If this process is selected on a given trial, if spans
the next several trials, exiting when the current streak
terminates; while this process is active, guess-heads and
guess-tails are locked out.  The intuition is that the model
can wave in and out of using frequency heuristics to guide
its decision making, but when it waves in, it remains
focused on that heuristic until the current streak ends.
While active, the frequency-heuristic process is responsible
for updating a count of the current streak in the model’s
mental focus of attention, retrieving past streak lengths from
memory as guidance for predicting the next outcome, and,
when the streak is over, encoding the length of the just-
ended streak in episodic memory.  All such streak lengths
are represented as distinct items in ACT-R’s declarative
memory.

On a given trial, having first updated its count of the
length of the current streak, the heuristic-predict process
then tries to retrieve a streak length from memory; that is, it
tries to retrieve any streak length encoded by heuristic-
predict in the past.  The retrieval is primed by the length of
the current streak; thus, if the model has tracked four heads

in a row, memories for streaks of length four will be more
active, other things being equal, than memories for streaks
of other lengths.  This associative activation diminishes with
integer distance from the current count, with length-four
memories receiving more than length-three and length-five
memories, which in turn receive more than length-two and
length-six memories.

Three decision rules govern how the heuristic-predict
process maps the outcome of an attempted memory retrieval
to a prediction for the next coin flip.  Successful retrieval is
not guaranteed, but if a streak length is retrieved, the model
compares the length it represents to the length of the current
streak.  If the retrieved length is longer than the current
length, the model takes this as reason to expect the current
streak to continue, so it predicts a repeat of the current
outcome.  If the retrieved length is the same as or shorter
than the current length, the model takes this as reason to
expect the current streak to end, so it predicts the opposite
of the current outcome.  Finally, if retrieval fails altogether,
the model takes this as evidence that the current streak is
unusually long, and again predicts a repeat of the current
outcome.  Recapping the logic, the notion is that it may
make sense, in a changeable environment, for the decision
maker to be open to the possibility that the rate at which an
outcome is generated has changed.  Here, although there is
no explicit revision of beliefs about the environment, there
is a decision rule that interprets a retrieval failure as
evidence of a novel circumstance.

Each of the three prediction processes – guess-heads,
guess-tails, and heuristic-predict – is associated with a
probability of being selected on a given trial (when
heuristic-predict is not already active).  These three
parameters were among those adjusted to fit the 75% data.
Having fit those results, we held all parameters constant in
fitting the 60% data, except the probability of selecting
guess-tails.  This was increased, reflecting the higher bias
toward tails, given the drop to a 60% heads bias in the coin.

An Implementation-Level View
Here we briefly describe the implementation of the model,
in terms of ACT-R constructs.  The model code is available
for downloading at http://www.msu.edu/~ema/streaks.
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Figure 3:  Percent heads predictions above baseline for the 60% condition (see text), 
conditional on length of heads streak.



The simpler prediction processes – guess-heads and
guess-tails – are each represented by one ACT-R
production.  The selection probability of each production is
represented using ACT-R’s production utility parameters,
which are the inputs to the conflict resolution scheme in this
particular production system (selection probabilities are
therefore represented only indirectly, in terms of utilities).

The heuristic-predict process is represented by a set of
productions operating on a variety of memory
representations.  The process is initiated by a start-count
production, which competes in conflict resolution with
guess-heads and guess-tails. If start-count is selected on a
given trial, it enables an increment-count production on the
following trials, and eventually a stop-count production,
which is selected in response to the outcome that ends the
streak.  Stop-count is responsible for encoding a declarative
memory element representing the length of the streak when
it ended. On trials on which heuristic is active – that is, on
trials after start-count has fired to activate the process but
before stop-count has fired to terminate it – guess-heads and
guess-tails are excluded from conflict resolution.

The predictive component of the heuristic-predict process
begins with a retrieve-streak production, triggered once the
increment-count production has fired on the current trial.
Retrieve-streak attempts to retrieve some streak length
encoded by stop-count in response to a past streak.  This
retrieval attempt can fail, if no potential target’s activation
level is above a threshold that is a system parameter.  The
retrieval attempt can succeed with any streak length in
memory that is active enough, with the most active streak
length at that instant being the one that satisfies the retrieval
request.  Therefore, activation dynamics, reflecting decay
and priming, govern which streak length is retrieved.
Decay, characterized by ACT-R’s base-level learning
mechanism, means that older streaks have less activation
and thus are less likely to be retrieved; this suggests, as a
test of the model, engineering particular distributions of
streak lengths within a session to see if model and humans
respond in similar ways.

Priming (associative activation) flows from the current
streak length, stored in the system’s mental focus of
attention, to all streak lengths in memory, weighted by their
integer distance from the current streak length.  Thus, as
described above, if the current streak is of length four, past
streak lengths of four receive the most associative
activation, past streak lengths of three and five the next
most, etc.  This priming gradient plays a critical role in
producing the quadratic trend in conditional heads
predictions.  Longer streaks are less frequent than shorter
ones, so as the current streak grows, the probability of
retrieving any streak length from memory decreases,
because fewer streak lengths receive the maximum amount
of priming (which may be necessary to bring a target above
threshold).  Failure to retrieve a streak length triggers one of
the decision rules described above, namely to predict
continuation of the streak, on the assumption that the bias of
the outcome-generator may have suddenly changed.  If the
next outcome is as predicted, the heuristic-predict process
will continue to be active, and will ultimately encode a long
streak in memory.  Thus, the second and later instances of a

long streak will be less likely to trigger this particular
decision rule, given the model’s prior experience.

Note that the heuristic-predict process is generic with
respect to outcome, meaning that in principle another test of
the model would be against the empirical biases in tails
predictions.  We have not yet conducted this analysis.

The model performs the same 150 trials as do human
subjects, so in this sense its task environment is veridical;
however, we did not try to match the timing parameters of
the experiment, so, for instance, there is currently no
account of three-second duration of the animated coin flip.
We would expect, though, that the changes required
accommodate the actual time course of the experiment
would be absorbed by existing model parameters.

The parameters adjusted to fit the 75% data (baseline and
conditional predictions) include the utilities of guess-heads,
guess-tails, and start-count; the activation threshold for
retrievals (ACT-R’s :rt); and two parameters (peak and
slope) that determine the gradient with which priming flows
from the current streak length to the same and other streak
lengths in memory.  To then fit the 60% data, we adjusted
only the guess-tails utility; this utility was increased,
consistent with the decrease in the heads bias of the coin.
The ACT-R decay parameter (:bll) was set to its default
value of 0.5, and the activation noise (:ans) and utility noise
(:egs) parameters were both set to 0.3.

General Discussion
Previous attempts to reconcile positive and negative recency
heuristics in a single model (Rabin, 2002) have appealed to
the law of small numbers.  This “law” is a belief, named by
analogy to the law of large numbers, that the frequency of
events in a sample should match the frequency of those
events in the population (Tversky & Kahneman, 1971).  The
law of small numbers affords one explanation of the
gambler’s fallacy (negative recency), in which, for instance,
a series of red outcomes on a roulette wheel leads the
gambler to bet on black next.  The black outcome is thought
to be necessary to “even out” the preceding streak of red
outcomes in the current (relatively small) sample.

Although the law of small numbers is a fallacy in the
context of gambling, where events are independent and
sampling is with replacement, it has some validity when
events are sampled without replacement, even if they are
independent (Rabin, 2002).  If a red ball is drawn from an
urn containing red and black balls and not replaced, then the
probability of the next ball being black is higher than it was
before the red ball was drawn.  For large urns this effect is
minimal, but a decision maker applying the law of small
numbers effectively sets the urn size to be quite small, such
that each new outcome in a streak warrants a relatively large
update in expectations concerning the next outcome.  Thus,
the longer a streak of reds becomes, the further the decrease
in the subjective probability that the next ball will red.
Thus, the law of small numbers, applied to an outcome
generator in which events are sampled from a (small) urn,
offers one explanation of the decrease in positive recency
across shorter streak lengths in Figures 2 and 3.



The law of small numbers may also explain the upward
trend in positive recency that follows the initial downward
trend.  Rabin (2002) proposes that as a streak grows, there is
not only Bayesian updating of the probability of the next
ball being red or black, but also updating of beliefs about
the relative proportions of reds and blacks in the urn.  As
more and more red balls are drawn, the decision maker
comes to believe that there are more red balls in the urn than
he or she previously thought.  This effect should be greater
for decision makers applying the law of small numbers,
because the smaller the (mental) urn, the less likely the
subjective probability of a streak of a given length.  The
smaller the urn, therefore, the more a streak indicates that
the decision maker’s beliefs about relative proportions of
red balls and black balls in the urn need revision.  Thus, as
more and more red balls are drawn, the expectation that the
next ball will be red should begin to increase again, at the
point where the decision maker revises his or her subjective
probability of reds and blacks in the urn.  Rabin’s is not a
process model, so how these different forms of Bayesian
updating may interact is unclear.  Our model thus builds on
his work by offering a precise formulation of how positive
and negative recency interact.

Rabin (2002) draws support for his model from evidence
that investors tend to under-react to a firm’s financial
prospects in the short term and to over-react in the long
term. Empirically, stock prices tend to auto-correlate
positively in the short term (a period of months), which can
be interpreted to mean that investors insufficiently react to
good or bad news. This is a form of positive recency, to the
extent that it reflects a willingness to bet that recent trends
in stock price will continue – for example, that a firm with a
low stock price will continue to have a low stock price,
despite a recent money-making breakthrough. On the other
hand, stock prices tend to auto-correlate negatively in the
medium term (a three- to five-year horizon), suggesting, for
example, that such breakthroughs are factored only
belatedly into investor decisions. This is a form of negative
recency, to the extent that it reflects a willingness to accept
that less recent trends in stock price may now reverse
themselves.  Qualitatively, then, there appears to be a
mapping from Rabin’s analysis of investor data, couched in
terms of his urn model, and our U-shaped curve (positive
recency, then negative recency), which we explain in terms
of memory processes.

As a model, the law of small numbers by itself is
problematic in that it can equally well explain positive and
negative recency, and thus has no predictive power (Burns
& Corpus, in press). Similarly, it seems unlikely that people
really think in terms of “urns” (Rabin, 2002), although this
is a representational hypothesis that remains to be tested. In
our model we have tried to explain the U-shaped curve in
terms of basic cognitive processes, linked ultimately to
memory. A mapping could be made between urn size and
memory capacity, and from different types of Bayesian
updating to different reactions to different recall events.
Thus, our model can be viewed as putting cognitive
processing flesh on previous verbal theories.  Whether its
memory processes and simple decision rules generalize to
account for use of recency biases in other decision-making

tasks, and across longer time spans, are important questions
for future research.
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