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Induction of Augmented Transition
| Networks*

JOHN R. ANDERSON

Yale University

‘LASisa program that acquires augmented transition network (AT N) grammars. It requires
as data sentences of the language and semantic network representatives of their meaning. In
acquiring the ATN grammars, it induces the word classes of the language, the rules of
formation for sentences, and the rules mapping sentences onto meaning. The induced ATN
grammar can be used both for sentence generation and sentence comprehension. Critical to
the performance of the program are agsumptions that it makes about the relation between

"~ sentence structure and surface structure (the graph deformation condition), about when
- word classes may be formed and when ATN networks may be merged, and about the
structure of noun phrases. These assumptions seem to be good heuristics which are largely -
true for natural languages although they would not be true for many nonnatural languages.
Provided these assumptions are satisfied LAS seems capable of learning any context-free

" language.

It has occasionally been suggested that a promising way to develop language
understanding systems would be by means of a learning program that would
becomne competent in the language through experience. There are two motiva-
tions for the acquisition approach to the development of computer models for
language processin g. First, it might seem more efficient to leave to a program the
analysis of the knowledge underlying language use and the programming of this
lirlowledge. Current hand-progfammed language systems (e.g., Schank, 1975;
Vinograd, 1972; Woods, Kaplari, & Nash-Webber, 1972) deal with rather mod-
est domains in somewhat limited ways and yet represent considerable investment
of programming time. In contrast, the average human is able to learn within 20
Years a language that has a farge vocabulary and pemits of many different
Stuctures. He is able to comprehend utterances in sophisticated manners and is
able to use language in a wide variety of purposes. The natural temptation is to
think that a computer learning program would be able to match this learning
accomplishment and perhaps in a much shorter time than a human. The second
argument for the learning approach derives from the observation that current
IEInguage programs lack an ability to adapt their behavior to changing cir-

*This research was supported by grants GB-40298 from NSF and grant MH26383 from NIMH.
'Tespondence concerning the paper should be addressed to the author at the Department of Psy-
ch(’]og)’, Yale University, New Haven, Conn. 06520,
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126 J. R, ANDERSON

cumstances. The real life language processing tasks facing a human are cop.
stantly changing and the way he adapts to this is by learning the demands of the
new situations and accordingly adjusting his language processing mechanisp,g
- For instance, a student taking a class in set theory must learn new vocabu}a,y'
new syntactic constructions, and new ways of expressing his ideas (e.g., proofs),
A language learning program has the promise of being able to be as adaptive i,
its language use as is a human, : S
I do not know whether to endorse or deny these arguments for Iap
learning. The principal difficuity with the language learning approach, of course,
is designing a program that can actually acquire a language. In this Paper I repory’
some of my efforts to develop a language learning program. This system jg
somewhat unique relative to other efforts (e.g., Feldman, 1970; HambUrger_&'
Wexler, 1975; Homing, 1969: Klein, 1973; Siklossy, 1972) in that it lays em.

phasis on the requirement that the output of the leaming approach be_something

gliage

that can be used for both language comprehension and generation, rather than ap

abstract characterization of the language or a‘characterization that can only be
used for comprehension or only for generation. Like the other language learning
attempts, its accomplishments are quite limited. Certainly, it is nowhere near the
goal of being able to induce 2 general language processing system. Still it seems
a significant enough Step to be worth reporting. R

The program is dubbed L.AS, an acronym for Language Acquisition System.
Its principal motivation is not to provide a route to computer language processing;
Rather it is an attempt to develop a psychological model of human language
processing. I have reported on aspects of this model from a psychological point
of view in a number of earlier papers (Anderson, 1974, 1975, 1977). Here I will
focus primarily on the program and discuss only cursorily its relation to current
psychological research on language acquisition. S

AR
R

LAS AS A LANGUAGE USER . L1

The LAS program is written in Michigan LISP (Hafner & Wilcox, 1974)
The program accepts as input strings of words, which it treats as sentences, and
scene descriptions encoded as associative networks. The associative networks

used to encode the scene are slight variants of the HAM propositional representa-
tion (see Anderson & Bower, 1973). This network representation is somewhat

similar to those of Carbonell and Collins (1973), Norman, Rumeihart, and thc
LNR Research Group (1975), Quiliian (1969), Schank (1975), and Simmons_

(1973). LAS obeys commands to speak, understand, and learn. Central to LAS

is an augmented transition network (ATN) grammar similar to that of Woods

(1970, 1973). In fesponse to the command, Listen, LAS evokes the progran;_lf"";-'

UNDERSTAND. The input to UNDERSTAND is a sentence. LAS usoe the *

information in the network grammar to parse the sentence and obtain a represcl_'g_;

tation of the sentence’s meaning (encoded as a HAM propositional network). Iﬂ;
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;égPonse to the command, Speak, LAS evokes the program SPEAK. SPEAK
receives 2 to-be-spoken HAM conceptuatization and uses the information in the
petwork grammar to generate a sentence to describe the conceptualization. Note

| that LAS uses the same ATN formalism both to speak and to understand. The

third part of the program is LEARNMORE which induces these ATN gram-
mars. LEARNMORE takes as its inputs a sentence, a HAM representation of
the meaning of the sentence, and an indication of the main proposition of the
sentence. The outputs of the LEARNMORE program are changes to the ATN
gammar.

. The program models the process of leamning to speak from the pairings of
sentences and pictures. The HAM conceptualizations given to LEARNMORE

are taken to represent the output of a picture parsing routine. Having once
acquired an ATN grammar from these picture—sentence pairings, LAS can
generate sentences to describe other pictures via SPEAK and derive descriptions
of the picture situations corresponding to sentences via UNDERSTAND. This
program ignores the acquisition of nondeclarative, procedural aspects of lan-
guage such as the processing of questions. The handling of procedural aspects of

lapguage is just now being tackled in my simulation work.

The HAM Memory System

LAS uses a version of the HAM memory system (see Anderson & Bower,
1973) called HAM.2 which provides LAS with two essential features. First it
- pl"_bVi_des a representational formalism. This is used for representing the semantic

4

! _lilteipretaﬁons output by the understanding program, the semantic intentions that

are the input to the language generation program, and semantic and syntactic
_infqnnation in long-term memory that is used to guide a parse. Second, HAM.?2
ﬂlsg contains a memory searching algorithm, MATCH1, which is used to
¢valuate various parsing conditions, For instance, the UNDERSTAND program
J ’_'?q_y!irés'that certain features be true_c}f a word for a parsing rule to apply. These
% checked by the MATCH1 process. The same MATCHI process is used by
e generation program to determine whether the action associated with a parsing
Wle creates part of the to-be-spoken structure. This MATCH] process is a
Yariant of the MATCH process described in Anderson and Bower (1973, Chaps.
9  12) and its details will not be discussed here. :
_,_I__'_‘___OWCver, it would be helpful to describe here the representational formalisms
wed by HAM.2. Figure 1 illustrates how the information in the sentence The
™ who robbed the bank had a bloody nose would be represented within the
AM2 network formalisms. There is a distinct node in the memory structure
of each object referenced in the sentence—a node X for the man, a node Y for
€ bank, and a node Z for the nose. There are three propositions asserted about
~that X is a man, that X robbed ¥, and that X has Z. Of Y it is also asserted
: FacY is a bank. Of Z it is also asserted that Z is bloody, and that Z is 3 nose.

_Proposition is represented by a distinct tree structure. Each tree structure
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BANK

HAVE

FIG, I An example of a propositional network representation in HAM.2.

consists of a root proposition node connected” by an S link to a sub_]ect node and
by a P link to a predicate node. The predlcate nodes can be decomposed into ap
R link pointing to a relation node and into a O hnk pointing to an object node,
The semantics of these representations are to be mterpreted in terms of simple set
theoretic notions. The subject is a subset of the predicate. Thus, the individual X
is a subset of the men, the people that robbed ¥, and the people that have Z. Ope
other point needs emphasizing about this representation. There is a distinction
made between words and the concepts which they reference. The words are
connected to their corresponding concepts by links labeled W. o
There are a number of motivations for the associative network representation.
Anderson and Bower (1973) have combined this representation with a2 number of
assumptions about the psychological processes that use them. Predictions de-
rived from the Anderson and Bower model usually turn out to be true of human
cognitive performances. However, many of the specific details of HAM have
never been empirically tested. Also, there are some predictions derived from
HAM that can be shown to be false (see Anderson, 1976). The principal feature
that recommends associative network representations as a computer formalism
has to do with the facility with which they can be searched. Another advantage of
this representation is particularly relevant to the LAS project. This concerns the

modularity of the representation. Each proposition is coded as a network struc-

ture that can be accessed and used, independent of other propositions.

So far, I have shown how the HAM.2 representation encodes the CplSOdlC
information that might be the input to SPEAK and the output to UNDER-
STAND. It is also used to encode the semantic and syntactlc information re-
quired by the parsing system. -

Augmented Transition Network Grammars '

To illustrate LAS’s ATN formalisms consider the grammar defmed by the

rewrite rules in Table 1. This grammar describes a two-dimensional world of

geometric shapes that differ in color and size and spatial relation. Figure 2

BLOODY  Npsg

ST-

NP-

CL
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TABLE 1
A Test Grammar
Grammar 2
o
1l S —  NPis ADJ
— NP is RA NP
NP — (the,a) NP
NP1 — SHAPE
—s SHAPE CLAUSE
w | — ADJ NP1
NOSE CLAUSE — that is ADJ
. — that is RA NP
SHAPE — square, circle, etc.
2 and ADJ —  red, big, blue, etc,
o an :
: RA — above, right-of
10de. above, right-o
le set
al X Example sentence
. The red square which is small js above the circle which is right-of
One the triangle.
-ction
.3 arg
ition.
~er of
s de- . eCOP - ¢ADJ .
aman © START -~ 51 W 52 ———= STOP
Ve
ha S _ .» 7 N ERA
fl’Om r."-r NP
. 1
:ature . _ o 83 ————»-STOP
ism o eDET NP1
i . NP - N1 —= STOP
geol .
18 the - eADJ NPI
o - NP1 — Al w STOP
P €SHAPE
) : CLAUSE
sadic S Al—— e STOP
)ER' i IL
" h STOP
Wl oTe
eREL eCoPp eADJ _ '
_ CLAUSE —= C] — (2 - STOP ’
eRA
) NP
y e C3——a 5TOP
-1d of

ure - FIG 2 The augmented transition networks encoding the grammar defined in Table 1.
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illustrates the parsing networks for this grammar. There are a few conventiong
that need to be known to facilitate reading these networks. When a label like Np
is alone on an arc it indicates that a successful push is required to that network.
When the label is prefixed by an € (e.g., €RA), this indicates that the next worg
must be in the word class referred to by the label (i.e., RA). If a NIL labels the
arc, this means that the arc can be traversed without anything being processeg
about the sentence. These are the three types of conditions that can appear op
ATN arcs. The actions that are placed on ATN arcs involve the construction of
associative network structures to represent the sentence’s meamng For instance
the action associated with the NP arc linking START and S1 is to connect I:he
node which is the referent of the noun phrase by an § link to a proposition node
(see Fig. 1).

Such network grammars are modular in two senses. Flrst they are relanvely
independent of each other. Second, they are independent of the SPEAK ang

" UNDERSTAND programs that use therii;;:’Tﬁis modularity greatly simplifies

LAS’s task of induction. LAS only induces the network grammars; the inter-
pretative SPEAK and UNDERSTAND programs represent innate linguistic
competences for interpreting the networks. Finally, the networks themselves are
very simple with limited conditions and actions. Thus, LAS need consider only a
small range of possibilities in inducing a network. The network formalism gains
its expressive power by the embedding of networks. Because of network modu-
larity, the induction task does not increase with the complexity of embedding.

The same network 1s used by the SPEAK program for sentence generation as
by the UNDERSTAND program for sentence comprehension. In comprehen-
sion the conditions on the arcs serve as tests of the sentence. If these tests are
successfully met by the sentence, the actions associated with the arcs are exe-
cuted, creating associative network structures. In generation, LAS works from a
network structure tagged as to-be-spoken. The actions on the arcs serve as tests
of the semantic structure. If the tagged semantic structure corresponds to the
semantic structure that would be created by these actions, that arc path is taken.
The information on the condition is used to decide what word or phrase will be
generated. Since the same ATN can be used both to generate and understand,
LAS has only to induce one set of grammatical rules to do both tasks. Thus the
LAS program makes the prediction that acquisitions of the ability to understand
and to generate go hand in hand. This use of ATN networks is different from that
exemplified in the work of Simmons (1973). He had two network grammars-—-
one for production and one for generation—but a single interpreter. '

A more detailed description of how LAS uses ATNs for generation and |

comprehension can be obtained from Anderson (1974). They differ in a number
of ways from ATNs as manifest in the work of Woods (1970). LAS’s ATNs
provide for direct mappings between semantic networks and sentences. Previous
examples of ATNs had been concerned with mapping between sentences and
deep structures or other ‘‘syntactic’” objects., While this use within LAS iS
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somewhat novel, it does not require any major new principles. Another differ-
ence between LAS’s ATNs and Woods’ is that the power of ATNs in LAS is
somewhat reduced. They do not have the potential to compute arbitrary condi-
tions and actions as is the case in the general ATN conception. The lettisoning of
this ATN feature was both motivated by the belief that humans could not have
such arbitrary computational powers and by the desire to keep ATN structure
simple to facilitate induction.

It is of interest to consider the class of languages LAS can generate and the
class of languages it can parse. Since the SPEAK program maps semantic
structures onto sentences, the complexity of the language which LAS can gener-
ate will depend on the complexity of the class of Semantic structures it is generat-
ing from. If these semantic structures have context-sensitive aspects, then the
generated language can likewise have context-sensitive aspects. With respect to
LAS as an accepter of languages, it will accept precisely the context-free lan-
guages. This is because, unlike Woods’ (1970) system, actions on arcs cannot
influence the results of conditions on arcs, and therefore they play no role in
determining whether a string is accepted or not. The ATN maps these sentences
onto semantic networks. One can think of some semantic interpreter of these
networks being called upon to provide context-sensitive recognition powers.
That is, the semantic interpreter might reject some of the output of the UNDER-
STAND process as semantically ill-formed.

In any case 1 would want to argue that a context-free grammar (with appro-
priate semantic constraints) describes a large portion of any natural language. For
instance, in English the only context-sensitive aspect of the syntax seems to be
the respectively transformation. Certainly all the language spoken and under-
stood by young children can be described by a context-free grammar. There may

Some aspects more parsimoniously represented by a context-sensitive gram-
mar, but parsimony of representation is a very different matter than requiring a
Context-sensitive grammar. Moreover, with respect to language learning it is my
opinion that parsimony favors a context-free grammar. This is because the rele-
vant object to which to apply the parsimony measure is the learning program and
not the grammar it outputs. It seems that a much more complex learning program
would be necessitated if we required that it output parsimonious-appearing
Erammars. It is also the case that these parsimonious-appearing grammars may
mot be particularly efficient as computational mediums for language comprehen-
Sion and generation. ' :

STRUCTURE OF THE LEARNING SITUATION

In describing a language learning program it is important to specify exactly
What that program can learn. T will do this for [AS by first describing the nature
of the learning problem that is posed. This will specify the sense in which LAS

‘an be said to leamn a language. Then, after describing LAS's learning
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mechanisms and an example learning history, I will attempt to define the class of
languages which the program can learn. '

Use of Semantic Information

LEARNMORE takes as its basic input pairs consisting of sentences apg
representations of their meaning. The source of the meaning representationg can
be considered to be pictures or other referents paired with the sentence, The
ATN grammar that it induces providesit with a map that enables it to 20 back
and forth between sentence and meaning. LAS is like a number of recent theories
(Hamburger & Wexler, 1975; Klein, 1973; Sikldssy, 1972) in its attempt tg
achieve a semantic characterization of the target language. This contrasts wigh
much of the earlier work (e.g., Feldman, 1970; Gold, 1967) and discussion of
language acquisition where the attempt was to induce a grammar that woyld
specify the syntactically well-formed strings in the language. The input to the
language leaming program under this syntactic ‘approach consists of strings of
words and indication of whether these strings are grammatical. It can be shown
(Anderson, 1976) that it is nor intrinsically easier to acquire a semantic charac-
terization than a syntactic characterization of the language. However, it does
seem that humans do find the semantic task easier for natural language. For
instance, consider a series of experiments performed by Moeser and Bregman

(1972, 1973). They contrasted the learning of artificial (but natural-like) lan-

guages under two conditions. In the no-referent condition their subjects only saw
well-formed strings of the language. In the referent condition they saw well-

formed strings plus pictures of the semantic referents of these strings. In either

case, the criterion test was for the subject to be able to detect which strings of the
language were well-formed—without the aid of any referent pictures. After

3,000 training trials in one experiment subjects in the no-referent condition were

almost at chance in the criterion test, whereas subjects in the referent condi-
tion were essentially perfect. In addition to the fact that it appears easier to learn
under the semantics approach than the syntax approach, there is the obvious fact
that a semantic characterization of the language is more useful—both from the
point of view of a human learner and from the point of view of developing a
language processing program. -

An interesting psychological question is how language learners emerge with

an ability to make judgments about the syntactic well-formedness of a sentence

when they are learning how to map sentences onto meanings and not onto
~ judgments of syntactic well-formedness. One possibility is that the learner will |

judge as ungrammatical those strings for which his semantic procedures fail to
compute semantic referents. Within LAS’s framework this would mean that it
would judge as ungrammatical those sentences which its ATN grammar cannot
map into HAM meaning representations. Of course, in LAS these are the sen-
tences which cannot be parsed through the ATN network.
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- Availability of Requisite Concepts

" A basic prerequisite of language learning for LAS is that it already have the
concepts that are referenced in the sentences from which it is to learn. LLAS does
not have any mechanisms for concept induction. This means that the user of the
LAS program must provide it with the requisite concepts before induction be-
gins. This could obviously be a considerable burden in applying the program to a
realistically large semantic domain. However, it should be pointed out that all
other learning programs that use the semantics approach also assume cognitive
predevelopment.

*, Itis becoming an accepted fact about human language acquisition that concep-
tual development is a prerequisite to grammar induction (e.g., Slobin, 1973).
What seems to determine the timing of the acquisition of many grammatical
structures such as pluralization is acquisition of the concept which these construc-
tions signal. Much of the research that passes under the title of child language.
acquisition might better be described as studied of conceptual development (e.g.,
Clark, 1973, 1975; Nelson, 1974). The case of child language acquisition is
quite complex because conceptual development and grammar acquisition are
intertwined. In contrast, in second language acquisition it seems reasonable to
assume that the language learner enters the learning situation with most of the
concepts that will be signaled in the to-be-learned language. This is more like the
LAS situation which requires a prespecification of the concepts. For this reason
LAS is more naturally thought of as a model of a second language learner
_ immersing himself in another lan guage community and learning from examples.

;I.exicalizan’on Is Somewhat Complete g
b - LAS, as currently developed, is a model of the acquisition of the grammar that
~ relates strings of words to network Tepresentations of their meanings. It is not g
mode] of how the meanings of individual words are acquired. Rather, it is as-
- " sumed that the words are already atfached to their meanings before grammar
induction begins. In terms of a HAM representation like Fig. 1 this means that
the W links already exist. Of course, like the assumption that conceptual de-
- Velopment s complete, this requirement that lexicalization be complete is not
ﬂ_l?s_{?lutc. There is no reason why LAS, having once leamned the language, cannot
Ple up the meaning of some words from context just as humans can. What is
| ™quired for grammar induction is just that lexicalization be complete for a
Substantial subset of the language.

The motivation for this assumption is psychological in that there is evidence

#quisition. In point of fact, it is relatively trivial to write a computer program
at will learn word meanings as well as grammar. This simply requires that the
P_mgram store with each word the set of concepts that were in the semantic

%¢¢ Anderson, 1977) that the process of lexicalization is distinct from grammar
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referent on cach occasion that the word was used in a sentence. By intersectiop of
a number of sets formed for a word on different occasions it is possible to identify
the concept corresponding to the word. Because this process of lexicalization g

- so trivial computationally its omission does not constitute a serious weakness of

the current LAS program.

HEURISTICS FOR LANGUAGE LEARNING

It can be shown (Anderson, 1976; Gold, 1967) that there does not exist any
algorithm that can guarantee **sufficiently rapid’ learning for most members of
large, formally-defined classes of languages (e.g., all finite state languages), By
“*sufficiently rapid’’ I mean successful leaming within some fixed time bound,
However, it is possible to propose procedures that will produce sufficiently rapid
learning of special language subclasses. Such procedures I refer to as heuristics
because their success depends on their being fiven an appropriate language to
learn. If given an inappropriate language these heuristics would take astronomj-
cally long to learn or completely fail to do so. I would argue that the languages
which may be learned by these heuristics are the natural languages and those
which are not learnable are not natural languages. This is similar to Chomsky’s
(1965) proposal that the language learner must contain constraints (universals of
languages) on the possible form of a language. LAS’s ability to rapidly learn
certain language subsets depends critically on a number of heuristic procedures, 1
will describe these critical assumptions about language before describing the
program in an actual induction situation. - ' o

The Graph Deformation Condition

ATNs are constructed such that there is a network for every phrase In an
immediate constituent analysis of a sentence. Therefore, it is critical to be able to
identify the phrase structure of a sentence in order to specify the hierarchy of

ATN networks that must process the sentence. LAS has a program, BRACK--

ET, which takes a sentence and a representation of the sentence’s meaning and
outputs a bracketing of the sentence which indicates its surface structure. The
functioning of BRACKET is possible because it assumes a constraint between
the surface structure of the sentence and the graph structure of the sentence’s

network representation. I have called this constraint the graph deformation con-

dition. This constraint is illustrated in Fig. 3.

Figure 3a gives the HAM network structure for the meanihg of the sentence
The girl hit the boy who liked the cake. In Fig. 3b we have the graph structure of

Fig. 3a deformed to provide a surface structure for the content words in the
sentence. The structure in Fig. 3b is a graph deformation of the structure of Fig.
3a in that while the spatial locations of the nodes have been rearranged, the nodes
still maintain their interconnections. That is, girl is still connected to node A
which is still connected to node B and so on. Note that the graph deformation in
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{a)

A
~w w]
GIRL HIT BOY LIKE CAKE
(b) E
{ {
B [ 0
} } ' |
A F J M P
SR } } | ¢
THE GIRL HIT THE BOY WHO LIKED THE CAKE
(c)
o L
o
"B 0
f F P
THE GIRL LIKED THE BOY WHO HIT  THE  CAKE

FIG. 3 The HAM structure in (a) can be deformed to provide a surface structure for the content

ce in (b) but not for the sentence in (c).
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Fig. 3b does capture some of the surface structure of the sentence. For instance
girl, hit, and boy are organized together under one unit and liked and cake are
organized together as a modifier of boy. The structure in Fig. 3b does not specify
how non-meaning-bearing morphemes like the and who fit into the surface
“structure. This is an issue to which we will return shortly.

" The claim is that the surface structure interconnecting the content words of the
sentence can always be represented as a graph deformation of the underlying
semantic structure. This implies that certain word orders will be unacceptable
ways to express certain semantic intentions. As Fig. 3c illustrates, there is ng

. graph deformation of the semantic structure in Fig. 3a which will provide 3
surface structure for the sentence in Fig. 3c. No matter how this is attempted
some branches must cross. A surface structure is, by definition, a tree structure
without crossing branches. -

L R

BRACKET' s Computations 3

If the graph deformation condition is satisfied for a sentence, BRACKET can
identify the surface structure interconnecting the content words. The program is
called BRACKET because it indicates the levels of surface structure by levels of
bracketing. To appreciate informally the task performed by BRACKET consider
Fig. 4. Here we have represented the information provided to BRACKET. This
information is a picture semantic referent (actually a HAM network encoding of
the picture) and a sentence in an unknown grammar describing this picture. Note
that the words of the sentence are English. This is an attempt to recreate for the
reader the situation facing BRACKET. That is, BRACKET knows the meaning
of the words but not the grammar. Can you, the reader, guess a bracketing for the
string in Fig. 4 that will reflect its surface structure? In this case, I think the
bracketing is pretty obvious. Below I describe the nature of the computation
performed by BRACKET to produce this bracketing.

Figure 5a shows how LAS would represent this picture. There are three
objects in the picture, represented by the memory nodes, I, K, and R. Of [ itis

RED

O
CIRCLE SMALL SQUARE RED BELOW

FIG. 4 BRACKET receives as input an encoding of this picture and the string of words. R
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(a)

N AT

.. TRIANGLE LEFT-OF RIGHT-OF RED SQUARE BELOW ABOVE CIRCLE sMaLL

/NG

o R SQUARE BELOW CIRCLE sSMALL

{b)

E

(c) - {d)

A

./'
A/ \B

CIRCLE sMmALL SQUARE RED BELOwW

A B,

o

L

CIRCLE SMALL SQUARE RED BELOW

structure in (a). From this
n the same string of words.
F is the main proposition,

Prototype structure two surface structures, {c} and (d), can be imposed o
10e difference between (c) and (d) concerns whether Proposition C or

_rﬂflects an assumption that wil] be important in understanding the forthcoming
Wduction history: LAS has a single meaning corresponding to 3 symmetric
Pelational term such as above and below. 1 AS will represent the picture in Fig. 4
0 itself the same Way regardless of whether above or below was used in the

———
L T
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sentence. From the point of view of LAS the difference between these twg
sentences is purely syntactic. LAS will learn from examples that above takes the
logical subject first in a sentence whereas below takes the logical object firg,
This means that the program will learn to represent sentences with above ang
below identicaily. Thus, LAS’s learning program conveys upon the representa.
tional system an invariance under paraphrase which many (e.g., Anderson &
Bower, 1973; Norman, Rumelhart, & LNR Research Group, 1975; Schank,
1972) have thought to be a characteristic of human memory. _ ‘

From this semantic representation, BRACKET computes an intermediate
structure which is much simpler than the semantic structure but which preserves
enough distinctions to permit the surface structure of the sentence to be calcu-
lated. I have called this intermediate structure the prototype structure. It is
calculated by comparisons between the semantic referent and the sentence. These
comparisons determine what distinctions in the semantic referent are needed.
Only these will be preserved in the prototype?Strt?éture. The only nodes in the
semantic structure that are needed are those repfesenting (i) the proposition nodes
(A, B, C, E, and F), (ii) the individual nodes (I and K), and (iii) the words in the
sentence (red, square, below, circle, small). Figure 5b gives the prototype struc-
ture obtained by deleting all”other nodes except these and by only representirfg
the linkage between these critical nodes. Note that, although above is part of the
HAM structure, it is deleted in the prototype structure. Rather, below is the
relation term used in the sentence. In addition, the structure encoding the prop-
osition I is right-of the triangle is deleted from the prototype. This was not
mentioned in the to-be-bracketed sentence. This serves to illustrate an important
product of the calculation of prototype structure. The calculation can disam-
biguate those aspects of a complex referent that are relevant to the sentence at
hand. It will frequently be the case that a semantic referent will contain much
information irrelevant to the sentence. R

Having the prototype structure, LAS attempts to find some graph deformation
of it that will provide a tree structure connecting the content words of the
sentence. Figure 5¢ indicates one such graph deformation of the prototype sen-
tence if the main proposition is C. If the main proposition is specified, there is
always only one graph deformation of the prototype structure that will yield a
surface structure for the sentence. Note that all the links in Fig. 5b are main-
tained but have been spatially rearranged to provide a.tree structure for the
sentence. Note that the prototype structure is not specific with respect to which -
links are above, and which are right-of, which others. Although the prototype
structure in Fig. 5b is set forth in a particular spatial array the choice is arbitrary.
In contrast, the surface structure in Fig. Sc¢ does specify the spatial relations of
links. From Fig. Sc we may derive a bracketing of the sentence indicating its
surface structure—((circle small) (square red) below). The details of BRACK-
ET’s computations here are unnecessary. Suffice it to say that BRACKET
retrieves the graph structure uniquely specified by the requirement that (i) it be a
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' 'graph deformation of the prototype structure, (ii) it provide a surface structure for

the content words of the sentence string, and (iii) its top node be the main
proposition.
BRACKET needs to know more than Just the prototype structure to infer the
surface structure of the sentence. As shown by Figs. 5¢ and 5d, the same string
“of words can have the same prototype structure deformed nto more than a single

" surface structure. The difference between Fig. 5S¢ and 5d reflects a decision about

~which proposition is principal and which is subordinate. The structure in Fig. 5d
has F as the main proposition and might be translated into English as Circular is
the small thing that is below the red square. Therefore, BRACKET also needs

information as to what the main proposition is to be able to ﬁnambiguously

retrieve the surface structure of the sentence. The assumption that BRACKET is

_given the main proposition amounts, psychologically, to the claim that the

teacher can direct the leamer’s attention to what is being asserted in the sentence.
Thus, in Fig. Sc, the teacher would direct the learner to the picture of a red

- Square above a small circle. He would have to assume both that the learner

properly conceptualized the picture and aiso that the learner realized that the
aboveness relation was what was being asserted of the picture.

The assumption that the leamer can be told what is the main proposition seems

"'z_i bit strong. It is important to inquire, therefore, what the performance of the
- program would be like if it were not given information about the main proposi-
tion. The first thing to note is that the program could generally make a good

guess as to what the main proposition is. For instance, of the five propositions in
Fig. 5, only two——C and F—could be main propositions given the ordering of

the words in the main sentence.’ Second, C seems clearly to be the more natural
choice because it is the more central proposition. Usually, a few heuristics would
 Suffice to identify the correct main proposition. Moreover, even if the incorrect
_main proposition is occasionally'fc__hosen, this will not do enormous harm to the
- Detwork grammar induced. This will just introduce an additional possibility in

the network and not alter other parsing possibilities. This possibility will not be

_._Pﬂgmnnnatical. Its ““defect’” will be detected only in that the speech of LAS will

O¢casionally violate pragmatics about how to eXpress presupposed versus asserted

.?:i‘l_lff.lnnation. In conclusion, while the assumption about the availability of main

Proposition information is convenient, it is marginal to the successful perfor-
Mance of the LAS program, :

% "As the reader may verify, there is no surface structure for the word order in Fig. 5 that is a graph

formation of Fig. 5b and has A, B, or E as a main proposttion. Any attempt to make A B.or E the
Rode in a graph structure, while preserving the linkage in Fig. 5b, results in crossing of links -

®hich violages the requirement of a surface structure, Note that the acceptable propositions C and F

e on 5 path in Fig. 5b con'necting the first word cirefe and the last word below. In the general case,
' than two proposition nodes can be on the path connecting first and last content words. Only
Poposition nodes on this path can serve as main propositions in the surface structure.
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The Details of BRACKET s Output

So far, for purposes of exposition I have simplified the specification of
BRACKET’s output. Also, the example in Fig. 5 was particularly simple be.
cause there were no non-meaning-bearing words. Consider how BRACKET
would handle the sentence The man who robbed the bank has a bloody nose,
given as semantic referent the HAM structure in Fig. 1. (It is left as an €Xercige
for the reader to derive the sentence's prototype structure.) BRACKET would
provide the following bracketing:

((The () man (who robbed (the () bank (1)) had (a (bloody) nose )

The embedding of parentheses reflects the levels of the surface structure. The

highest level of bracketing involves three elements (The () man (who robbed (the

() bank ()))), had, and (a (bloody) nose ())). These correspond 1o the three -

elements in the main proposition X have Z ip Fig. 1. The organization that
BRACKET imposes on noun phrases wilul__-‘be discussed shortly. BRACKET
knows a phrase like The man who robbed the bank is a noun phrase because the
words in this expression are connected to a node, X, in the semantic structyre
which represents an object. It can tell X is an object rather than a relation because
of its position in the graph structure. The first noun phrase in this example
contains a relative clause, who robbed the bank. All embedded clauses arp
organized in a similar manner as the main clause—that is, with one element in
the bracketing for each element in the proposition expressed by the clause.
In this case, the relative clause expresses the proposition X rob Y. Therefore,
its level bracketing (who robbed (the () bank(})) contains one element to express
rob and a noun phrase, (the () bank ()), to express Y. It does not contain an

element for X, as X is already expressed in the higher level of bracketing in

which the relative clause is embedded.

Note that BRACKET induces a correspondence between each level of brack- -

eting and a single proposition. That is, each level of bracketing expresses one
proposition from the HAM network, and will be processed by a single ATN
network. Thus, the modularity of HAM propositions is directly contributing to
the modularity of the induced ATN networks.

The insertion of nonfunction words into the bracketing is a troublesome prob-
lem because there are no semantic features to indicate where they belong. Con-
sider the first word The in the example sentence above. It could have been placed

in the top level of bracketing or in the subexpression containing man. Currently,
all the function words to the left of a content word are placed at the same level as - )
the content word. The bracketing is closed immediately after this content word. )

Therefore, is is not placed in the noun-phrase bracketing. This heuristic seems to
work more often than not. However, there clearly are cases where it will not
work. Consider the sentence The boy who Jane spoke to was deaf. The current
BRACKET program would return this as ((The () boy (who Jane spoke)) to was
deaf). That is, it would not identify 7o as in the relative clause. Similarly,

ol
At
prt
st
et

far
e

th

5€
th
0

Pt

fi.
(




INDUCTION OF AUGMENTED TRANSITION NETWORKS 141

" non-meaning-bearing suffixes like gender would not be retrieved as part of the
_noun by this heuristic. However, there may be a clue to make bracketing appro-

priate in these cases. There tends to be a pause after morphemes like 0. Perhaps
such pause structures could be called upon to help the BRACKET program
decide how to insert the non-meaning-bearing morphemes into the bracketing.

It is also interesting to note that young children when initially learning a
language, seem not to pay attention to non-meaning-bearing morphemes (func-
tion words) and do not generate these in their speech. Thus, young children

manage to avoid the problem of deciding to what constituents non-meaning-
bearing morphemes belong.

The output of the BRACKET program is used to dictate the embedding of
ATN networks in the grammar. For instance, consider the above bracketing of
the network. One ATN network will be built to process the elements at each
level of bracketing. For instance, a START network will be built to process the
sentence at the top level of bracketing. The first element in the highest level of
the bracketing is (The () man (who robbed (the () bank ()))). An arc will be built
to process this element in the START network. Because it is a bracketed subex-
pression a subnetwork will be built to process the noun phrase. The arc in the
START network will contain a push to this noun phrase subnetwork. The
START network will also contain an arc to process the single word has. It will
finally contain an arc with a push to a subnetwork to process the subexpression (a
(bloody) nose ()).

Discontinuous Elements

" There is a class of sentences found in natural language which systematically
violate the graph deformation condition. These are sentences with discontinuous
elements. Figure 6 illustrates the clearest example of this in English—the respec-
tively sentence. Figure 6a shows the HAM semantic structure for the sentence
John and Bill borrowed and returned, respectively, the lawnmower. Figure 6b
shows that there is no way to deform this semantic structure to achieve a surface
Structure for the sentence. Discontinuous elements are rare in English. Some of
the few other discontinuous elements, like up in John called the man up, do not
strictly violate the graph deformation condition because they are not meaning
bearing. However, in other languages with freer word order it is possible to find
More Instances of content words dislocated. Apparently, Latin is a good example
of this. For instance, in Latin there is a possible construction that would be
reflected by the English word order: The girl who the boys best saw ran away
where best, occurring within the relative clause, modifies girl, the subject of the
"}ain clause. LAS cannot learn any part of a natural language that involves such
discontinuous elements. Fortunately such constructions, while clearly present,
are not dominant even in languages like Latin. As a psychologist, I would want
10 claim that they are not the sort of constructions that are easy to comprehend or

A are easily acquired. This certainly seems the case for the respectively trans-
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(a)
/
A
| w
JOHN BILL BORROW RETURN LAWNMOWER
{b)

O
' / .4
A D G H i
| . l '

JOHN AND BILL BORROWED AND RETURNED, RESPECTIVELY, THE LAWNMOWER

FIG. 6 There is no deformation of the HAM semantic structure in (a) that will provide a surface

structure for the sentence in (b).

formation in English. While additional learning mechanisms must be brought to
bear to learn discontinuous elements, the LAS mechanism will go a long way
toward learning a natural language. Moreover, if it is shown that discontinuous

elements are hard to learn, this would be a significant confirmation of LAS’s

reliance on the graph-deformation condition.

CESS

tion. Also it requires a specification of the word—concept connections that are
encoded in the semantic network. It has knowledge of the graph-deformation

condition as a relation between word order and meaning structure. This knowl-

edge of the graph-deformation condition is embodied in the computation of
BRACKET. As argued earlier (p. 133), providing the word—concept connections
is a trivial matter; however, providing knowledge of the graph deformation is a

Note that BRACKET itself does not do any learning. Its function is to preprd- o
the sentence string into a form more appropriate for language induction. It o
requires as input a string, a semantic referent, and an indication of main proposi- -
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very significant catégory of advance knowledge. A claim of the LAS program is
- that acquisition of natural languages (but not all languages) is greatly facilitated
'_-by use of this advance knowledge. A psychological claim would be that the

graph-deformation condition serves as an innate universal of the variety post-

~ ulated by Chomsky.

- Assumptions about Noun Phrase Structure

As the earlier bracketing illustrates, LAS has built into it a number of assump-
tions about the bracketing of noun phrases. First, it assumes that all languages
will have noun phrase syntactic constructions that serve the semantic function of
referrinig to objects. Second, it assumes that noun phrases in all languages will
'obey an abstract structure indicated by the following rewrite rules:

- NP — morphemes (MOD) nour morphemes (MOD)
MOD — proposition (MOD)

The obligatory elements in these rewrite rules are italicized. These rules indi-

cate that noun phrases consist, optionally, of some initial non-meaning-bearing
morphemes, followed by an optional embedded list of prepositional modifiers,
followed by an obligatory noun, followed by optional postpositional morphemes,

followed by an optional embedded list of postpositional modifiers. The rewrite

rule for MOD indicates that modifiers consist of the expression of some proposi-
tion modifying the topic, plus an optional right-embedding of another MOD.

_This information about noun phrase structure is incorporated into BRACKET

and is reflected by the embedding it imposes on the noun phrase.

.- These principles for structuring noun phrases might not seem to have any

implications for the structure of language. However they do, in that they assert
that there is a noun class of words from which it is obligatory to select a member
for every noun phrase. Logically; there need not be this obligatory word class.

..One could imagine a language in which one could refer to a soft red pillow by

'ﬁily subset of these three terms, inéluding the soft, the red, the soft red, as well as

fhe pillow, the soft pillow, the red pillow, and the soft red pillow. However, all

languages seem to have an obligatory noun class for referring to objects. The
ltems in this obligatory class tend to be the functionally significant terms for

. classifying objects. For instance, little can be predicted about an object from the

fact that it is soft or that it is red, but much follows from the fact that it is a

pillow,

What serves as a noun is not hard and fast, but will change with context. Thus,
wh
Ina geometry class. Similarly, while red is usually an adjective it can serve as a

houn in Las Vegas.

:. Note that the noun phrase grammar is built around this obligatory noun.

orphemes and modifiers which occur before the noun do not occur after the

oun or vice versa. For this reason identifying the noun becomes the key to

Unlocking the structure of noun phrases. LAS is given information as to what the

_ile square is an adjective when referring to picture frames, it becomes a noun
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functionally significant classifications are in its environment—that is, what cop.
cepts will serve as nouns. This is supposed to reflect the outcome of COgnitive
predevelopment which we do not pretend to model. These cognitive Prerequisiteg
are critical because with this information about the noun class, LAS cap appro.
priately structure its noun phrase grammar. This is another contributio of
semantics to language acquisiton.

Some colleagues have claimed that providing BRACKET with this much
information about noun phrase structure is a form of “*cheating”’—that the pro-
gram should leam this information. If one’s goal is to produce a program thay can
learn natural languages and if natural languages all have this structure, theq this
- criticism is clearly not valid. Rather one should feel compelled to use any

universals of natural language to improve the performance of the program. Qg
the other hand, if one’s goal is to produce an accurate psychological model, the
issue is not so clear. Whether one wants to incorporate this knowledge into the
program depends on whether one wants Yo”endorse the claim that language

leamners come to a learning situation with this knowledge about noun phrase
structure. :

Expansion of Word C lasses within a Network

LAS has a procedure for expanding the members of word classes on an ATN

arc in a way that serves to permit quite powerful generalizations. I will illustrate
this procedure with a particularly simple example. Suppose LAS was given the
sentence, John kicked Mary, along with a HAM network representation of its

meaning. Assuming that the three words were all bracketed together, LAS would
construct the following network: :

START —NL, g €VI o> eN2 orop

where N1, VI, and N2 are word classes created by LAS that initially just
contained John, kicked, and Mary, respectively. The syntactic conditions on
these arcs are specifications that the words be in these word classes. The seman-
tic actions associated with the three arcs will be to make the concept correspond
to the first element subject, the second concept relation, and the third concept the
object of the proposition. These actions are placed on the arcs as direct encodings
of the role of John, kicked, and Mary in the semantic referent. Suppose the next
sentence LAS encounters is Fred amused Jane. This cannot be parsed through
the network because Fred, amused, and Jane are not in the word classes. How-
ever, LAS could parse this sentence if the word classes N1, V1, and N2 were
expanded to include these terms. This is what in fact LAS will do. Note that this
is a powerful principle for generalization. In this example LAS generalizes from
the acceptability of two sentences to a grammar that will process eight (either of
two words in each of the three positions—2?% = 8),

\\
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LAS will parse an expression via an existing path through an ATN network,
by just expanding the word classes on the path, if one condition is satisfied. This
condition is that the semantic actions associated with the elements in the expres-
sion are identical to the sequence of semantic actions associated with the network
arcs. In the above example this condition is satisfied: the concept corresponding
to the first word Fred is made subject, the concept corresponding to the second
word amused is made relation, and the concept corresponding to the third word
Mary is made object. This condition on expanding word classes serves to avoid
many overgeneralizations that would otherwise occur. For instance, this prevents
the word classes in the above network from being expanded to incorporate the
three-word sequence Alice ran quickly, because ran is not a relation and quickly
is not an object. Another path through the network would have to be built to
incorporate this possibility. LLAS can tell that ran is not a relation in this sentence
by inspecting the network referent that comes with this sentence. In that referent,
the concept connected to ran would be the predicate of the referent, not the
relational term. _

Note that information about syntactic word class is something that LAS
learns. Word classes are created whenever an arc is built for processing a word,
These word classes are expanded when a new expression is merged into the
network paths that contain these word classes.

Even with semantic editing some overgeneralization does occur in the forma-
tion of word classes. Such overgeneralizations are particularly likely to occur in
highly inflected languages. Consider the noun phrase network that LAS would
construct after hearing the two nominative Latin constructions—agricola longa (a
tall farmer) and legatus bonus (a good lieutenant): -

eAl

Np—ENL. Ny €Al s1op

P

where N1 would contain agricola"a’hd legatus and A1 would contain longa and
bonus. This grammar would generate the noun phrases agricola bonus and
legatus longa which are both incorrect. The noun agricola (farmer) is feminine
and requires a feminine adjective inflection (i.e., bona). Similarly, legatus
(Lieutenant) is masculine and requires a masculine inflection (1.e., longus).
Clearly, there can be no semantic basis for avoiding this overgeneralization.
From the point of view of a psychological evaluation of LAS it is comforting to
f0te that human language learners also fall prey to such morphemic over-
generalizations (see Slobin, 1971). : '

Since the program overgeneralizes it must be given mechanisms that will
enable it to recover from the overgeneralizations once they have occurred. These
e relatively simple to form (see Klein, 1973) if the learner is given explicit
"€gative information about his mistakes. However, there is psychological evi-
dence (see Braine, 1971; Brown, 1973) that human language learners get little
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negative feedback and make little use of what negative feedback they get. There.
fore, LAS has not been given such error recovery mechanisms. Developmey, of
some psychologicaily plausible mechanisms for error IECOVery remains g futyge
- goal for the program.

- Merging of Networks
Consider the network grammars that LAS would construct to parse SVQ
sentences like: '

The big girl hit the boy.
The dog chases the young cat.
ete.

The START network for the grammar would have the following form:

START —~EL.g) €Vl gy _NP2_gpp

Note that there is a push to a NP1 network to parse subject noun phrases and 5
push to a NP2 network to parse object noun phrases. One would like LAS ¢
realize that NP1 and NP2 are really instances of the same network, LAS is
constantly checking to see whether phrases that it is parsing by one network
could be parsed by another network. If it finds a phrase that can be parsed by two
networks, it will use this fact as an indication that the two networks might be
capable of merging into a single network. LAS will inspect the amount of
overlap between the two networks. If there is sufficient overlap it will merge the
networks. LAS derives much of its power because of its principles for merging
ATN networks together. This is how it can discover recursive rules—when it
discovers that one network can call itself. We will see a number of examples of
network merging in the next section. - ' '
These principles for merging networks could conceivably lead LAS to over-
generalize in learning a language. Suppose it were the case that some grammati-
cal construction could be processed equally well by either of two ATN gram-
mars. For instance, suppose a particular noun phrase could be parsed by either
subject or object noun phrase grammars. This would be a stimulus for merging of
the two grammars. However, it might not be the case that all the constructions
permitted by one network were permitted by the other. For instance, not all the
noun phrase constructions legal in subject position might be legal in object

position. Then the grammar will have overgeneralized in merging the two net-

works.

CASE HISTORY OF LANGUAGE INDUCTION

In the préceding section a number of principles have been identified for lan- '_

guage induction. I would now like to illustrate how they will work in combina-

tion to induce a grammar. We will observe the program as it induces the subset of
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TABLE 2
" The English Subset to be Learned

Grammar
S — NP PRED
t NP —  DET (ADIP) Shape (CLAUSE)
ADIP —  {(Size) (Color)
PRED is ADJ

L

is Relation NP
CLAUSE . — which PRED

ADIJ — Size
— Color
DBET — a, the
SHAPE — square, circle
. RELATION — above, below, left-of. right-of
SIZE — lurge, small
COLOR — red, blue

Sentences studied
1. The red square is above the red circle.
The square is below the circle.
A large blue square is left-of the small red square.
A small square is right-of a large square,
The square which is above the red circle is red.
The circle which is red is small.
The circle which is night-of the circle is biue.
. The circle which is blue is large.
The square is abovg the circle which is left-of the blue circle.
The blue squire’ is right-of the square which is below the
circle. ’
The circle which is small is right-of the circle which is large.

S N A

—

—
—

,,_Ei’lg;lish defined in Table 2. This table describes a rather circumscribed semantic

domain. This is a two-dimensional world of geometric objects which vary in the

'Pmpemes of size and color and which may bear various spatial relations one to
.'.ther LAS has learned a number of natural and artificial languages, but all

V¢ concerned this specific semantic domain. I think it is important to have a
:Well defined subset of language to leamn. It is impossible to take as one’s task the
_le"‘mlng of an entire natural language. However, one can set as a goal the

ing of a subset of a natural language adequate to completely describe a

leal'ﬂlng efforts (e.g., Klein, 1973; Siklossy, 1972) is that they have taken on the

cumlmscrlbed semantic domain. The problem with some of the other language
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learning of ill-defined chunks of the language. They present a histo

Iy of the Fig- 7-
program learning a sequence of sentences, making some generalizations and they Compa
the program quits. It is very difficult on the basis of such histories to assesg what uces t
aspects of the language the program can handle, let alone what aspects it canngy, arograr
Hamburger and Wexler (1975) have also made this criticism. .entenc

LAS was presented with the 11 sentences given at the bottom of Table 2 in the tOp
that order. I will go through these sentences one by one and discuss how LAS .ubexp
evolves an augmented transition network grammar to parse these sentenceg. push

' . lmform
Sentence | : _ 4 enten:
Figure 7 illustrates LLAS’s processing of the first sentence. LAS is presented Notc
with the sentence The red square is above the red circle, alon g with a picture of 5 inform:
red square above a red circle which is analyzed into the HAM structure showp in phrase
o . Fig. 7
: SN : LAS c
RED The
COP!
/ memkb
this ar
becau:
the br:
arc is
semar.
prope
netw¢
semai
propc
W Th=
: (REL
RED SQUARE ABOVE CIRCLE  RED condi
no ser
U CTHE  (RLD)  SQUARE ()) IS ABOVE (THE (RED) CIRCLE (1)) ' 1 {'?ICO[E
.‘:'T.-\RT.—‘\IE-.- 51—LEOFL gy €RML _ g5 NPX _ orop - iconcii
wp DEL gy ADIP o eNOUN_ i CLAUSE . _ NP
px —ZPELL oy ADJP o sNOUNX_ .. CLAUSEX oo o : i sube-
ADTP —2E0LOR orip - impe
o ' Thus
COLOR = RLD RAL = ABOVE NOUNX = CIRCLE DETX = THE
COPL = I8 NOUN = SQUARE  DET = Tl
_ A
FIG. 7" Upon receiving the semantic referent at the top paired with the sentence, LAS con- sener.
structed the ATN illustrated at the bottom. label-
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Fig. 7. (Actually, the program is presented with the HAM structure directly.)
Comparing the sentence to the HAM structure, the BRACKET program pro-
duces the bracketing of the sentence illustrated in Fig. 7. The LEARNMORE
program will build a level of networks to reflect every level of bracketing in the

sentence. The START network, also illustrated in Fig. 7, was set up to encode

the top level of the sentence. The first expression in the sentence is a bracketed
subexpression, and therefore the first arc in the START network consists of a
push to a NP network to parse the subexpression.? On this arc is stored the

‘information that the referent of NP serves the semantic role of subject of the

sentence, _ _

Note that the semantic category subject comes as a direct encoding of the
information in the network referent. That is, the node referred to by the noun
phrase is connected to the main proposition by an S link. The semantic referent in
Fig. 7 is thought of as being the direct output of perceptual processes. Thus,
LAS embodies the claim that the semantic categories which are used in language
are directly derived from the categories of perception.

The next item in the main level of bracketing is the word is. A word class,
COP1, is set up to hold this item. On the arc a condition that the word be a
member of the COP1 word class is placed. There is no semantic action put on

this arc. LAS determines that there is no action associated with this word class

because is is a word not connected to any concept in memory. The third item in
the bracketing is above. A word class RAL1 is set up to contain this word. On the

_arc is put a condition that determines if the word is in the RA] word class, and a
~semantic action that builds the meaning of this word as the relation in the main
" proposition. The fourth and final item is a bracketed subexpression. A push to
‘metwork NPX is put on this arc to parse this bracketed subexpression. The

Semantic action put on the arc makes the referent of NPX the object of the main
proposition. . IS

. The network NP is set up, to parse the first bracketed subexpression (THE

(RED) SQUARE()). For the first item, e, a word class DET is set up. The

'_Co_ndition on the first arc is that the word be out of the DET word class. There is

N0 semantic action associated with this arc. On the second arc a push is made to
the ADJP network to handle the bracketed prepositional modifier. A word class,
FOUN , is set up to handle the next item, square. This word class is made the
condition of the third arc and the semantic action is to predicate of the topic of the
NP network that is is asquare. Note that the last expression in the noun phrase
_Sllbexpression is a bracketing of the null element. BRACKET automatically

mposes the bracketing for postpositional modifiers even when there are none. -
_.Thus, a final arc is built with an optional push to a CLAUSE network to parse

2Aclually, the program did not generate labels like NP in building up the network. Rather, it

8eherated nonsense labels. However, I have taken the liberty of replacing the program’s nonsense

_Iabels by labels I thought were more mnemonic.
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postpositional modifiers. The CLAUSE network will not be built unti] the fify
sentence that contains the first relative clause.

The NPX network for the object position is built up much in the manner of the
NP network. Note that LAS has built up two redundant networks for noup
phrases. However, it has no way to know this yet. LAS has only placed SqQuare
in the NOUN word class which occurs in NP and only circle in the NOUNX
which appears in the NPX wordclass. It has no basis for assuming yet that these ’
two word classes will turn out to have the same members. It may be that worjg
that appear in the subject position take a different morphological inflection thag
words that appear in the object position. LAS will only decide that NOUN and
NOUNX are identical when it has expanded these word classes to the point
where they have common members. At this point it will also decide to merge Np
and NPX networks.

Note that both the NP and the NPX networks push to the same adjective
phrase network, ADJP. A single ADJP network is used because, in building
NPX, LAS detected that the ADJP network which it had built for NP could
parse the expression (RED) which occurred in the expression that NPX was buil

-to parse. The reason why just one adjective phrase network was built, but two
noun phrase networks, is that the same word, red, was used in both adjective
phrases, but two different words square and circle in the noun phrases. LAS can
guess in the case of the adjectives, but not yet in the case of nouns, that they take
the same inflections in subject and object position.

Figure 7 illustrates all the network structure and word class information built
up after the first setnence. This would be adequate for the program to com-
prehend that sentence or for the SPEAK program to generate it. However, the
grammar, after this first sentence, can handle virtually nothing else. This is not
surprising since one sentence offers little basis for comparison and generaliza-
tion. The one generalization contained in the grammar of Figure 7 is that the
prepositional modifiers are optional. Thus, it would successfully parse The
square is above the circle. ’

Sentence 2

Figure 8 summarizes the processing of the next four sentences. The second
sentence, after comparison with its semantic referent, was returned in the brack-
eted form shown in Fig. 8a. This sentence involves use of the relation below.

- Recall that above and below are attached to the same concept in memory (e.g.,
see Fig. 5a). The difference between the two is whether the subject or object of
the relation comes first. In the case of below the object comes first. LAS learns
this fact about below versus agbove simply by inspecting the order of the noun
phrases in the sentence and comparing this with the semantic referent, That is,
the noun phrase which it determines as describing the object (by inspecting the
arc labels in the semantic network) occurs first in this sentence using below. To
parse this sentence LAS needs a path through the START network to handle
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(a)
(( THE () SQUARE ()) 1S BELOW [ TUE (; CIRGLE r3))
raRT — NP e gg_ €COP2 _ oo eRBL_ o NPX_ oo
|_ AP ([ COPY o5 ¢RAL_ oo NPY oo
coP2 = 1$ RE1 = BELOW
(b) ({ A (LARGE (BLUE)) SQUARE ()) IS LEFT-OF {(THE (SMALL (RED)T SQUARL (3))
apgpS2L1ZE g AP grop
£COLOR  ¢rop
START P gq SCOF2 _ ge  RBL g5 NP wrgp
NP oy COPL_ oy sRAL oo NP oo

RBl1 = BELOW, LCFT-0OF SIZE = LARGE, SMALL COLOR = RiD, [ILUE
DT = A, THE SIAPE = SQUARL, CIRCLE

(o) S —

(0 A [SMALLY SQUARE () 5 RIGHT-QF (A [FLARGED  CIRSLE 7103
ADJP eS]ZE Al ADJP——-STOP
I——” bt s TOP
cCOLOR STOP
RAl = ABOVE, RIGHT-OF
N {{THE () SQUARE {WHICH 15 ABGVE VTHE {RED) CIRCLL (ja)p1 Is . REDNY
1 - - -
START NP - _ECOP3 oo DT oo
NP_ o, €COP2 .. eRBL_ . NS crop
f,"‘:" )
b o - M
NP - 512 eCOP] 52 RAI ¢3 xP — STOP
- N . .
) CLAEJSI‘.—EI—Q—I:’-]—a‘-l—Clﬂ-CE—u-L-B&—-C'S—L-STOP

COP3 = I8 ADJ1 = RED RELT = WHICH COPd = |5 RAZ = ABOVE

FIG.8 Parts (a) through (d) iltustrate the changes to the ATN as a consequence of the processing

of Sentences (2) through (5) from Table 2.

“object noun phrase first and subject noun phrase second. This is the opposite of

the path built through the network for Sentence 1. A second path, illustrated in

- Fig. 8a, is built through the START network to accommodate this possibility.

Note that the first arc in the path involves a push to the NP network set up to
handle the first sentence. The old NP network is referenced, rather than a new

. One built, because that network can already parse the expression (The () square
0) The NOUN word class in NP contains square. Note that NP was chosen and
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not NPX because NOUNX in NPX does not contain square. The second arc jp,
the new START network path references a word class, COP?2, that contains ;5
The word class on the third arc, RBI, is set up to hold below. Finally, the fourty
arc contains a push to a network, NPX. Network NPX was set up for sentence |
It is referenced in the new path through the network, because LAS has deter.
mined that NPX will handle the second noun phrase. The NOUNX word Cl;iSs
in NPX contains the word circle. - S

Sentence 3

Figure 8b illustrates some significant aspects of the processing of the third
sentence. This sentence involves use of the relational term, left-of, which assigns
the first noun phrase to the semantic role of object—just as does below. Note that
the top level of the bracketed sentence consists of (a) a bracketed subexpressiop

serving the semantic role of object; (b) a non-meaning-bearing morpheme; (¢) 3 |

word indicating relation; and (d) a bracketed subexpression serving the semantic
role of subject. This is just the sequence of items on the ‘upper path of the
START network. Therefore, according to the principles articulated earlier for .
induction of word classes (p. 144), it attempts to parse this sentence by the path
already existing through the network. This requires that it expand the RB1 word
class to include left-of. ' S
The first noun phrase, (A (large blue)) square (), can be parsed by the existing
NP network (see Fig. 7), except that the DET word class (first arc of NP) must
be expanded to include a. This noun phrase requires a push to the ADJP network
to parse (large (blue)). This cannot be parsed by the existing ADJP network (see’
Fig. 7). As indicated in Fig. 8b, a second path is built through the ADJP
network. The first arc on this path references the word class SIZE and parses
large. The second arc contains a push to another network, ADJPX, to parse
blue. As we will see momentarily, ADJPX is repalced by ADJP. S
The second noun phrase should be parsed by NPX (see Fig. 7). However, it
cannot do this without enlarging the NOUNX word class to include square. In
contrast. the NP network will already successfully parse a noun phrase with
square. This state of affairs is a stimulus for LAS to attempt to merge the NP and

NPX networks. This it does, replacing NPX wherever it occurs in the grammar | t

by NP. Another outcome of this merger is that the SHAPE word class is )
expanded to contain circle (from word class NOUNX in network NPX) as w_c_ll
as square. LAS has made a significant generalization here—namely, that the

grammar that will handle first position noun phrases will also handle second -
position noun phrases. L

The subexpression (small (red)) in the second noun phrase is to be handled by_ X

the ADJP noun phrase. The upper path through the ADJP network will handle ~

this cxpression except the SIZE word class must be expanded to include smaﬂ
The ADJP network wiil push to the ADJPX network (set up in parsing the first
noun phrase of this sentence) to parse (red). This will require expanding the wo;_jd
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class in the ADJPX network which so far only includes blue. In contrast, there is
apath through the ADJP network that will parse this expression with no changes.
Thas is the stimulus to merge the ADJPX and ADJP networks. Thus, as can be
seen in Fig. 8b, the ADJP network involves a push to itself. Another conse-
quence of the merging is that the COLOR word class is expanded to include blue

as well as red,

Sentence 4

The effects of processing the fourth sentence are shown in Fig. 8c. This
sentence involves the relational term, right-of, which takes subject noun phrase
first. This can be handled by the lower path through the START network by
expanding the RA1 word class to include right-of. Note that both noun phrases
in this sentence contain adjectives of size. The first arc in the upper path through
the ADJP network can parse these size adjectives, but that path expects a brack-
eted subexpression following the size terms. Therefore, a NIL arc is added to the
ADJP network in Fig. 8c to allow size adjectives without subsequent color
adjectives. ,

It is worth emphasizing how much generalization has occurred in formation of
the grammar after just four sentences. LAS has generalized a grammar that will
handle 5184 sentences. Such. generalizations are clearly required if LAS is going
to go from a finite corpus to a grammar that covers many more sentences than it
studied. Of course, just how rapid the generalizations are will depend on the
€Xact sentences presented. These sentences were chosen to provide rather rapid

P
Sentence 5

' The processing of the fifth sentence is illustrated in Fig. 8d. The highest level
of bracketing of this sentence consists of a bracketed subexpression, a non-

‘meaning-bearing morpheme, and an adjective. This is a new type of top-level
_Structure. Therefore, an additional path is introduced through the START net-

work. It is determined that the NP network can parse the first bracketed subex-
Pression. Therefore, 2 push is made to the NP network on the first arc in this new
path. '
- This noun phrase contains a rélative clause—(which is above (the (red) circle
O)). This is the first time there has been a nonnull expression to parse in the
Postpositional CLAUSE. Figure 8d shows the path built through the CLAUSE
Betwork to accommodate this possibility. Note that in the CLAUSE network a
Push has been made to NP to parse (the (red) circle ()). Thus, we have the first
recursive structure in the network with NP calling CLAUSE which calls NP. On
the basis of one right embedding, LAS has made the assumption that infinitely
Many right-embeddings are possible. As a consequence the grammar has been
Eeneralized to the point where it will handle an infinite number of sentences.
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NP(5) eCOP3(5) eADJ1{3}
STaRT 57 58 - STOP
NPz cCOP2(2} eRBL1(2) NP({3)
54 55 -56 STOP
NPPi) «COPL(1} £RALI(1) NP(3)
= 4] - 512 53" 5TOP
" =DET(3}) ADJP{1) gNOUN(1) CLAUSE(1)
\P N NZ N3 = STOP
£SIZE(3) ADJP(3)
ADJP —- i1 STOP
o NIL(4)
NECOLORTL) STOP
STOP )
. eREL3Y) cCOPB(Y) eRBZ(9) NP(3)
CLAUSE -G - 7 -8 = STOP
ZREL2(&) £ COPS (6} cADTZ(6)
! ~ (3 ~ STOP
ZRELI{5] e COP4{5) eRAZ(5) NP(5)
c1 -~ (7 - (3 STOP
COP1.COP2,C0P3,C0P4,COPS COPE = [ .

ADJ1, ADJZ = SMALL,LARGE RED,BLUE = °
RAL, RAZ = ABOVE, RIGHT-OF -
RR1,RE2 = BELOW,LEFT=QF NS
DET = A, THE

NOUN = SQUARE, CIRCLE

COLOR = RED,BLUE

REL ,REL2,REL3 = WHICH

-
-

FIG. 9 The network induced by LAS I after studying the 11 English sentences in Table 2 ’

Sentences 6—11

The remaining sentences cause further additions and generalizations of the
variety that have been discussed with respect to the first five sentences. Figure 9
shows the final network grammar induced, a network sufficient to handle all the
sentences that can be generated by the grammar in Table 2. The arcs in Fig. 9are
labeled with the number of the sentence that first caused them té be created.

In the Introduction it was asserted that a goal was to have a program that
induced a grammar in a form that could be used for comprehension and genera-
tion. A number of tests of the grammar in Fig. 9 have been performed on this
score. The grammar in Fig. 9 has been used to generate paraphrases. Also a
French ATN grammar was leamed by similar means. The two grammars were

used to translate back and forth between the two languages. For more detail

about these paraphrase and translation tests, see Anderson ( 1977).

SUMMARY EVALUATION OF LAS

The preceding example shows that LAS can leam portions of the grammar ofa
natural language. As mentioned above, LAS has leamed a French subset as well
as an English subset. By ‘‘learn a grammar”’ I mean that LAS induces three

things: (a) the word classes used in the language; (b) a context-free grammar
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specifying the permissible sequences of word classes; and (c) a set of rules
mapping between phrases in a sentence and propositions in the semantic referent.
It embodies this knowledge in an ATN grammar that can be used both for
sentence comprehension and sentence generation.

It remains to be defined what the class of languages is that LAS can learn. I
think that it can, given the appropriate leaming circumstances, leamn any
context-free language. However, this answer will prove to be less than satisfac-
tory for two reasons. First, the leaming program is sufficiently complex to make
it impossible to provide anything like a formal proof of the conjecture. Second,
this characterization of learning ability is purely syntactic, whereas we want
some characterization that also takes semantics into account. That 1s, we would
like to know what relations the program can learn between sentence and semantic
referent.

My conjecture is that, given any context-free language, one could design a
presentation sequence and semantics such that LAS could fearn that language. 1
will describe the characteristics of the presentation sequence and semantics
needed to achieve language learnability. The presentation sequence must, obvi-
ously, consist of sentences and their semantic referents. There must be no gram-
matical mistakes in this sequence, and the sequence must give examples of all the
grammatical structures in the language. It would be easy enough to construct
such a presentation sequence.

The semantics for the to-be-learned language would have to be constructed
with care. There must be no syntactic dependencies which do not have seman-
tic correlates. Otherwise, the overgeneralizations will occur that were dis-
cussed earlier (p. 145). The semantics associated with natural languages largely
but not totally satisfies this requirement. Also the semantics must not associate
the same interpretation with identical strings generated from distinct syntactic
units (see discussion on page 146). Otherwise, LAS will incorrectly merge the
grammars for these two syntactic units. Another requirement is that the seman-
tiCS_ will have to satisfy the graph-deformation condition. The semantics must
also be constructed so that there are no non-meaning-bearing morphemes which
‘annot be correctly placed in the bracketing by LAS’s heuristics. Finally, LAS
requires that noun phrases have a certain syntactic structure. This will be satis-
fied if the semantics identify as noun phrases only those objects that have the
Structure LAS expects of noun phrases.

- T'think it would be possible to construct, for any context-free language, a
S¢mantics that satisfies these requirements. As noted many times, these require-
ments are largely but not completely satisfied by the semantics associated with-
Ratural language. This is one way that LAS is an incorrect model of natural
]a“gUage learning—it assumes more of the semantics of natural language than
they provide, Second, LAS is inadequate because there are a few aspects of
Matural language (such as the respectively construction) that cannot be captured
With a context-free grammar. The weakness of LAS on both of these scores is
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sufficiently minor that I am of the opinion that LAS-like learning mechanisms,
with the addition of some correcting procedures, could serve as the basis for
language learning.
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