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A memory-based scaling model—ANCHOR—is proposed and tested. The perceived magnitude of the
target stimulus is compared with a set of anchors in memory. Anchor selection is probabilistic and
sensitive to similarity, base-level strength, and recency. The winning anchor provides a reference point
near the target and thereby converts the global scaling problem into a local comparison. An explicit
correction strategy determines the final response. Two incremental learning mechanisms update the
locations and base-level activations of the anchors. This gives rise to sequential, context, transfer,
practice, and other dynamic effects. The scale unfolds as an adaptive map. A hierarchy of models is tested
on a battery of quantitative measures from 2 experiments in absolute identification and category rating.

Category rating is a widely used method of data collection in
experimental psychology. Ratings come in a wide variety of
guises: psychophysical scales, similarity judgments, typicality
judgments, confidence ratings, attitude questionnaires, health self-
reports, and many others. The participants in all these tasks are
asked to rate things using an ordered set of categories such as
1, . . . , 7 or strongly agree, . . . , strongly disagree. Most people
can do this without effort, and most psychologists tend to take their
responses at face value. Ratings are among our primary dependent
measures.

Yet the field lacks a comprehensive theory of how these re-
sponses are produced. There are many partial theories, each within
the confines of a particular discipline, and the practitioners in each
discipline make conscious efforts to minimize the impact of factors
outside their scope. Thus, psychophysicists treat nonperceptual
factors such as sequential dependencies and guessing strategies as
nuisance biases that must be minimized through randomization,
counterbalancing, and averaging (Stevens, 1957). Cognitive psy-
chologists, conversely, tend to ignore low-level perceptual features
in their stimuli, experiments, and theories.

The problem with this divide-and-conquer approach is that each
theory is incomplete. Both peripheral and central mechanisms are
engaged in most real-life situations. The overall behavior stems
from the joint action and interaction of these various components.
Thus, careful study of the isolated components is valuable and
necessary, but it must be followed by systemic efforts to put the
pieces back together.

The pursuit of integration is hardly new. Miller’s (1956) classic
article devotes equal amounts of space to short-term memory and
absolute identification, a close relative of category rating. Both are
subject to capacity limitations, and Miller cast them both in
information-processing terms. The research that sprouted from this
influential early effort, however, splintered into increasingly di-
vergent traditions. Forty years later, a review of Miller’s impact
concludes that “the dominant theories and paradigmatic ap-
proaches in these two domains have gone their separate ways, with
little, if any, cross talk” (Shiffrin & Nosofsky, 1994, p. 360).

Integration was premature in 1956, but perhaps in 2005 the time
is ripe. The psychophysics and memory traditions have amassed a
rich collection of empirical data and theoretical insights. By pool-
ing knowledge from all these sources, one can hope to achieve
unified understanding.

We propose a theory bridging the gap between psychophysics
and memory. It is based on the ACT–R architecture (Anderson &
Lebière, 1998), which is deeply rooted in the memory tradition
(Anderson, 1983; Anderson & Bower, 1973). At the same time, the
theory addresses two quintessentially psychophysical tasks—ab-
solute identification and category rating. We conduct two behav-
ioral experiments and compile a list of empirical constraints for the
theory. We operationalize most of them with quantitative targets
for modeling. The list includes effects that to our knowledge are
novel contributions to the empirical literature. The response dis-
tributions are noticeably nonstationary and nonuniform even when
the stimulus distributions are stationary and uniform. Also, the
context effect induced by skewed stimulus distributions apparently
reverses direction depending on the presence or absence of feed-
back. These and various other dynamic effects are successfully
accounted for by a process model called ANCHOR. It formalizes
the theoretical principles in mathematical equations and imple-
ments them in a computer program. A set of memory-based
anchors compete to match the perceived magnitude of the target
stimulus. An explicit strategy corrects most (but not all) memory
fluctuations. Incremental competitive learning updates the loca-
tions of the anchors, and activation learning updates their avail-
ability. The response scale unfolds as an adaptive map from a
single arbitrarily placed anchor. The correction strategy generates
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novel responses and enforces the local consistency of the
stimulus–response mapping, whereas competitive learning consol-
idates the local consistency into a global homomorphism. As the
model reinforces its own responses during category rating without
feedback, its dynamic stability depends vitally on the correction
mechanism. Under skewed stimulus distributions, activation learn-
ing induces assimilation, whereas competitive learning induces
compensation. The direction of the overall context effect depends
on the relative strength of these competing tendencies. As com-
petitive learning is silenced by external feedback, the context
effect reverses direction during absolute identification exactly as in
the behavioral data. Extensive simulations reveal the value added
by each ANCHOR mechanism on a battery of operational mea-
sures. Finally, the limitations of the model are discussed, and it is
compared with alternative proposals.

Main Principles of the Theory

The theory sets out to characterize the information-processing
mechanisms engaged in unidimensional scaling tasks. At the most
generic level, they all consist of establishing and maintaining a
systematic correspondence between stimuli and responses. The
absolute identification task requires one-to-one mapping, typically
defined and constantly reinforced by external feedback. The entire
stimulus set consists of a relatively small number of distinct
stimuli: for instance, a set of nine lines of different lengths. The
participant is asked to identify each stimulus by its corresponding
label. The category rating task is similar, but the number of stimuli
is greater than the number of responses, and hence a many-to-one
mapping is required. Feedback is seldom provided because the
purpose of the procedure is to estimate the subjective magnitude of
perceived stimulus intensity.

ANCHOR stands at the intersection of two broad theories—
Thurstonian psychophysics (Green & Swets, 1966; Thurstone,
1927; Torgerson, 1958) and the theory of memory incorporated in
the ACT–R architecture (Anderson, 1983; Anderson & Lebière,
1998; Anderson & Milson, 1989). The link between the two
theories is the construct of internal magnitude (see Figure 1). It is
assumed that some sensory processes, collectively referred to as
the perceptual subsystem, construct an internal magnitude M that
encodes the intensity of the physical stimulus S. This magnitude is
then processed within the central subsystem to determine the overt
response R. A central claim of the ANCHOR theory is that the
latter transition is memory based.

Figure 1 is provided for expository purposes only and is delib-
erately simplified. In particular, the open loop suggested by the
diagram obscures one very important feature of ANCHOR: The
central subsystem maintains an internal state that evolves from
trial to trial. Thus the response R depends not only on the imme-

diate stimulus S but also, at least in principle, on all previous
stimuli and responses.

Following the lead of many psychophysical theories and models
(e.g., Baird, 1997; Braida et al., 1984; Green & Swets, 1966;
Nosofsky, 1997; Treisman & Williams, 1984), ANCHOR assumes
that the perceptual subsystem operates independently of the central
one and that the internal magnitude M is the only piece of infor-
mation exchanged between them. We believe that this indepen-
dence holds to a good approximation in a wide range of circum-
stances, including those typical in scaling studies.

The theory deals exclusively with unidimensional continua.
Such continua are a subclass of the multidimensional psycholog-
ical spaces for which several well articulated theories exist (see
Ashby, 1992; Ashby & Maddox, 1998, for reviews), including
some excellent memory-based theories (e.g., Kruschke, 1992;
Nosofsky, 1986, 1991, 1997). Unidimensional continua, however,
have a special property that sets them apart: They are ordered. A
magnitude M1 is either greater or less than another magnitude M2.
This ordering relation, and the concomitant homomorphism be-
tween magnitudes and responses, is fundamental to the whole
notion of scaling (Luce, 1959).

At the most general level, our theory rests on four main princi-
ples: internal magnitude continuum, content-addressable memory,
explicit correction strategies, and obligatory learning. Each of
them is widely accepted in its respective scientific community.

Internal Magnitude Continuum

The first principle postulates an internal continuum of magni-
tudes. On each trial, the external stimulation generates a magnitude
M. It is this internalized quantity that can be committed to memory
and compared against other magnitudes. More generally, magni-
tudes are a form of analog representations: Relative positions and
distances on the internal continuum correspond systematically to
relative intensities and similarities among the physical stimuli.

The intrinsic stochasticity of the perceptual subsystem entails
some magnitude variability even when the stimulus remains fixed
across multiple presentations. Thus, although a single magnitude is
realized on a trial, a whole distribution of magnitudes must be
considered for each stimulus level (Thurstone, 1927).

Content-Addressable Memory

The second principle postulates content-addressable memory
involving these magnitudes. In particular, it is possible to establish
associations between a magnitude and the label of a response
category. Such associations are called anchors. They substantiate
the mapping between magnitudes (and hence the stimuli repre-
sented by them) and responses. When a new target magnitude is
produced by the perceptual subsystem, the memory fills in the
corresponding response label. This completion process is stochas-
tic and depends on two factors: (a) the location of the target
magnitude with respect to the various anchors in memory and (b)
the frequency and recency of use of each response category. The
latter factor is captured by the base-level activations (or biases) of
the anchors. These activations play an important role in the theory
and make direct contact with many memory-related phenomena.

Figure 1. ANCHOR has two subsystems communicating via internal
magnitudes M. A central claim of the theory is that the M 3 R transition
is memory based. S � stimulus; R � response.
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Explicit Correction Strategies

Because the memory system is noisy and prone to biases, it is
not guaranteed to provide on each trial the anchor that best
matches the target magnitude. The verbal protocols of human
observers suggest that they are aware of the unreliability of their
first guesses and adopt explicit correction strategies. Conse-
quently, the third main principle of the ANCHOR theory provides
for such explicit corrections. Phenomenologically, an introspective
report of a trial might go like this, “I see the stimulus. It looks like
a 7. No, it’s too short for a 7; I’ll give it a 6.” Such increments and
decrements have far-reaching implications and are vital for the
stability of the overall system, especially in the absence of
feedback.

There is strong evidence that people rely on such anchor-plus-
adjustment heuristics in uncertain situations (Tversky & Kahne-
man, 1974). Anchoring effects have been found in probability
estimation, risk estimation, utility assessment, stock market invest-
ment, and various social cognition phenomena. The effects are
robust and persist even when people are forewarned and motivated
to avoid them (Wilson, Houston, Etling, & Brekke, 1996).

Obligatory Learning

So, the stimulus has been encoded and matched against anchors,
and a response has been produced. Is this the end of the trial?
According to the fourth principle of the theory, the answer is no.
The cognitive system is plastic (within limits) and each experience
seems to leave a mark on it. ANCHOR, and the ACT–R architec-
ture in general, postulates obligatory learning mechanisms that
incrementally update the internal state of the system at the end of
each trial. There are two learning mechanisms in the current
version of the model: One updates the base-level activations of the
anchors, and the other updates their locations. This makes
ANCHOR an adaptive dynamic system and gives rise to various
sequential, context, and transfer effects.

There is ample evidence for such dynamic effects in the exper-
imental literature. Sequential effects, in particular, have been
found in virtually every scaling experiment in which the issue has
been examined and reported, regardless of the experimental pro-
cedure or perceptual modality (Baird, Green, & Luce, 1980; De-
Carlo & Cross, 1990; Holland & Lockhead, 1968; Jesteadt, Luce,
& Green, 1977; King & Lockhead, 1981; Luce, Nosofsky, Green,
& Smith, 1982; Mori & Ward, 1995; Petzold, 1981; Purks, Cal-
lahan, Braida, & Durlach, 1980; Schifferstein & Frijters, 1992;
Ward, 1979; Ward & Lockhead, 1970, 1971). They indicate that
some kind of internal state persists across trials, blocks, and even
days and influences subsequent processing. Memory seems the
most natural candidate to perform this function. ANCHOR ex-
plores a specific, prototype-based variant of this general idea.

The experimental literature on psychophysical scaling, despite
all its admirable riches, typically reports only very coarse statis-
tics—aggregates over many observers and thousands of trials.
These data do establish a wealth of empirical regularities in qual-
itative terms but do not constrain adequately a mechanistic model
on a trial-by-trial basis. Moreover, the various phenomena are
documented under widely different experimental settings. Such
diversity is crucial for the generalizability of the findings but
obstructs the construction of an integrated model. To remedy these

shortcomings, we decided to collect some detailed, unified data
ourselves.

Experimental Design

We performed two experiments: one on absolute identification
and the other on category rating. Both studies use exactly the same
stimulus material, response categories, presentation sequence, and
participant population. The experimental design seeks to replicate
as many scaling phenomena as possible within this unified frame-
work. The goal is to collect a single data set that consolidates the
disparate reports scattered throughout different journals over many
years. We compile a battery of quantitative measures for over a
dozen phenomena (summarized in Tables 1 and 3 below). In
addition to being worthwhile in itself, such consolidation imposes
much tighter constraints on the model as all effects must be
produced under unified parameter values.

Perceptual Modality

We have chosen a particularly fundamental and convenient
perceptual modality: length of lines in the frontal plane. Several
considerations recommend this choice. The subjective perception
of length seems linear to an excellent approximation—Stevens’s
exponent is very close to 1.0 (see Wiest & Bell, 1985, for a
meta-analysis of 70 studies). This permits the use of convenient
analytic tools such as linear regression. It has been argued (Krantz,
1972) that subjective length is the paradigmatic example of a ratio
scale and the gold standard in cross-modality matching.

The stimuli in our experiments are not lines but pairs of bright
dots against a dark background. The task of the observers is to
judge the distance between them. This is a concrete, physically
tangible rendition of some of the abstractions implicit in multidi-
mensional scaling (Schiffman, Reynolds, & Young, 1981) and
distance-based similarity metrics (Nosofsky, 1992).

Stimulus Presentation Schedule

From the standpoint of the memory hypothesis, we are partic-
ularly interested in the dynamic aspects of scaling. Our design
relies on nonuniform stimulus distributions to induce context ef-
fects and manipulates them within subjects to induce transfer
effects (see Figure 2). The main experimental manipulation in-
volves the presentation frequency of the different stimuli. Each
session is divided in five blocks in an alternating schedule sche-

Figure 2. The presentation schedules alternate uniform (U), low (L), and
high (H) blocks. Bar heights on the diagram depict stimulus presentation
frequencies within each block.

385ANCHOR: A MEMORY-BASED SCALING MODEL



matized in Figure 2. Exactly the same stimuli are used throughout;
only their respective frequencies are changing.

Three kinds of frequency distributions are used: uniform (U),
positively skewed (low, L), and negatively skewed (high, H).
Blocks 1, 3, and 5 are always uniform—all stimuli have equal
presentation probabilities. Blocks 2 and 4 have triangular distri-
butions as illustrated in Figure 2. A low block presents shorter
stimuli with progressively higher frequencies than longer ones; in
a high block the situation is reversed. The skew direction is
counterbalanced within subjects, and the overall schedule is coun-
terbalanced between subjects: UHULU for Group 1 and ULUHU
for Group 2.

Skewed presentation distributions are interesting because they
tend to induce context effects. The response to any given stimulus
depends not only on the stimulus itself but also on the distribution
of the other stimuli in the block (Chase, Bugnacki, Braida, &
Durlach, 1983; Marks, 1993; Parducci, 1965, 1974; Parducci,
Knobel, & Thomas, 1976; Parducci & Perrett, 1971; Parducci &
Wedell, 1986; Schifferstein & Frijters, 1992). Given that this
distributional information can only be accumulated over time,
context effects are a valuable tool for studying the internal state
maintained across trials.

Two kinds of context effects are possible: assimilative and
compensatory. For concreteness, suppose the block is dominated
by long stimuli. By definition, if the stimuli tend to be systemat-
ically overestimated under such conditions, there is an assimilatory
context effect—the responses are attracted toward the densely
populated end of the scale. If the stimuli tend to be systematically
underestimated instead, there is a compensatory context effect.
Metaphorically speaking, assimilation makes the rich even richer:
The response distribution is even more skewed than the stimulus
distribution that drives the process. Compensation is egalitarian:
The response distribution is a compromise between the skewness
in the stimuli and a uniform ideal.

The experimental literature abounds with reports of compensa-
tory context effects, obtained almost invariably under between-
subjects designs (e.g., Parducci & Wedell, 1986; Schifferstein &
Frijters, 1992). Assimilative effects are occasionally reported too
(Chase et al., 1983). Marks (1993), in particular, reported consis-
tent assimilation in nine studies with shifting stimulus ranges. Thus
the direction of the context effect is an open research question,
especially under within-subject transfer manipulations.

The alternating schedules in Figure 2 are designed to induce
context effects within the skewed blocks and transfer effects from
the skewed blocks to the uniform ones and vice versa. Such
dynamic transfer is especially informative from the standpoint of
the memory hypothesis.

Earlier transfer studies shift either the stimulus range (e.g.,
Haubensak, 1990, 1992; Marks, 1993) or the stimulus spacing
(Wedell, 1984). Both manipulations introduce new stimuli at the
transition from one block to the next. This may alert the partici-
pants to the shift and induce conscious changes in their response
strategies. Our frequency manipulation is far less conspicuous as it
uses the same stimuli throughout the experiment.

We are not aware of any previous investigation of the transfer of
frequency-induced context effects. Thus the present studies are an
opportunity to try a novel variation of the experimental paradigm
and contribute to the empirical literature. In addition, they collect
a consolidated data set as a target for modeling.

Experiment 1: Absolute Identification

Method

Participants. Twenty-four undergraduate students enrolled in an intro-
ductory psychology course at Carnegie Mellon University participated in
the experiment to satisfy a course requirement. Twelve were randomly
assigned to Group 1 and 12 to Group 2.

Stimuli and apparatus. The stimuli were pairs of white dots presented
against a uniformly black background on a 17-in. AppleVision monitor.
The viewing distance was approximately 600 mm. The independent vari-
able was the distance between the centers of the two dots. The stimulus set
consisted of nine dot pairs with the following distances: 275, 325, 375, . . . ,
675 pixels (275 pixels � 88 mm � 8.4 degree visual angle [dva]; 675
pixels � 216 mm � 20 dva). The full width of the monitor was 1,000
pixels (320 mm, 32 dva). The imaginary segment formed by the dots was
always horizontal and was randomized with respect to its absolute hori-
zontal and vertical position on the screen. The stimulus set for each
participant was generated and randomized separately. Each dot was
roughly circular in shape with a diameter of 16 pixels (5 mm, 0.5 dva).

Procedure. The participants were instructed that there were nine stim-
uli and nine responses and that their task was to identify each stimulus with
a number from 1 to 9. The stimuli were presented on the monitor one at a
time according to the schedules described below. Each trial began with a
500-ms alert sound followed by a 3,300-ms stimulus display. The partic-
ipants entered their responses on the numeric keypad of the computer
keyboard. As soon as the observer pressed a key the dots were cleared from
the screen and a big white digit indicating the correct identification ap-
peared. The feedback stayed for 1,300 ms or until the end of the 3,300 ms
presentation window, whichever lasted longer. The computer recorded the
response and the latency (measured from the onset of the stimulus). After
a 200-ms intertrial interval, the next trial began.

There were 17 demonstration and 450 experimental trials divided into 10
periods with short breaks after Trials 56, 112, 157, 202, 247, 292, 337, and
393. The demonstration introduced the stimuli first in increasing and then
in decreasing order, with feedback 1, 2, 3, . . . , 8, 9, 8, . . . , 1, respectively.
The participants were encouraged to practice pressing the corresponding
keys. The whole session lasted about 40 min. After completing the
computer-administered procedure, each observer was asked to give an
informal retrospective account of “what was going on in your head as you
were doing the task.”

Presentation schedules. The presentation schedule was UHULU in
Group 1 and ULUHU in Group 2 (see Figure 2). From the standpoint of
logical design, the sequence of 450 experimental trials consisted of 5
blocks of 90 trials each. The uniform (U) blocks presented the nine stimuli
10 times. The low (positively skewed) blocks comprised 18, 16, 14, . . . , 2
presentations of Stimuli 1, 2, 3, . . . , 9, respectively. The presentation
frequencies in the high (H) blocks were skewed in the opposite direction.

The order of presentation within each block was randomized. The break
periods never coincided with a boundary between logical blocks. From the
observer’s point of view it all looked like a long homogenous sequence of
randomized trials. Note that each stimulus is presented to each observer
exactly 50 times overall.

Results and Discussion

All data were analyzed individually for each observer. We focus
almost exclusively on the identification responses, mentioning the
response times and the retrospective protocols only in passing. The
data set consists of 10,636 valid cases (10,800 trials total, 164
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responses missing). The complete data set and the software that
administered the experiment can be downloaded from the ACT–R
web server or obtained from Alexander A. Petrov on request.1

We used the following methodology for quantifying the empir-
ical results and evaluating the model performance. We define a
numerical measure for each phenomenon of interest and develop
software estimating it from the stimulus–response sequence. Each
individual data set thus yields a battery of measures. Table 1
summarizes nine absolute identification phenomena discussed in
turn below and reports the mean and standard deviation of each
measure over the sample of 24 participants. Statistics for 9,600
model runs are also listed for comparison.

Descriptive statistics. The first measure in our battery charac-
terizes the overall performance. Ever since Miller’s (1956) classic
7 � 2 article, absolute identification capacity is traditionally quan-
tified by the amount of transmitted information T (Equation 1). To
the extent a (stochastic) relationship between stimuli and responses
exists, knowing the stimulus on a given trial reduces the uncer-
tainty (or entropy H) of the response. The magnitude of this
reduction thus measures the strength of the stimulus–response
relationship:

T � H�R� � H�R�S� (1)

���
r

P�r�log2P�r� � �
s

P�s� �
r

P�r�s�log2P�r�s�.

In our sample, the transmitted information ranges from 1.36 to
2.12 bits, with mean T � 1.68 and a standard deviation of 0.21.
This corresponds to perfect identification of three to four items and
replicates the classic capacity limitation results (Baird, Romer, &
Stein, 1970; Braida & Durlach, 1972; Luce, Green, & Weber,
1976; Miller, 1956). The probability of giving a correct response
varies from .41 to .74 (M � .54, SD � .08). That is, the observers
make mistakes on almost half the trials.

The overwhelming majority of the errors, however, are only one
unit away from the correct response (see Table 2). Hence, although
the probability of being absolutely correct is relatively low, the
stimulus–response correlation is very high (mean R2 � .90, SD �
.034). Thus the identification performance is not nearly as bad as
the information transmission values may seem to imply.

The response distributions tend to have a peak in the middle and
even clearer depressions at the extremes.2 Quantitatively, the stan-
dard deviation of the individual response distributions has mean
s � 2.40 in the sample (SD � 0.09). This is below the value 2.58
that corresponds to perfect uniformity.

Practice effect. The identification accuracy seems to increase
in the course of the experiment. The overall proportion of correct
responses is 0.49, 0.52, 0.54, 0.58, and 0.55 during Blocks 1
through 5, respectively. (Recall that Blocks 2 and 4 involve trian-
gular distributions.) We define a new statistic, pr � P5 � P1, to
measure the increase in accuracy of Block 5 relative to Block 1.
This statistic has a mean of .06 and a standard deviation of .12 in
our sample. The increase is statistically significant, matched-
sample t(23) � 2.59, p � .01, and replicates earlier reports of
practice effects in absolute identification (Hartman, 1954; Rouder,
2001; D. L. Weber, Green, & Luce, 1977). Though frequently
neglected, this practice effect is of obvious importance from a
memory perspective.

Edge effects. Given that the experiment involves only nine
stimuli, it is straightforward to characterize the performance sep-
arately for each category. Figure 3 plots the profiles of four
different measures. They all point to the same conclusion: Stimuli
S1 and S9 (and to a lesser extent S2 and S8) elicit superior perfor-

1 The software is written in Macintosh Common Lisp. The MATLAB
implementation of various analytic algorithms is available at http://www
.socsci.uci.edu/�apetrov/ and http://act-r.psy.cmu.edu/.

2 The overall response histogram is 860, 1,175, 1,211, 1,279, 1,397,
1,381, 1,277, 1,180, and 876.

Table 1
Empirical Constraints Derived From the Identification Experiment

Phenomenon Brief description Empirical Model

Capacity limitation Absolute identification is error prone and the amount of transmitted
information is limited.

T � 1.68 (0.21) T � 1.57 (0.20)

Nonuniform response distribution The response distribution has a peak in the middle even when the
stimulus distribution is uniform.

s � 2.40 (0.09) s � 2.50 (0.04)

Edge (bow) effects Both accuracy (% correct) and discriminability (d	) are higher at
the edges of the stimulus range relative to the interior.

bow � 
.14
(.40)

bow � �.31
(.33)

Sequential effect The current response Rt is positively correlated with the previous
response Rt�1.

Figure 4 Figure 10

Similarity effect The magnitude of the sequential effect depends on the similarity
between the consecutive stimuli St�1 and St.

Figure 4 Figure 10

Repetition effect When the same stimulus is repeated on two consecutive
presentations, the identification accuracy on the second trial is
greater than average.

rep � .11 (.09) rep � .04 (.08)

Assimilative context effect Under skewed stimulus distributions, identification responses shift
in the direction of the skew.

d � 
.14 (.24) d � 
.11 (.22)

Practice effect The identification accuracy improves over time. pr � .06 (.12) pr � .02 (.07)

Note. The measures of the various effects are defined in the text. Means and standard deviations (in parentheses) are reported for the sample of 24
observers and for 9,600 model runs. See Table 3 for a complementary list of category rating phenomena and Table 4 for additional model fits.
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mance than those in the interior of the range. This replicates earlier
reports of edge (or bow) effects (Braida & Durlach, 1972; Lacou-
ture, 1997; Luce et al., 1982; Mori & Ward, 1995; W. Siegel,
1972; D. L. Weber et al., 1977).

It is useful to distinguish between accuracy edge effect and
resolution edge effect (Treisman, 1985). The former refers to the
increased proportion of correct responses near the edges and could
stem from the simple fact that there are fewer possibilities for
mistake there (cf. Table 2). This cutoff undoubtedly contributes to
the bows in the two left panels in Figure 3, but it cannot account
for the bow in the interstimulus discriminability profile in the top
right panel.

One can treat each boundary i�(i 
 1) as a binary discrimination
and compute the associated d	i,i
1 by the method of Luce et al.

(1982). Whenever stimulus Si
1 is presented, all responses greater
than or equal to i 
 1 count as hits, and those less than or equal to
i count as misses. Across the boundary, on trials with Si, responses
greater than or equal to i 
 1 count as false alarms, and those less
than or equal to i count as correct rejections. The d	 is then
calculated in the usual way, separately for each participant. The
top right panel in Figure 3 plots the group average.

The d	 profile is asymmetrical, indicating that short distances
are generally more discriminable than long ones. There is a hint of
a slight rise at the right-hand side, however, which cannot be
attributed to Weber’s law. To test whether this rise is significant,
we define a new variable bow according to Equation 2. This
statistic has a mean of 0.14 and a standard deviation of 0.40 across
the 24 observers. The difference from zero is significant, t(23) �

Table 2
Frequency of Various Kinds of Identification Errors for Each Stimulus, Pooled Across All 24
Observers

Response error

Stimulus length (pixels)

Total %275 325 375 425 475 525 575 625 675

3 7 9 11 4 3 1 35 0.3
2 32 58 72 55 27 20 13 277 2.6
1 350 365 371 360 288 242 188 151 2,315 21.8
0 804 704 613 576 618 607 568 584 710 5,784 54.4

�1 52 111 177 221 277 340 357 385 1,920 18.1
�2 2 8 19 31 46 68 80 254 2.4
�3 1 2 3 13 18 14 51 0.5

Total 1,193 1,188 1,180 1,181 1,178 1,181 1,168 1,178 1,189 10,636 100.0

Figure 3. Bow effects in absolute identification. Top left: Overall accuracy for each stimulus. Bottom left:
Standard deviation of responses. Top right: d	 for each interstimulus boundary. Bottom right: Mean latency in
milliseconds.
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1.72, one-tail p � .05, which is evidence for a resolution edge
effect strong enough to overcome the monotonic decrease in
discriminability.

bow � d	8,9 �
1

4
�d	3,4 � d	4,5 � d	5,6 � d	6,7�. (2)

Sequential effects. There is clear evidence for an assimilative
sequential effect. Figure 4 plots the conditional probabilities of
various kinds of error. Following Luce et al. (1982), we track
“overshoot” and “undershoot” errors separately, conditioning on
the difference �S � St�1 � St between the stimuli on consecutive
trials t � 1 and t. Consider the line labeled “Overshoot by 1” in the
top panel, for example. It describes the probability of giving a
response Rt that is one unit greater than the correct label of the
stimulus St presented on the current trial. The likelihood of such
overshoot error is between .10 and .15 when St�1 is less than St.
This is followed by a sharp steplike increase when St�1 becomes

greater than St—the probability quickly rises to .35 and then
remains there. The undershoot curve shows the opposite pattern.
Mistakes by two or more units are rare, and the inflection points of
their respective profiles appear to be around �S � �3.

The profiles in the top panel of Figure 4 and especially the
cumulative probability plot in the bottom panel show a clear
assimilative tendency. This is one more replication of this robust
and ubiquitous finding (Garner, 1953; Holland & Lockhead, 1968;
Luce et al., 1982; Petzold, 1981; Purks et al., 1980; Ward &
Lockhead, 1970). Our data do not discriminate whether this
assimilation is driven by the previous stimulus St�1, previous
feedback (which is perfectly confounded with St�1), or the
previous response Rt�1. When Rt�1 is used in place of St�1, the
resulting plot is virtually identical to Figure 4. It seems well
established, however, that whatever the critical factors may be,
they act in relation to the position of the current stimulus
(similarity effect).

Figure 4. Top: Conditional probabilities for various identification errors as a function of the similarity between
consecutive stimuli. Bottom: Cumulative-probability plot of the same data.
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Repetition effect. Repetition of the same stimulus on two con-
secutive trials brings noticeable improvement in the identification
performance (see Figure 5). To check whether this repetition effect
extends farther back in time, a new variable Nt is constructed from
the trial sequence by counting back to the most recent repetition of
the stimulus St (J. A. Siegel & Siegel, 1972; W. Siegel, 1972). For
instance, Nt � 1 if and only if St � St�2 and St � St�1. Because
of the randomization, approximately 1⁄9 of all trials have Nt � 0, 1⁄9
of the rest have Nt � 1, and so forth. Figure 5 plots the identifi-
cation accuracy and the mean response times for the first few
levels of N.

There is a clear difference between repetition (N � 0) and
nonrepetition trials both in terms of accuracy (about 11% benefit)
and latency (about 160 ms on average). Our data show little further
influence of the number of intervening items, with the exception
perhaps of a marginal (40 ms) effect on the response times after
many intervening trials. This replicates the results of W. Siegel
(1972), who reported consistent and clear-cut accuracy increases
for N � 0 in several experiments and occasional marginal effects
for N � 1.

We define a new variable rep to quantify the repetition benefit
for each observer:

rep � Pr � Pn , (3)

where Pr and Pn denote the probabilities of correct identification
on trials with N � 0 and N � 1, respectively. This difference is
positive for 21 of the 24 participants (M � .11, SD � .09).

Context effect. We introduce here a general method for calcu-
lating the average response levels of individual observers during
various time periods. It is used to quantify the context and transfer
effects in all experiments and simulations in this article.

Suppose the response policy of a given participant during a
particular time period is characterized by some known Stevens
function R� � F(S) mapping stimuli to their average responses.
Suppose further that it was possible to freeze the observer’s state
of mind and probe the response policy with a long sequence of
uniformly distributed stimuli. We call the expected mean response

under such conditions the average response level (ARL). By
definition, ARL equals the area under the Stevens curve divided by
the stimulus range. When the stimulus range is fixed (as in our
experiment) this quantity depends only on the function F. Assum-
ing a power law R� � R0 
 aSn, the ARL is defined by Equation
4, where Smin and Smax denote the minimal and maximal stimulus,
respectively. When n � 1, this expression simplifies to Equation 5;
the ARL for linear scales equals the expected response to the
stimulus in the middle of the range. In our setting, this is the
stimulus with a length of 475 pixels.

ARL �
1

�Smax � Smin� �
Smin

Smax

�R0 � aSn�dS (4)

� R0 � a
�Smax

n
1 � Smin
n
1�

�n � 1��Smax � Smin�
;

ARL � R0 � a�Smin � Smax�/ 2. (5)

Thus if we know the Stevens function, we can calculate the
ARL. In practice the Stevens function is not known and must be
estimated from the observed stimulus–response pairs. For the
linear response scale in our experiment this amounts to estimating
a slope a and intercept R0 by linear regression of the responses R
on the stimuli S. ARL then equals R0 
 475a.

Note that the ARL calculated according to this procedure is not
the same as the arithmetic mean of the observed responses. The
latter average reflects not only the response policy but also the
stimulus distribution, which is not necessarily uniform. ARL is
closely related but not identical to two other measures in the
literature: the area under the Stevens curve (e.g., Parducci &
Wedell, 1986) and the adaptation level (Helson, 1964). ARL is
always proportional to the area in our experiment because the
stimulus range is held constant. It, however, has the advantage of
being expressed in the units of the response scale. Helson (1964)
defined the adaptation level as the stimulus that corresponds to the

Figure 5. Benefit of repeating a stimulus on two consecutive trials. Left: Identification accuracy (plus or minus
95% confidence interval). Right: Mean response times (plus or minus 95% confidence interval within subjects).
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average response. ARL is the complement of this—the response
that corresponds to the average stimulus (when the Stevens func-
tion is linear).

The response policy changes over time—both endogenously
and because of external factors such as context manipulations.
Indeed, we want to estimate the ARL precisely to track such
changes. There is a tradeoff. On one hand we need a sufficient
number of observations to get a reasonable estimate of the Stevens
function F. On the other hand if we average over too many trials,
the dynamics of the ARL would be smoothed away. As a com-
promise, we have chosen to segment the data into periods of 45
trials each.

In summary, we calculate the ARL profile of each observer by
segmenting the data into 10 nonoverlapping periods, fitting a
regression line in each period, and applying Equation 5. This
procedure transforms the sequence of 450 stimulus–response pairs
into a profile of 10 ARLs. Final averaging across participants
produces the two group profiles plotted in Figure 6.

The ARLs in Figure 6 stay close to 5.0, which is consistent with
the stable feedback level. The limited variability that remains
around this overall baseline, however, appears to be context de-
pendent. The two profiles coincide during the first uniform block
(90 trials, two points on each profile). Then they seem to diverge
slightly over the 90 trials with skewed presentation frequencies.
The third block, with uniform distribution, apparently brings the
two response levels back together. They diverge again during the
subsequent nonuniform Block 4 and stay apart until the end of the
session.

The context effect is assimilative: The ARL tends to increase
when high stimuli dominate the presentation schedule and de-
crease when low stimuli dominate. To quantify this effect and to
test its significance, we single out two points on the profile of each
observer. Point h is the ARL during the second half3 of the high
block; point l is the ARL during the second half of the correspond-
ing low block. The group averages are h � 5.15 and l � 4.91 in
Group 1, and h � 5.12 and l � 5.07 in Group 2.

d � h � l. (6)

We adopt the difference d in Equation 6 as an overall measure
of the context effect. Positive values indicate assimilation, and
negative values indicate compensation. The context effect in our
case is clearly assimilatory (mean d � 
0.14), matched-sample
t(23) � 2.90, p � .01. This finding is at odds with the compen-
satory effects typically found in most context studies (e.g., Par-
ducci & Wedell, 1986) and our own category rating data in
Experiment 2. We attribute the unusual direction of the present
context effect to the explicit feedback in the identification task, for
reasons discussed at length later.

Verbal protocols. Nineteen informal retrospective reports are
available. Six of them contain explicit and spontaneous statements
that the previous stimulus St�1 is used as a reference (cf. Laming,
1984). Five people mentioned “stable images of 1 and 9” anchor-
ing the rest of the scale. Four people singled out the midpoint.
Some observers referred to multiple strategies depending on the
circumstances. For instance, “I compared it [the stimulus] with the
previous one if it was in the same ballpark, otherwise I worked
from 1 or 9.”

In summary, Experiment 1 replicates all phenomena falling
within its scope: limited information transmission, practice, se-
quential, and edge effects of various kinds. It also provides evi-
dence for an assimilative context effect. Quantitative measures of
most effects are available for each individual observer as summa-
rized in Table 1.

Mechanisms of the ANCHOR Model

Armed with these empirical data we are now in a position to
discuss the computational mechanisms of the model in detail.
Figure 7 shows a schematic diagram of the main variables in-
volved and the dependencies among them.

The model instantiates and concretizes the four principles out-
lined in the introduction (cf. Figure 1). On each trial, a stimulus
with intensity S is presented to the model. The perceptual sub-
system builds, stochastically, an internal representation of this
stimulus. This target magnitude M then acts as a memory cue, and
the anchors compete to match it. The anchor selection mechanism
determines, stochastically, a single anchor as winner. The magni-
tude of this anchor is denoted by A in Figure 7. The correction
mechanism then compares the target magnitude M with the anchor
magnitude A to determine whether a correction I is needed. If the
increment I in Figure 7 is zero, the response associated with the
anchor is adopted as the final response R on this trial. Otherwise
the increment I, which can be either positive or negative, is added
to the anchor response to determine R. Finally, two learning
mechanisms update various anchor parameters, thereby changing
the internal state of the model. The updated internal state controls
the behavior on the next trial, and the whole cycle repeats.

There are five computational mechanisms in ANCHOR: per-
ception, anchor selection, base-level activation, correction, and
competitive learning. To demonstrate the value added by each
mechanism, a hierarchy of models introduces them one by one.
Each successive model incorporates one new feature relative to its

3 Trials 136–180 for Group 1 and 316–360 for Group 2, see Figure 2.
The first half of each block is left out in an effort to minimize transfer-
related contamination and for consistency with the analysis of Experiment 2.

Figure 6. Assimilative context effect in absolute identification. The av-
erage response levels tend to increase in negatively skewed (H) and
decrease in positively skewed (L) blocks. U � uniform.
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predecessor. Models �P and �S are just the perceptual or the
anchor-selection mechanisms working in isolation, respectively.
�PS puts these two components together, and �PSA adds base-
level activations to the anchors. Next, model �PSAC introduces the
correction mechanism. Finally, the competitive learning (or run-
ning average) mechanism yields �PSACR, which is synonymous
with the full-blown ANCHOR model.

The Perceptual Subsystem

The present article does not seek to establish a sophisticated
theory of sensory transduction. Indeed, we are content with a
minimalist generic formulation of the perceptual subsystem that
still takes into account the fundamental empirical constraints ex-
pressed by Weber’s and Stevens’s laws. This allows us to focus on
the central subsystem.

The whole perceptual subsystem is reduced to a single equation
that describes the distribution of magnitudes as a function of the
stimulus. It abstracts away factors such as contrast, attention,
habituation, Gestalt, and so forth. The current version of the model
assumes that the internal magnitude M depends solely on the
intensity of one particular attribute of the stimulus. The effects of
the other attributes, the surrounding context, and the previous
stimuli are assumed negligible. Thus, as a first approximation, the
stimulus intensity S is the only independent variable in the per-
ceptual equation of the model. Additional factors can be included
in the future without disrupting the rest of the theory.

Weber’s law and Stevens’s law. One empirical constraint that
cannot be neglected by any credible scaling system is that the
intensity difference threshold �S tends to be proportional to S over
much of the dynamic range of the stimulus (Fechner, 1860/1966;
E. H. Weber, 1849). Thus the ratio of the two—the Weber frac-
tion—is approximately constant for a given perceptual modality:

�S

S
� k � constant. (7)

Another major empirical regularity comes from a vast array of
magnitude estimation and category rating studies (Marks, 1974;
Stevens, 1957, 1975; Stevens & Galanter, 1957). For intensive (or
prothetic) continua the average rating R� varies approximately as a
power function of the stimulus intensity S:

R� � aSn. (8)

Both Weber’s and Stevens’s laws are subject to qualifications,
and various alternative formulations and corrections have been
proposed (e.g., Ekman, 1959; Jesteadt, Wier, & Green, 1977;
Krueger, 1989; Laming, 1986; Marks & Stevens, 1968; Norwich &
Wong, 1997). Most of them deal with slight deviations near the
low absolute threshold and can be put aside for our present

purposes because their impact on direct scaling performance is
probably negligible.

Perceptual equation in ANCHOR. The internal ANCHOR
representation of a stimulus S is a magnitude M (see Figure 7).
Following Thurstone (1927), M is a Gaussian random variable
whose mean and variance depend on the stimulus intensity S. The
standard interpretation of Weber’s law is that the mean of each
magnitude distribution is proportional to the logarithm of the
corresponding stimulus. Assuming equal variance (Fechner’s pos-
tulate), this explains the progressively poorer discriminability at
higher intensity levels.

There is an alternative proposal, however, that is equally con-
sistent with the data. It is possible, indeed likely,4 that the standard
deviation of each magnitude distribution grows in proportion to its
mean (Ekman’s law; Ekman, 1959). With such multiplicative
perceptual noise, the spacing among the means can be less com-
pressive and still produce poorer discriminability at higher inten-
sities. In fact, power-law compression is sufficient (see proof in
Appendix A). This leads to Equation 9, in which n is the exponent
from Stevens’s power law (Equation 8), a is an arbitrary scaling
factor, and kp is a dimensionless coefficient of proportionality. The
noise �p has zero mean and unit variance.

M � aSn�1 � kp�p�. (9)

Various other forms have also been proposed, and in general the
psychophysical function cannot be inferred unambiguously from
the available data (Norwich & Wong, 1997; Treisman, 1964,
1985). Most theoretical alternatives, however, differ in rather
subtle features and have comparable qualitative shapes over finite
stimulus ranges away from the absolute threshold (for instance, a
logarithm versus a power function with an exponent less than 1).
Moreover, the indeterminacy is contained within the perceptual
subsystem and has little or no implications for the memory-based
central processing of main interest here. Simulations with the
ANCHOR model have shown that it can fit the empirical profiles
in Figure 3 equally well using either additive noise and strong
(logarithmic) compression or multiplicative noise and moderate
(power-law) compression (Petrov, 2003). Thus one can investigate
the sequential, context, and other dynamic effects independently of
the details of the perceptual subsystem.

We adopt the multiplicative-noise Equation 9 for our present
purposes. It takes a particularly convenient linear form for our
perceptual modality. The Stevens exponent is set to n � 1.0 in
agreement with the general consensus that the scale for physical
length is very nearly linear (e.g., Stevens, 1957; Stevens & Ga-
lanter, 1957; Wiest & Bell, 1985). Our rating Experiment 2 also
corroborates this choice. It is convenient to set the scaling factor to
a � 1⁄1,000 , yielding magnitudes M in the [0, 1] range:

M � S�1 � kp�p�/1,000. (10)

The only thing left to specify is the confusability parameter kp that
scales the variance of the magnitude distribution in proportion to
its mean. Appendix A derives an upper bound on this parameter in

4 The equal-variance assumption contradicts the frequent finding of
normalized receiver operating characteristic curves with slopes less than
unity (Swets, 1986).

Figure 7. Main ANCHOR variables and the dependencies among them:
stimulus intensity S, internal magnitude M, anchor A, corrective increment
I, and response R. Compare with Figure 1.
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terms of the empirically observable exponent n (Equation 8) and
the Weber fraction5 k (Equation 7):

kp � nk. (11)

As n � 1.0 in our case the relationship becomes particularly
simple: kp � k. An estimate of the Weber fraction for the dot pairs
used in our scaling experiments would therefore eliminate one free
parameter from the model. Laming and Scheiwiller (1985) re-
ported two discrimination experiments with stimuli similar to ours.
The details of this study are outlined in Appendix A, and a Weber
fraction k � .04 is obtained. The same value is listed in two
secondary sources (Baird & Norma, 1978; Laming, 1986).

On the basis of this information we can fix kp � .04 in Equation
10. This provides a parameter-free specification of the perceptual
subsystem for all subsequent simulations.

Anchors

All processing in the model involves anchors in one way or
another. There is one anchor for each response category—nine in
our case. Taken together, the anchors map the internal magnitude
continuum onto the overt response scale. They contain succinct
information about what stimuli were labeled with each particular
response in the past. The whole internal state of the model is
encapsulated in the current locations and base-level activations of
the anchors.

The location Li of each anchor i represents the current estimate
of the magnitude of the prototypical member of the corresponding
response category. For instance, suppose we are dealing with
Anchor 7 and its current location is L7 � .612. Under the calibra-
tion of the model, an internal magnitude of .612 corresponds to
physical length of 612 pixels. This stimulus is estimated to be the
prototypical 7 at the moment.

What the system actually responds to, however, is the anchor
magnitude Ai, which is a noisy version of its location Li. Suppose
that halfway through a category rating experiment we ask the
participant, “Please close your eyes and visualize a typical 7.”
ANCHOR assumes that memory access is noisy and introduces
fluctuations and distortions. The specific proposal is formalized in
Equation 12, which is directly analogous to the perceptual Equa-
tion 10. The memory noise �m is a Gaussian variable with zero
mean and unit variance.

Ai � Li�1 � km�m� for each anchor i. (12)

The anchor magnitude Ai is a random variable centered on the
current anchor location Li, just as the target magnitude M is a
random variable centered on the stimulus intensity S. We assume
multiplicative noise in memory, as in perception. The standard
deviation of each magnitude distribution is proportional to its
mean. The coefficient of proportionality km (Equation 12) is a
dimensionless parameter analogous to kp (Equation 10). It is the
same for all anchors. The value km � .07 yields good fits to our
experimental data.

Note that four different variables have the prefix anchor in their
names. The first of them is the anchor label i that identifies the
particular anchor. In our setting the labels are the numerals from 1
to 9, but in general they can be any verbal labels such as similar,
very similar, and so on. The second quantity is the anchor location

Li. It is updated dynamically by the competitive learning mecha-
nism described later. The anchor magnitude Ai is produced by
injecting multiplicative noise to Li on a trial-by-trial basis (Equa-
tion 12). Finally, each anchor has a base-level activation Bi, also
described later.

Anchor Selection Mechanism

The anchors compete on each trial to match the target magnitude
M. The outcome of this competition is described by two equations
in the ANCHOR model. Equation 13 produces goodness scores
Gi , and the softmax Equation 14 converts them into selection
probabilities Pi. A random number generator then draws the spe-
cific winner i* on that trial.

Gi � ��M � Ai� � HBi; (13)

Pi �
exp�Gi / T�

¥j exp�Gj / T�
. (14)

Each goodness score Gi is a sum of two terms: similarity
��M � Ai� and history HBi. The first is simply the negation of the
mismatch between the target magnitude M and the anchor magni-
tude Ai. The second term does not depend on the current target M
(and hence the stimulus S) at all: It introduces a priori bias Bi

multiplied by a fixed weight H. In this section we concentrate on
the similarity factor and temporarily assume H � 0.

The anchor selection is a stochastic process. This stochasticity
comes from two sources. First, the anchor magnitudes Ai are noisy
(Equation 12), and this noise propagates into the goodness scores
Gi. Moreover, it is not guaranteed that the anchor with the best
score wins; it only has the highest probability of winning (Equa-
tion 14). The temperature parameter T controls the degree of
randomness: Values close to zero produce nearly deterministic
choice, whereas large values result in nearly uniform selection
probabilities Pi. The temperature is measured in the units of the
magnitude scale and scales the standard deviation of the selection
noise implicit in Equation 14. A typical value is T � .050, which
corresponds to 50 pixels on the stimulus continuum.

Equation 14 plays a pivotal role in a remarkably diverse array of
memory models. In the ACT–R architecture, it governs the re-
trieval of chunks from declarative memory and the conflict reso-
lution in procedural memory (Anderson & Lebière, 1998). It is
motivated in terms of a stochastic competition among many alter-
natives, the goodness score of each being perturbed by selection
noise. An equivalent equation (with different notation) is standard
in instance-based models (e.g., Nosofsky, 1986, 1988; Nosofsky &
Palmeri, 1997), where it is motivated as biased choice (Luce,
1963) with exponentially scaled similarities (Shepard, 1957,
1987). The same Boltzmann–Gibbs distribution describes the ther-
modynamic equilibrium of autoassociative memory networks
(e.g., Hinton & Sejnowski, 1986; Hopfield, 1982).

It is easier to illustrate the anchor selection mechanism in a
model in which all other mechanisms are switched off. We denote
this model �S, with parameters km � .07 and T � .050 (the default

5 Throughout this article, Weber fractions are defined on the basis of
difference thresholds �S that elicit 75% correct responses in two-
alternative forced-choice comparisons.
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values for the full model). The nine anchors are fixed at evenly
spaced locations L1 � .275, L2 � .325, . . . , L5 � .475, . . . , L9 �
.675. Model �S is run 100,000 times with a target M � .475 to
estimate the anchor selection probabilities. The resulting estimates
are .010, .029, .080, .207, .322, .209, .092, .037, and .014. Thus,
exact matches occur on only about 32% of the trials. The imme-
diate neighbors in either direction are not far behind, and more
distant anchors have their chances too. Note the slight asymmetry
of the probability distribution. It stands above the Monte Carlo
fluctuations and stems from the multiplicative nature of the mem-
ory noise.

One can probe the model with target magnitudes corresponding
to the nine experimental stimuli and collect a confusion matrix of
anchor selection probabilities. This matrix can then be converted to
a d	 profile and compared with the corresponding empirical profile
in the top right panel of Figure 3. We extend our simulations to
include four different models: �P, �S1, �S2, and �PS. In model
�P the perceptual noise parameter kp is set to .04, and the anchor
selection mechanism is noise free (km � 0, T � 0). Hence all
confusions in this model arise in the perceptual subsystem (Equa-
tion 10). This is equivalent to a Thurstonian system with fixed
criteria (Torgerson, 1958). In contrast, �S1 and �S2 experiment
with noise-free perception (kp � 0) but introduce randomness in
the goodness scores (�S1: km � .07, T � 0) or softmax selection
(�S2: km � 0, T � .050). Finally, all three sources of variability
are present in �PS (kp � .04, km � .07, T � .050). Each model is
probed 100,000 times with each of the nine targets.

Figure 8 shows the d	 profiles for the four models. They should
be interpreted in qualitative terms; no effort for quantitative fit to
the empirical profile has been made (see Petrov, 2003, for such
effort). The sliding profiles of �P and �S1 reflect the multiplica-
tive noises in Equations 10 and 12, respectively. This feature is
reminiscent of Weber’s law and is also present in the human data.
The softmax-only model (�S2, Equation 14) treats all anchors
equally, and its profile is correspondingly flat. When the softmax
rule operates on noisy magnitudes (model �PS), the resulting
profile accommodates the flatness of �S2 with the steep slopes of
�P and �S1. Also, the overall performance level drops consider-

ably as there are now multiple sources of confusion. Note that the
�PS profile, which is generated with default ANCHOR parame-
ters, lies quite below the empirical values (average d	 � 1.51; see
Figure 3). It is the responsibility of the explicit correction strategy
to bring it back up in the final ANCHOR model. Finally, none of
the synthetic profiles show the upward bow noticeable in the
human data.

There are three noise sources in ANCHOR and three corre-
sponding parameters: kp, km, and T. The two multiplicative sources
have essentially identical signatures, and it is tempting to subsume
kp and km into a single parameter k. Instead, we eliminate one
degree of freedom using an independent data set (kp � .04; see
Appendix A). Keeping the perceptual and memory noises separate
improves the realism and modularity of the model.

Base-Level Activation

ANCHOR has two history-dependent, incremental learning
mechanisms. The first of them is based on the rational analysis of
memory (Anderson, 1990; Anderson & Milson, 1989) and plays a
key role in the ACT–R architecture.

Activation defined. Each anchor has a base-level activation (or
bias) Bi that controls its overall availability. Whenever a response
category is used on a given trial the activation of the corresponding
anchor increases, thereby making it more available on subsequent
trials. At the same time, the activations of all unused anchors decay
away. Figure 9 plots two typical base-level curves. The dashed line
belongs to an anchor that is used only 6 times (marked by the open
triangles) as compared with 82 uses for the solid line.

Note the three distinctive features of the activation dynamics:
sharp transient peak immediately after each use, decay in the
absence of use, and gradual buildup of strength with frequent use.
These features are consistent with a huge body of experimental
evidence and are widely used in memory models (e.g., Anderson
& Milson, 1989; Conway, 1997). They also match the statistical
structure of the environment (Anderson & Milson, 1989; Anderson
& Schooler, 1991).

The base-level activation of each anchor is a concise summary
of the history of its use. Equation 15, taken verbatim from ACT–R
(Anderson & Lebière, 1998, p. 124), is the conceptual backbone of
our approach. It is a logarithm of a sum of powers with decay rate
d. Each new use of the anchor adds another term to this sum, which
then decays independently. The total count so far is denoted by n,
and tl are the individual time lags from the present. It is easy to see
that this equation captures the three desired properties. Moreover,
it has been applied successfully in many ACT–R models, and the
value d � .5 of the decay parameter has proven to work well in a
wide range of circumstances (Anderson & Lebière, 1998). There-
fore, we can eliminate this degree of freedom and fix the
ANCHOR decay rate to the ACT–R default d � .5.

B � ln� �
l�1

n

tl
�d� ; (15)

B � ln� tlast
�.5 �

2�n � 1�

�tlife � �tlast
� . (16)

Equation 16 is an excellent approximation to the computation-
ally expensive Equation 15. It retains only three critical pieces of

Figure 8. Discriminability profiles for four partial models (P, S1, S2, and
PS). Perceptual noise (kp), memory noise (km), and softmax temperature (T)
parameters are described in the legend. Compare with Figure 3, top right.

394 PETROV AND ANDERSON



information about the anchor: the time since its creation tlife, the
time since its most recent use tlast, and the total number of uses n.
The parameter-free Equation 16 is used in Figure 9 and all simu-
lations in this article.

Activations in ANCHOR. To fully specify the activation mech-
anism in ANCHOR, we must define which anchor is considered
“used” on a trial. When there is explicit feedback, this is the anchor
corresponding to the correct response. When there is no feedback,
the system’s own response is taken as the best available estimate.
Note that it is possible, for instance, to select Anchor 3 from
memory, make a correction and respond “4,” and finally receive
feedback “5.” Only Anchor 5 is strengthened on such a trial; all
other anchors, 3 and 4 included, suffer decay.

Recall from Equation 13 that each goodness score Gi is a
weighted sum of two terms: similarity ��M � Ai� and base level
HBi. They correspond directly to the context and history factors in
Anderson and Milson’s (1989) rational analysis of memory. The
history weight parameter H varies across individuals and experi-
mental conditions. Typical values are H � .080 for absolute
identification and H � .100 for category rating.

Because of the normalization in Equation 14, all anchor selec-
tion probabilities depend only on differences among the competing
goodness scores. Consequently, all activation levels are invariant
up to an additive constant. This implies in turn that one can change
the unit of time in Equations 15 and 16 without affecting the
behavior of the model or disrupting any estimated parameters. For
compatibility with our empirical studies, all lags in Equation 16 are
measured in seconds, and the duration of each trial is 4 s.

Observable manifestations of the activation dynamics. The
introduction of base-level activations has profound implications
for the model. It is no longer a static system and is now capable of
(and liable to) sequential, context, transfer, repetition, and practice
effects.

Model �PSA explores the value added by the activation mech-
anism relative to the feedforward model �PS. It has four param-
eters: kp � .04, km � .07, T � .050, and H � .080. The simulations
replicate the identification experiment: The model is run on se-
quences of 450 trials with feedback. Each sequence comprises five

blocks with uniform (U), low (L), or high (H) stimulus distribu-
tions. There are 1,000 runs with schedule UHULU (Group 1) and
another 1,000 with schedule ULUHU (Group 2; see Figure 2).

The simulation shows straightforward repetition effects. The
overall accuracy is 34%, which is comparable to that of model
�PS. Unlike its predecessor, however, �PSA can be primed by
prior events. In particular, it is more accurate on repetition than on
nonrepetition trials: rep � .13 � .46 � .33.

The repetition effect is easy to explain. Whenever a stimulus is
repeated on two consecutive trials, the feedback on the first trial
reinforces the corresponding anchor. The resulting spike in that
anchor’s activation improves its goodness score on the subsequent
trial and thus makes it more likely that the same anchor is selected
again. On repetition trials, this happens to favor the correct re-
sponse. The activation spike is transient and decays away after a
few intervening trials (see Figure 9), though not as quickly as the
empirical data in Figure 5 suggest.

The activation-based priming gives rise to sequential assimila-
tion as well. For example, suppose the stimulus on trial t � 1 is
St�1 � 5, and hence Anchor 5 is strengthened. If the same stimulus
were repeated on the next trial, facilitation would result. Suppose,
however, that the new stimulus is somewhat different instead, but
not too different. For concreteness, let St � 4. The residual acti-
vation still favors Anchor 5, and consequently, the response is
likely to be “5” again. Under the circumstances, such a response
constitutes an assimilative error. Finally, if the new stimulus is
very different from the old (e.g., St � 1), the mismatch penalty of
the selection mechanism effectively eliminates Anchor 5 from the
competition regardless of its elevated activation level.

Figure 10 illustrates this process. It plots the conditional prob-
abilities of overshoot and undershoot errors as a function of the
stimulus difference �S � St�1 � St, just as Figure 4 does for the
empirical data. Two nested models are explored: �PSA (top) and
�PSAC (bottom). The latter introduces the correction mechanism
and is described in detail in the next section.

The assimilative effect is clearly evident. Moreover, it is con-
trolled by the interstimulus similarity, especially in the top panel.
The probability to err by �1 or �2 rises sharply for �S � �1 or
�2, respectively.6 The correction mechanism smooths out the
curves by converting most of the large errors to smaller ones and
some of the small errors to correct responses. The corrections,
however, are incomplete and cannot eliminate the assimilation in
full. Model �PSAC thus makes few errors of magnitude �2 or
more, but the near misses persist and retain their assimilative bias,
just as they do in the experimental data (see Table 2).

The simulated butterfly profile in the bottom panel of Figure 10
is strikingly similar to the empirical one (see Figure 4). The
steplike discontinuities around �S � 0 are clearly replicated. Even
the slight asymmetry between the two wings is reproduced, driven
by the asymmetry in the multiplicative noise sources in Equations
10 and 12.

The pattern of sequential effects depends on the availability of
feedback. ANCHOR predicts sequential assimilation toward the
previous correct response when feedback is available and toward

6 The far flanks of the curves reflect edge-related artifacts rather than
assimilation. For example, �S � 8 implies St � 1, the undershoot proba-
bility is forced to 0, and some of it spills to the overshoot curves.

Figure 9. Typical activation dynamics. The dashed line tracks an anchor
that is used 6 times (marked by the open triangles) as compared with 82
uses for the solid line.
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the previous own response when feedback is not available. This is
exactly what is reported by Mori and Ward (1995), who alternated
feedback and no-feedback blocks within subjects and evaluated the
relative strength of the time-lagged predictors. In three identifica-
tion experiments, Rt was more dependent on St�1 rather than Rt�1

in the feedback blocks and more dependent on Rt�1 rather than
St�1 in the no-feedback blocks. Given that the feedback was in
one-to-one correspondence with the stimulus St�1, this finding
confirms the ANCHOR prediction.

The activation mechanism produces long-term counterparts to
the short-term sequential effects as well. The gradual buildup of
strength with frequent use gives rise to assimilative context and
transfer effects. Figure 11 shows the average response levels of
models �PSA and �PSAC under the two presentation schedules.
The ARL profiles are calculated from the simulation data in
exactly the same way as in the empirical study: segmenting each
response sequence into 10 nonoverlapping periods, fitting a re-
gression line in each period, and applying Equation 5.

Model �PSA exhibits strong assimilative context and transfer
effects. The two thin lines in Figure 11 begin at ARL � 5.0—the
middle of the response scale—during the first uniform block (90
trials, two points on each profile). Then they diverge during the
second block as the stimulus presentation frequencies become
skewed in opposite directions. The diagram is symmetrical; con-
sider the profile for Group 1, schedule UHULU. This group gets
disproportionately many long stimuli on Trials 91–180. As a
result, the base-level activations of the “long” anchors in the model
grow progressively stronger. The model in effect learns that a
higher response is a better bet than a lower one, everything else
being equal. The observable consequence of this bias is a gradual
increase in the ARL. This assimilation is in qualitative agreement
with the empirical ARL profiles from the absolute-identification
experiment (see Figure 6).

The presentation schedule switches back to uniform during the
third block (Trials 181–270) in Figure 11. The two ARL profiles
begin to move closer to the baseline and to each other. Notice,

Figure 10. Sequential effects arise from the base-level activation mechanism (model �PSA; top) and are
modulated by the correction mechanism (�PSAC; bottom). Compare with Figure 4.
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however, that there is a clear transfer effect: The two groups
continue to differ even though the environmental conditions are
now identical. The two profiles cross during the second skewed
block (Trials 270–360) and finally return to the baseline by the end
of the session.

The correction mechanism (model �PSAC) attenuates these ef-
fects without altering their fundamental character. Recall from
Equation 6 that we quantify the context effect by the difference
d � h � l between the ARLs in high and low blocks. This statistic
is 0.14 in the psychophysical data, 0.32 for model �PSA with
default parameters, and 0.16 for �PSAC.

Correction Mechanism

Successful performance in any scaling task depends on a body
of prior knowledge. It includes facts such as “5 is one unit greater
than 4” and at least tacit awareness of the principles of homomor-
phism. Human observers apparently adopt a variety of strategies
that engage this prior knowledge. ANCHOR implements one such
strategy in its correction mechanism. Although it hardly exhausts
the possibilities, this particular strategy is very powerful and has
far reaching consequences.

The correction mechanism combines five pieces of information:
(a) the target magnitude M, (b) the anchor magnitude A, (c) the
response associated with this anchor RA, (d) knowledge about the
approximate category width, and (e) knowledge about the ordering
of the response scale. The target and anchor magnitudes are
compared to estimate the discrepancy D (Equation 17). If it is not
too large, the anchor label is adopted as the final response R.
Otherwise the target is judged too different to belong to the
category represented by the anchor, and the response is incre-
mented or decremented accordingly.

D � M � A. (17)

Specifically, ANCHOR adds an increment I to the anchor re-
sponse RA (Equation 18). It can be zero, positive, or negative
depending on the discrepancy D. Five increments are currently
implemented: I � {�2, �1, 0, 1, 2}. The decision rule is based on

four correction thresholds ci. For example, an increment of 1 is
made when c1 � D � c2. The corrected response R is clipped at
1 or 9 if necessary:

R � RA � I clipped between Rmin and Rmax. (18)

Note that all adjustments are made locally. Corrections by �2
units are rare, and larger ones are impossible. Thus the model
relies on a two-tiered approach. First a global, similarity-driven
process narrows the field and provides a reference point in the
vicinity of the target. This transforms the absolute judgment task
into a relative one. A local comparison then fine-tunes the
response.

The correction mechanism is stochastic because of perceptual
and memory fluctuations in the discrepancy D. As M and A are
already specified (Equations 10 and 12), it is fully parameterized
by its four thresholds. For parsimony, they are set to fixed multi-
ples of two free parameters: c
 controls the ease of upward
corrections, and c� controls the ease of downward corrections. To
illustrate, consider the arrangement with c
 � c� � .025 and
thresholds at {�3c�, �c�, c
, 3c
}. It centers the no-correction
interval (I � 0) around D � 0 and makes the width of each interval
equal to one category width (.050 magnitude units, 50 pixels). On
the basis of this a priori analysis, we fix the outer thresholds to 3
times the corresponding inner thresholds in all simulations.

The upward and downward corrections are not necessarily sym-
metric. This allows ANCHOR to produce slow systematic drifts of
the ARLs—a dynamic feature detectable in the human data as
well. In particular, when increments are easier to make than
decrements (c
 � c�), the correction mechanism tends to drive
the responses upward. Such slow upward drift is evident in the data
from our category rating Experiment 2 (see below). Motivated by
this finding and a desire for parsimony, we decided to fix the ratio
c
/c� to 0.9 and express all thresholds in terms of a single
parameter: {�3c, �c, 0.9c, 2.7c}. This arrangement is informed
by the qualitative direction of the upward drift in the data, but no
quantitative optimizations have been made.7 The only parameter
optimized to fit the data is the overall cutoff c.

The cutoff c controls the ease of correction. It is estimated
separately for each observer and typically falls in the range .030–
.050. This indicates a conservative correction strategy: Substantial
discrepancy D is required to trigger any changes. Several factors
contribute to this result. It is possible that the participants do not
know the true category width, especially on the early trials. Also,
it is hardly obvious to them that a discrepancy of half category
width warrants a full correction point, just as the number 0.51
rounds up to 1.00. Finally, it seems very likely that the correction
strategy is not applied on every trial.

As the correction mechanism makes only insufficient adjust-
ments, it matters which anchor is used as reference; the response
is assimilated toward it. The insufficiency of adjustment is a
recurring theme in the diverse literature on anchoring effects (e.g.,
Tversky & Kahneman, 1974; Wilson et al., 1996).

Model �PSAC explores the value added by the correction mech-
anism. The cutoff is c � .040, and all nonthreshold parameters are
the same as in model �PSA. Figures 10 and 11 illustrate the

7 In retrospect, a ratio less than .9 probably accounts for the empirical
drifts better.

Figure 11. Assimilative context effect produced by models �PSA (thin
lines) and �PSAC (thick lines) with feedback. The average response levels
are calculated as in Figure 6. See text for details.
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sequential and context effects in the two models. Keeping the
variability of all noise sources fixed, the introduction of correc-
tions raises the overall percentage correct from 34% (�PSA) to
50% (�PSAC) and the amount of transmitted information from T �
0.94 to T � 1.49.

The contributions of the correction mechanism may seem insig-
nificant at first, but it truly comes into its own in the absence of
feedback. It binds the anchors into a coherent ordered set, which is
crucial for category rating and contributes enormously to the
long-term stability and robustness of the system. The category
rating task is more challenging than absolute identification because
no feedback is available to guide the responses. Rating data thus
impose strong additional constraints on the model mechanisms.

Experiment 2: Category Rating

Experiment 2 extends our investigation to the more demanding
task of category rating. It replicates the design of Experiment 1
with two modifications. First and foremost, there is no feedback.
Second, more stimulus levels are involved—hundreds of physi-
cally distinct lengths in Experiment 2 versus only nine in Exper-
iment 1. This is a relatively minor difference because perceptual
variability makes the internalized magnitude distribution continu-
ous and smooth even when the external stimuli are discrete and
spaced apart. The presentation schedule alternates uniform and
nonuniform blocks of opposite skewness as in Experiment 1 (see
Figure 2).

Method

Participants. Forty undergraduate students participated in Experiment
2. None of them were involved in Experiment 1. Twenty were randomly
assigned to Group 1, and 20 to Group 2.

Stimuli and apparatus. The apparatus was the same as in Experiment
1. The stimuli were dot pairs as before but with 451 distinct lengths
covering the range from 250 pixels (80 mm, 7.7 dva) to 700 pixels (224
mm, 22 dva).

Procedure. The participants were asked to “rate the distance between
the two dots” on a scale from 1 to 9. The instructions stated explicitly that
there were more “possible distances” than responses and, therefore, one
“has to give the same response to slightly different stimuli.” There was no
feedback; the screen turned blank when the participant responded and
stayed blank until the end of the presentation window. In all other respects
the procedure was the same as in Experiment 1: 500-ms alert sound plus
3,300-ms stimulus presentation plus 200-ms intertrial interval.

There were 17 demonstration trials presenting Stimuli 275, 325,
375, . . . , 625, 675, 625, . . . , 275, in that order. The participants were
encouraged to practice pressing the keys 1, 2, 3, . . . , 8, 9, 8, . . . , 1. The
main sequence of 450 experimental trials followed, with break periods as
in Experiment 1.

Presentation schedules. The presentation schedule was UHULU in
Group 1 and ULUHU in Group 2 (see Figure 2). The stimuli in each block
were sampled with replacement from the corresponding distribution: uni-
form (U), triangular (L) ascribing 451 times greater probability to S � 250
than to S � 700, or triangular of opposite skewness (H). Each sequence
was generated and randomized individually.

Results and Discussion

The data set consists of 17,743 valid stimulus–response pairs
(18,000 trials total, 257 responses missing). We follow the same
analytic methodology as in Experiment 1: calculating a battery of
quantitative measures from each stimulus–response sequence. Ta-
ble 3 lists the means and standard deviations of these measures
over the sample of 40 participants and a comparison sample of
9,600 model runs.

Linearity and overall accuracy. All 40 data sets reveal a
substantial degree of stochasticity, and a whole distribution of
responses is obtained for each stimulus level. The corresponding
conditional mean ratings R� (S) � E(R�S) constitute the Stevens
function for these data. It is linear to an excellent approximation
for our perceptual modality: The Stevens’s exponent n in Equation

Table 3
Empirical Constraints Derived From the Category Rating Experiment

Phenomenon Brief description Empirical Model

Stevens’s law The mean rating R� is approximately a power function of the
stimulus intensity: R� � aSn. For line length, n � 1.0.

R2 � .77 (.08) R2 � .77 (.09)

Nonuniform response distribution The response distribution has a peak in the middle even
when the stimulus distribution is uniform.

s � 1.77 (0.24) s � 1.93 (.55)

Nonstationary response distribution The response distribution becomes progressively less
uniform over time.

�s � .55 (.35) �s � .21 (.37)

Gradual trend There is spontaneous gradual drift of the average response
levels (ARLs).

�ARL � .49 (.58) �ARL � .27 (.64)

Compensatory context effect Under skewed stimulus distributions, category ratings shift
in the direction that attenuates the skew.

d � �.21 (.43) d � �.53 (.51)

Transfer effect When the context changes, the old response levels persist
(temporarily) under the new circumstances.

Figure 13 Accounted for

Sequential effect The current response Rt is positively correlated with the
previous response Rt�1.

r � .34 (.12) r � .17 (.11)

Similarity effect The magnitude of the sequential effect depends on the
similarity between the consecutive stimuli St�1 and St.

Figure 14 Accounted for

Note. The measures of the various effects are defined in the text. Means and standard deviations (in parentheses) are reported for the sample of 40
observers and for 9,600 model runs. See Table 1 for a complementary list of identification phenomena and Table 4 for additional model fits.
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8 is empirically indistinguishable from unity.8 This replicates the
results of a pilot study (Petrov & Anderson, 2000) and numerous
other sources (see Wiest & Bell, 1985, for a meta-analysis of 70
studies).

This linearity justifies the linear perceptual Equation 10 in the
model and the use of linear (rather than geometric) averages and
regressions in the data analysis. In particular, the accuracy of each
observer is conveniently defined as the squared correlation be-
tween stimuli and responses. This statistic ranges from .57 to .90
over the sample of 40 participants (mean R2 � .77, SD � .082).

Response distributions. One salient feature of the data is that
the response distributions are distinctly nonuniform. The overall
response histogram is 276, 775, 1,624, 2,396, 3,220, 3,501, 3,088,
2,146, and 717. All 40 observers used the middle of the scale more
often than the extremes. This replicates our earlier results (Petrov
& Anderson, 2000).

As in Experiment 1, we use the response standard deviation as
a measure of this nonuniformity. It ranges from 1.10 to 2.31 in the
sample (mean s � 1.77, SD � 0.24). For comparison, if the 450
responses were evenly distributed in 9 categories, s would be 2.58.
Values below 2.32 indicate significant departure from uniformity
( p � .01).

The nonuniformity of response distributions appears to increase
with time. To track the dynamics, we partitioned each sequence
into five 90-trial blocks and pooled the responses separately. The
left panel in Figure 12 plots the histograms for Blocks 1 and 5. The
late distribution is markedly more peaked than the early one. This
is quantified in the right panel by the response standard deviation
for each block, calculated individually and then averaged across
participants. There is a clear decreasing trend. (Recall that Blocks
1, 3, and 5, but not 2 and 4, have uniform presentation
frequencies.)

This trend is evident at the level of individual participants as
well. Let s1 and s5 denote the standard deviations of responses
during Trials 1–90 and 361–450, respectively. The ratio s1/s5 is
greater than unity for 38 of the 40 observers and reaches statistical
significance for 29 of them ( p � .05). This strongly suggests that
the response distributions tend to become progressively less uni-

form over time. This nonstationarity is an important manifestation
of the dynamism of the system. To our knowledge such analyses
have not been reported in the past, and therefore the robustness of
this phenomenon is a matter for further investigation.

As a target for modeling, the difference �s � s1 � s5 quantifies
the decrease of response variability for a given observer. This
statistic has a mean of 0.55 and a standard deviation of 0.35,
matched-sample t(39) � 9.94, p � .0001. We add it to the battery
of measures in Table 3.

Context, transfer, and primacy effects. The response policy
changes over time, both endogenously and in response to external
factors such as context manipulations. The average response level
(ARL) defined in Equation 5 is the tool we use to track these
changes. It is calculated in exactly the same way as in Experiment
1. The profiles of the individual participants are quite noisy, but
with averaging a pattern begins to emerge (see Figure 13).

Perhaps the most salient feature of the ARL profiles, both at the
individual and group levels, is a general trend upward. The ARLs
increase by one-half category unit (on average) by the end of the
session. The thin line in Figure 13 (top) accounts for over 6% of
the variance of the individual profiles, F(2, 397) � 15.0, p � 10�6.
This highly significant, if unexpected, result provides additional
evidence that the response distributions are not stationary.

Equation 19 quantifies the magnitude of this effect as a target
for modeling. See Table 3 for details.

�ARL � � ARL9 � ARL10 � ARL1 � ARL2�/ 2. (19)

The effects of the experimental manipulations are superimposed
over the general trend and obscured by it. In particular, the trend
counteracts the local attempts to deflect the ARL downward. To
aid interpretation and comparison with the identification data, we
subtracted the trend from all ARLs to produce the detrended
profiles in the bottom panel of Figure 13. Consider Group 1,
presentation schedule UHULU. The first uniform block (90 trials;

8 The correlations between the functions S0.95, S1.00, and S1.05 are greater
than .99 in the domain [250; 700].

Figure 12. The response distribution becomes progressively less uniform over time. Left: Response histograms
during Blocks 1 and 5. Right: Response standard deviations (std. dev.), averaged across participants.
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two points on the profile) establishes a baseline ARL. The high
(negatively skewed) block of the next 90 trials gradually deflects
the ARL downward. This suggests a compensatory effect: Under a
preponderance of long stimuli, the responses slide toward the short
end of the scale in agreement with the classic results (e.g., Par-
ducci, 1965; Parducci & Wedell, 1986). Note that this is the exact
opposite of the assimilatory effect observed in Experiment 1 (see
Figure 6).

The third block reverts to uniform presentation frequencies, and
the response level in Group 1 turns upward again. It fails to reach
the baseline established by the first block, however. Thus we have
two blocks with identical stimulus distributions and nonidentical
detrended response levels. This suggests transfer from Block 2.
The fourth block is low (positively skewed) and deflects the ARL
upward. Finally, the last uniform block washes away the effect of
Block 4. All transitions are gradual, providing further evidence for
transfer effects. The profile for Group 2 shows a complementary
pattern.

The approximate, though admittedly imperfect, symmetry of the
two profiles increases our confidence that the variance in Figure 13
is not due to sample fluctuations. A repeated measures analysis of

variance points to the same conclusion. Each participant contrib-
utes five data points to this analysis: u1, l, u2, h, and u3. Each point
is the detrended ARL during the second half of the corresponding
block. In particular, point h is calculated over Trials 136–180 for
Group 1 and 316–360 for Group 2; point l is calculated over Trials
316–360 for Group 1 and 136–180 for Group 2. The first half of
each block is left out to minimize transfer-related contamination.

The results show a highly significant compensatory context
effect, F(2, 156) � 6.61, p � .002, within subjects. The mean
detrended ARLs are 
0.17, �0.03, and �0.04 under distributions
L, U, and H, respectively. The difference d � h � l in Equation 6
has a mean d of �0.21 and a standard deviation of 0.43, matched-
sample t(39) � �3.06, p � .002.

The between-subjects Group factor is significant too, F(1, 38) �
4.38, p � .05. Under our counterbalanced design, this can be
attributed only to the relative order of the nonuniform blocks.
More concretely, Figure 13 suggests that the early manipulation in
Block 2 produces a deflection in the ARL that is not fully undone
by the subsequent manipulation in the opposite direction. Such
primacy effect has been observed before (Haubensak, 1990, 1992)
and is consistent with the memory-based view advocated here.

Sequential effects. The rating data contain two kinds of se-
quential dependencies: short term, extending one trial back, and
long term, extending some tens of trials back. The exact pattern
and relative importance of these dependencies are analyzed in a
hierarchy of autoregression models detailed in Appendix B and
Figure B1. Briefly, the response Rt on trial t depends on three
components as described in Equation 20. The overall Stevens
function, averaged across the whole session without recourse to
any time-dependent variables, is represented by the static compo-
nent aSt. A rapid transient component replicates the classic se-
quential effects: assimilation toward the previous response Rt�1

and contrast with the previous stimulus St�1 (e.g., DeCarlo &
Cross, 1990; Jesteadt, Luce, & Green, 1977; Lockhead & King,
1983). Note that these two variables do not act in isolation but
through the residual-like term (Rt�1 � aSt�1) in Equation 20.
Finally, there is also a slow component cARLt that accounts for the
gradual drift of the average response levels. The variable ARLt is
calculated over a roving temporal window extending 30 trials back
in time. To our knowledge, the latter component has not been
documented before, and therefore its robustness and generality are
only tentatively established.

R̂t � aSt � b�Rt�1 � aSt�1� � cARLt . (20)

The sequential structure in the data thus appears fully compat-
ible with the two-tiered processing in ANCHOR (see Figure 1).
The perceptual transformation is completely atemporal (Equation
10). The central subsystem then introduces sequential effects at
time scales reminiscent of the twofold activation dynamics in
Figure 9.

Moreover, the sequential effects are modulated by interstimu-
lus similarity. This similarity effect echoes the butterfly pattern
in the identification data (see Figure 4) and supports the anchor
selection mechanism in the model, which is similarity driven
too (Equation 13). To quantify the magnitude of the sequential
effects in the rating data, we calculate the autocorrelation
coefficient r � corr(rest, rest�1) of the residual time series rest

� Rt � aSt and plot it as a function of the interstimulus

Figure 13. Compensatory context effect in category rating. The average
response levels tend to decrease in negatively skewed (H) and increase in
positively skewed (L) blocks. There is also a general trend upward (top). It
is subtracted away (bottom) to aid comparison with Figure 6. U � uniform;
ARL � average response level.
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difference �S � St � St�1 (see Appendix B for details). The
clear triangular pattern in Figure 14 replicates earlier reports of
the similarity effect (DeCarlo, 2003; DeCarlo & Cross, 1990;
Jesteadt, Luce, & Green, 1977; Ward, 1979).

As a target for modeling, we summarize the sequential effects
with a single number per observer. The autocorrelation coefficient
of all residuals is an easily computed, reliable overall measure. Its
mean in our sample is r � .34 (SD � .12).

Table 3 summarizes the yield of the category rating experiment.
It replicates all phenomena falling within its scope: linearity of the
scale for length, context, transfer, primacy, and sequential effects
of various kinds. A novel effect—nonstationarity of the response
distribution—is discovered, furnishing further evidence for the
dynamic nature of scaling.

Building a Scale Through Competitive Learning

Four of the five ANCHOR mechanisms—perception, anchor
selection, base-level activation, and correction—account success-
fully for a broad range of identification phenomena (see Table 1).
The anchors in all simulations so far, however, are set manually in
advance. This leaves the model wide open to the criticism that it
fails to address the real essence of the scaling problem. The
competitive learning mechanism imbues ANCHOR with the abil-
ity to learn the locations of its anchors.

Updating the Anchor Locations

The competitive learning rule is straightforward and well known
(Kohonen, 1995; Rumelhart & Zipser, 1985). Whenever a stimulus
is classified under a particular category, the corresponding anchor
location is updated to accommodate the new member. The new
anchor location Li*

(t
1) is simply a weighted sum of the old location
Li*

(t) and the target magnitude M(t) on trial t (Equation 21). The
learning rate � is a free parameter that we fix to .3 in all simula-
tions. Exactly one anchor, with index i*, is updated on each trial.
If there is feedback, this is it; otherwise the system’s own response
designates the anchor for update.

Li*
�t
1� � �1 � ��Li*

�t� � �M�t�. (21)

This learning mechanism has far-reaching consequences. First
and foremost, the location of each anchor is a running average of
the magnitudes of all stimuli classified under the associated re-
sponse category. Therefore the anchors represent true prototypes.
Second, the relative weight of each training exemplar decreases
exponentially as new exemplars are averaged in. The model can
thus quickly readjust its anchors if the environmental conditions
change. Third, in the absence of feedback the model reinforces its
own policy, thereby promoting the consistency of the stimulus–
response mapping. More concretely, the location Li* moves closer
to the target M, and should the same target appear again, the match

Figure 14. The magnitude of the sequential effect depends on the similarity between the consecutive stimuli
St�1 and St. The two curves plot the autocorrelation of the residuals from Equations B1 and B3, respectively. See
Appendix B for details. Compare with Figure 4. R � response; ARL � average response level; conf. int. �
confidence interval.
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between the two will be better than before, which in turn improves
the chances of responding Ri* again (cf. Equations 13 and 17).

The fourth implication of the learning rule is that the anchors
tend to spread out and cover all available regions of the stimulus
probability distribution. This property emerges from the interac-
tion with the softmax selection mechanism (Equation 14) and is a
characteristic feature of all competitive learning systems. Consider
an extreme example with only two anchors, A and B, planted in the
exact middle of the magnitude continuum. On the first trial one of
them will move as the first exemplar is averaged in. For concrete-
ness, suppose that Anchor A moves upward. It now has advantage
in future competitions for long targets, whereas B has advantage
for short ones. If a short stimulus now comes, it will probably be
averaged into Anchor B, thereby pulling it downward. As this
process continues, the two anchors partition the magnitude space
among themselves.

The Importance of Corrections

The correction mechanism makes a crucial contribution at this
point. The ordering it establishes among the anchors binds them
into a self-organizing map with linear topology (Kohonen, 1995).
The anchors not only partition the space but do so in a systematic
manner: Anchor 1 takes the lowest “estate,” Anchor 2 the second
lowest, and so forth. This happens very reliably regardless of the
initial anchor locations.

The following simulation demonstrates this in the extreme case
of reverse initialization. The full ANCHOR model, with all five
mechanisms in place, is presented with a sequence of stimuli
generated at random in the range of 250 to 700 pixels. The model
runs without feedback under its default parameters. However, the
initial anchor locations are “upside down”: L1 � .675, L2 �
.625, . . . , L9 � .275.

Figure 15 plots the evolution of three anchor locations. Anchor
1 traverses most of the magnitude continuum during the first 250
trials; Anchor 9 undertakes an equally resolute march in the
opposite direction. To illustrate this process, consider the first trial
after the initialization. Suppose the first target is M � .500, and the
softmax mechanism happens to select Anchor 7, location L7 �
.375. The large discrepancy triggers a two-point correction and the
model responds “9” (Equation 18). Now, Anchor 9 is updated to
location L9 � .343 � .7 
 .275 
 .3 
 .500 (Equation 21). In
other words, Anchor 9 makes a large step upward driven by the
pressure that L9 should be greater than L7. Before long the anchors
rearrange themselves in agreement with the ordering relations
imposed by the correction mechanism. A stimulus–response
homomorphism settles in.

Of course, this homomorphism does not come ex nihilo. It is
grounded in prior knowledge about numbers, on one hand, and in
the systematic perceptual transformation (Equation 10), on the
other. This is precisely the kind of knowledge that human observers,
aided by the instructions, bring to the task. The contribution of the

Figure 15. The competitive learning mechanism sets the anchor locations in agreement with the ordering
imposed by the correction mechanism. No feedback is required. See text for details.
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correction mechanism is to align, locally, the ordering of magnitudes
with the ordering of responses. Competitive learning then con-
solidates this local alignment into a global homomorphism.

With time, the initial anchor configuration is washed out and the
system enters a steady state (see the late trials in Figure 15). Each
anchor finds its preferred location on the continuum and all re-
maining variability is just random walk around this equilibrium
level. As long as the stimulus distribution remains stationary, the
preferred locations do not change. Our simulations indicate that the
initial anchor configuration has no effect on the equilibrium levels,
because of the exponential discounting implicit in Equation 21.

Where Do All These Anchors Come From?

We have established so far that once a set of anchors is present
in memory, the model is able to adjust the anchors’ locations
properly. This still leaves the deeper question of the genesis of
these anchors in the first place. How are all these anchors created
in memory? And when are they created?

At the level of analysis pursued in this article, the ability to form
anchors is postulated as an architectural primitive. That is, it is
taken for granted that the human brain is able to establish
magnitude-label associations. The growing field of memory psy-
chophysics provides abundant evidence that such associations can
be formed in human memory and maintained over extended peri-
ods of time (Algom, 1992; Kerst & Howard, 1978; Moyer, Brad-
ley, Sorensen, Whiting, & Mansfield, 1978; Wiest & Bell, 1985).
A typical mnemophysical experiment comprises two sessions,
usually on consecutive days. On Day 1 the participants are trained
to associate verbal codes (such as consonant–vowel–consonant
syllables) with the stimuli. On Day 2 they are asked to imagine
each stimulus and estimate its magnitude from memory, cued only
by its verbal code. A very robust finding is that people give
systematic power-law ratings comparable with those given to
immediately perceived stimuli (see Algom, 1992, for a review).

In the ACT–R architecture, anchors are instances of its funda-
mental declarative memory primitive: the chunk (Anderson &
Lebière, 1998). The typical ACT–R chunk combines two or more
discrete (symbolic) pieces of information. They are created either
through perception or in the action side of production rules.
ACT–R avoids the creation of duplicate chunks. Rather, the new
exemplar is merged with the old, boosting its base-level activation
(Equation 15).

ANCHOR introduces continuous (analog) magnitudes into this
general framework. Anchors are heterogeneous associations: One
of their elements is continuous; the other is discrete. The two kinds
have different properties with respect to anchor creation. Anchor
magnitudes are averaged along the continuum according to Equa-
tion 21. Anchor labels, alternatively, are discrete and cannot be
mixed. They establish the distinctive identity of each anchor.
Whenever a new label is encountered, a new anchor is created.

In scaling situations, these labels are categories on the response
scale. Thus, the generation of new anchors ultimately reduces to
generation of novel response labels. There are two sources of this
novelty. The most straightforward one is external demonstration
and/or feedback whereby the response associated with a given
stimulus is simply presented to the system. This is sufficient for
absolute identification. Category rating, however, requires an in-
ternal generative source. This is yet another important function of

the correction mechanism. On the basis of explicit prior knowl-
edge, and within bounds established by the instructions, it can
construct responses that have never appeared before.

This generative property allows the model to unfold the whole
scale from a single arbitrarily placed anchor. To illustrate, suppose
there is only one anchor in memory, labeled 5 and located in the
middle of the magnitude continuum. Suppose further that the
stimulus presented on the first experimental trial is rather short.
The anchor is selected for lack of competition, but it doesn’t quite
match this target (Equation 17). Therefore, the anchor response is
decremented by one category unit. This novel response triggers the
creation of a new anchor with label 4. Its location is set to the
current target magnitude. The first stimulus classified under the
new category thus becomes the prototype for it. Still more anchors
will be created on subsequent trials until there is an anchor for each
response within the range specified by the instructions. (Recall that
Equation 18 clips the responses between Rmin and Rmax.) The
competitive learning mechanism soon adjusts the new set of an-
chors to the appropriate locations. The scaling problem is solved.

The Dynamics of Scaling

ANCHOR is a dynamic adaptive system. It maintains an internal
state that determines its responses to external stimuli. It constantly
adjusts this internal state: Obligatory learning is one of its foun-
dational principles. Two learning mechanisms incrementally up-
date the base-level activations and locations of the anchors (Equa-
tions 16 and 21). Presumably, the cognitive architecture has
evolved machinery to track those statistics of the stimulus distri-
bution that tend to optimize performance in an ever-changing
world (Anderson, 1991). The unfolding of the rating scale is an
excellent example of this adaptability.

The same mechanisms that are so instrumental for the system’s
overall success, however, have some unintended consequences
that lead to suboptimal behavior in the carefully counterbalanced
environment of a scaling experiment. Many of the phenomena
listed in Tables 1 and 3 are of this nature. They are very important
theoretically because they reveal the underlying architecture of
cognition. The sequential and transfer effects are the most obvious
manifestation of the incremental learning mechanisms (cf. Figures
10 and 11). The dynamic origin of the other effects is harder to
discern because, as many unintended consequences do, they
emerge from subtle interactions in the system.

Nonuniform Response Distributions

The base-level learning mechanism is prone to unstable dynam-
ics in the absence of feedback. Because the model reinforces its
own responses, a single runaway anchor could strengthen its own
activation and take over the selection process. The correction
mechanism eliminates this danger by providing a means for redis-
tribution of strength among the anchors. For instance, suppose that
for some reason the base-level activation of Anchor 4 completely
dominates all others. This anchor is selected on every trial, but its
magnitude does not match every stimulus. Hence large discrepan-
cies occur and trigger frequent corrections. This generates a fair
number of 2s, 3s, 5s, and 6s among the final responses. The
corresponding anchors are thus strengthened, and their competi-
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tiveness increases. Soon the dominance of Anchor 4 is broken. The
redistribution effect then propagates to Anchors 1, 7, and so forth.

As an emergent consequence of this redistribution, ANCHOR’s
response histograms tend to be smooth. If a response category
occurs with a certain frequency, chances are that the neighboring
categories occur with comparable frequencies. This constrains the
shape of the response distributions; they cannot have gaps or too
many modes.

This does not mean that the response distributions must be flat.
Quite the contrary, the self-reinforcing dynamics of the activation
learning mechanism is still in place. It tends to amplify any
deviations from uniformity. Flat distributions are therefore unsta-
ble; they are repelling points in the phase portrait of the system.
Even under strictly uniform stimulus frequencies, the inevitable
symmetry-breaking fluctuations grow to macroscopic proportions.
The stabilizing role of the correction mechanism is to smooth out
this process and prevent it from getting out of hand. Some anchors
gain strength at the expense of others but are soon forced to
redistribute most of it back. The interaction of these opposing
mechanisms typically results in smooth, nonuniform distributions
that grow progressively peaked over time until they reach a steady
state. This is exactly the kind that is reliably produced by humans
as well (see Figure 12). The response histogram buckles up rather
than down because of restricted correction opportunities and hence
weaker redistribution of strength toward the edges.

Context Effects: Push and Pull

What happens when the stimulus distribution itself is not uni-
form but skewed in one direction or another? Of course, the strong
stimulus–response correlation immediately skews the response
distribution in the same direction. This obvious consequence can
be partialled out mathematically to address the more interesting
question of whether the response policy changes. The average
response level (ARL) is defined to track these changes in a
commensurable way (Equation 5).

Apart from global parameters such as correction thresholds that
remain fixed at all times, the response policy of the model depends
entirely on the locations and base-level activations of its anchors.
Both are systematically affected by the stimulus distribution.
ANCHOR thus predicts context effects on a principled basis.

Figure 16 illustrates the main factors involved. A configuration
with uniformly located, equally active anchors serves as baseline
(top). The cone around each anchor represents the corresponding
goodness score as a function of the target magnitude (Equation
13). The shaded areas delineate the resulting partitions on the
magnitude continuum. (The stochasticity in Equation 14 is ignored
for simplicity.) Each anchor is characterized by two independent
quantities: location Li and base-level activation Bi plotted on the
horizontal and vertical axes in Figure 16, respectively. Each quan-
tity is updated by a separate mechanism and affects the observable
responses in specific ways. Notably, the two mechanisms push in
opposite directions, and the overall context effect depends on the
relative strengths and interactions between these opposing forces.

Activation learning leads to assimilation. Whenever the acti-
vation Bi of an anchor i is strengthened, its chances for selection on
subsequent trials increase. The “sphere of influence” of the rein-
forced anchor thus expands on both sides (see Figure 16, middle).

Some targets that used to be labeled 1 or 3 in the baseline
configuration are now labeled 2.

Under a skewed stimulus distribution the base-level activations
quickly form an ascending ladder (not shown in Figure 16). This
introduces a progressively stronger bias toward the more frequent
responses. The observable consequence is an assimilatory shift of
the average response levels (see Figure 11). As earlier simulations
demonstrated, the correction mechanism attenuates this assimila-
tion but does not alter its direction. The process is very similar to
the self-reinforcing response nonuniformity discussed in the pre-
vious section. The only difference is that in skewed contexts the
nonuniformity is imposed from the outside and the dynamic equi-
librium is shifted toward the corresponding end of the scale rather
than relaxing in its middle. Again, redistribution of strength by the
correction mechanism prevents runaway activations in the absence
of feedback.

Competitive learning leads to compensation. The effect of the
location learning mechanism (Equation 21) is less transparent,
even somewhat counterintuitive. Consider the bottom panel in
Figure 16. The location of Anchor 2 has been shifted to the right,
presumably by averaging in a long stimulus. The zone dominated
by this anchor shifts accordingly without growing in size. Com-
parison with the baseline configuration (marked by the little tri-
angles) reveals that a region formerly labeled 2 is now labeled 1
and a region formerly labeled 3 is now labeled 2. Thus, there is a
systematic decrement of the overt responses.

It is convenient to formulate a descriptive rule of thumb to refer
to this effect. According to this inversion rule, whenever the
location of any anchor increases, the average response level de-
creases, and vice versa.

Figure 16. Schematic comparison of ANCHOR’s learning mechanisms.
The horizontal axis plots the location of each anchor, and the vertical axis
plots its base-level activation. Top: Baseline configuration. Middle: As-
similation in activation learning. Bottom: Inversion in location learning—
whenever an anchor shifts to the right, the responses shift to the left. See
text for details.
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The running averaging Equation 21 tracks the probability den-
sity of the magnitude distribution. In skewed contexts, this shifts
the anchor locations toward the heavier end of the continuum.
Figure 17 illustrates the qualitative situation. Let us assume for
simplicity that there are only two anchors and their initial locations
are indicated by the solid circles in the top panel. The resulting
boundary bisects the magnitude range (assuming deterministic
anchor selection). The open circles indicate the expected values (or
barycenters) of the two partitions. Notice that they are systemati-
cally displaced to the right of the anchors. Thus, averaging new
targets in tends to shift the anchors rightward. This in turn rede-
fines the partition boundary and the barycenter locations, setting
the stage for further shifts. The process converges to the steady
state illustrated in the bottom panel of Figure 17. Each anchor is
located at the exact barycenter of its corresponding partition and
the system is in stable equilibrium (see proof in Appendix C). The
steady state is unique and all initial anchor configurations con-
verge to it.

Our simulations indicate that the dynamics of the full ANCHOR
model is qualitatively the same. In skewed contexts, the anchors
converge to a steady state shifted toward the frequently sampled
end of the continuum. By the inversion rule, this deflects the ARLs
in the opposite direction—a compensatory context effect.

This compensation counteracts the assimilation driven by the
activation mechanism. Hence the two learning mechanisms in
ANCHOR tend to push the response levels in opposite directions.
This opposition dampens any big fluctuations in either direction
and aids the correction mechanism in preserving the balance of the
system as a whole.

The overall context effect is determined by the relative strength
of these opposing forces. The exact outcome depends on the model
parameters and in particular the weight H in Equation 13 and the
learning rate � in Equation 21. Our simulations indicate that the
compensatory influence is much stronger than the assimilatory one
across most of the parameter space, including the defaults. This is
probably due to the logarithmic compression in the base-level
Equation 16. Thus ANCHOR accounts for the compensatory con-
text effect in category rating (see Figure 13).

The role of feedback. The competitive learning mechanism is
switched off by external feedback. More precisely, the explicit
feedback in absolute identification fixes the anchor locations to the
internal images of the corresponding stimuli regardless of their
presentation frequencies. The only location variability comes from
random fluctuations in the perceptual subsystem (Equation 10).
Thus, no systematic shift of the ARL is introduced by the com-
petitive learning mechanism during absolute identification.

The base-level activations of the anchors, conversely, are qual-
itatively the same regardless of feedback. Skewed stimulus distri-
butions always lead to progressively ascending or descending
activation levels, reflecting the presentation frequencies either
directly through feedback or indirectly through the system’s own
responses, which are highly correlated with the stimuli. Thus, the
base-level learning mechanism consistently promotes assimilation.

In summary, ANCHOR makes the following predictions about
the context effects in different tasks. In absolute identification, the
system must exhibit assimilatory context effects because the com-
pensatory tendency is switched off by the explicit feedback. This
strong prediction is in excellent agreement with the results of
Experiment 1. The context effects in category rating are not so
unequivocally determined. Two opposing tendencies operate in the
absence of feedback: activation-driven assimilation and location-
driven compensation via the inversion rule. The overall outcome is
parameter dependent and hence can vary across participants and
experimental conditions. The compensatory tendency dominates
most of the time: The system usually exhibits compensation but is
also capable of assimilation in rare cases. This explains the pre-
vailing pattern in the literature and the results of Experiment 2.

Simulation Experiments

ANCHOR accounts for a wide range of phenomena in absolute
identification and category rating. The simulations so far, however,
have been mostly qualitative and focused on isolated effects. But
can the model satisfy these diverse constraints all at once with a
unified parameter setting? The existence of opposing tendencies
and trade-offs in the system makes this question far from trivial.
We need to test the model on the battery of quantitative measures
in Tables 1 and 3.

The main unit of analysis is the stimulus–response sequence for
each run, just as the behavioral data are analyzed individually for
each observer. The statistics are computed from each model se-
quence by the same software that analyzed the behavioral data: six
measures for absolute identification (see Table 1) and six more for
category rating (see Table 3). This methodology imposes the
strongest possible empirical constraints on the model: unified fits
to a comprehensive data set collected with identical stimuli.

To increase the informativeness of the simulations even further,
we test a whole suite of partial models alongside the full
ANCHOR model. This systematic approach reveals the value
added by each computational mechanism. It also validates the
statistical measures. For example, a static model that cannot learn
should score zero on all dynamic effects.

Method

The simulation method is designed to mimic the behavioral experiments
as closely as possible. The performance of each model is assessed both in

Figure 17. Schematic illustration of the location shifts in skewed
contexts. Top: Initial configuration with two uniformly spaced anchors
(solid circles). The open circles indicate the expected values (or
barycenters) of the resulting partitions of the magnitude continuum. The
competitive learning mechanism tends to move the anchors toward
these barycenters. The system converges to a steady state (bottom) with
boundary at � � (�5 � 1)a/2. See the main text and Appendix C for
details.
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absolute identification with feedback and in category rating without
feedback.

Models and parameters. A hierarchy of seven models cover the five
computational mechanisms postulated by the theory. Each new model
introduces one new mechanism to its predecessor(s): �P, �PS, �PSC,
�PSA, �PSAC, �PSCR, and �PSACR.

Model �P consists of the perceptual mechanism (Equation 10) with
deterministic nearest-neighbor anchor selection. All other mechanisms are
silenced by setting their controlling parameters to zero. For absolute
identification �P has only one free parameter: the perceptual confusability
coefficient kp in Equation 10. The nine anchors are fixed at the internal
images of the stimuli. For category rating, a second free parameter L1

allows the location of Anchor 1 to vary. Anchor 9 is fixed at L9 � .675, and
the other anchors are spaced evenly in between.

Model �PS introduces memory noise (Equation 12) and nondetermin-
istic anchor selection (Equations 13 and 14). In this and all subsequent
models, the perceptual confusability parameter is fixed to the value kp �
.04 derived from the Weber fraction (Equation 11). The overall accuracy of
model �PS is thus controlled by the memory noise km and the softmax
temperature T. There are no corrections and no learning (H � 0, � � 0).
The anchors are fixed evenly within their ranges as before: from L1 � .275
to L9 � .675 for absolute identification and from an adjustable L1 to L9 �
.675 for category rating.

Model �PSC introduces the correction mechanism (Equations 17 and
18). It has one additional free parameter relative to �PS: the cutoff c. The
four thresholds for the five correction increments are set to fixed multiples
of this parameter: {�3c, �c, 0.9c, 2.7c}. The slight asymmetry in favor of
upward corrections is motivated by the upward trend in the empirical
response levels (see Figure 13).

Model �PSA introduces the base-level activation mechanism to model
�PS. This is the first model in the hierarchy that learns during the run and
is thus capable of dynamic effects. Without the correction mechanism,
however, the activations are prone to self-reinforcing collapse in the
absence of feedback. Hence �PSA can perform only the identification task.
Its free parameters are km and T, as in �PS, plus the history weight H in
Equation 13. The activation Equation 16 itself is parameter free.

Model �PSAC combines the activation and correction mechanisms of
�PSC and �PSA. The only missing component relative to the full
ANCHOR model is the competitive learning mechanism; it is switched off
by setting its learning rate to zero. Four parameters are adjusted for
absolute identification: km, T, H, and c. Category rating requires an addi-
tional free parameter L1 as �PSAC still lacks a more principled means for
adjusting its anchor locations.

Model �PSCR, by contrast, has competitive learning but lacks activation
learning. (The subscript R stands for the running averaging in Equation 21.)
For the first time the anchor locations are not fixed in advance but are
induced from the stimuli and change over time. In emphasis of the
generative potential of this model, only two anchors are available at the
beginning of each run: Anchor 1 located at L1 � .275 and Anchor 9 at L9 �
.675. This initialization favors the extreme responses on the scale and
thereby biases the model against the peaked empirical distribution that it
has to fit. If �PSCR develops a preference for the middle of the scale despite
that bias, this would be very strong evidence for the robustness of this
preference. The learning rate in Equation 21 is poorly determined by the
data and is therefore fixed to � � .3 for all runs. This leaves only three
parameters free: km, T, and c. The history weight H is set to zero to silence
the activation mechanism.

Finally, model �PSACR includes all five mechanisms postulated by the
theory and hence is synonymous with the full ANCHOR model. Only
Anchors 1 and 9 are available initially, just as in �PSCR. Two parameters
are fixed for all runs (kp � .04 and � � .3), and four parameters are free
(km, T, H, and c).

To factor in the individual differences in the human population, we
estimated a separate parameter set for each observer. See Appendix D and
Petrov (2001) for details.

Procedure. The first part of the simulation emulates the absolute
identification Experiment 1. A three-step procedure is applied for each of
the seven models. First, 24 parameter sets are estimated from the 24
empirical stimulus–response sequences, obeying the constraints of the
particular model. Appendix D outlines the parameter search algorithm.
Second, the model is run on 9,600 fresh stimulus sequences—400 for each
parameter set, with feedback. The stimulus presentation schedule is exactly
the same as in Experiment 1 and is counterbalanced between runs and
within parameter sets: 200 runs under schedule UHULU and 200 runs
under ULUHU. Third, a battery of six measures is calculated for each run
just as for the behavioral data (see Table 1). The results are then aggregated
by averaging each statistic and are reported in the top half of Table 4. To
facilitate comparison across models, we presented the same 9,600 stimulus
sequences to each model.

The second part of the simulation emulates the category rating Experiment
2. An analogous three-step procedure is applied for each of the seven models.
Only this time 40 parameter sets are estimated as there are 40 human observ-
ers. Each parameter set is tested on 120 fresh UHULU and 120 ULUHU
sequences without feedback. The resulting set of 9,600 sequences is presented
to each model. A battery of six measures is calculated for each run, then
averaged and reported in the bottom half of Table 4. Part of the measures (e.g.,
the response standard deviation s) are the same as in absolute identification; the
rest are unique for category rating (cf. Table 3).

Results and Discussion

Table 4 reports the mean of each statistic over the 9,600 runs
with each model. The rightmost column provides the empirical
summaries for comparison. The second, third, and fourth columns
quantify the performance of the static models �P, �PS, and �PSC,
respectively. Overall, these models fit the gross accuracy levels
and little else. As they do not update their internal state from trial
to trial, they cannot exhibit any dynamic effects. The correspond-
ing entries in the table are all zeros (or very close thereto), which
attests to the validity of the measures.

The introduction of the base-level activation mechanism
changes this situation dramatically. Model �PSA exhibits strong
repetition, context, and practice effects. The correction mechanism
in model �PSAC attenuates them without altering their qualitative
character. It also supplies the checks and balances necessary to
stabilize the system during category rating. The rapid transient
component of the activation dynamics (see Figure 9) gives rise to
an assimilative sequential effect, detected by the residual autocor-
relation r. The gradual buildup of strength with frequent use gives
rise to an assimilative context effect in both tasks. This is reflected
in the positive difference d between the average response levels in
high and low presentation blocks (Equation 6). The response
distribution becomes markedly nonuniform in the no-feedback
condition as �PSAC reinforces its own responses, but the redistri-
bution of strength keeps the activations under control. Without
corrections, runaway activation leads to absurd nonuniformity and
model �PSA typically ends up giving the same hyperactive re-
sponse on all trials.

It is very instructive to compare models �PSCR and �PSAC.
Each features a learning mechanism and thereby exhibits dynamic
effects. The different mechanisms, however, have different signa-
tures. Most notably, competitive learning gives rise to compensa-
tory context effect in category rating, in sharp contrast to the
activation-driven assimilation. The mobility of the anchor loca-
tions makes the response distribution nonstationary: �PSCR cap-
tures both the gradual trend in the average response level (�ARL)
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and the sharpening of the response variance (�s). These slow
trends also masquerade as sequential effects.

Note that �PSCR exhibits no dynamic effects in absolute iden-
tification. In fact it is then virtually equivalent to �PSC because the
external feedback keeps the anchor locations fixed to the images of
the stimuli at all times (Equation 21).

Finally, �PSACR puts all mechanisms together and completes
the model hierarchy. The two learning mechanisms act synergis-
tically with respect to some effects and antagonistically with
respect to others. Thus, the sequential effect and the drift of the
ARLs are much stronger under the full model than under any of the
partial ones. The magnitude of the no-feedback context effect is a
compromise between the assimilation in �PSAC and the compen-
sation in �PSCR. �PSACR is the only model that can account for
the opposite directions of the context effects in the two tasks.

The full model �PSACR thus accounts for the qualitative pattern
in the data better than any partial model. A quantitative analysis
corroborates this conclusion. The Bayesian information criteria
(BICs; Schwartz, 1978; Wassermann, 2000) for each model are
given in Table 4. This is a log-likelihood metric for model selec-
tion that includes a penalty term for the number of free parameters
(see Appendix D for details). It should be interpreted with caution
as many of the technical assumptions justifying its use (e.g.,
independence) are violated by our learning models. Moreover,
finding the optimal log-likelihood is a challenging computational
problem, and the values in Table 4 are only approximate solutions.
With these caveats, the full model emerges as the winner in the
category rating corpus. The identification results seem inconclu-
sive: the BICs of all models are identical within the margin of
estimation error. Apparently, the (approximate) BIC is not sensi-
tive enough to resolve the subtle dynamic effects when the task is
dominated by feedback.

In conclusion, ANCHOR (�PSACR) seems to fit the empirical
data very well. Qualitatively, it predicts the direction of over a
dozen interlocking behavioral effects at once, with the sole excep-

tion of the edge effect. Quantitatively, the model reproduces
closely the means of the statistical measures in Table 4. It repro-
duces the range and standard deviations around these means as
well, as reported in Tables 1 and 3. This variability is due in part
to between-subjects differences captured by the individualized
parameter sets and in part to within-subject fluctuations driven by
the stochasticity of the mechanisms.

General Discussion

Explanation of the Phenomena

To recapitulate, ANCHOR offers an integrated, principled ex-
planation of a wide range of scaling phenomena:

Capacity limitations. There are random fluctuations and inef-
ficiencies throughout the system. Most of them are nonperceptual
and hence persist even for perfectly discriminable stimuli. Various
sequential and context effects also erode the accuracy. Further-
more, the decay of the base-level activations limits the total num-
ber of anchors that can maintain availability.

Gradual trend. The drift of the average response levels with-
out feedback is a direct consequence of the obligatory learning in
the system. As it continuously and incrementally tracks the statis-
tics of the environment, slow oscillations are inevitable. The
specific direction of the trend depends on the initial anchor set,
stimulus material, various explicit strategies, and other factors
specific to each particular setting. The fundamental and robust
fact, however, is that the responses are dynamic and nonstationary.

Nonuniform response distribution. The central peak in the
response distribution emerges from the self-reinforcing activation
dynamics, tempered by the redistribution of strength by the cor-
rection mechanism. Even when the stimulus distribution is uni-
form, the small symmetry-breaking fluctuations grow to macro-
scopic proportions.

Table 4
Performance of a Hierarchy of Models on a Battery of Measures of Various Phenomena

Phenomenon and statistic

Model

Empirical�P �PS �PSC �PSA �PSAC �PSCR �PSACR

Absolute identification
Transmitted information (T) 1.79 1.53 1.57 1.50 1.66 1.57 1.57 1.68
Nonuniform response distribution (s) 2.59 2.55 2.52 2.55 2.50 2.50 2.50 2.40
Edge effect (bow) �.42 �.47 �.30 �.38 �.29 �.27 �.31 
.14
Repetition effect (rep) .01 .01 .01 .15 .05 .01 .04 .11
Assimilative context effect (d ) �.00 
.00 
.00 
.14 
.11 
.00 
.11 
.14
Practice effect ( pr) .00 .00 .00 .06 .01 .01 .02 .06
Bayesian information criterion (BIC) 504 496 491 522 493 504 504 —

Category rating
Overall accuracy (R2) .82 .68 .80 n. a. .82 .73 .77 .77
Nonuniform response distribution (s) 2.08 2.06 2.05 n. a. 1.91 2.56 1.93 1.77
Nonstationary distribution (�s) .00 .00 .00 n. a. �.01 .12 .21 .55
Sequential effect (r) .00 .00 .00 n. a. .04 .08 .17 .34
Gradual trend (�ARL) .00 .00 .00 n. a. �.01 .08 .27 .49
Compensatory context effect (d ) 
.00 
.01 
.01 n. a. 
.26 �.62 �.53 �.21
Bayesian information criterion (BIC) 615 595 614 n. a. 537 552 472 —

Note. Each cell reports the mean of 9,600 model runs. Model �P has perceptual variability only. Models �PS and �PSC add anchor selection and response
correction. Models �PSA, �PSAC, and �PSCR introduce activation learning and running averaging of anchor locations. Model �PSACR is synonymous with
the full ANCHOR model. Compare with the empirical data in Tables 1 and 3. Dashes indicate cells in which BIC is not defined. n. a. � not applicable;
ARL � average response level.
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Nonstationary response distribution. The decrease of the re-
sponse standard deviation over time is a corollary of the drift of the
average response levels.9

Sequential effects. The positive correlation between consecu-
tive responses is a signature property of activation-mediated prim-
ing. The negative correlation between the current response Rt and
the previous stimulus St�1 seems mostly an artifact of the regres-
sion analyses typically performed in the literature (see Figure B1).
To the extent that this “perceptual contrast” is real, it can be
attributed to the emergent inversion within the competitive learn-
ing mechanism. As illustrated in the bottom panel of Figure 16,
whenever an anchor location shifts up the responses tend to shift
down and vice versa. Given that the location shifts toward the
previous stimulus St�1, a negative correlation with Rt results.

Similarity effect. The magnitude of the sequential effect de-
pends on the similarity between the consecutive stimuli St�1 and St

as a direct consequence of the similarity term in the anchor-
selection Equation 13.

Repetition effect. When the same stimulus is repeated on two
successive presentations, the identification accuracy on the second
trial is greater than average because the correct anchor has just
been reinforced.

Assimilative context effect in absolute identification. Under
skewed stimulus distributions with feedback, the response levels
shift in the direction of the skew because a base-level bias accu-
mulates in favor of the frequently used anchors.

Compensatory context effect in category rating. Under
skewed stimulus distributions without feedback, the response lev-
els shift in a compensatory direction because of the inversion
effect of the competitive learning mechanism. The anchor loca-
tions move into the densely sampled stimulus region, which in turn
drives the responses in the opposite direction. The assimilatory
tendency of the activation mechanism is usually too weak to
reverse this effect.

Transfer effect. When the context changes, the old response
levels persist under the new circumstances because of the incre-
mental nature of the learning mechanisms. As both Equations 16
and 21 discount the distant past, the transfer effect eventually
decays away.

Practice effect. The identification accuracy improves over
time because the system works with suboptimal anchors at the
beginning of the session until the learning mechanisms fine-tune
them to the statistics of the environment.

Resolution Edge Effect: An Open Issue

There is one phenomenon that ANCHOR currently does not
account for: the elevated discriminability at the edges of the
stimulus range evident in the d	 profile in the top right panel of
Figure 3. Other kinds of edge effects such as the elevated percent-
age correct and the reduced frequencies of extreme responses have
straightforward explanations. The resolution edge effect, however,
is a challenging theoretical problem. It has been replicated many
times and various interpretations are proposed in the literature.

Four general ideas appear in one form or another. One approach
is to postulate that the variance of the stimulus representations is
reduced in proportion to the distance to the nearest edge of the
range (e.g., Nosofsky, 1997). This postulate is interpreted in var-
ious psychological terms, but its main contact with empirical data

is precisely the resolution edge effect. The variance profiles along
the magnitude continuum are parameterized in advance and must
be reset manually whenever the stimulus range changes. In our
opinion this amounts to little more than a redescription of the d	
data.

A related idea attributes the resolution edge effect to criterion
variability rather than perceptual variability (Treisman, 1985).
Careful examination of this proposal, however, reveals some flaws
as discussed in the next section.

The third idea explains the edge effect in terms of two percep-
tual anchors located at the ends of the stimulus range (Braida &
Durlach, 1972; Braida et al., 1984) or in terms of a rehearsed frame
(Marley & Cook, 1984, 1986). According to these interesting
proposals, the interior stimuli are judged on the basis of their
distance to these anchors, in noisy multiples of a category unit. In
addition to the bow in the d	 profile, this explains the slower
response times for intermediate stimuli and the overall capacity
limitation. A related hypothesis attributes the edge effects to at-
tention bands located near the extreme intensities (Luce et al.,
1976, 1982; D. L. Weber et al., 1977).

The fourth idea comes from a connectionist framework. Lacou-
ture and Marley (1991, 1995) proposed a feedforward neural
network in which the stimulus intensity is represented by the
activation level of a single hidden unit. There are N linear output
units, one per category, and the unit with maximal activation
determines the response. The solution of this encoder problem
assigns greater weights to the peripheral output units (Lacouture &
Marley, 1995). The activation functions of these units thus have
steeper slopes and, given the constant noise across the output layer,
achieve better discriminability near the edges. The whole scheme
depends strongly on the assumption of linearity, and the weights
are set in advance according to parametric formulas depending on
N. An earlier, trainable version of the model “does not usually
yield the end anchor effect for all set sizes” (Lacouture & Marley,
1991, p. 427).

All in all, we are not aware of any account in which the resolution
edge effect emerges from the learning mechanisms in the system
rather than being designed into it in advance. See Stewart, Brown, and
Chater (2004) for a thorough review and an interesting new proposal.
The elemental perceptual units in their relative judgment model
(RJM) are not absolute magnitudes but rather representations of the
differences between consecutive stimuli St�1 and St. Stripping away
details we cannot consider here, the scale in RJM is based on the
proportionality (Rt � Ft�1)/(lnSt � lnSt�1) � constant, where Rt is
the mean of a random variable Rt that determines the response on trial
t, and Ft�1 is the correct response on trial t � 1. The standard
deviation of Rt varies from trial to trial in proportion to the range 	 of
possible responses between the previous feedback and the relevant
edge of the scale. This follows from the assumption that people can
rule out the responses on the side of Ft�1 that is inconsistent with the
sign of the stimulus difference. For example, if Ft�1 is 4 and St is less
than St�1, then only responses 1 through 3 are represented within a
constant limited capacity (i.e., 	 � 3). The exact psychological mech-
anism of the adjustable, range-dependent variability in Rt is not

9 The self-reinforcing activation dynamics also unfolds over time, but
simulations with model �PSAC suggest that this process is more or less
complete by the end of the first experimental block.
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specified. This variability is largest when St is in the middle of the
stimulus domain because then the range 	, averaged over all possible
St�1, is largest. RJM thus accounts for the bow effect, at least
qualitatively, although the simulated d	 profiles cannot be made deep
enough to fit the data without additional assumptions (N. Stewart,
personal communication, January 17, 2005).

Many of these ideas can be incorporated in ANCHOR without
disrupting any of the successful predictions of the theory. We
could easily introduce an edge-dependent term into the perceptual
Equation 10, for instance. The compatibility between the percep-
tual anchor model of Braida and colleagues (1984) and
ANCHOR’s correction mechanism is obvious. Thus, the negative
bow effect in Table 4 does not point to a structural defect in the
model. This is an area for future extensions that seem unrelated to
the dynamic focus of the present article. Instead of adding ma-
chinery whose sole raison d’être is to fit this one effect, it seems
more productive to leave the question open and invite more re-
search. The verdict of Luce, Nosofsky, Green, and Smith is no less
true today than it was in 1982: “Concerning the bow in absolute
identification data, we remain unsure of its source” (p. 406).

Range Effects and the Magical Number Seven

The identification experiment in this article emphasized the
dynamic aspects of scaling and did not manipulate the range or
number of the stimuli. A limited information capacity (T � 1.68)
was observed, replicating the classic results (Braida & Durlach,
1972; Miller, 1956). ANCHOR reproduced easily both the group
mean of this statistic and the individual differences in the sample
(see Tables 1 and 4). As parameters were varied freely, however,
these fits do not address the more stringent capacity limitation
implied by the range effect. For roughly equally spaced stimuli,
increasing the stimulus spacing leads, at best, to only modest
improvements in the absolute identification performance (Braida
& Durlach, 1972; Luce et al., 1976). A related phenomenon is that
the discriminability between two fixed stimuli appears to decrease
as the overall range of the other stimuli increases (Gravetter &
Lockhead, 1973). Also, the introduction of new stimuli can dras-
tically impair the identification of a previously error-free stimulus
set (Miller, 1956; Pollack, 1953; Shiffrin & Nosofsky, 1994).

Can ANCHOR account for these important and challenging
phenomena? Three factors jointly restrict the identification capac-
ity of the model. First, both perceptual noise (Equation 9) and
memory noise (Equation 12) are multiplicative and thus scale up
when stimulus intensities increase. This strongly attenuates the
advantage of spacing out the stimuli but does not always eliminate
it fully, particularly when the logarithm of the range increases.
Second, activation decay (Equation 16) and the interference inher-
ent in stochastic anchor selection (Equation 14) restrict the number
of anchors that can be maintained strong enough (cf. Taatgen,
2001; see also Cowan, 2001, for an extensive discussion of the
analogous short-term memory limitation).

The third capacity-limiting factor is the imperfect correction
mechanism. The importance of this factor was illustrated in an
earlier simulation (T � 1.49 with corrections vs. T � 0.94 without,
all else being equal). Now, wider stimulus ranges entail larger
category sizes and hence inflated correction thresholds and fewer
corrections (Equations 17 and 18). If the intensities of two partic-
ular stimuli remain fixed while the overall range expands, the local

discriminability is indeed expected to decrease as reported by
Gravetter and Lockhead (1973). Finally, it seems plausible that
when forced to operate across larger distances, the correction
mechanism becomes progressively inefficient and inaccurate, al-
though this is not implemented in the current version of the model.

In summary, ANCHOR’s potential, as currently defined, to
account for the range effects is best characterized as promising but
untested. Given the complexity of the model, proper testing re-
quires systematic analyses and simulations beyond the scope of
this article. Should it fail, ANCHOR may have to be revised. One
possibility is to incorporate some form of normalization or gain
control over and above that already implicit in Equation 9 (e.g.,
Parker, Murphy, & Schneider, 2002). Another possibility, which
accounts for the edge effect as well, is to introduce a strategy
anchored at the edges and counting inward on some trials (Braida
et al., 1984). None of these extensions seem to jeopardize the
successful predictions of the theory.

Comparison With Related Models

Various mechanistic accounts of absolute identification and/or
category rating are discussed in the literature (e.g., Baird, 1997;
Haubensak, 1992; Kokinov, Hristova, & Petkov, 2004; Laming,
1984; Rouder, 2001; J. A. Siegel & Siegel, 1972). Most models
maintain some kind of internal state to account for the ubiquitous
sequential effects in the data. Perhaps the most widespread idea,
implied by all autoregression models, is to keep the previous
stimulus St�1 and response Rt�1 (DeCarlo, 2003; DeCarlo &
Cross, 1990; Jesteadt, Luce, & Green, 1977; Lockhead & King,
1983). The relative judgment model (Stewart & Brown, 2004;
Stewart et al., 2004) dispenses with long-term representations
altogether and bases the categorization decision entirely on com-
parison with the previous exemplar. The range-frequency model
(Parducci & Wedell, 1986) maintains a search set of the 12 most
recent presentations. Other proposals include a shifting adaptation
level (Helson, 1964) and a roving attention band (Luce et al.,
1976). See Marks and Algom (1998) for a recent review.

The theory of criterion setting (TCS) is among the most com-
prehensive proposals (Treisman, 1985; Treisman & Williams,
1984). Following Thurstone (1927) and Torgerson (1958), the
internal magnitude continuum is partitioned into response regions
by N � 1 criteria. Two dynamic mechanisms adjust these criteria
relative to a set of static reference values. A tracking mechanism
pushes the criteria away from the previous response Rt�1, and a
stabilization mechanism pulls them toward the previous stimulus
St�1. The size of each adjustment, or indicator trace, is inversely
proportional to the distance to the corresponding criterion and
decays over time. The effective position of each criterion on a
given trial is a linear combination of its fixed reference value and
two families of transient indicator traces. This gives rise to se-
quential assimilation toward the previous response, contrast with
the previous stimulus, and various other effects.

The fact that (nearly) all criteria are adjusted on every trial has
an important impact on criterion variability. A criterion near the
edge is pushed predominantly in one direction, as most stimuli and
responses fall on one side of it. The variability of this criterion is
therefore relatively low. In contrast, a criterion in the interior of the
range is pushed irregularly up and down and thus has greater
variability. The resulting dome-shaped variance profile has the
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potential to account for the observed dip in the d	 profiles (Treis-
man, 1985).

Despite the appeal of this idea, several technical obstacles
apparently undermine its potential. First, the d	 bows cannot be
made deep enough to match the data unless the criterion variance
exceeds the stimulus variance by an order of magnitude (see
Figure 10 in Treisman, 1985). A direct estimation of the two
sources of variability via an independent technique suggests that
their relative strengths are in fact reversed (Nosofsky, 1983). The
simulated d	 bows also seem very noisy and parameter dependent
(Treisman, 1985). The high learning rates necessary to induce such
substantial criterion variability probably induce exaggerated se-
quential effects as well. This casts doubt on the model’s ability to
meet all empirical constraints simultaneously on the same run.

Technical detail notwithstanding, the criterion-based and
anchor-based systems are functionally equivalent in most respects.
In fact, there is a complementary duality: The former emphasizes
the boundaries between response regions, whereas the latter em-
phasizes the centroid of each region. TCS updates all criteria on
each trial; ANCHOR updates a single anchor. Tracking and sta-
bilization in TCS correspond to activation and location learning in
ANCHOR, respectively, as illustrated in Figure 16.

The biggest difference between the two theories is that TCS has
no counterpart of ANCHOR’s correction mechanism and conse-
quently cannot promote the homomorphism between stimuli and
responses autonomously. In the final analysis, the stimulus–
response correspondence in TCS is largely imposed by the crite-
rion reference values that are fixed a priori, essentially like free
parameters. The theory gives only a vague informal description of
the reference system responsible for this crucial part of the scaling
problem. The reference values must be set in the beginning of the
session when the relevant statistics are largely unknown. All
subsequent adjustments fine-tune the criteria around these fixed
home positions. This stands in sharp contrast with ANCHOR’s
ability to unfold the scale from a single arbitrarily placed anchor
and to track the stimulus density dynamically. Repeated ANCHOR
runs with fixed parameters can produce quite different scaling
solutions reflecting idiosyncratic frozen accidents (Gell-Mann,
1994) from the early trials that become entrenched later on. For
instance, the model may respond 1 frequently on a given run and
hardly ever on another, shifting the rest of the scale up or down
accordingly.

ANCHOR builds on the memory-based models of categoriza-
tion (e.g., Kruschke, 1992; Nosofsky, 1986). In particular, Nosof-
sky (1997) sketched how the exemplar-based random-walk model
of speeded classification (EBRW; Nosofsky & Palmeri, 1997) can
be applied to the absolute identification task. The specific proposal
is similar in many respects to the ANCHOR subset labeled model
�PS in Table 4. Like in �PS, a noisy representative of each
response category competes to match the target. The winner de-
termines the response; there are no corrections. Unlike in �PS, the
competition is resolved in a prolonged random walk rather than in
a single step. EBRW thus predicts reaction times in addition to
choice probabilities—a capacity that ANCHOR currently lacks but
can inherit from the ACT–R architecture. If the memory strengths
of the individual exemplars were allowed to vary dynamically
(Nosofsky, 1988, 1991), EBRW would exhibit sequential, repeti-
tion, and assimilative context effects similar to those of model

�PSA in Table 4. Like �PSA, however, it would also become
unstable without external feedback.

ANCHOR uses a prototype-based representation of the response
categories, continuously updated by the competitive learning
mechanism. An alternative method is to store the individual ex-
emplars themselves and rely on retrieval-time processing (similar-
ity, random walk) to consolidate and smooth out the category
representations (Nosofsky, 1986). This instance-based method has
greater representational power (Ashby & Alfonso-Reese, 1995).
Unidimensional scaling, however, does not need that extra power
as categories are always convex and there are no exceptions. The
prototype representation is fully adequate in this case, and much
more economical. It would be very interesting to compare the two
kinds of representations within a category-rating framework, add-
ing to the debate in multidimensional categorization where the
notion of homomorphism plays no role (e.g., Minda & Smith,
2002; Nosofsky & Zaki, 2002; Smith & Minda, 1998).

In our opinion, the key ANCHOR innovation relative to other
memory-based models is the introduction of the correction mech-
anism. The idea that people often adjust their responses is of
course introspectively familiar to everyone. However, the pro-
found impact that even occasional corrections can have on the
dynamical stability of a memory-based system has not been suf-
ficiently appreciated. The correction mechanism introduces ordinal
relations and enforces the stimulus–response homomorphism that
is so essential for scaling. It is qualitatively different from the
random-walk mechanism in other models (e.g., Nosofsky & Palm-
eri, 1997). Both mechanisms smooth out memory fluctuations and
improve the overall accuracy by combining several pieces of
evidence. However, whereas the random walk simply resamples
the same memory pool, the correction mechanism introduces qual-
itatively different, relational knowledge—ordinal comparisons be-
tween magnitudes (Equation 17) and responses (Equation 18)—as
well as knowledge that these two ordered structures should be
aligned. The random walk cannot generate any novel responses; it
is confined to whatever already exists in memory. The correction
mechanism, in contrast, can and does generate novel responses.
Finally and very importantly, it redistributes strength among the
anchors and thereby prevents runaway activation dynamics in the
absence of feedback. This brings the category rating task within
the scope of the memory-based paradigm.

The emphasis on learning and its attendant dynamic manifesta-
tions is another distinguishing feature of our approach. Competi-
tive learning in particular unfolds the scale starting from a single
arbitrarily placed anchor. The stimulus–response correspondence
is not set a priori but emerges from the dynamic equilibrium of
various interacting forces. This level of adaptability and emer-
gence has no parallel in existing scaling models. To our knowl-
edge, no other model can account for the feedback-dependent
context effects and the nonstationary response distributions that
ANCHOR predicts so naturally.

Finally, ANCHOR is an integrated model. Its computational
mechanisms mesh seamlessly with the huge corpus of memory-
related theory and data. ANCHOR can thus serve as a building
block for integrated models of even greater scope. In effect, it
brings rating-based measures within the scope of the ACT–R
architecture and thereby connects psychophysical scaling to the
numerous domains in which this architecture has been successfully
applied (Anderson, 1983; Anderson & Lebière, 1998).
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Three classes of factors collectively shape ANCHOR’s behav-
ior. First, the statistics of the environment are paramount as the
system is built to adapt to the prevailing conditions. Second, the
cognitive architecture both predisposes the model to capitalize on
certain particularly diagnostic information and limits the maximal
discriminability that it can achieve. Finally, an explicit strategy
compensates for some inherent limitations and interacts with the
environmental factors in an attempt to maximize performance.
ANCHOR thus illustrates a pervasive characteristic of cognition—
the delicate and sometimes surprising interplay of environment,
architecture, and strategy.
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touch and general sensation]. In R. Wagner (Ed.), Handworterbuch der
Physiologie (Vol. 3, pp. 481–588). Braunschweig, Germany: Vieweg.

Wedell, D. H. (1984). A process model for psychophysical judgment.
Dissertation Abstracts International, 45, 3102-B. (UMI No. 8428589)

Wiest, W. M., & Bell, B. (1985). Stevens’s exponent for psychophysical
scaling of perceived, remembered, and inferred distance. Psychological
Bulletin, 98, 457–470.

Wilson, T. D., Houston, C. E., Etling, K. M., & Brekke, N. (1996). A new
look at anchoring effects: Basic anchoring and its antecedents. Journal
of Experimental Psychology: General, 125, 387–402.

Appendix A

Proof That Equation 9 Is Consistent With Weber’s Law

Let us consider two stimuli with intensities S1 � S and S2 � (1 
 k)S.
According to Equation 9, the means and standard deviations of the respec-
tive magnitude distributions are as follows: 
1 � aSn, �1 � kpaSn; 
2 �
aSn(1 
 k)n, �2 � kpaSn(1 
 k)n. Assuming that all variability in the
system comes from perceptual sources and is accurately summarized by �1

and �2, the probability of correct response in a two-alternative forced-
choice (2AFC) comparison is equal to the normal integral of the following
quantity:

z �

2 � 
1

��2
2 � �1

2 �
aSn��1 � k�n � 1n�

kpaSn��1 � k�2n � 12n
. (A1)

Notice that the aSn terms cancel out and hence z does not depend on the
absolute intensity levels S1 and S2. Keeping in mind that k � 1, we can
approximate

z �
�1 � k�n � 1

kp��1 � k�2n � 1
�

�1 � nk� � 1

kp��1 � 2nk� � 1
�

nk

kp�2
. (A2)

Given that kp and n are fixed for each sensory modality, the probability of
correct response varies only as a function of k—that is, of the intensity ratio
S2/S1 � (1 
 k)/1. This is exactly the relation implied by Equation 7. Hence
the multiplicative-noise Equation 9 is consistent with Weber’s law within
the margin of measurement error.

Moreover, we can use the empirical Weber fraction k to inform our
choice of the parameter kp. For concreteness, we define k as the relative
increment �S needed to yield 75% correct 2AFC performance. Restated in
terms of Equation A2, k is adjusted experimentally until its corresponding
z value equals z75 � ��1(0.75), where ��1 is the inverse of the normal
cumulative distribution function. Solving for kp, we get

(Appendixes continue)
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kp �
nk

z75�2
�

nk

0.674 
 1.41
� 1.05nk. (A3)

This estimate is based on the assumption that all the uncertainty of the
responses is due to perceptual sources as described in Equation 9. There
are other sources of variability and errors in actual psychophysical
experiments. These include the need to maintain in memory the mag-
nitude of the first stimulus during successive presentations. Extraneous
factors such as mistaken keypresses and lapses of attention also inflate
the Weber fraction. Consequently, the observable k imposes an upper
bound on kp but does not determine it completely. Thus we arrive at the
rule-of-thumb inequality kp � nk (Equation 11).

Incidentally, Baird (1970), Teghtsoonian (1971), and Link (1992) inde-
pendently compiled lists of exponents and Weber fractions for numerous
modalities and found strong correlations between n and 1/k. The same
inverse relation follows from Equation 11 if one assumes that kp reflects
some invariant property of the neural substrate and therefore varies little
across perceptual modalities.

Laming and Scheiwiller (1985) reported two discrimination experi-
ments with stimuli very similar to ours—lines presented successively at
randomized locations on a video display. Their Experiment 2 seems a
good source for the estimate we need. On each trial, a standard was
chosen at random among seven different lengths (3–12 dva) and pre-
sented for 0.5 s. It was followed by a comparison line that was either

shorter or longer than the standard. There were seven interstimulus
intervals ranging from 0 to 4 s. The trial sequence randomly interleaved
500 trials per condition. The 1-s interstimulus interval is representative
for all conditions and will suffice for our purposes.

Two motivated and experienced observers (the authors themselves;
Laming & Scheiwiller, 1985) rated on a 6-point scale their confidence
that the second stimulus was shorter or longer than the first. The relative
difference � between the two lines was fixed at 4% for observer D.L.
and 8% for P.S. The following d	 values were obtained: d	 � 1.52 for
observer P.S. and d	 � 1.39 for D.L. We can invert these values to
produce Weber fractions. Under an equal-variance normal model and
2AFC task, 75% correct corresponds to d	 � z75

�2 � 0.954. Although
this relationship is theory dependent, it suffices to justify an estimate.
Hence,

k � 0.954
�

d	
. (A4)

This yields Weber fractions k � .03 for observer D.L. and k � .05 for
P.S. These estimates are in good agreement with the value k � .04 listed
in two secondary sources (Baird & Norma, 1978; Laming, 1986) as a
typical Weber fraction for line length. They also agree with the thresh-
olds obtained in Laming and Scheiwiller’s (1985) Experiment 1.

Appendix B

Sequential Effects in Category Rating

The sequential effects in the data from Experiment 2 are analyzed in
a hierarchy of autoregression models. Some preliminary remarks are in
order. First, the logarithmic transformation log R � log a 
 n log S
common in the literature seems inappropriate here. The relationship
between stimuli and responses is already linear in our data (n � 1),
there is homogeneity of variance, and the response distributions are
(nearly) symmetrical. A transformation would disrupt these conditions.
Second, all blocks with nonuniform presentation frequencies are ex-
cluded from the analyses. This facilitates the interpretation by elimi-
nating the autocorrelational structure among the stimuli. The earliest 20
trials and the cases with missing values are also excluded. This leaves
250 stimulus–response pairs per observer, Trials 21–90, 181–270, and
361– 450; there were 9,696 valid and 304 missing cases overall. Third,
outliers are corrected relative to the residual standard deviation of a
preliminary regression: Responses deviating by more than �3� are
replaced by exactly �3�, separately for each participant. Less than 1%
of the raw responses need correction according to this criterion. Finally,
all variables are standardized to zero mean and unit variance. This
eliminates the need for constant terms in the equations and makes the
regression coefficients comparable.

Our analytic strategy is to fit separate regressions for each observer and
then aggregate the individual R2. Figure B1 summarizes eight different
regression models. The mean R2 in each box averages 40 squared multiple
correlation coefficients.

Equation B1 is the simplest model in the hierarchy. The estimated mean
response R̂t on trial t is proportional to the corresponding stimulus St in a
direct application of Stevens’s law (Equation 8). This simple equation
accounts for 78% of the response variance on average, with individual R2

values ranging from .55 to .92.

R̂t � aSt. (B1)

Equation B2 is the standard tool for sequential analysis in the
literature. It accounts for 81% of the response variance on average (see
Figure B1). Thus, the time-lagged variables St�1 and Rt�1 increase the
fit by �R2 � .037, with individual increases as large as .15 for some
observers. Thirty-nine of the 40 R2 increments are significant at the .05
level.

R̂t � aSt � bRt�1 � dSt�1. (B2)

The regression coefficient for Rt�1 is consistently positive, and the
one for St�1 is negative for all individuals (mean a � .88, SD � .05;
mean b � .33, SD � .14; mean d � �.25, SD � .11). This is a
clear replication of the classic sequential effects: assimilation to the
previous response and contrast with the previous stimulus (e.g., De-
Carlo & Cross, 1990; Jesteadt, Luce, & Green, 1977; Lockhead & King,
1983).

But what do these correlational results mean? One possible interpre-
tation is that they reflect the slow drift of the response scale. We know
from Figure 13 that the early response levels tend to be one-half
category unit (on average) smaller than the ones at the end of the
session. This tendency counts as error in Equation B1, but it can be
accounted for by Equation B2 because the pair �St�1, Rt�1� contains
implicit information about the current drift position. For instance, if
Rt�1 falls below the value predicted by St�1, then trial t � 1 probably
occurs early in the session, and hence Rt too is likely to fall below its
expected value. The residuals (Rt�1 � aSt�1) and (Rt � aSt) tend to
have the same sign.

To capture the effect of the trend, we include the explicit average
response level in the model. We construct a new variable ARLt for each
trial t by applying Equation 5 to the data from trials t � 31 to t � 2.
Note that for some values of t this roving window extends into non-
uniform blocks that are otherwise excluded from the analysis. The
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sliding ARLs are calculated separately for each observer and standardized to
zero mean and unit variance. The regression model then becomes

R̂t � aSt � cARLt. (B3)

Equation B3 represents the hypothesis that all systematic variance in the
responses is attributable to two sources: the current stimulus St and a gradual
trend ARL (which may incorporate transfer and context effects). This model
accounts for 81% of the response variance on average. The mean increase
relative to Equation B1 is �R2 � .033; 30 individual increases are significant
at the .05 level. This is comparable to the fit of Equation B2. Thus, a single
variable extending 30 trials in the past accounts for nearly as much variance as
Rt�1 and St�1 do together.

We have, therefore, two alternative interpretations of the sequential effect:
short-term carryover across neighboring trials (Equation B2) and long-term
gradual trend (Equation B3). Either one of them alone accounts for about 3.5%
of the response variance on average.

These two mechanisms are not incompatible and can be combined. The com-
bined Equation B4 accounts for 83% of the response variance on average—an
increase of �R2 � .050 relative to Equation B1 and a statistically significant
improvement over both Equations B2 and B3. The data therefore seem to contain
two kinds of sequential dependencies: short term, extending one trial back, and
long term, extending some tens of trials back. The top four panels in Figure B1
suggest that on average, 1.7% of the response variance is uniquely attributable to
short-term effects and 1.3% to long-term drift, and an additional 2.0% are shared
between the two. In summary, 78% are attributable to the immediate stimulus St

and 5% to various sequential effects.

R̂t � aSt � cARLt � bRt�1 � dSt�1. (B4)

The short-term component is most relevant to the analysis of sequential
effects. Hence it is useful to partial out the nontransient components and
consider the residuals. We calculate two sets of residuals rest � Rt � R̂t, where
R̂t is defined by Equation B1 or B3, respectively. The autocorrelation coeffi-
cients for the first set (Equation B1) have a mean of .34 over the sample (SD �
.12). This is the measure used in Tables 3 and 4 in the main text. It overesti-

mates the magnitude of transient sequential effects because it is inflated by the
slow component. When ARL is also partialled out (Equation B3), the mean
residual autocorrelation drops to .23 (SD � .09). It underestimates the mag-
nitude of transient effects because it suppresses the nonsystematic slow fluc-
tuations that occur naturally in autocorrelated time series. Thus, the “true”
value probably lies between .23 and .34.

The magnitude of the sequential effects has been shown to depend on the
interstimulus similarity (DeCarlo, 2003; DeCarlo & Cross, 1990; Jesteadt,
Luce, & Green, 1977; Ward, 1979). The notion of a fixed “true” value of the
short-range autocorrelation is therefore inaccurate; it is better to measure it as
a function of the difference �S � St � St�1. To that end, the data from all
observers are pooled together and then grouped into 21 bins according to �S.
There are about 470 observations per bin. The correlation between rest and
rest�1 is then calculated within each bin. The upper solid curve in Figure 14 is
based on residuals from Equation B1 and the lower curve on Equation B3. The
characteristic triangular pattern is clearly replicated.

One can revise the regression models to capitalize on the autocorrelation
structure of residuals and reduce the number of free parameters. Equation
B5 formalizes the hypothesis that the two time-lagged variables Rt�1 and
St�1 in Equation B2 do not act independently but as a residual-like unit of
the form (Rt�1 � aSt�1).

R̂t � aSt � b�Rt�1 � aSt�1�. (B5)

This in effect says that Equation B2 is really Equation B5 in disguise. This
hypothesis can be tested in two ways. First, it predicts that the coefficient d in front
of St�1 in Equation B2 should equal the product of the other two coefficients
(DeCarlo & Cross, 1990). In symbols, d � �ab. This relationship is easy to test
as we have independent estimates of a, b, and d for each observer. We construct
a new variable d	 � �ab and check if it predicts d. The correlation between the
two is .92. Thus, as DeCarlo and Cross (1990) also pointed out, the negative
coefficient in front of St�1 in Equation B2 may appear for reasons very different
from the usual “perceptual contrast” interpretation.

A second test is to compare the empirical fits of Equations B2 and
B5. Equation B5 accounts for 81% of the response variance on aver-

(Appendixes continue)

Figure B1. A hierarchy of autoregression models. Equation numbers are the same as in Appendix B. Each
mean R2 is based on 40 individual squared correlations. The notation n � � / � / � denotes the number of observers
for whom the corresponding transition is significant at � � .01, .05, and .10, respectively.
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age.B1 The mean decrease relative to Equation B2 is only �R2 � �.003.
The individual decreases are not significant for at least half of the partic-
ipants even under the high statistical power of the analysis. This evidence
leads us to prefer the more parsimonious Equation B5.

Equation B4 can be modified in an analogous way with similarly negligible
decrease in R2, leading to Equation 20 in the main text. See Figure B1 for details.

B1 Equation B5 is not linear in the coefficients and hence the standard
regression procedures no longer apply. We used a general-purpose opti-
mizer (MATLAB’s lsqnonlin; see Footnote 1) to find coefficients a and b
that minimize the sum of squares ¥ (Rt � R̂t)

2.

Appendix C

Derivation of the Steady State in Figure 17

The dynamics of the simplified example in Figure 17 can be solved
analytically. Let Lt and Rt denote the locations of the two anchors. The
competitive learning mechanism can be approximated by a deterministic
iterative process in which Lt and Rt jointly determine the boundary xt, and
the barycenters of the resulting partitions determine the next anchor loca-
tions. For the triangular distribution in Figure 17 the partitions have
expected values Lt
1 � 2xt/3 and Rt
1 � 2xt/3 
 2a2/3(xt 
 a). Resetting
the boundary halfway in between produces the following iterated map:

xt
1 � f�xt� �
2

3
xt �

a2

3�xt � a�
. (C1)

The steady state must satisfy x* � f(x*). This equation has a unique
solution in the range [0, a]—the “golden section” � � a(�5 � 1)/2. The
stability of this fixed point is governed by the eigenvalue � � f 	(x*)
(Strogatz, 1994). Because 0 � f	(x) � 1 for all x � [0, a], � is a global
attractor with monotonic (nonoscillatory) convergence.

Appendix D

Parameter Optimization and Model Selection

To factor in the individual differences in the human population, we
estimated a separate parameter set for each observer in Experiments 1 and
2. The optimization algorithm is quite technical and is presented at length
elsewhere (Petrov, 2001). Briefly, it is based on a Bayesian framework that
treats the internal representations in the model as hidden variables. The
conditional probability distributions relating these variables to one another
and to the observable stimuli and responses are calculated from the struc-
tural equations of the model. A special model-tracing version of the
ANCHOR software calculates the probabilities of producing each of the
nine possible responses on a given trial. The global goodness of fit to a
given stimulus–response sequence can then be quantified by the summary
log-likelihood. A general-purpose optimizer (MATLAB’s fmincon; see
Footnote 1) searches the parameter space to maximize the fit.

In the interest of space we report only the parameters for the full model
�PSACR. The means and standard deviations for the 24 absolute identifi-
cation sequences are memory noise km � .058 (SD � .024), softmax
temperature T � .050 (SD � .009), history weight H � .071 (SD � .036),
cutoff c � .36 (SD � .09), and log-likelihood L � 492 (SD � 66). For the
40 category rating sequences, they are km � .076 (SD � .016), T � .050
(SD � .008), H � .108 (SD � .036), c � .43 (SD � .08), and L � 460
(SD � 83). The temperature variability is constrained by tight search
bounds (.040–.060); the bounds used for the other parameters are quite
liberal. The optimal parameters for the partial models are very similar, with
lower noise levels compensating when the correction mechanism is dis-
abled. Details are available online at http://www.socsci.uci.edu/�apetrov/.

Equation D1 defines the Bayesian information criterion (BIC) for a
given model � and a given stimulus–response sequence D (Schwartz,
1978; Wassermann, 2000):

BIC��� � �log P�D�M, �̂� � pM log�n�/ 2, (D1)

where �̂ is the parameter set that maximizes log P for that sequence, pM is
the number of free parameters in the model, and n is the number of trials.
For n � 450, each parameter incurs a penalty of about 3 points. The values
reported in Table 4 are averaged across observers, which is equivalent to
a master BIC calculated for all available data.

Note that several factors limit the reliability of BIC for our data. The
log-likelihood is computationally intractable unless certain approximations
and simplifications are used (Petrov, 2001). The approximate log P guides
the parameter search well, but its value as a model-selection criterion is less
certain. Furthermore, many of the technical assumptions behind Equation
D1 are violated: The trials are neither independent nor identically distrib-
uted, the models are not strictly nested, and none of them is the “true”
model because none can account for the bow effect. BIC, therefore, should
be interpreted with caution. We tend to put much greater emphasis on the
qualitative analysis of the phenomena predicted by the models.
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