
1. Introduction

Allen Newell, typically a cheery and optimistic man, often
expressed frustration over the state of progress in cognitive
science. He would point to such things as the “schools” of
thought, the changes in fashion, the dominance of contro-
versies, and the cyclical nature of theories. One of the prob-
lems he saw was that the field had become too focused on
specific issues and had lost sight of the big picture needed
to understand the human mind. He advocated a number of
remedies for this problem. Twice, Newell (1980; 1990) of-
fered slightly different sets of 13 criteria on the human
mind, with the idea (more clearly stated in 1990) that the
field would make progress if it tried to address all of these
criteria. Table 1 gives the first 12 criteria from his 1980 list,
which were basically restated in the 1990 list. Although the
individual criteria may vary in their scope and in how com-
pelling they are, none are trivial.

These criteria are functional constraints on the cognitive
architecture. The first nine reflect things that the architec-
ture must achieve to implement human intellectual capac-
ity, and the last three reflect constraints on how these func-
tions are to be achieved. As such, they do not reflect
everything that one should ask of a cognitive theory. For ex-
ample, it is imaginable that one could have a system that sat-
isfied all of these criteria and still did not correspond to the
human mind. Thus, foremost among the additional criteria

that a cognitive theory must satisfy is that it has to corre-
spond to the details of human cognition. In addition to be-
havioral adequacy, we emphasize that the theory be capa-
ble of practical applications in domains like education or
therapy. Nonetheless, while the criteria on this list are not
everything that one might ask of a full theory of human cog-
nition, they certainly are enough to avoid theoretical my-
opia.

While Newell certainly was aware of the importance of
having theories reproduce the critical nuances of particular
experiments, he did express frustration that functionality
did not get the attention it deserved in psychology. For in-
stance, Newell (1992) complained about the lack of atten-
tion to this in theories of short-term memory (STM) – that
it had not been shown that “with whatever limitation the
particular STM theory posits, it is possible for the human to
function intelligently.” He asked, “why don’t psychologists
address it (functionality) or recognize that there might be a
genuine scientific conundrum here, on which the conclu-
sion could be that the existing models are not right?” A the-
ory that predicts the correct serial position curve in a par-
ticular experiment, but also says that humans cannot keep
track of the situation model implied by a text they are read-
ing (Ericsson & Kintsch 1995), is simply wrong.

So, to repeat: we are not proposing that the criteria in
Table 1 are the only ones by which a cognitive theory should
be judged. However, such functional criteria need to be
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given greater scientific prominence. To achieve this goal,
we propose to evaluate theories by how well they do at
meeting these functional criteria. We suggest calling the
evaluation of a theory by this set of criteria “The Newell
Test.”

This target article reviews Newell’s criteria and then con-
siders how they apply to evaluating the various approaches
to the study of human cognition. We focus on evaluating
two approaches in detail. One is classical connectionism, as
exemplified in publications like McClelland and Rumelhart
(1986), Rumelhart and McClelland (1986b), and Elman et
al. (1996). The other is our own ACT-R theory. To be con-
crete, we suggest a grading scheme and issue report cards
for the two theoretical approaches.

2. Newell’s criteria

When Newell first introduced these criteria in 1980, he de-
voted less than two pages to describing them, and he de-
voted no more space to them when he described them again
in his 1990 book. He must have thought that the criteria
were obvious, but the field of cognitive science has not
found them all obvious. Therefore, we can be forgiven if we
give a little more space to their consideration than did
Newell. In this section, we will try to accomplish two things.
The first is to make the case that each is a criterion by which

all complete theories of cognition should be evaluated. The
second is to try to state objective measures associated with
the criteria so that their use in evaluation will not be hope-
lessly subjective. These measures are also summarized in
Table 1. Our attempts to achieve objective measures vary in
success. Perhaps others can suggest better measures.

2.1. Flexible behavior

In his 1990 book, Unified Theories of Cognition, Newell re-
stated his first criterion as “behave flexibly as a function of
the environment,” which makes it seem a rather vacuous
criterion for human cognition. However, in 1980 he was
quite clear that he meant this to be computational univer-
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Table 1. Newell’s Functional Criteria for a Human Cognitive
Architecture: Proposed Operationalizations and Gradings

1. Behave as an (almost) arbitrary function of the environment
–Is it computationally universal with failure?
Classical Connectionism: Mixed; ACT-R: Better

2. Operate in real time
–Given its timing assumptions, can it respond as fast as 
humans?
Classical Connectionism: Worse; ACT-R: Best

3. Exhibit rational, i.e., effective adaptive behavior
–Does the system yield functional behavior in the real world?
Classical Connectionism: Better; ACT-R: Better

4. Use vast amounts of knowledge about the environment
–How does the size of the knowledge base affect perfor-
mance?
Classical Connectionism: Worse; ACT-R: Mixed

5. Behave robustly in the face of error, the unexpected, and the
unknown
–Can it produce cognitive agents that successfully inhabit dy-
namic environments?
Classical Connectionism: Mixed; ACT-R: Better

6. Integrate diverse knowledge
–Is it capable of common examples of intellectual combina-
tion?
Classical Connectionism: Worse; ACT-R: Mixed

7. Use (natural) language
–Is it ready to take a test of language proficiency?
Classical Connectionism: Better; ACT-R: Worse

8. Exhibit self-awareness and a sense of self
–Can it produce functional accounts of phenomena that re-
reflect consciousness
Classical Connectionism: Worse; ACT-R: Worse

9. Learn from its environment
–Can it produce the variety of human learning
Classical Connectionism: Better; ACT-R: Better

10. Acquire capabilities through development
–Can it account for developmental phenomena?
Classical Connectionism: Better; ACT-R: Worse

11. Arise through evolution
–Does the theory relate to evolutionary and comparative 
considerations?
Classical Connectionism: Worst; ACT-R: Worst

12. Be realizable within the brain
–Do the components of the theory exhaustively map onto
brain processes?
Classical Connectionism: Best; ACT-R: Worse



sality, and that it was the most important criterion. He de-
voted the major portion of the 1980 paper to proving that
the symbol system he was describing satisfied this criterion.
For Newell, the flexibility in human behavior implied com-
putational universality. With modern fashion so emphasiz-
ing evolutionarily-prepared, specialized cognitive func-
tions, it is worthwhile to remind ourselves that one of the
most distinguishing human features is the ability to learn to
perform almost arbitrary cognitive tasks to high degrees of
expertise. Whether it is air-traffic control or computer pro-
gramming, people are capable of performing with high fa-
cility cognitive activities that had no anticipation in human
evolutionary history. Moreover, humans are the only
species that show anything like this cognitive plasticity.

Newell recognized the difficulties he was creating in
identifying this capability with formal notions of universal
computability. For example, memory limitations prevent
humans from being equivalent to Turing machines (with
their infinite tapes), and their frequent slips prevent people
from displaying perfect behavior. However, he recognized
the true flexibility in human cognition that deserved this
identification with computational universality, even as the
modern computer is characterized as a Turing-equivalent
device despite its physical limitations and occasional errors.

While computational universality is a fact of human cog-
nition, it should not be seen in opposition to the idea of spe-
cialized facilities for performing various cognitive functions
– even a computer can have specialized processors. More-
over, it should not be seen in opposition to the view that
some things are much easier for people to learn and do than
others. This has been stressed in the linguistic domain
where it is argued that there are “natural languages” that
are much easier to learn than nonnatural languages. How-
ever, this lesson is perhaps even clearer in the world of hu-
man artifacts, like air-traffic control systems or computer
applications, where some systems are much easier to learn
and to use than others. Although there are many complaints
about how poorly designed some of these systems are, the
artifacts that are in common use are only the tip of the ice-
berg with respect to unnatural systems. While humans may
approach computational universality, it is only a tiny frac-
tion of the computable functions that humans find feasible
to acquire and perform.

Grading: If a theory is well specified, it should be relatively
straightforward to determine whether it is computationally
universal or not. As already noted, this is not to say that the
theory should claim that people will find everything equally
easy or that human performance will ever be error free.

2.2. Real-time performance

It is not enough for a theory of cognition to explain the great
flexibility of human cognition, it must also explain how hu-
mans can do this in what Newell referred to as “real time,”
which means human time. As the understanding of the
neural underpinnings of human cognition increases, the
field faces increasing constraints on its proposals as to what
can be done in a fixed period of time. Real time is a con-
straint on learning as well as performance. It is no good to
be able to learn something in principle if it takes lifetimes
to do that learning.

Grading: If a theory comes with well-specified con-
straints on how fast its processes can proceed, then it is rel-
atively trivial to determine whether it can achieve real time

for any specific case of human cognition. It is not possible
to prove that the theory satisfies the real-time constraint for
all cases of human cognition, so one must be content with
looking at specific cases.

2.3. Adaptive behavior

Humans do not just perform marvelous intellectual com-
putations. The computations that they choose to perform
serve their needs. As Anderson (1991) argued, there are
two levels at which one can address adaptivity. At one level,
one can look at the basic processes of an architecture, such
as association formation, and ask whether and how they
serve a useful function. At another level, one can look at
how the whole system is put together and ask whether its
overall computation serves to meet human needs.

Grading: What protected the short-term memory mod-
els that Newell complained about from the conclusion that
they were not adaptive was that they were not part of more
completely specified systems. Consequently, one could not
determine their implications beyond the laboratory exper-
iments they addressed, where adaptivity was not an issue.
However, if one has a more completely specified theory like
Newell’s Soar system (Newell 1990), one can explore
whether the mechanism enables behavior that would be
functional in the real world. Although such assessment is
not trivial, it can be achieved as shown by analyses such as
those exemplified in Oaksford and Chater (1998) or
Gigerenzer (2000).

2.4. Vast knowledge base

One key to human adaptivity is the vast amount of knowl-
edge that can be called on. Probably what most distin-
guishes human cognition from various “expert systems” is
the fact that humans have the knowledge necessary to act
appropriately in so many situations. However, this vast
knowledge base can create problems. Not all of the knowl-
edge is equally reliable or equally relevant. What is relevant
to the current situation can rapidly become irrelevant.
There may be serious issues of successfully storing all the
knowledge and retrieving the relevant knowledge in rea-
sonable time.

Grading: To assess this criterion requires determining
how performance changes with the scale of the knowledge
base. Again, if the theory is well specified, this criterion is
subject to formal analysis. Of course, one should not expect
that size will have no effect on performance – as anyone
knows who has tried to learn the names of students in a class
of 200.

2.5. Dynamic behavior

Living in the real world is not like solving a puzzle like the
Tower of Hanoi. The world can change in ways that we do
not expect and do not control. Even human efforts to con-
trol the world by acting on it can have unexpected effects.
People make mistakes and have to recover. The ability to
deal with a dynamic and unpredictable environment is a pre-
condition to survival for all organisms. Given the complex-
ity of the environments that humans have created for them-
selves, the need for dynamic behavior is one of the major
cognitive stressors that they face. Dealing with dynamic be-
havior requires a theory of perception and action as well as
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a theory of cognition. The work on situated cognition (e.g.,
Greeno 1989; Lave 1988; Suchman 1987) has emphasized
how cognition arises in response to the structure of the ex-
ternal world. Advocates of this position sometimes argue
that all there is to cognition is reaction to the external world.
This is the symmetric error to the earlier view that cognition
could ignore the external world (Clark 1998; 1999).

Grading: How does one create a test of how well a sys-
tem deals with the “unexpected”? Certainly, the typical lab-
oratory experiment does a poor job of putting this to the
test. An appropriate test requires inserting these systems
into uncontrolled environments. In this regard, a promising
class of tests looks at cognitive agents built in these systems
and inserted into real or synthetic environments. For ex-
ample, Newell’s Soar system successfully simulated pilots in
an Air Force mission simulation that involved 5,000 agents
including human pilots (Jones et al. 1999).

2.6. Knowledge integration

We have chosen to retitle this criterion. Newell referred to
it as “Symbols and Abstractions,” and his only comment on
this criterion appeared in his 1990 book: “[The] [m]ind is
able to use symbols and abstractions. We know that just
from observing ourselves” (p. 19). He never seemed to ac-
knowledge just how contentious this issue is, although he
certainly expressed frustration (Newell 1992) that people
did not “get” what he meant by a symbol. Newell did not
mean external symbols like words and equations, about
whose existence there can be little controversy. Rather, he
was thinking about symbols like those instantiated in list-
processing languages. Many of these “symbols” do not have
any direct meaning, unlike the sense of symbols that one
finds in philosophical discussions or computational efforts,
as in Harnad (1990; 1994). Using symbols in Newell’s sense,
as a grading criterion, seems impossibly loaded. However,
if we look to his definition of what a physical symbol does,
we see a way to make this criterion fair:

Symbols provide distal access to knowledge-bearing structures
that are located physically elsewhere within the system. The re-
quirement for distal access is a constraint on computing systems
that arises from action always being physically local, coupled
with only a finite amount of knowledge being encodable within
a finite volume of space, coupled with the human mind’s con-
taining vast amounts of knowledge. Hence encoded knowledge
must be spread out in space, whence it must be continually
transported from where it is stored to where processing re-
quires it. Symbols are the means that accomplish the required
distal access. (Newell 1990, p. 427)

Symbols provide the means of bringing knowledge together
to make the inferences that are most intimately tied to the
notion of human intellect. Fodor (2000) refers to this kind
of intellectual combination as “abduction” and is so taken
by its wonder that he doubts whether standard computa-
tional theories of cognition (or any other current theoreti-
cal ideas for that matter) can possibly account for it.

In our view, in his statement of this criterion Newell con-
fused mechanism with functionality. The functionality he is
describing in the preceding passage is a capacity for intel-
lectual combination. Therefore, to make this criterion con-
sistent with the others (and not biased), we propose to cast
it as achieving this capability. In point of fact, we think that
when we understand the mechanism that achieves this ca-
pacity, it will turn out to involve symbols more or less in the

sense Newell intended. (However, we do think there will be
some surprises when we discover how the brain achieves
these symbols.) Nonetheless, not to prejudge these matters,
we simply render the sixth criterion as the capacity for in-
tellectual combination.

Grading: To grade on this criterion we suggest judging
whether the theory can produce those intellectual activities
which are hallmarks of daily human capacity for intellectual
combination – things like inference, induction, metaphor,
and analogy. As Fodor (2000) notes, it is always possible to
rig a system to produce any particular inference; the real
challenge is to produce them all out of one system that is
not set up to anticipate any. It is important, however, that
this criterion not become a test of some romantic notion of
the wonders of human cognition that actually almost never
happen. There are limits to the normal capacity for intel-
lectual combination, or else great intellectual discoveries
would not be so rare. The system should to be able to re-
produce the intellectual combinations that people display
on a day-to-day basis.

2.7. Natural language

While most of the criteria on Newell’s list could be ques-
tioned by some, it is hard to imagine anyone arguing that a
complete theory of cognition need not address natural lan-
guage. Newell and others have wondered about the degree
to which natural language is the basis of human symbol ma-
nipulation versus the degree to which symbol manipulation
is the basis for natural language. Newell took the view that
language depends on symbol manipulation.

Grading: It is not obvious how to characterize the full di-
mensions of that functionality. As a partial but significant
test, we suggest looking at those tests that society has set up
as measures of language processing – something like the
task of reading a passage and answering questions on it.
This would involve parsing, comprehension, inference, and
relating current text to past knowledge. This is not to give
theories a free pass on other aspects of language processing
such as partaking in a conversation, but one needs to focus
on something in specifying the grading for this criterion.

2.8. Consciousness

Newell acknowledged the importance of consciousness to
a full account of human cognition, although he felt com-
pelled to remark that “it is not evident what functional role
self-awareness plays in the total scheme of mind.” We too
have tended to regard consciousness as epiphenomenal,
and it has not been directly addressed in the ACT-R theory.
However, Newell is calling us to consider all the criteria and
not pick and choose the ones to consider.

Grading: Cohen and Schooler (1997) have edited a vol-
ume aptly titled Scientific Approaches to Consciousness,
which contains sections on subliminal perception, implicit
learning and memory, and metacognitive processes. We
suggest that the measure of a theory on this criterion is its
ability to produce these phenomena in a way that explains
why they are functional aspects of human cognition.

2.9. Learning

Learning seems to be another uncontroversial criterion for
a theory of human cognition. A satisfactory theory of cog-
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nition must account for humans’ ability to acquire their
competences.

Grading: It seems insufficient to grade a theory simply
by asking whether the theory is capable of learning because
people must be capable of many different kinds of learning.
We suggest taking Squire’s (1992) classification as a way of
measuring whether the theory can account for the range of
human learning. The major categories in Squire’s classifi-
cation are semantic memory, episodic memory, skills, prim-
ing, and conditioning. They may not be distinct theoretical
categories, and there may be more kinds of learning, but
these do represent much of the range of human learning.

2.10. Development

Development is the first of the three constraints that
Newell listed for a cognitive architecture. Although in some
hypothetical world one might imagine the capabilities asso-
ciated with cognition emerging full blown, human cogni-
tion in the real world is constrained to unfold in an organ-
ism as it grows and responds to experience.

Grading: There is a problem in grading the developmen-
tal criterion which is like that for the language criteria – there
seems no good characterization of the full dimensions of hu-
man development. In contrast to language, because human
development is not a capability but rather a constraint, there
are no common tests for the development constraint per se,
although the world abounds with tests of how well our chil-
dren are developing. In grading his own Soar theory on this
criterion, Newell was left with asking whether it could ac-
count for specific cases of developmental progression (for in-
stance, he considered how Soar might apply to the balance
scale). We are unable to suggest anything better.

2.11. Evolution

Human cognitive abilities must have arisen through some
evolutionary history. Some have proposed that various con-
tent-specific abilities, such as the ability to detect cheaters
(Cosmides & Tooby 2000b) or certain constraints on nat-
ural language (e.g., Pinker 1994; Pinker & Bloom 1990),
evolved at particular times in human evolutionary history.
A variation on the evolutionary constraint is the compara-
tive constraint. How is the architecture of human cognition
different from that of other mammals? We have identified
cognitive plasticity as one of the defining features of human
cognition, and others have identified language as a defining
feature. What is it about the human cognitive system that
underlies its distinct cognitive properties?

Grading: Newell expressed some puzzlement at how the
evolutionary constraint should apply. Grading the evolu-
tionary constraint is deeply problematical because of the
paucity of the data on the evolution of human cognition. In
contrast to judging how adaptive human cognition is in an
environment (Criterion 3), reconstruction of a history of se-
lectional pressures seems vulnerable to becoming the con-
struction of a just-so story (Fodor 2000; Gould & Lewontin
1979). The best we can do is ask loosely how the theory re-
lates to evolutionary and comparative considerations.

2.12. Brain

The last constraint collapses two similar criteria in Newell
(1980) and corresponds to one of the criteria in Newell

(1990). Newell took seriously the idea of the neural imple-
mentation of cognition. The timing of his Soar system was
determined by his understanding of how it might be neu-
rally implemented. The last decade has seen a major in-
crease in the degree to which data about the functioning of
specific brain areas are used to constrain theories of cogni-
tion.

Grading: Establishing that a theory is adequate here
seems to require both an enumeration and a proof. The
enumeration would be a mapping of the components of the
cognitive architecture onto brain structures, and the proof
would be that the computation of the brain structures
match the computation of the assigned components of the
architecture. There is possibly an exhaustive requirement
as well – that no brain structure is left unaccounted for. Un-
fortunately, knowledge of brain function has not advanced
to the point where one can fully implement either the enu-
meration or the proof of a computational match. However,
there is enough knowledge to partially implement such a
test, and even as a partial test, it is quite demanding.

2.13. Conclusions

It might seem reckless to open any theory to an evaluation
on such a broad set of criteria as those in Table 1. However,
if one is going to propose a cognitive architecture, it is im-
possible to avoid such an evaluation as Newell (1992) dis-
covered with respect to Soar. As Vere (1992) described it,
because a cognitive architecture aspires to give an inte-
grated account of cognition, it will be subjected to the “at-
tack of the killer bees” – each subfield to which the archi-
tecture is applied is “resolutely defended against intruders
with improper pheromones.” Vere proposed creating a
“Cognitive Decathlon”

to create a sociological environment in which work on inte-
grated cognitive systems can prosper. Systems entering the
Cognitive Decathlon are judged, perhaps figuratively, based on
a cumulative score of their performance in each cognitive
“event.” The contestants do not have to beat all of the narrower
systems in their one specialty event, but compete against other
well-rounded cognitive systems. (Vere 1992, p. 460)

This target article could be viewed as a proposal for the
events in the decathlon and an initial calibration of the scor-
ing for the events by providing an evaluation of two current
theories, classical connectionism and ACT-R.

While classical connectionism and ACT-R offer some in-
teresting contrasts when graded by Newell’s criteria, both
of these two theories are ones that have done rather well
when measured by the traditional standard in psychology of
correspondence to the data of particular laboratory experi-
ments. Thus, we are not bringing to this grading what are
sometimes called artificial intelligence theories. It is not as
if we were testing “Deep Blue” as a theory of human chess,
but it is as if we were asking of a theory of human chess that
it be capable of playing chess – at least in principle, if not
in practice.

3. Classical connectionism

Classical connectionism is the cognitively and computa-
tionally modern heir to behaviorism. Both behaviorism and
connectionism have been very explicit about what they ac-
cept and what they reject. Both focus heavily on learning
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and emphasize how behavior (or cognition) arises as an
adaptive response to the structure of experience (Criteria 
3 and 9 in Newell’s list). Both reject any abstractions
(Newell’s original Criterion 6, which we have revamped for
evaluation) except as a matter of verbal behavior (Criterion
8). Being cognitively modern, connectionism, however, is
quite comfortable in addressing issues of consciousness
(Criterion 8), whereas behaviorism often explicitly rejected
consciousness. The most devastating criticisms of behav-
iorism focused on its computational adequacy, and it is here
that the distinction between connectionism and behavior-
ism is clearest. Modern connectionism established that it
did not have the inadequacies that had been shown for the
earlier Perceptrons (Minsky & Papert 1969). Connection-
ists developed a system that can be shown to be computa-
tionally equivalent to a Turing machine (Hartley 2000;
Hartley & Szu 1987; Hornik et al. 1989; Siegelman & Son-
tag 1992) and endowed it with learning algorithms that
could be shown to be universal function approximaters
(Clark 1998; 1999).

However, as history would have it, connectionism did not
replace behaviorism. Rather, there was an intervening era
in which an abstract information-processing conception of
mind dominated. This manifested itself perhaps most
strongly in the linguistic ideas surrounding Chomsky (e.g.,
1965) and the information-processing models surrounding
Newell and Simon (e.g., 1972). These were two rather dif-
ferent paradigms, with the Chomskian approach emphasiz-
ing innate knowledge only indirectly affecting behavior, and
the Newell and Simon approach emphasizing the mental
steps directly underlying the performance of a cognitive
task. However, both approaches deemphasized learning
(Criterion 9) and emphasized cognitive abstractions (Orig-
inal Criterion 6). Thus, when modern connectionism arose,
the targets of its criticisms were the symbols and rules of
these theories. It chose to focus largely on linguistic tasks
emphasized by the Chomskian approach and was relatively
silent on the problem-solving tasks emphasized by the
Newell and Simon approach. Connectionism effectively
challenged three of the most prized claims of the Chom-
skian approach – that linguistic overgeneralizations were
evidence for abstract rules (Brown 1973), that initial syn-
tactic parsing was performed by an encapsulated syntactic
parser (Fodor 1983), and that it was impossible to acquire
language without the help of an innate language-acquisition
device (Chomsky 1965). We will briefly review each of
these points, but at the outset we want to emphasize that
these connectionist demonstrations were significant be-
cause they established that a theory without language-spe-
cific features had functionalities which some claimed it
could not have. Thus, the issues were very much a matter
of functionality in the spirit of the Newell test.

Rumelhart and McClelland’s (1986b) past-tense model
has become one of the most famous of the connectionist
models of language processing. They showed that by learn-
ing associations between the phonological representations
of stems and past tense, it was possible to produce a model
that made overgeneralizations without building any rules
into it. This attracted a great many critiques, and, while the
fundamental demonstration of generalization without rules
stands, it is acknowledged by all to be seriously flawed as a
model of the process of past-tense generation by children.
Many more recent and more adequate connectionist mod-
els (some reviewed in Elman et al. 1996) have been pro-

posed, and many of these have tried to use the backpro-
pogation learning algorithm.

While early research suggested that syntax was in some
way separate from general knowledge and experience
(Ferreira & Clifton 1986), further research has suggested
that syntax is quite penetrable by all sorts of semantic con-
siderations and in particular the statistics of various con-
structions. Models like those of MacDonald et al. (1994)
are quite successful in predicting the parses of ambiguous
sentences. There is also ample evidence now for syntactic
priming (e.g., Bock 1986; Bock & Griffin 2000) – that
people tend to use the syntactic constructions they have
recently heard. There are also now sociolinguistic data
(reviewed in Matessa 2001) showing that the social re-
inforcement contingencies shape the constructions that
one will use. Statistical approaches to natural-language pro-
cessing have been quite successful (Collins 1999; Mager-
man 1995). While these approaches are only sometimes
connectionist models, they establish that the statistics of
language can be valuable in untangling the meaning of
language.

While one might imagine these statistical demonstra-
tions being shrugged off as mere performance factors, the
more fundamental challenges have concerned whether the
syntax of natural language actually is beyond the power of
connectionist networks to learn. “Proofs” of the inadequacy
of behaviorism have concerned their inability to handle the
computational complexity of the syntax of natural language
(e.g., Bever et al. 1968). Elman (1995) used a recurrent net-
work to predict plausible continuations for sentence frag-
ments like boys who chase dogs see girls that contain mul-
tiple embeddings. This was achieved by essentially having
hidden units that encoded states reflecting the past words
in the sentence.

The preceding discussion has focused on connection-
ism’s account of natural language, because that is where the
issue of the capability of connectionist accounts has re-
ceived the most attention. However, connectionist ap-
proaches have their most natural applications to tasks that
are more directly a matter of perceptual classification or
continuous tuning of motor output. Some of the most suc-
cessful connectionist models have involved things like let-
ter recognition (McClelland & Rumelhart 1981). Pattern
classification and motor tuning underlie some of the more
successful “performance” applications of connectionism in-
cluding NETtalk (Sejnowski & Rosenberg 1987), which
converts orthographic representation of words into a code
suitable for use with a speech synthesizer; TD-Gammon
(Tesauro 2002), a world-champion backgammon program;
and ALVINN (Autonomous Land Vehicle In a Neural Net-
work) (Pomerleau 1991), which was able to drive a vehicle
on real roads.

So far we have used the term connectionism loosely, and
it is used in the field to refer to a wide variety of often in-
compatible theoretical perspectives. Nonetheless, there is
a consistency in the connectionist systems behind the suc-
cesses just reviewed. To provide a roughly coherent frame-
work for evaluation, we will focus on what has been called
classical connectionism. Classical connectionism is the class
of neural network models that satisfy the following re-
quirements: feedforward or recurrent network topology,
simple unit activation functions such as sigmoid or radial
basis functions, and local weight-tuning rules such as back-
propagation or Boltzmann learning algorithms. This defini-
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tion reflects both the core and the bulk of existing neural
network models while presenting a coherent computational
specification. It is a restriction with consequence. For in-
stance, the proofs of Turing equivalence include assump-
tions not in the spirit of classical connectionism and often
involving nonstandard constructs.

4. ACT-R

4.1. ACT-R’s history of development

While ACT-R is a theory of cognition rather than a frame-
work of allied efforts like connectionism, it has a family-re-
semblance aspect too, in that it is just the current manifes-
tation of a sequence of theories stretching back to Anderson
(1976), when we first proposed how a subsymbolic activa-
tion-based memory could interact with a symbolic system
of production rules. The early years of that project were
concerned with developing a neurally plausible theory of
the activation processes and an adequate theory of produc-
tion rule learning, resulting in the ACT* theory (Anderson
1983). The next ten years saw numerous applications of the
theory, a development of a technology for effective com-
puter simulations, and an understanding of how the sub-
symbolic level served the adaptive function of tuning the
system to the statistical structure of the environment (An-
derson 1990). This resulted in the ACT-R version of the sys-
tem (Anderson 1993), where the “R” denotes rational
analysis.

Since the publication of ACT-R in 1993, a community of
researchers has evolved around the theory. One major im-
pact of this community has been to help prepare ACT-R to
take the Newell Test by applying it to a broad range of is-
sues. ACT had traditionally been a theory of “higher-level”
cognition and largely ignored perception and action. How-
ever, as members of the ACT-R research community be-
came increasingly concerned with timing and dynamic be-
havior (Newell’s Criteria 2 and 5), it was necessary to
address attentional issues about how the perceptual and
motor systems interact with the cognitive system. This has
led to the development of ACT-R/PM (PM for perceptual-
motor) (Byrne & Anderson 1998), based in considerable
part on the perceptual-motor components of EPIC (Meyer
& Kieras 1997). This target article focuses on ACT-R 5.0,
which is an integration of the ACT-R 4.0 described in An-
derson and Lebiere (1998) and ACT-R/PM.

4.2. General description of ACT-R

Since it is a reasonable assumption that ACT-R is less well
known than classical connectionism, we will give it a fuller
description, although the reader should refer to Anderson
and Lebiere (1998) for more formal specifications and the
basic equations. Figure 1 displays the current architecture
of ACT-R. The flow of cognition in the system is in response
to the current goal, currently active information from de-
clarative memory, information attended to in perceptual
modules (vision and audition are implemented), and the
current state of motor modules (hand and speech are im-
plemented). These components (goal, declarative memory,
perceptual, and motor modules) hold the information that
the productions can access in buffers, and these buffers
serve much the same function as the subsystems of Badde-
ley’s (1986) working-memory theory. In response to the cur-

rent state of these buffers, a production is selected and ex-
ecuted. The central box in Figure 1 reflects the processes
that determine which production to fire. There are two dis-
tinct subprocesses – pattern matching to decide which pro-
ductions are applicable, and conflict resolution to select
among these applicable productions. While all productions
are compared in parallel, a single production is selected to
fire. The selected production can cause changes in the cur-
rent goal, make a retrieval request of declarative memory,
shift attention, or call for new motor actions. Unlike EPIC,
ACT-R is a serial-bottleneck theory of cognition (Pashler
1998) in which parallel cognitive, perceptual, and motor
modules must interact through a serial process of produc-
tion execution.

The architecture in Figure 1 is an abstraction from the
neural level, but nonetheless it is possible to give tentative
neural correlates. The motor and perceptual modules cor-
respond to associated cortical areas; the current goal, to
frontal areas; and declarative memory, to posterior cortical
and hippocampal areas. There is evidence (Wise et al. 1996)
that the striatum receives activation from the full cortex and
recognizes patterns of cortical activation. These recognized
patterns are gated by other structures in the basal ganglia
(particularly the internal segment of the globus pallidus and
the substantia nigra pars reticulata) (Frank et al. 2000) and
the frontal cortex to select an appropriate action. Thus, one
might associate the striatum with the pattern-recognition
component of the production selection and the basal gan-
glia structures and the frontal cortex with the conflict reso-
lution.

ACT-R is a hybrid architecture in the sense that it has
both symbolic and subsymbolic aspects. The symbolic as-
pects involve declarative chunks and procedural production
rules. The declarative chunks are the knowledge-represen-
tation units that reside in declarative memory, and the pro-
duction rules are responsible for the control of cognition.
Access to these symbolic structures is determined by a sub-
symbolic level of neural-like activation quantities. Part of
the insight of the rational analysis is that the declarative and
procedural structures, by their nature, need to be guided by
two different quantities. Access to declarative chunks is
controlled by an activation quantity that reflects the proba-
bility that the chunk will need to be retrieved. In the case
of production rules, choice among competing rules is con-
trolled by their utilities, which are estimates of the rule’s
probability of success and cost in leading to the goal. These
estimates are based on the past reinforcement history of the
production rule.

The activation of a chunk is critical in determining its re-
trieval from declarative memory. A number of factors de-
termine the level of activation of a chunk in declarative
memory:

1. The recency and frequency of usage of a chunk will
determine its base-level activation. This base-level activa-
tion represents the probability (actually, the log odds) that
a chunk is needed, and the estimates provided for by ACT-
R’s learning equations represent the probabilities in the en-
vironment (see Anderson 1993, Ch. 4, for examples).

2. Added to this base-level activation is an associative
component that reflects the priming that the chunk might
receive from elements currently in the focus of attention.
The associations among chunks are learned on the basis of
past patterns of retrieval according to a Bayesian frame-
work.
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3. The activation controlled by factors 1 and 2 is modu-
lated by the degree to which the chunk matches current re-
trieval specifications. Thus, for example, a chunk that en-
codes a similar situation to the current one will receive
some activation. This partially matching component in
ACT-R allows it to produce the soft, graceful behavior char-
acteristic of human cognition. Similarities among chunks
serve a similar purpose to distributed representations in
connectionist networks.

4. The activation quantities are fundamentally noisy, so
there is some variability in which chunk is most active, pro-
ducing a stochasticity in behavior.

The activation of a chunk determines the time to retrieve
it. Also, when multiple chunks can be retrieved, the most
active one is selected. This principle, combined with vari-
ability in activation, produces predictions for the probabil-
ity of recall according to the softmax Boltzmann distribu-
tion (Ackley et al. 1985; Hinton & Sejnowski 1986). These
latency and probability functions in conjunction with the
activation processes have led to a wide variety of successful
models of verbal learning (e.g., Anderson et al. 1998a; An-
derson & Reder 1999a).

Each production rule has a real-valued utility that is cal-
culated from estimates of the cost and probability of reach-
ing the goal if that production rule is chosen. ACT-R’s learn-
ing mechanisms constantly update these estimates based on
experience. If multiple production rules are applicable to a
certain goal, the production rule with the highest utility is
selected. This selection process is noisy, so the production
with the highest utility has the greatest probability of being
selected, but other productions get opportunities as well.
This may produce errors or suboptimal behavior, but also

allows the system to explore knowledge and strategies that
are still evolving. The ACT-R theory of utility learning has
been tested in numerous studies of strategy selection and
strategy learning (e.g., Lovett 1998).

In addition to the learning mechanisms that update acti-
vation and expected outcome, ACT-R can also learn new
chunks and production rules. New chunks are learned au-
tomatically: Each time a goal is completed or a new percept
is encountered, it is added to declarative memory. New pro-
duction rules are learned by combining existing production
rules. The circumstance for learning a new production rule
is that two rules fire one after another, with the first rule re-
trieving a chunk from memory. A new production rule is
formed that combines the two into a macro-rule but elimi-
nates the retrieval. Therefore, everything in an ACT-R
model (chunks, productions, activations, and utilities) is
learnable.

The symbolic level is not merely a poor approximation to
the subsymbolic level as claimed by Rumelhart and Mc-
Clelland (1986b) and Smolensky (1988); rather, it provides
the essential structure of cognition. It might seem strange
that neural computation should just so happen to satisfy the
well-formedness constraints required to correspond to the
symbolic level of a system like ACT-R. This would indeed
be miraculous if the brain started out as an unstructured net
that had to organize itself just in response to experience.
However, as illustrated in the tentative brain correspon-
dences for ACT-R components and in the following de-
scription of ACT-RN, the symbolic structure emerges out
of the structure of the brain. For example, just as the two
eyes converge in adjacent columns in the visual cortex to
enable stereopsis, a similar convergence of information
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(perhaps in the basal ganglia) would permit the condition
of a production rule to be learned.

4.3. ACT-RN

ACT-R is not in opposition to classical connectionism ex-
cept in connectionism’s rejection of a symbolic level. Al-
though strategically ACT-R models tend to be developed at
a larger grain size than connectionist models, we do think
these models could be realized by the kinds of computation
proposed by connectionism. Lebiere and Anderson (1993)
instantiated this belief in a system called ACT-RN that at-
tempted to implement ACT-R using standard connection-
ist concepts. We will briefly review ACT-RN here because
it shows how production system constructs can be compat-
ible with neural computation.

ACT-R consists of two key memories – a declarative
memory and a procedural memory. Figure 2 illustrates how
ACT-RN implements declarative chunks. The system has
separate memories for each different type of chunk – for
example, addition facts are represented by one type mem-
ory, whereas integers are represented by a separate type
memory. Each type memory is implemented as a special
version of Hopfield nets (Hopfield 1982). A chunk in ACT-
R consists of a unique identifier called the header, together
with a number of slots, each containing a value, which can
be the identifier of another chunk. Each slot, as well as the
chunk identifier itself, is represented by a separate pool of
units, thereby achieving a distributed representation. A
chunk is represented in the pattern of connections between
these pools of units. Instead of having complete connectiv-
ity among all pools, the slots are only connected to the
header and vice versa. Retrieval involves activating patterns
in some of the pools and trying to fill in the remaining pat-
terns corresponding to the retrieved chunk. If some slot
patterns are activated, they are mapped to the header units
to retrieve the chunk identifier that most closely matches
these contents (path 1 in Fig. 2). Then, the header is map-
ped back to the slots to fill the remaining values (path 5). If
the header pattern is specified, then the step correspond-
ing to path 1 is omitted.

To ensure optimal retrieval, it is necessary to “clean” the
header. This can be achieved in a number of ways. One is
to implement the header itself as an associative memory.
We chose instead to connect the header to a pool of units
called the chunk layer in which each unit represented a
chunk, achieving a localist representation (path 2). The
header units are connected to all the units in the chunk
layer. The pattern of weights leading to a particular localist
unit in the chunk layer corresponds to the representation of
that chunk in the header. By assembling these chunk-layer
units in a winner-take-all network (path 3), the chunk with
the representation closest to the retrieved header ulti-
mately wins. That chunk’s representation is then reinforced
in the header (path 4). A similar mechanism is described in
Dolan and Smolensky (1989). The initial activation level of
the winning chunk is related to the number of iterations in
the chunk-layer needed to find a clear winner. This maps
onto retrieval time in ACT-R, as derived in Anderson and
Lebiere (1998, Ch. 3 Appendix).

ACT-RN provides a different view of the symbolic side
of ACT-R. As is apparent in Figure 2, a chunk is nothing
more or less than a pattern of connections between the
chunk identifier and its slots.

ACT-R is a goal-oriented system. To implement this,
ACT-RN has a central memory (which probably should be
identified with dorsolateral prefrontal cortex), which at all
times contains the current goal chunk (Fig. 3) with con-
nections to and from each type memory. Central memory
consists of pools of units, where each pool encodes a slot
value of the goal. There was an optional goal stack (repre-
sented in Fig. 3), but we do not use a goal stack in ACT-R
anymore. Productions in ACT-RN retrieve information
from a type memory and deposit it in central memory. Such
a production might retrieve from an addition memory the
sum of two digits held in central memory. For example,
given the goal of adding 2 and 3, a production would copy
to the addition-fact memory the chunks 2 and 3 in the
proper slots by enabling (gating) the proper connections
between central memory and that type memory, let the
memory retrieve the sum 5, and then transfer that chunk to
the appropriate goal slot.

To provide control over production firing, ACT-RN
needs a way to decide not only what is to be transferred
where but also under what conditions. In ACT-RN, that
task is achieved by gating units (which might be identified
with gating functions associated with basal ganglia). Each
gating unit implements a particular production and has in-
coming connections from central memory that reflect the
goal constraints on the left-hand side of that production.
For example, suppose goal slot S is required to have as value
chunk C in production P. To implement this, the connec-
tions between S and the gating unit for P will be the repre-
sentation for C, with an appropriate threshold. At each pro-
duction cycle, all the gating units are activated by the
current state of central memory, and a winner-take-all com-
petition selects the production to fire.

Note that production rules in ACT-RN are basically rules
for enabling pathways back and forth between a central goal
memory and the various declarative memory modules.
Thus, production rules are not really structures that are
stored in particular locations but are rather specifications of
information transfer. ACT-RN also offers an interesting
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perspective on the variables (see Marcus [2001] for a dis-
cussion of variables in connectionist models) that appear in
production rules and their bindings. The effect of such
bindings is basically to copy values from the goal to declar-
ative memory and back again. This is achieved in ACT-RN
without having any explicit variables or an explicit process
of variable binding. Thus, while the computational power
that is represented by variables is critical, one can have this
without the commitment to explicit variables or a process
of variable binding.

4.4. Learning past tense in ACT

Recently, Taatgen (2001; Taatgen & Anderson 2002) has
developed a successful ACT-R model for learning the past-
tense in English, which provides an interesting comparison
point with the connectionist models. Unlike many past-
tense models, it learns based on the actual frequency of
words in natural language, learns without feedback, and
makes the appropriate set of generalizations. While the
reader should go to the original papers for details, we will
briefly describe this model because the past tense has been
critical in the connectionist-symbolic debate. It also serves
to illustrate all of the ACT-R learning mechanisms working
at once.

The model posits that children initially approach the task
of past-tense generation with two strategies. Given a par-
ticular word like “give,” they can either try to retrieve the
past tense for that word or try to retrieve some other ex-
ample of a past tense (e.g., “live”–“lived”) and try to apply
this by analogy to the current case. Eventually, through the
production-rule learning mechanisms in ACT-R, the anal-
ogy process will be converted into a production rule that
generatively applies the past-tense rule. Once the past-
tense rule is learned, the generation of past tenses will
largely be determined by a competition between the gen-
eral rule and retrieval of specific cases. Thus, ACT-R is ba-
sically a dual-route model of past-tense generation, where
both routes are implemented by production rules. The
rule-based approach depends on general production rules,
whereas the exemplar approach depends on the retrieval of
declarative chunks by production rules that implement an

instance-based strategy. This choice between retrieval and
rule-based computation is a general theme in ACT-R mod-
els and is closely related to Logan’s model of skill acquisi-
tion (Logan 1988). It has been used in a model of cognitive
arithmetic (Lebiere 1998) and in models for a number of
laboratory tasks (Anderson & Betz 2001; Lerch et al. 1999;
Wallach & Lebiere, in press).

The general past-tense rule, once discovered by analogy,
gradually enters the competition as the system learns that
this new rule is widely applicable. This gradual entry, which
depends on ACT-R’s subsymbolic utility-learning mecha-
nisms, is responsible for the onset of overgeneralization. Al-
though this onset is not all-or-none in either the model or
the data, it is a relatively rapid transition in both model and
data and corresponds to the first turn in the U-shaped func-
tion. However, as this is happening, the ACT-R model is en-
countering and strengthening the declarative representa-
tions of exceptions to the general rule. Retrieval of the
exceptions comes to counteract the overgeneralizations.
Retrieval of exceptions is preferred because they tend to be
shorter and phonetically more regular (Burzio 1999) than
regular past tenses. Growth in this retrieval process corre-
sponds to the second turn in the U-shaped function and is
much more gradual – again, both in model and data. Note
that the Taatgen model, unlike many other past-tense mod-
els, does not make artificial assumptions about frequency of
exposure but learns, given a presentation schedule of words
(both from the environment and its own generations) like
that actually encountered by children. Its ability to repro-
duce the relatively rapid onset of overgeneralization and
slow extinction depends critically on both its symbolic and
subsymbolic learning mechanisms. Symbolically, it is learn-
ing general production rules and declarative representa-
tions of exceptions. Subsymbolically, it is learning the util-
ity of these production rules and the activation strengths of
the declarative chunks.

Beyond just reproducing the U-shaped function, the
ACT-R model explains why exceptions should be high-fre-
quency words. There are two aspects to this explanation.
First, only high-frequency words develop enough base-
level activation to be retrieved. Indeed, the theory predicts
how frequent a word has to be in order to maintain an ex-
ception. Less obviously, the model explains why so many
high-frequency words actually end up as exceptions. This is
because the greater efficiency of the irregular form pro-
motes its adoption according to the utility calculations of
ACT-R. In another model that basically invents its own
past-tense grammar without input from the environment,
Taatgen showed that it develops one or more past-tense
rules for low-frequency words but tends to adopt more ef-
ficient irregular forms for high-frequency words. In the
ACT-R economy the greater phonological efficiency of the
irregular form justifies its maintenance in declarative mem-
ory if it is of sufficiently high frequency.

Note that the model receives no feedback on the past
tenses it generates, unlike most other models but in appar-
ent correspondence with the facts about child language
learning. However, it receives input from the environment
in the form of the past tenses it hears, and this input influ-
ences the base-level activation of the past-tense forms in
declarative memory. The model also uses its own past-tense
generations as input to declarative memory and can learn
its own errors (a phenomenon also noted in cognitive arith-
metic – Siegler 1988). The amount of overgeneralization
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displayed by the model is sensitive to the ratio of input it re-
ceives from the environment to its own past-tense genera-
tions.

While the model fully depends on the existence of rules
and symbols, it also critically depends on the subsymbolic
properties of ACT-R to produce the graded effects. This
eclectic position enables the model to achieve a number of
other features not achieved by many other models:

1. It does not have to rely on artificial assumptions about
presentation frequency.

2. It does not need corrective feedback on its own gen-
erations.

3. It explains why irregular forms tend to be of high fre-
quency and why high-frequency words tend to be irregular.

4. It correctly predicts that novel words will receive reg-
ular past tenses.

5. It predicts the gradual onset of overgeneralization and
its much more gradual extinction.

4.5. What ACT-R doesn’t do

Sometimes the suspicion is stated that ACT-R is a general
computational system that can be programmed to do any-
thing. To address this issue, we would like to specify four
senses in which the system falls short of that.

First of all, ACT-R is also a system with strong limitations.
Because of prior constraints on its timing, there are limits on
how fast it can process material. The perceptual and motor
components of the system take fixed time – for instance, it
would be impossible for the system to press a button in re-
sponse to a visual stimulus in less than 100 msec. At a cogni-
tive level, it has limits on the rate of production selection and
retrieval of declarative memory. This has been a major chal-
lenge in our theories of natural-language processing (Ander-
son et al. 2001; Budiu & Anderson, submitted), and it re-
mains an open issue whether the general architecture can
process language at the speed with which humans process it.
The serial bottleneck in production selection causes all sorts
of limitations – for example, the theory cannot perform men-
tal addition and multiplication together as fast as it can per-
form either singly (Byrne & Anderson 2001). Limitations in
memory mean that the system cannot remember a long list
of digits presented at a 1-second rate (at least without having
acquired a large repertoire of mnemonic skills (Chase & Er-
icsson 1982)). The limitations actually are successes of ACT-
R as a theory of human cognition, since humans appear to
display these limitations (with the issue about language
open). However, their existence means that we cannot just
“program” arbitrary models in ACT-R.

Second, there are also numerous mechanisms of cogni-
tion not yet incorporated into ACT-R, although there may
be no in-principle reason why they cannot be incorporated.
For example, ACT-R lacks any theory of the processes of
speech perception or speech production. This is not with-
out consequence for the claims of the theory. For instance,
the just reviewed past-tense model made critical claims
about the phonological costs of various past-tense inflec-
tions but these were just assertions not derived from the
model. The absence of a phonological component makes it
difficult to extend the model to making predictions about
other inflectional constructions. Among other domains for
which ACT-R seems to be lacking adequate mechanisms
are perceptual recognition, mental imagery, emotion, and
motivation. We do not think these absences reflect anything

fundamentally incompatible between what the theory
claims and what people can do, but that possibility always
exists until it is shown how such mechanisms could be
added in a consistent way to ACT-R.

Third, there are also numerous domains of great interest
to cognitive science that have yet to be addressed by ACT-
R. Many of these are concerned with perceptual recognition
where the mechanisms of the theory are weak or lacking (the
perceptual modules in ACT-R are really theories of percep-
tual attention) but others just reflect the failure of ACT-R
researchers to take up the topic. For example, there are no
ACT-R models of deductive reasoning tasks. Also, within do-
mains that ACT-R has addressed, there are important phe-
nomena left unaddressed. For example, although there is an
ACT-R model of recognition memory (Anderson et al.
1998a), it has not addressed the remember-know distinction
(Reder et al. 2000) or data on latency distributions (Ratcliff
et al. 1999). It is not clear whether these open issues reflect
simply things that ACT-R researchers have not addressed,
or whether they are fundamental failings of the theory. For
example, Reder (personal communication) has argued that
the failure to address the remember-know distinction re-
flects the fact that ACT-R cannot deal with a whole class of
metacognitive judgments because it does not have conscious
access to its own subsymbolic quantities.

Finally, there is a set of implementation issues rife among
researchers in the ACT-R community. We do not want to
belabor them, as they have an esoteric flavor, but just to ac-
knowledge that such things exist, we name a few (and ACT-
R researchers will recognize them): avoiding repeatedly re-
trieving a chunk because retrievals strengthen the chunk,
creating new chunk types, producing a latency function that
adequately reflects competition among similar memories,
and setting the temporal bounds for utility learning.

5. Grading classical connectionism and ACT-R
according to the Newell Test

Having described Newell’s criteria and the two theories, it
is now time to apply these criteria to grading the theories.
Regrettably, we were not able to state the Newell criteria in
such a way that their satisfaction would be entirely a matter
of objective fact. The problems are perhaps most grievous
in the cases of the developmental and evolutionary criteria,
where it is hard to name anything that would be a satisfac-
tory measure, and one is largely left with subjective judg-
ment. Even with hard criteria like computational univer-
sality, there is uncertainty about what approaches are really
in keeping with the spirit of an architecture and how com-
plete an answer particular solutions yield.

We had originally proposed a letter-grading scheme for
the criteria that we applied to ACT-R. However, we were
persuaded in the review process to apply the criteria to clas-
sical connectionism by the argument that the criteria be-
came more meaningful when one sees how they apply to
two rather different theories. It did not make sense to be
competitively grading one’s own theory alongside another
one, and therefore we decided to change the grading into a
rough within-theory rank ordering of how well that theory
did on those criteria. That is, we will be rating how well that
theory has done on a particular criterion, relative to how
well it has done on other criteria (not relative to the other
theory). Therefore, we will be using the following grading:
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Best: The criteria on which that theory has done the best
Better: Four criteria on which that theory has done better
Mixed: Two criteria on which that theory has the most

mixed record
Worse: Four criteria on which that theory has done worse
Worst: The criteria on which that theory has done the

worst
This is actually more in keeping with our intentions for the
Newell Test than the original letter grading because it fo-
cuses on directions for improving a given theory rather than
declaring a winner. Of course, the reader is free to apply an
absolute grading scheme to these two theories or any other.

5.1. Flexible behavior

Grading: Connectionism: Mixed
ACT-R: Better

To do well on this criterion requires that the theory achieve
an interesting balance: It must be capable of computing any
function, but have breakdowns in doing so, and find some
functions easier to compute than others. It has been shown
possible to implement a Turing machine in connectionism,
but not in the spirit of classical connectionism. Breakdowns
in the execution of a sequence of actions would be quite com-
mon (Botvinick & Plaut, submitted). There is a balance be-
tween capability and limitation in classical connectionism,
but we and some others (e.g., Marcus 2001) believe that this
is an uneven balance in favor of limitations. It is not clear that
complex, sequentially organized, hierarchical behavior can
be adequately produced in classical connectionistic systems,
and there seems to a paucity of demonstrations. Indeed, a
number of the high-performance connectionist systems have
been explicitly augmented with handcrafted representations
(Tesauro 2002) and symbolic capabilities (Pomerleau et al.
1991). Moreover, the connectionist models that do exist tend
to be single-task models. However, the essence of computa-
tional universality is that one system can give rise to an un-
bounded set of very different behaviors.

ACT-R does well on this criterion in no small part because
it was exactly this criterion that has most driven the design of
this model. ACT-R, except for its subsymbolic limitations, is
Turing equivalent, as are most production systems (proof for
an early version of ACT appears in Anderson 1976). How-
ever, because of variability and memory errors, ACT-R fre-
quently deviates from the prescribed course of its symbolic
processing. This shows up, for example, in ACT-R models for
the Tower of Hanoi (Anderson & Douglass 2001; Altmann &
Trafton 2002), where it is shown that memory failures pro-
duce deviations from well-learned algorithms at just those
points where a number of goals have to be recalled. (These
are also the points where humans produce such deviations.)
Nonetheless, ACT-R has also been shown to be capable of
producing complex sequential behavior such as operation of
an air-traffic control system (Taatgen 2002). The functions
that it finds easy to compute are those with enough support
from the environment to enable behavior to be corrected
when it deviates from the main course.

5.2. Real-time performance

Grading: Connectionism: Worse
ACT-R: Best

Connectionist processing often has a poorly defined (or just
poor) relationship to the demands of real-time processing.

The mapping of processing to reaction time is inconsistent
and often quite arbitrary; for example, some relatively arbi-
trary function of the unit activation is often proposed (e.g.,
Rumelhart & McClelland 1982). For feedforward models
that depend on synchronous updates across the various lev-
els of units, it is fundamentally inconsistent to assume that
the time for a unit to reach full activation is a function of
that activation. The natural factor would seem to be the
number of cycles, but even when this is adopted, it is often
arbitrarily scaled (e.g., a linear function of number of cycles
with a negative intercept; see Plaut & Booth 2000). Another
problem is that connectionist systems typically only model
a single step of the full task (the main mapping) and do not
account for the timing effects produced by other aspects of
the task such as perceptual or motor. Finally, with respect
to learning time, the number of epochs that it takes, to ac-
quire an ability, maps poorly to the learning of humans
(Schneider & Oliver 1991). This last fact is one of the ma-
jor motivations for the development of hybrid models.

One of the great strengths of ACT-R is that every pro-
cessing step comes with a commitment to the time it will
take. It is not possible to produce an ACT-R model without
timing predictions. Of course, it is no small matter that
ACT-R not only makes predictions about processing time,
but that these happen to be correct over a wide range of
phenomena. As knowledge accumulates in the ACT-R com-
munity, these timing predictions are becoming a priori pre-
dictions. As one sign of this, in recent classes that we have
taught, undergraduates at CMU were producing models
that predicted absolute, as well as relative times, with no pa-
rameter estimation. In addition to performance time, ACT-
R makes predictions about learning time. In a number of
simulations, ACT-R was able to learn competences in hu-
man time (i.e., given as many training experiences as hu-
mans). This includes cognitive arithmetic (Lebiere 1998),
past-tense formations (Taatgen & Anderson 2002), and
backgammon (Sanner et al. 2000). ACT-R’s treatment of
time provides one answer to Roberts and Pashler’s (2000)
critique of model-fitting efforts. These researchers view it
as so easy to fit a model to data that it is at best an uninfor-
mative activity. Their claim that it is easy or uninformative
can be challenged on many grounds, but the ACT-R effort
highlights the fact that one need not be fitting one experi-
ment or paradigm in isolation.

5.3. Adaptive behavior

Grading: Connectionism: Better
ACT-R: Better

The positions of connectionism and ACT-R on this criterion
are quite similar. Both have made efforts, often Bayesian in
character (McClelland & Chappell1998), to have their un-
derlying learning rules tune the system to the statistical
structure of the environment. This is quite central to ACT-
R because its subsymbolic level derives from the earlier ra-
tional analysis of cognition (Anderson 1990). However,
adaptivity is not a direct function of these subsymbolic
equations but rather is a function of the overall behavior of
the system. ACT-R lacks an overall analysis of adaptivity, in-
cluding an analysis of how the goals selected by ACT-R are
biologically significant. An overall analysis is similarly lack-
ing in classical connectionism.

The reader will recall that Newell raised the issue of the
adaptivity of limitations like short-term memory. In ACT-
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R, short-term memory effects are produced by decay of
base-level activations. ACT-R’s use of base-level activations
delivers a computational embodiment of the rational analy-
sis of Anderson (1990), which claimed that such loss of in-
formation with time reflected an adaptive response to the
statistics of the environment where information loses its rel-
evance with time. Thus, ACT-R has implemented this ra-
tional analysis in its activation computations and has shown
that the resulting system satisfies Newell’s requirement that
it be functional.

5.4. Vast knowledge base

Grading: Connectionism: Worse
ACT-R: Mixed

Just because a system works well on small problems, one
has no guarantee that it will do so on large problems.
There have been numerous analyses of the scaling prop-
erties of neural networks. In models like NETtalk, it has
shown how a great deal of knowledge can be captured in
the connections among units, but that this depends on a
similarity in the input-output mappings. One of the noto-
rious problems with connectionism is the phenomenon of
catastrophic interference whereby new knowledge over-
writes old knowledge (McCloskey & Cohen 1989; Ratcliff
1990). Connectionists are much aware of this problem and
numerous research efforts (e.g., McClelland et al. 1995)
address it.

In ACT-R, the function of the subsymbolic computations
is to identify the right chunks and productions out of a large
data base, and the rational analysis provides a “proof” of the
performance of these computations. The success of these
computations has been demonstrated in “life-time” learn-
ing of cognitive arithmetic (Lebiere 1998) and past-tense
learning (Taatgen 2001). However, they have been models
of limited domains, and the knowledge base has been rela-
tively small. There have been no ACT-R models of perfor-
mance with large knowledge bases approaching human
size. The subsymbolic mechanisms are motivated to work
well with large knowledge bases, but that is no guarantee
that they will. The one case of dealing with a large knowl-
edge base in ACT-R is the effort (Emond, in preparation)
to implement WordNet (Fellbaum 1998) in ACT-R, which
involves more than 400,000 chunks, but this implementa-
tion awaits more analysis.

5.5. Dynamic behavior

Grading: Connectionism: Mixed
ACT-R: Better

Connectionism has some notable models of interaction
with the environment such as ALVINN and its successors,
which were able to drive a vehicle, although it was primar-
ily used to drive in fairly safe predictable conditions (e.g.,
straight highway driving) and was disabled in challenging
conditions (interchanges, perhaps even lane changes).
However, as exemplified in this model, connectionism’s
conception of the connections among perception, cogni-
tion, and action is pretty ad hoc, and most connectionist
models of perception, cognition, and action are isolated,
without the architectural structure to close the loop, espe-
cially in timing specifications. McClelland’s (1979) Cascade
model offers an interesting conception of how behavior
might progress from perception to action, but this concep-

tion has not actually been carried through in models that
operate in dynamic environments.

Many ACT-R models have closed the loop, particularly
in dealing with dynamic environments like driving, air traf-
fic control, simulation of warfare activities, collaborative
problem solving with humans, control of dynamic systems
like power plants, and game playing. These are all domains
where the behavior of the external system is unpredictable.
These simulations take advantage of both ACT-R’s ability to
learn and the perceptual-motor modules that provide a
model of human attention. However, ACT-R is only begin-
ning to deal with tasks that stress its ability to respond to
task interruption. Most ACT-R models have been largely
focused on single goals.

5.6. Knowledge integration

Grading: Connectionism: Worse
ACT-R: Mixed

We operationalized Newell’s symbolic criterion as achiev-
ing the intellectual combination that he thought physical
symbols were needed for. Although ACT-R does use phys-
ical symbols more or less in Newell’s sense, this does not
guarantee that it has the necessary capacity for intellectual
combination. There are demonstrations of it making infer-
ence (Anderson et al. 2001), performing induction (Haverty
et al. 2000), metaphor (Budiu 2001), and analogy (Salvucci
& Anderson 2001), and these all do depend on its symbol
manipulation. However, these are all small-scale, circum-
scribed demonstrations, and we would not be surprised if
Fodor found them less than convincing.

Such models have not been as forthcoming from classi-
cal connectionism (Browne & Sun 2001). A relatively well-
known connectionist model of analogy (Hummel & Holy-
oak 1998) goes beyond classical connectionist methods to
achieve variable binding by means of temporal synchrony.
The Marcus demonstration of infants’ learning rules has be-
come something of a challenge for connectionist networks.
It is a relatively modest example of intellectual combination
– recognizing that elements occurring in different positions
need to be identical to fit a rule and representing that as a
constraint on novel input. The intellectual elements being
combined are simply sounds in the same string. Still, it re-
mains a challenge to classical connectionism, and some
classical connectionists (e.g., McClelland & Plaut 1999)
have chosen instead to question whether the phenomenon
is real.

5.7. Natural language

Grading: Connectionism: Better
ACT-R: Worse

Connectionism has a well-articulated conception of how
natural language is achieved, and many notable models that
instantiate this conception. However, despite efforts like
Elman’s, it is a long way from providing an adequate ac-
count of human command of the complex syntactic struc-
ture of natural language. Connectionist models are hardly
ready to take the SAT. ACT-R’s treatment of natural lan-
guage is fragmentary. It has provided models for a number
of natural-language phenomena including parsing (Lewis
1999), use of syntactic cues (Matessa & Anderson 2000),
learning of inflections (Taatgen 2001), and metaphor
(Budiu 2001).
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ACT-R and connectionism take opposite sides on the
chicken-and-egg question about the relationship between
symbols and natural language that Newell and others won-
dered about: Natural-language processing depends in part
on ACT-R’s symbolic capabilities, and it is not the case that
natural-language processing forms the basis of the symbolic
capabilities, nor is it equivalent to symbolic processing.
However, classical connectionists are quite explicit that
whatever might appear to be symbolic reasoning really de-
pends on linguistic symbols like words or other formal sym-
bols like equations.

5.8. Consciousness

Grading: Connectionism: Worse
ACT-R: Worse

The stances of connectionism and ACT-R on consciousness
are rather similar. They both have models (e.g., Cleeremans
1993; Wallach & Lebiere 2000; in press) that treat one of
the core phenomena – implicit memory – in the discussion
of consciousness. However, neither have offered an analy-
sis of subliminal perception or metacognition. With respect
to functionality of the implicit/explicit distinction, ACT-R
holds that implicit memory represents the subsymbolic in-
formation that controls the access to explicit declarative
knowledge. To require that this also be explicit, would be
inefficient and invite infinite regress.

ACT-R does imply an interpretation of consciousness.
Essentially, what people are potentially conscious of is con-
tained in ACT-R’s set of buffers in Figure 1 – the current
goal, the current information retrieved from long-term
memory, the current information attended in the various
sensory modalities, and the state of various motor modules.
There are probably other buffers not yet represented in
ACT-R to encode internal states like pain, hunger, and var-
ious pleasures. The activity of consciousness is the process-
ing of these buffer contents by production rules. There is
no Cartesian Theater (Dennett 1991; Dennett & Kins-
bourne 1995) in ACT-R. ACT-R is aware of the contents of
the buffers only as they are used by the production rules.

5.9. Learning

Grading: Connectionism: Better
ACT-R: Better

A great deal of effort has gone into thinking about and mod-
eling learning in both connectionist models and ACT-R.
However, learning is such a key issue and so enormous a
problem that both have much more to do. They display
complementary strengths and weaknesses. While connec-
tionism has accounts to offer of phenomena in semantic
memory like semantic dementia (Rogers & McClelland
2003), ACT-R has been able to provide detailed accounts of
the kind of discrete learning characteristic of episodic
memory such as the learning of lists or associations (An-
derson et al. 1998a; Anderson & Reder 1999a). Whereas
there are connectionist accounts of phenomena in percep-
tual and motor learning, ACT-R offers accounts of the
learning of cognitive skills like mathematical problem
solving. Whereas there are connectionist accounts of per-
ceptual priming, there are ACT-R accounts of associative
priming. The situation with respect to conditioning is in-
teresting. On the one hand, the basic connectionist learn-
ing rules have a clear relationship to some of the basic learn-

ing rules proposed in the conditioning literature, such as
the Rescorla-Wagner rule (see Anderson [2000] for a dis-
cussion). On the other hand, known deficits in such learn-
ing rules have been used to argue that at least in the case of
humans, these inferences are better understood as more
complex causal reasoning (Schoppek 2001).

5.10. Development

Grading: Connectionism: Better
ACT-R: Worse

As with language, development is an area that has seen a
major coherent connectionist treatment but only spotty ef-
forts from ACT-R. Connectionism treats development as
basically a learning process, but one that is constrained by
the architecture of the brain and the timing of brain devel-
opment. The connectionist treatment of development is in
some ways less problematic than its treatment of learning
because connectionist learning naturally produces the slow
changes characteristic of human development. Classical
connectionism takes a clear stand on the empiricist–nativist
debate, rejecting what it calls representational nativism.

In contrast, there is not a well-developed ACT-R position
on how cognition develops. Some aspects of a theory of cog-
nitive development are starting to emerge in the guise of
cognitive models of a number of developmental tasks and
phenomena (Emond & Ferres 2001; Jones et al. 2000; Si-
mon 1998; submitted; Taatgen & Anderson 2002; van Rijn
et al. 2000). The emerging theory is one that models child
cognition in the same architecture as adult cognition and
that sees development as just a matter of regular learning.
Related to this is an emerging model of individual differ-
ences (Jongman & Taatgen 1999; Lovett et al. 2000) that
relates them to a parameter in ACT-R that controls the abil-
ity of associative activation to modulate behavior by context.
Anderson et al. (1998b) argue that development might be
accompanied by an increase in this parameter.

5.11. Evolution

Grading: Connectionism: Worst
ACT-R: Worst

Both theories, by virtue of their analysis of the Bayesian ba-
sis of the mechanisms of cognition, have something to say
about the adaptive function of cognition (as they were cred-
ited with under Criterion 3), but neither has much to say
about how the evolution of the human mind occurred. Both
theories basically instantiate the puzzlement expressed by
Newell as to how to approach this topic.

We noted earlier that cognitive plasticity seems a distin-
guishing feature of the human species. What enables this
plasticity in the architecture? More than anything else,
ACT-R’s goal memory enables it to abstract and retain the
critical state information needed to execute complex cogni-
tive procedures. In principle, such state maintenance could
be achieved using other buffers – speaking to oneself, stor-
ing and retrieving state information from declarative mem-
ory, writing things down, and so forth. However, this would
be almost as awkward as getting computational universality
from a single-tape Turing machine, besides being very er-
ror-prone and time-consuming. A large expansion of the
frontal cortex, which is associated with goal manipulations,
occurred in humans. Of course, the frontal cortex is some-
what expanded in other primates, and it would probably be

Anderson & Lebiere: The Newell Test for a theory of cognition

14 BEHAVIORAL AND BRAIN SCIENCES (2003) 26:5



unwise to claim that human cognitive plasticity is totally dis-
continuous from that of other species.

5.12. Brain

Grading: Connectionism: Best
ACT-R: Worse

Classical connectionism, as advertised, presents a strong
position on how the mind is implemented in the brain. Of
course, there is the frequently expressed question of
whether the brain that classical connectionism assumes
happens to correspond to the human brain. Assumptions of
equipotentiality and the backprop algorithm are frequent
targets for such criticisms, and many nonclassical connec-
tionist approaches take these problems as starting points for
their efforts.

There is a partial theory about how ACT-R is instantiated
in the brain. ACT-RN has established the neural plausibil-
ity of the ACT-R computations, and we have indicated
rough neural correlates for the architectural components.
Recently completed neural imaging studies (Anderson et
al. 2003; Fincham et al. 2002; Sohn et al. 2000) have con-
firmed the mapping of ACT-R processes onto specific brain
regions (e.g., goal manipulations onto the dorsolateral pre-
frontal cortex). There is also an ACT-R model of frontal pa-
tient deficits (Kimberg & Farah 1993). However, there is
not the systematic development that is characteristic of
classical connectionism. While we are optimistic that fur-
ther effort will improve ACT-R’s performance on this crite-
ria, it is not there yet.

6. Conclusion

Probably others will question the grading and argue that
certain criteria need to be re-ranked for one or both of the
theoretical positions. Many of the arguments will be legiti-
mate complaints, and we are likely to respond by either de-
fending the grading, or conceding an adjustment in it. How-
ever, the main point of this target article is that the theories
should be evaluated on all 12 criteria, and the grades point
to where the theories need more work.

Speaking for ACT-R, where will an attempt to improve
lead? In the case of some areas like language and develop-
ment, it appears that improving the score simply comes
down to adopting the connectionist strategy of applying
ACT-R in depth to more empirical targets of opportunity.
We could be surprised, but so far these applications have
not fundamentally impacted the architecture. The efforts to
extend ACT-R to account for dynamic behavior through
perception and action yielded a quite different outcome. At
first, ACT-R/PM was just an importation, largely from
EPIC (Meyer & Kieras 1997) to provide input and output
to ACT-R’s cognitive engine. However, it became clear that
ACT-R’s cognitive components (the retrieval and goal
buffers in Fig. 1) should be redesigned to be more like the
sensory and motor buffers. This led to a system that more
successfully met the dynamic behavior criterion and has
much future promise in this regard. Thus, incorporating the
perceptual and motor modules fundamentally changed the
architecture. We suspect that similar fundamental changes
will occur as ACT-R is extended to deal further with the
brain criterion.

Where would attention to these criteria take classical

connectionism? First, we should acknowledge that it is not
clear that classical connectionists will pay attention to these
criteria or even acknowledge that the criteria are reason-
able. However, if they were to try to achieve the criteria, we
suspect that it would move connectionism to a concern with
more complex tasks and symbolic processing. We would not
be surprised if it took them in a direction of a theory more
like ACT-R, even as ACT-R has moved in a direction that is
more compatible with connectionism. Indeed, many at-
tempts have been made recently to integrate connectionist
and symbolic mechanisms into hybrid systems (Sun 1994;
2002). More generally, if researchers of all theoretical per-
suasions did try to pursue a broad range of criteria, we be-
lieve that distinctions among theoretical positions would
dissolve and psychology will finally provide “the kind of en-
compassing of its subject matter – the behavior of man –
that we all posit as a characteristic of a mature science”
(Newell 1973, p. 288).

NOTE
1. The complete list of published ACT-R models between

1997 and 2002 is available from the ACT-R home page at:
act.psy.cmu.edu
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Newell’s list

Joseph Agassi
Department of Philosophy, Tel-Aviv University, Tel-Aviv 69978, Israel.
agass@post.tau.ac.il http://www.tau.ac.il/~agass/

Abstract: Newell wanted a theory of cognition to abide by some explicit
criteria, here called the Newell Test. The test differs from the Turing Test
because it is explicit. The Newell Test will include the Turing Test if its
characterization of cognition is complete. It is not. Its use here is open-
ended: A system that does not pass it well invites improvement.

Alan Newell asserted that an adequate theory of a functioning sys-
tem of human cognition should abide by some explicit criteria, and
he offered a list of such criteria. The list includes characteristics
such as flexible, adaptive behavior; possession of a vast knowledge
base; and the ability to integrate knowledge, use a natural lan-
guage, and learn. The target article authors say that, although this
list is not complete, it certainly is “enough to avoid theoretical my-
opia” (sect. 1, para. 2). Hardly: Myopia is the outcome of the claim
for knowledge of natural languages and learning sufficient to per-
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mit decision as to whether a given theory of cognition captures
them adequately. We just do not know that much as yet.

The authors say that the criteria deserve “greater scientific
prominence.” They therefore try to “evaluate theories by how well
they do at meeting” the criteria (sect. 1, para. 4). This may be pre-
mature. Whether it is, depends on the merit of Newell’s idea more
than on its applications. So, it requires examination. What the au-
thors call the Newell Test is a test not of Newell’s idea but of the
theories that should agree with it – provided that it is valid. Is it?
How are we to judge this?

Anderson & Lebiere (A&L) apply Newell’s Test to two new ideas
that are controversial, so the application cannot be such a test.
Hence, their work is begging the question: Some test of it is re-
quired to show that it deserves a “greater scientific prominence.”

“Newell is calling us to consider all the criteria and not pick and
choose the ones to consider” (sect. 2.8). This remark renders the
whole venture too questionable. The authors make it apropos dis-
cussion of the criterion of consciousness.

Newell acknowledged the importance of consciousness to a full account
of human cognition, although he felt compelled to remark that “it is not
evident what functional role self-awareness plays in the total scheme of
mind.” We too have tended to regard consciousness as epiphenome-
nal . . . (sect. 2.8)

This is very shaky. Whether consciousness is or is not epiphenom-
enal is a red herring: It is an empirical fact that in many cases cog-
nitive conduct differs depending on whether it is accompanied
with consciousness or not, and the question may arise, should a
system emulating human consciousness reflect this fact? Impor-
tantly, Turing’s celebrated idea of the Turing Test is designed to
avoid this question altogether.

The authors examine two sets, classical connectionism and
ACT-R. Classical connectionism is a computerized version of be-
haviorism. ACT-R is “a theory of higher-level cognition,” “a sub-
symbolic activation-based memory” able “to interact with a sym-
bolic system of production rules”; the R in ACT-R “denotes
rational analysis” (sect. 4.1, first paragraph). The two sets, then,
are artificial intelligence or expert-systems programs. The authors
report a claim that classical connectionism passes the Turing Test.
Presumably they disagree. The same holds for ACT-R. “ACT-R,
but for its subsymbolic limitations, is Turing equivalent, as are
most production systems” and “(proof for an early version of ACT
[is due to] Anderson . . .)” (sect. 5.1, para. 2). This is a bit cryptic;
I will explain the difference between the Turing and the Newell
Tests in the following paragraph.

The Turing Test was meant to render the mind-body problem
empirically decidable. Were there a computer program that could
fool an expert, Turing suggested, then it would be empirically in-
distinguishable from humans, and so the attribution to humans of
a metaphysical soul would be redundant. Because Newell’s crite-
ria depict human characteristics, any interlocutor who can pass the
Turing Test should certainly possess them, because the inability to
exhibit any human characteristic the like of which Newell men-
tions would expose the impostor. And yet, the Turing Test is im-
plicit and Newell’s Test is explicit. This permits finding a partial
success in passing the Newell Test. But, to be an explicit version
of the Turing Test, the Newell Test must refer to a complete list
of characteristics. We do not have this, and the Turing Test may
be preferred just because it leaves this task to the experts who wish
to test the humanity of their enigmatic interlocutor. Consequently,
a Turing Test can never be decisive: Both expert and programmer
can improve on prior situations and thus deem failure a merely
temporary setback. True, the Turing Test is generally deemed pos-
sibly decisive, and, being a thought-experiment, actually decisive.
Some writers, notably Daniel Dennett, claim that only exorbitant
costs prevent the construction of a machine that will pass the Tur-
ing Test. That machine, then, should certainly be able to pass the
Newell Test with flying colors. It is a pity that A&L do not refer to
this claim and expose it as a sham. If they are any close to being
right, they should be able to do so with ease.

The interesting aspect of the target article is that it is open-
ended: Whenever the system A&L advocate, which is ACT-R,
does not pass the examination as well as they wish, they recom-
mend trying an improvement, leading to a retest. They should ob-
serve that such a move may be two-pronged. They refer to the im-
provement of the ability of a program to abide by the theory of
flexibility; adaptive behavior; and the ability to integrate knowl-
edge, use a natural language, and learn. They should not ignore
the need to improve on these theories. When they refer to natural
languages or to learning, they view the connectionist idea of them
as more satisfactory than that of ACT-R, because it is more com-
plete. Yet, whatever completeness is exactly, it is not enough: We
seek explanations, and so to accept axiomatically what we want to
understand is not good enough. We still do not know what a nat-
ural language is and how we learn; and we do not begin to under-
stand these. Let me end with an insight of David Marr that should
not be forgotten. Emulation is helpful for the understanding but
is no substitute for it; sometimes, the very success of emulation,
Marr (1982) observed, renders it less useful as a problematic one.
We want understanding, not mere emulation.

Think globally, ask functionally

Erik M. Altmann
Department of Psychology, Michigan State University, East Lansing, MI
48824. ema@msu.edu http://www.msu.edu/~ema

Abstract: The notion of functionality is appropriately central to the
Newell Test but is also critical at a lower level, in development of cogni-
tive sub-theories. I illustrate, on one hand, how far this principle is from
general acceptance among verbal theoreticians, and, on the other hand,
how simulation models (here implemented within ACT-R) seem to drive
the functional question automatically.

Anderson & Newell (A&L) have been carrying integrative cogni-
tive theory, in shifts, for the past 30 years or so (if one goes back
to Newell 1973). We are fortunate that Anderson is young; for-
mulating dichotomous questions – seeing the trees but not the
forest – may be the modal tenure procedure in psychology de-
partments today, but perhaps in another generation it will be ac-
ceptable not to conduct new experiments at all but simply to in-
tegrate old data into increasingly complete computational models.

In the meantime, how can we avoid theoretical myopia in our
daily research? Applying the Newell Test is well and good once a
decade or so, with that many years’ interim progress available to
assess it. In terms of the next chunk of publishable research, how-
ever, it’s useful to have more immediate guidance.

Central to the Newell Test is the idea of functionality: A theory
has to explain how the cognitive system accomplishes some par-
ticular function. Among the Newell Test criteria, this function is
high level, related in some relatively direct way to the fitness of
the organism. However, as one develops micro-theories within a
larger theory, functionality is still a relevant question; one can ask,
for each process within a model, what it is for. Its outputs could,
for example, be necessary inputs for another process in a chain
that leads ultimately to accomplishing the task at hand. Or, one
could ask whether each behavioral measure reflects a distinct
process at all; perhaps it reflects a side effect of some other func-
tionally necessary process. In both cases, it is difficult if not im-
possible to address the functional question without a precise rep-
resentation of the processes one is talking about. In practice, this
implies a computational simulation.

How does functionality play out at the level of the micro-theory
that is the next chunk of publishable research? Curiously, even at
this level, functionality seems to be regarded as optional, if not ac-
tually vulgar. A&L raise the example of short-term memory con-
structs (and Newell’s frustration over them), but let’s have a newer
one, if only to see what might have changed. In the domain of ex-
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ecutive control, there is a burgeoning literature on “switch cost” –
the time cost associated with switching to a different task, as com-
pared to performing the same task over again. One regularity to
have emerged is that switch cost is difficult to erase; even with
time and motivation to prepare for the other task, people are
slower on the first trial under that task than on the second. The
dominant theoretical account of this residual switch cost is ar-
guably the “stimulus cued completion” hypothesis of Rogers and
Monsell (1995, p. 224):

This hypothesis proposes that an endogenous act of control deployed
before onset of the stimulus can achieve only part of the process of task-
set reconfiguration. Completion of the reconfiguration is triggered only
by, and must wait upon, the presentation of a task-associated stimulus.

In terms of functionality, this hypothesis is vacuous. It need not
be; one could ask how the system might benefit from stimulus-
cued completion. For example, one could propose a benefit to the
system hedging its bets and waiting to complete the reconfigura-
tion process until there is evidence (in the form of the trial stim-
ulus) that the new task set will be needed. One could then try to
formulate scenarios in which this benefit would actually be real-
ized and evaluate them for plausibility, or perhaps even against ex-
isting data. None of this was attempted by Rogers and Monsell, or
by authors since who have invoked stimulus-cued completion as
an explanatory construct. Call this a working definition of theo-
retical myopia: a “hypothesis” that merely relabels an empirical
phenomenon.

In a subsequent ACT-R model, Sohn and Anderson (2001) ex-
plain residual switch cost in terms of stochasticity. Their model
contains a “switching” production that retrieves the new task from
memory and installs it in the system’s focus of attention. Selection
of productions is, like most other cognitive processes, subject to
noise, which explains why this production is not always selected in
advance of stimulus onset. Functionally, it can be selected after
stimulus onset, though must be selected before response selec-
tion. This account is an improvement; it makes predictions (in
terms of response-time variability), and it explains residual switch
cost as a side-effect of the noise that accompanies any communi-
cation channel.

One could go further and ask, does residual switch cost reflect
a process that directly contributes in some way to task perfor-
mance? In another ACT-R model, Gray and I proposed that resid-
ual switch cost reflects a redundant task-encoding process that af-
fects quality control (Altmann & Gray 2000). (Initial task encoding
activates a memory trace for the current task, but noisily; redun-
dant task encoding catches and properly strengthens memory
traces that were initially weakly encoded.) The proof of function-
ality lay in Monte Carlo simulations showing that overall perfor-
mance accuracy was higher with this redundant phase than with-
out.

Are Sohn and Anderson right, or are Altmann and Gray? We
have not found a behavioral test; perhaps neuroimaging will some-
day afford a diagnostic. I would predict, however, that the stimu-
lus-cued completion hypothesis will not find its way into a pre-
cisely formulated cognitive theory, micro or otherwise, unless
relevant functional questions are posed first.
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The Newell Test should commit to diagnosing
dysfunctions

William J. Clancey
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Abstract: “Conceptual coordination” analysis bridges connectionism and
symbolic approaches by positing a “process memory” by which categories
are physically coordinated (as neural networks) in time. Focusing on dys-
functions and odd behaviors, like slips, reveals the function of conscious-
ness, especially constructive processes that are often taken for granted,
which are different from conventional programming constructs. Newell
strongly endorsed identifying architectural limits; the heuristic of “diag-
nose unusual behaviors” will provide targets of opportunity that greatly
strengthens the Newell Test.

Anderson & Lebiere’s (A&L’s) article evaluates cognitive theories
by relating them to the criteria of functionality derived from
Newell. Suppose that the Newell Test (NT) has all the right cate-
gories, but still requires a significant architectural change for the-
oretical progress. I claim that “conceptual coordination” (CC)
(Clancey 1999a) provides a better theory of memory, and that,
without committing to explaining cognitive dysfunctions, NT
would not provide sufficient heuristic guidance for leading in this
direction.

Conceptual coordination (CC) hypothesizes that the store, re-
trieve, and copy memory mechanism is not how the brain works.
Instead, all neural categorizations are activated, composed, and
sequenced “in place,” with the assumption that sufficient (latent)
physical connections exist to enable necessary links to be formed
(physically constructed) at run time (i.e., when a behavior or ex-
perience occurs). For example, if comprehending a natural lan-
guage sentence requires that a noun phrase be incorporated in dif-
ferent ways, it is not moved or copied but is physically connected
by activation of (perhaps heretofore unused) neural links. Effec-
tively, Newell’s “distal access” is accomplished by a capability to
hold a categorization active and encapsulate it (like a pointer) so
that it can be incorporated in different ways in a single construc-
tion. The no-copying constraint turns out to be extremely power-
ful for explaining a wide variety of odd behaviors, including speak-
ing and typing slips, perceptual aspects of analogy formation,
developmental “felt paths,” multimodal discontinuity in dreams,
and language comprehension limitations. CC thus specifies a cog-
nitive architecture that bridges connectionist and symbolic con-
cerns; and it relates well to the NT criteria for which ACT-R scores
weakest – development, consciousness, language, and the brain.
To illustrate, I provide a diagnostic analysis of an autistic phe-
nomenon and then relate this back to how NT can be improved.

In CC analysis, a diagram notation is used to represent a behav-
ior sequence, which corresponds in natural language to the con-
ceptualization of a sentence. For example, according to Baron-Co-
hen (1996), an autistic child can conceptualize “I stroke the cat that
drinks the milk.” In one form of the CC notation, a slanting line to
the right represents categorizations activated sequentially in time
(e.g., “I – stroke” in Figure 1). Another sequence may qualify a cat-
egorization (e.g., “the cat – drinks” qualifies “stroke”). This pattern
of sequences with qualifying details forming compositions of se-
quences occurs throughout CC analysis. The essential idea in CC
is to understand how categories (both perceptual and higher-order
categorizations of sequences and compositions of them) are related
in time to constitute conscious experience (Clancey1999a).

The challenge is to understand why an autistic child finds it
problematic to conceptualize “I see the cat that sees the mouse.”
A traditional view is that the child lacks social understanding. But
CC analysis suggests a mechanistic limitation in the child’s ability
to physically sequence and compose categories. Relating to other
agents requires being able to construct a second-order conceptu-
alization that relates the child’s activity to the other agent’s activ-
ity. Figure 2 shows the CC notation for the required construction.
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The statement (the conceptualization being constructed) in-
volves a triadic relation: I see the cat, the cat sees the mouse, and
I see the mouse. There is one mouse that we are both seeing. Two
“see” constructions are unified by identifying a detail (the mouse)
as common to both. In effect, the child must conceive of a prob-
lem space (Clancey 1999a): A common categorization of an
operand (mouse) enables categorization of multiple actions as be-
ing one action (seeing), an operator. Because the two actions are
by different agents, accomplishing this identification integrates
perspectives of self (what I am doing now) and other (what that
object is doing now). Indeed, the conceptualization of agent ap-
pears to be inherent in this construction.

Put another way, two sequentially occurring conceptualizations
(I see the cat; the cat sees the mouse) are held active and related:
“I see the cat that sees the mouse” and “I see the mouse” become
“I see that the cat sees the mouse” (i.e., the mouse that I am see-
ing). (The second-order relation is represented in Figure 2 by the
solid arrow below “I see”). Conceiving this relation is tantamount
to conceiving what joint action is. Barresi and Moore (1996) char-
acterize this as “integrating third and first person information”
(p. 148), and contrast it with (Figure 1) “embedding one third per-
son representation in a separate first person frame” (p. 148). Re-
lated to Langacker’s (1986) analysis, logical relations are not extra
capabilities or meta “inference” capabilities, but generalizations of
concrete accomplishments that arise through the capability to
physically coordinate categories through identification, sequence,
and composition in time. Mental operations are physical, subcon-
scious processes, constrained by physical limits on how inclusion
in new sequences can occur. The ability to hold two sequences ac-
tive and relate them constitutes a certain kind of consciousness
(e.g., not present in dreaming; Clancey 2000).

To summarize, the example requires relating sequential cate-
gorizations of seeing so that they become simultaneous; it exem-
plifies a second-order conceptualization of intentionality (my see-
ing is about your seeing; Clancey 1999b); and suggests that joint

action requires being able to conceive the ideas we call operator
and agent.

The pivotal heuristic in CC analysis is addressing unusual be-
haviors and experiences. These “targets of opportunity” appear to
be de-emphasized by A&L’s focus on normal behaviors “that peo-
ple display on a day-to-day basis.” For NT to provide heuristic
guidance for discovering a theory like CC, grading for each crite-
ria should include diagnosing unusual phenomena that everyone
experiences (e.g., slips) and dysfunctions. For example, for the cri-
teria of consciousness, we should direct theorization at explaining
the phenomenology of dreaming, autism, compulsive-obsessive
disorders, and the like. For natural language, include compre-
hension difficulties (e.g., subject relatives with center-embedded
noun phrases; Clancey 1999a, Ch. 10). For development, explain
how “felt paths” are constructed in children’s learning (Ch. 5). For
knowledge integration, explain slips (Ch. 6) and “seeing as” in
analogy formation (Ch. 7). In this manner, learning in well-known
architectures (e.g., MOPS, EPAM, SOAR) can be evaluated and
the nature of problem spaces reformulated (Ch. 12).

The evolution criterion highlights the limitations of NT as
stated. Rather than focusing on human evolution, this criterion
should be about the evolution of cognition broadly construed,
and hence should be inherently comparative across species
(Clancey 1999b). Viewed this way, there is no “paucity of data,”
but rather a largely unexploited potential to make the study of
animal cognition an integrated discipline with human problem
solving. By including the heuristic “explain odd behavior” in the
grading, we will naturally be guided to characterize and relate
cognition in other primates, ravens, and the like. This is essen-
tial for relating “instinctive” mechanisms (e.g., weaving spider
webs) to brain mechanisms, development, and learned higher-
order categorizations (e.g., conceptualization of intentionality).
A&L mention comparative considerations, but we should view
this as a diagnostic problem, much as cognitive theories like
ACT* have been used to explain students’ different capabilities
(Anderson et al. 1990). Furthermore, the research community
should collect behaviors that have been heretofore ignored or
poorly explained by computational theories and include them in
the grading criteria.

Applying the Newell Test in this way – moving from the routine
behaviors already handled more or less well, to diagnostic theories
that relate aberrations to architectural variations – might bring
symbolic and connectionist theories together and make the study
of cognition a more mature science.

A complete theory of tests for a theory of
mind must consider hierarchical complexity
and stage

Michael Lamport Commons and Myra Sturgeon White
Department of Psychiatry, Harvard Medical School, Massachusetts Mental
Health Center, Boston, MA 02115-6113. Commons@tiac.net
mswhite@fas.harvard.edu http://www.tiac.net/~commons/

Abstract: We distinguish traditional cognition theories from hierarchi-
cally complex stacked neural networks that meet many of Newell’s crite-
ria. The latter are flexible and can learn anything that a person can learn,
by using their mistakes and successes the same way humans do. Short-
comings are due largely to limitations of current technology.

Anderson & Lebiere (A&L) raise important issues concerning cri-
teria for evaluating the cognitive theories on which computational
systems designed to simulate human intellectual abilities are
based. Typically, cognitive theories are indirectly evaluated based
on a theory’s capacity to be translated into a computational system
that produces correct answers or workable rules. The Newell 12-
Criteria Test (1992; Newell & Simon 1963/1995) that A&L pro-
pose to measure theories with, makes an important move towards
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Figure 1 (Clancey). Unproblematic: “I stroke the cat that drinks
the milk.”

Figure 2 (Clancey). Problematic: “I see the cat that sees the
mouse.”



measuring a theory’s capacity to exhibit underlying behaviors sup-
porting the expression of human cognitive processes.

We suggest a further dimension. Most cognitive theories are,
like Athena, born fully formed, modeling the highest stages of de-
velopment. However, human cognition is a product of develop-
mental process. Humans learn to act by building one stage’s ac-
tions on actions from previous stages, creating the capacity to
perform ever more complex behaviors. Thus, to fully explain or
model human intellectual capacity, hierarchical complexity must
be factored into a theory. The Model of Hierarchical Complexity
(MHC) (Commons et al. 1998) delineates these developmental
changes (see Dawson 2002 for validity and reliability).

MHC identifies both sequences of development and reasons
why development occurs from processes producing stage transi-
tion. It may be used to define complex human thought processes
and computer systems simulating those processes. With this
model, performed tasks are classified in terms of their order of hi-
erarchical complexity using the following three main axioms
(Commons et. al 1998). Actions at a higher order of hierarchical
complexity

1. Are defined in terms of lower order actions;
2. Organize and transform lower stage actions;
3. Solve more complex problems through the nonarbitrary or-

ganization of actions.
The order of the hierarchical complexity of a task is determined

by the number of its concatenation operations. An order-three
task action has three concatenation operations and operates on
output from order-two actions, which by definition has two con-
catenation operations and operates on an order-one task action.
Increases in the hierarchical complexity of actions result from a
dialectical process of stage transition. (Commons & Richards
2002).

To stimulate human intellectual capacities in computer sys-
tems, we design stacked neural networks that recapitulate the de-
velopmental process. This approach is necessary because cur-

rently we lack the knowledge to build into systems the myriad key
behaviors formed during the developmental processes. Moreover,
we lack the technology to identify the intricate web of neural con-
nections that are created during the developmental process.

These stacked neural networks go through a series of stages
analogous to those that occur during human intellectual develop-
ment. Stages of development function as both theory and process
in these systems. Actions (i.e., operations performed by networks
resulting in a changed state of the system) are combined to per-
form tasks with more complex actions, permitting the perfor-
mance of more complex tasks and thereby scaling up the power.
The number of neural networks in a stack is the highest order of
hierarchical complexity of task-required actions identified by the
model. An example of a six-stage stacked neural network based on
the model of hierarchical complexity (Table 1) follows.

Example. A system answers customer telephone calls, transfer-
ring them to the proper area within a large organization. Transfers
are based on the customer’s oral statements and responses to sim-
ple questions asked by the system. The system is capable of a
three-year-old’s language proficiency. A front-end recognition sys-
tem translates customers’ utterances (system inputs) into words
that will serve as simple stimuli. It also measures time intervals be-
tween words.

Stacked neural networks based on the MHC meet many of
Newell’s criteria. They are flexible and can learn anything that a
person can learn. They are adaptive because their responses are
able to adjust when stimuli enter the stack at any level. They are
dynamic in that they learn from their mistakes and successes. In
the example, the system adjusts the weights throughout the stack
of networks if a customer accepts or rejects the selected neural
network location. Knowledge integration occurs throughout the
networks in the stack. Moreover, networks based on the MHC
learn in the same way as humans learn.

Some criteria are less easily met. Given current technology,
neural networks cannot function in real time, are unable to trans-

Commentary/Anderson & Lebiere: The Newell Test for a theory of cognition

Table 1 (Commons & White). Stacked Neural Network 
(Example of Model of Hierarchical Complexity)

Order of Hierarchical Complexity What It Uses What It Does

0. Calculatory From Humans Calculates and executes human written 
programs

1. Sensory and motor Caller’s utterances A front-end speech recognition system trans-
lates customers’ utterances into words. These 
“words” serve as simple stimuli to be detected.

2. Circular sensory motor Words from speech Forms open-ended classes consisting of
recognition system groups contiguous individual words

3. Sensory-motor Grouped contiguous Labels and maps words to concepts.
speech segments Networks are initially taught concepts that are 

central to the company environment: products 
and departments such as customer service, 
billing, and repair.

4. Nominal Concept domains Identifies and labels relationships between con-
cept domains. Possible interconnections are 
trained based on the company’s functions, 
products, and services. Interconnections are 
adjusted based on system success.

5. Sentential Joint concept domains Forms simple sentences and understands rela-
tionships between two or more named con-
cepts. Finds possible locations to send cus-
tomer’s calls. Constructs statement on whether 
they want to be transferred to that department.
Customer’s acceptances or rejection feeds back
to lower levels.
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fer learning despite abilities to acquire a vast knowledge base, and
cannot exhibit adult language skills. Whether we can build evolu-
tions into systems – or even want to – is open to question. Finally,
given our current limited understanding of the brain, we can only
partially emulate brain function.

Nonclassical connectionism should enter 
the decathlon

Francisco Calvo Garzón
Department of Philosophy, Indiana University, Bloomington, IN, and
University of Murcia, Facultad de Filosofía, Edif. Luis Vives, Campus de
Espinardo Murcia 30100, Spain. fjcalvo@um.es

Abstract: In this commentary I explore nonclassical connectionism
(NCC) as a coherent framework for evaluation in the spirit of the Newell
Test. Focusing on knowledge integration, development, real-time perfor-
mance, and flexible behavior, I argue that NCC’s “within-theory rank or-
dering” would place subsymbolic modeling in a better position. Failure to
adopt a symbolic level of thought cannot be interpreted as a weakness.

Granting Anderson & Lebiere’s (A&L’s) “cognitive decathlon”
overall framework, and their proposed operationalizations and
grading scheme for theory-evaluation, the aspects of their article
that I address here concern the choice of contestants entering the
decathlon, and, based on that choice, the exploration of nonclas-
sical connectionism (NCC) as a coherent framework for evalua-
tion in the spirit of the Newell Test. The range of classical con-
nectionist architectures that A&L assess is confined to models that
have a feedforward or a recurrent architecture, a locally super-
vised learning algorithm (e.g., backpropagation), and a simple
nonlinear activation function (e.g., sigmoidal). A nonclassical
framework, however, can be coherently developed. By NCC, I
shall be referring to the class of models that have different com-
binations of pattern associator/autoassociative memory/competi-
tive network topologies, with bidirectional connectivity and in-
hibitory competition, and that employ combined Hebbian and
activation-phase learning algorithms (O’Reilly & Munakata 2000;
Rolls & Treves 1998). Were NCC allowed to enter the competi-
tion, it would (or so I shall argue) obtain a “within-theory rank or-
dering” that could perhaps place it in a better position than the
ACT-R theory. To demonstrate this, I will make three points with
regard to 4 of the 12 functional constraints on the architecture of
cognition that A&L take into consideration: knowledge integra-
tion, development, real-time performance, and flexible behavior.

On knowledge integration, classical connectionism (CC) gets a
“worse” grade (see Table 1 of the target article). As an “intellectual
combination” example of knowledge integration, A&L consider
the literature on transfer of learning in infants. Marcus (2001) as-
sessed the relationship between CC and rule-governed behavior by
challenging the connectionist to account for experimental data that
had been interpreted as showing that infants exploit (rule-gov-
erned) abstract knowledge in order to induce the implicit grammar
common to different sequences of syllables (Marcus et al. 1999).
Calvo and Colunga (in preparation) show how Marcus’s infants-
data challenge can be met with NCC (see Calvo & Colunga 2003,
for a CC replica of this simulation). Our model (Fig. 1) is based on
a simple recurrent network (SRN) architecture that has been sup-
plemented with the following nonclassical features: (1) bidirec-
tional (symmetric) propagation of activation, (2) inhibitory compe-
tition, (3) an error-driven form of learning (GenRec in McClelland
1994), and (4) the Hebbian model learning.

The fundamental component of our simulation resides in the
fact that the network is pretrained with syllables that can be either
duplicated or not. These first-order correlations in the environ-
ment amount to subregularities that can be exploited by the net-
work in a semideterministic prediction task. During pretraining,
the network learns to represent something general about duplica-

tion (i.e., sameness). This abstraction is crucial in encoding the
patterns during the habituation phase. Like the infants in Marcus
et al.’s study, the networks that were pretrained in a corpus in
which some syllables were consistently duplicated learned to dis-
tinguish ABB patterns from ABA patterns after a brief period of
training akin to infant’s habituation.

Error-driven learning makes use of an activation-phase algo-
rithm that, via bidirectional connectivity and symmetric weight
matrices, permits the network to alter the knowledge acquired in
the weights by computing the difference between an initial phase
where the networks activations are interpreted as its “expectation”
of what’s to happen, and a later phase in which the environment
provides the output response to be taken as the teaching signal.
Activation-based signals in a prediction task are not to be inter-
preted in Marcus’s terms. The ecologically grounded prediction
task of the networks does not incorporate universally open-ended
rules. Unsupervised Hebbian learning, on the other hand, makes
its contribution by representing in hidden space the first-order
correlational structure of the data pool. Our NCC architecture de-
livers a correct syntactic interpretation of the infants’ data. The
data are accounted for without the positing of rule-fitting patterns
of behavior (allegedly required to constrain novel data).

On development, where CC is graded as “better,” the score may
be made even more robust. A&L remark upon CC’s anti-nativist
stance on the nature/nurture debate. Marín et al. (2003) argue, in
the context of poverty-of-stimulus arguments in Creole genesis,
that CC eschews any form of nativism. Creole genesis, nativists
contend, can only be explained by appealing to a Chomskian Uni-
versal Grammar (UG). Substratists contend that Creole genesis is
influenced, crucially, by substratum languages. We show how the
process by which a Pidgin develops into a Creole can be modelled
by an SRN exposed to a dynamic (substratum-based) environ-
ment. In this way, an empiricist approach is able to account for
Creole grammar as a by-product of general-purpose learning
mechanisms. Connectionist theory, we argue, furnishes us with a
(statistical) alternative to nativism. Taking into account that com-
bined Hebbian and activation-phase learning drives SRN net-
works to a better performance on generalization than the back-
propagation algorithm does (O’Reilly & Munakata 2000), a NCC
replica of this simulation would further strengthen connectionist’s
stronghold on the development criterion.

Biologically plausible NCC would cast light as well upon other
Newell Test criteria: Real-time Performance, where classical con-
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Figure 1 (Garzón). NCC network, with bidirectional connectiv-
ity and inhibitory competition, trained on a prediction task.



nectionism gets a “worse” grade, can be improved if we consider
online dynamical coupling. In NCC models that do not depend on
synchronous updates, it may be assumed, as A&L note, that “the
time for a unit to reach full activation is a function of that activa-
tion” (sect. 5.2). Moreover, one-shot Hebbian learning (Rolls &
Treves 1998), where a few event co-occurrences can contribute to
fast recall, can also be seen as a motivation for not having to en-
dorse a hybrid architecture. On the other hand, performance on
the flexible behavior criterion would be enhanced as well. Notice
that nonclassical, dynamical networks can compute any function
to an arbitrary level of accuracy, while allowing for breakdowns in
performance.

In general, I can see no good reason not to allow NCC to enter
the decathlon. The best connectionist contestant should enter the
competition, not a straw man (classical connectionism). It is usu-
ally argued that the endorsement of a symbolic-cum-subsymbolic
stance would permit connectionism to remain at an appropriate
level of realism (Palmer-Brown et al. 2002). However, “failure to
acknowledge a symbolic level to thought” (target article, Abstract)
cannot be interpreted as a weakness of connectionism when the
score is revised as just described.
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Criteria and evaluation of cognitive theories
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Abstract: I have three types of interrelated comments. First, on the choice
of the proposed criteria, I argue against any list and for a system of crite-
ria. Second, on grading, I suggest modifications with respect to con-
sciousness and development. Finally, on the choice of “theories” for eval-
uation, I argue for Edelman’s theory of neuronal group selection instead
of connectionism (classical or not).

Introduction. Anderson & Lebiere’s (A&L’s) target article is a
useful contribution on the necessity and grading of criteria for a
cognitive theory and their application of the Newell Test to clas-
sical connectionism and ACT-R a worthwhile exercise. The fol-
lowing comments are partly a criticism on their proposed list of
criteria, partly a response to their invitation for modifications of
their proposed grading, and partly a critique of their choice of the-
ories for evaluation.

On the choice of criteria for a Theory of Mind (ToM).1 A&L
state that “[t]wice, Newell (1980; 1990) offered slightly different
sets of 13 criteria on the human mind” and a bit further down that
their table “gives the first 12 criteria from [Newell’s] 1980 list,
which were basically restated in the 1990 list” (target article, sect.
1: Introduction, 1st para.). Neither of these two statements is cor-
rect (as Table 1 confirms).

Furthermore, A&L’s list is closer to Newell 1980 than to Newell
1990. No justification for this proximity is provided. Given that
Newell’s (1990) seminal book is incomparably more comprehen-
sive than his 1980 paper, one wonders about the reasons for A&L’s
choice. Clearly, their claim of having distilled (emphasis added)
Newell’s two lists (cf. target article, Abstract) cannot be justified
either. Although I agree that A&L’s list is adequate to avoid “the-
oretical myopia” (Introduction, 2nd para.), it will create distortions
in our quest for a ToM on account of being restricted to a funda-
mentally impoverished coverage of human phenomena (exclud-
ing, e.g., emotion, creativity, social cognition, and culture). It is
worth noting that although Newell (1990, sect. 8.4) considered the
extension of a unified theory of cognition (UTC) into the social
band an important measure of its success, A&L chose to exclude
from their list the one constraint with a social element that Newell
had included (see item 9 in Table 2).

In contrast, evolution should not be a criterion! Humans are
physical objects, but biology is fundamentally different from
physics. Similarly, humans are biological systems, but psychology
is fundamentally different from biology. The nature of human un-
derstanding (Gelepithis 1984; 1991; 1997) transcends the ex-
planatory framework of modern Darwinism and, most impor-
tantly, of any future evolutionary theory. (For similar conclusions
drawn upon different premises, see Mayr 1988; O’Hear 1997.)

Finally, a fourth list – very different from all previous three –
has been offered by Gelepithis (1999). Of the four proposed lists,
Table 2 juxtaposes the latest three. The reader can easily spot a
number of obvious and significant differences among the three
lists. For some of the less obvious, their corresponding serial num-
bers are in boldface. What all three have in common is that they
do not provide necessary and sufficient conditions for a ToM. Still,
the mind is a system (Bunge 1980; Hebb 1949; Sherrington 1906).
We need, therefore, a system (not a list) of criteria characterising
mind. A recent promising effort along this route is exemplified by
Gelepithis (2002), which presents an axiomatic system delineating
the class of intelligent systems as a foundation for the develop-
ment of a ToM2.

On some “objective measures.” Consciousness. There are
many volumes of readings (e.g., Hameroff et al. 1998; Revonsuo
& Kampinnen 1994; Velmans 1996) at least as good as the one
cited by A&L. Suggestions of measures on the basis of conscious-
ness-related phenomena in one volume of readings should be
avoided. Although universal agreement on what constitutes con-
sciousness is nonexistent, Gelepithis (2001) has provided a list of
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Table 1 (Gelepithis). Extent of the overlap among the 
proposed sets of criteria by Newell and A&L

Criteria Comparisons with Respect Comparison with Respect 
to Newell’s 1980 List to Newell’s 1990 List

Newell 1990 A&L 2003 A&L 2003

New criteria 2 0 0
Significantly 3 2 5 or 6

different criteria
Essentially 3 3 3 or 2

equivalent criteria
Identical criteria 5 7 4



“topics that, presently, constitute the major issues in the study of
consciousness.” I propose that list as a measure.

Development. In view of the suggested grading for conscious-
ness, one might be tempted to propose some or all of the phe-
nomena covered in Johnson et al.’s (2002) reader as a measure for
development. Instead, I propose as criterion what is generally
agreed to be the fundamental objective in the study of develop-
ment, namely, “unraveling the interaction between genetic speci-
fication and environmental influence” (Johnson et al. 2002, p. 3.,
emphasis added). This fundamental objective in the study of de-
velopment is shared by most scientists in the field, and it is essen-
tially identical with Piaget’s (1967/1971) agenda for developmen-
tal psychology. Interestingly, Newell (1990, Ch. 8) has also chosen
to talk about development in Piagetian terms.

Choice of “theories” for evaluation. Barring a straightforward
case of a Rylean category mistake, A&L seem to believe that there
is no difference between theories and a class of models. To put it
less strongly, they support the school of thought that argues for
theories as families of theoretical models. This is highly debatable

in the philosophy of science literature (Giere 1998). Further-
more, taking theory in its good old-fashioned meaning, no con-
nectionist (classical or not) model will qualify. In contrast, Edel-
man’s (1989; 1992; Edelman & Tononi 2000) theory of neuronal
group selection – based on different foundations3 – would both
have qualified and created a debate on the choice of criteria as
well as the types of theories that certain criteria may or may not
favour.

To conclude, A&L’s concern that connectionists may question
the reasonableness of their list is rather well based. Let us not for-
get that any theory (whether cognitive or otherwise) needs to be
founded. Chapter 2 of Newell’s (1990) Unified Theories of Cogni-
tion is an excellent starting point. Comparison between ACT-R’s
foundations (Anderson 1993; Anderson & Lebiere 1998) and
those of SOAR would be revealing; further comparisons of a
connectionist (classical or not) theoretical framework and of non-
computational ToMs will greatly enhance the foundations of cog-
nitive science and, I would argue, point to the need for a system –
rather than a list – of criteria for Newell’s Test.
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Table 2 (Gelepithis). Three different lists of criteria on human mind.

Newell (1990) Gelepithis (1999) A&L (2003)

1 Behave flexibly as a Flexible behaviour
function of the environment. (~ Computational

Universality).
2 Exhibit adaptive (rational, Adaptive behaviour.

goal-oriented) behaviour. 
3 Operate in real time. Operate in real time.
4 Operate in a rich, complex, Be able to operate in environments Vast knowledge base (sect. 2.4).

detailed environment. Perceive of, at least, Earth-level complexity. Dynamic behaviour (sect. 2.5)
an immense amount of changing 
detail. Use vast amounts of
knowledge. Control a motor system
of many degrees of freedom. 

5 Use symbols and abstractions. Knowledge integration.
6 Use language, both natural Acquisition and use of language to, Use (natural) language.

and artificial. at least, human-level complexity.
7 Learn from the environment and Learn from its environment.

from experience. 
8 Acquire capabilities through Explain human neonate’s capabilities Acquire capabilities through

development. for development. development.
9 Operate autonomously, Operate autonomously, but within 

but within a social community. a social community.
10 Be self-aware and have a Be conscious. Exhibit self-awareness and a

sense of self. sense of self.
11 Be realisable as a neural system. Be realisable within the brain.
12 Be constructable by 

an embryological growth process.
13 Arise through evolution. Arise through evolution.
14 Use of: (1) domain knowledge and 

(2) commonsense knowledge for 
problem solving.

15 Able to communicate.
16 Be able to develop skills (e.g., 

through earning) and judgment 
(e.g., through maturation).

17 Develop own representational system
18 Combine perceptual and motor

information with own belief systems.
19 Be creative.
20 Be able to have and exhibit emotions.



NOTES
1. I use the terms cognitive theory, unified theories of cognition

(UTCs), and ToM interchangeably with respect to their coextensive cov-
erage of human phenomena, and UTC and ToM distinctly with respect to
their characteristics.

2. For some interesting earlier results of our approach, the reader is re-
ferred to Gelepithis (1991; 1997), Gelepithis and Goodfellow (1992),
Gelepithis and Parillon (2002).

3. Evolutionary and neurophysiological findings and principles and the
synthetic neural modelling approach to the construction of intelligent en-
tities. For a comparison of four ToMs, see Gelepithis (1999).

Meeting Newell’s other challenge:
Cognitive architectures as the basis 
for cognitive engineering
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Abstract: We use the Newell Test as a basis for evaluating ACT-R as an
effective architecture for cognitive engineering. Of the 12 functional cri-
teria discussed by Anderson & Lebiere (A&L), we discuss the strengths
and weaknesses of ACT-R on the six that we postulate are the most rele-
vant to cognitive engineering.

To mix metaphors, Anderson & Lebiere (A&L) have donned
Newell’s mantle and picked up his gauntlet. The mantle is Newell’s
role as cheerleader for the cause of unified architectures of cog-
nition (e.g., Newell 1990). The gauntlet is Newell’s challenge to
the modeling community to consider the broader issues that face
cognitive science. Gauntlets come in pairs, so it is not surprising
that Newell threw down another one (Newell & Card 1985),
namely, hardening the practice of human factors to make it more
like engineering and less based on soft science. (Although Newell
and Card framed their arguments in terms of human-computer in-
teraction, their arguments apply to human factors in general and
cognitive engineering in particular.)

Cognitive engineering focuses on understanding and predicting
how changes in the task environment influence task performance.
We postulate that such changes are mediated by adaptations of the
mix of cognitive, perceptual, and action operations to the demands
of the task environment. These adaptations take place at the em-
bodied cognition level of analysis (Ballard et al. 1997) that
emerges at approximately ¹⁄₃ second. The evidence we have sug-
gests that this level of analysis yields productive and predictive in-
sights into design issues (e.g., Gray & Boehm-Davis 2000; Gray et
al. 1993). However, whatever the eventual evaluation of this ap-
proach, our pursuit of it can be framed in terms of six of the Newell
Test criteria.

Flexible behavior. We understand A&L to mean that the archi-
tecture should be capable of achieving computational universality
by working around the limits of its bounded rationality. Hence, not
every strategy is equally easy, and not every strategy works well in
every task environment. ACT-R fits our cognitive engineering
needs on this criterion because it provides a means of investigat-
ing, by modeling, how subtle changes in a task environment influ-
ence the interaction of perception, action, and cognition to form
task strategies.

Real-time performance. When comparing models against hu-
man data, a common tack is to simulate the human’s software en-
vironment to make it easier to run the model. Although such a sim-
ulation might represent the essential aspects of the human’s task
environment, the fidelity of the model’s task environment is in-
evitably decreased. ACT-R enables us to run our models in the
same software environment in which we run our subjects by pro-

viding time constraints at the time scale that perception, action,
and cognition interact.

Adaptive behavior. Section 2.3 of the target article emphasizes
Newell’s complaint regarding the functionality of then extant the-
ories of short-term memory. In our attempts to build integrated
cognitive systems, we too have had similar complaints. For ex-
ample, the work by Altmann and Gray (Altmann 2002; Altmann
& Gray 2002) on task switching was motivated by a failed attempt
to use existing theories (e.g., Rogers & Monsell 1995) to under-
stand the role played by task switching in a fast-paced, dynamic
environment. Hence, one role of a unified architecture of cogni-
tion is that it allows a test of the functionality of its component
theories.

Section 5.3 emphasizes the ability to tune models to the “sta-
tistical structure of the environment.” For cognitive engineering,
adaptation includes changes in task performance in response to
changes in the task environment, such as when a familiar inter-
face is updated or when additional tasks with new interfaces are
introduced. In our experience, ACT-R has some success on the
first of these, namely, predicting performance on variations of the
same interface (Schoelles 2002; Schoelles & Gray 2003). How-
ever, we believe that predicting performance in a multitask envi-
ronment, perhaps by definition, will require building models of
each task. Hence, it is not clear to us whether ACT-R or any other
cognitive architecture can meet this critical need of cognitive en-
gineering.

Dynamic behavior. The ability to model performance when the
task environment, not the human operator, initiates change is vi-
tal for cognitive engineering. We can attest that ACT-R does well
in modeling these situations (Ehret et al. 2000; Gray et al. 2000;
2002; Schoelles 2002).

Learning. For many cognitive engineering purposes, learning is
less important than the ability to generate a trace of a task analy-
sis of expert or novice performance. With all learning “turned off,”
ACT-R’s emphasis on real-time performance and dynamic behav-
ior makes it well suited for such purposes.

Learning is required to adapt to changes in an existing task en-
vironment or to show how a task analysis of novice behavior could,
with practice, result in expert behavior. ACT-R’s subsymbolic layer
has long been capable of tuning a fixed set of production rules to
a task environment. However, a viable mechanism for learning
new rules had been lacking. With the new production compilation
method of Taatgen (see Taatgen & Lee 2003) this situation may
have changed.

Consciousness. A&L’s discussion of consciousness includes
much that cognitive engineering does not need, as well as some
that it does. Our focus here is on one aspect: the distinction be-
tween implicit and explicit knowledge and the means by which im-
plicit knowledge becomes explicit.

Siegler (Siegler & Lemaire 1997; Siegler & Stern 1998) has
demonstrated that the implicit use of a strategy may precede con-
scious awareness and conscious, goal-directed application of that
strategy. ACT-R cannot model such changes because it lacks a
mechanism for generating top-down, goal-directed cognition
from bottom-up, least-effort-driven adaptations.

Conclusions: Meeting Newell’s other challenge. Unified ar-
chitectures of cognition have an important role to play in meet-
ing Newell’s other challenge, namely, creating a rigorous and
scientifically based discipline of cognitive engineering. Of the
six criteria discussed here, ACT-R scores one best, four better,
and one worse, whereas classical connectionism scores two bet-
ter, two mixed, and two worse. We take this as evidence sup-
porting our choice of ACT-R rather than connectionism as an
architecture for cognitive engineering. But, in the same sense
that A&L judge that ACT-R has a ways to go to pass the Newell
Test, we judge that ACT-R has a ways to go to meet the needs
of cognitive engineering. As the Newell Test criteria become
better defined, we hope that they encourage ACT-R and other
architectures to develop in ways that support cognitive engi-
neering.
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Bring ART into the ACT
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Abstract: ACT is compared with a particular type of connectionist model
that cannot handle symbols and use nonbiological operations which do not
learn in real time. This focus continues an unfortunate trend of straw man
debates in cognitive science. Adaptive Resonance Theory, or ART, neural
models of cognition can handle both symbols and subsymbolic represen-
tations, and meets the Newell criteria at least as well as these models.

The authors’ use of the nomenclature, “classical connectionist
models,” falsely suggests that such models satisfy the Newell cri-
teria better than other neural models of cognition. The authors
then dichotomize ACT with “classical” connectionism based on its
“failure to acknowledge a symbolic level to thought. In contrast,
ACT-R includes both symbolic and subsymbolic components”
(target article, Abstract). Actually, neural models of cognition such
as ART include both types of representation and clarify how they
are learned. Moreover, ART was introduced before the “classical”
models (Grossberg 1976; 1978a; 1980) and naturally satisfies key
Newell criteria. In fact, Figures 2 and 3 of ACT are reminiscent
of ART circuits (e.g., Carpenter & Grossberg 1991; Grossberg
1999b). But ART goes further by proposing how laminar neocor-
tical circuits integrate bottom-up, horizontal, and top-down inter-
actions for intelligent computation (Grossberg 1999a; Raizada &
Grossberg 2003).

Critiques of classical connectionist models, here called CM
(Carnegie Mellon) connectionism, show that many such models
cannot exist in the brain (e.g., Grossberg 1988; Grossberg et al.
1997; Grossberg & Merrill 1996). We claim that ART satisfies
many Newell criteria better, with the obvious caveat that no model
is as yet a complete neural theory of cognition.

Flexible behavior. ART models are self-organizing neural pro-
duction systems capable of fast, stable, real-time learning about
arbitrarily large, unexpectedly changing environments (Carpenter
& Grossberg 1991). These properties suit ART for large-scale
technological applications, ranging from control of mobile robots,
face recognition, remote sensing, medical diagnosis, and electro-
cardiogram analysis to tool failure monitoring, chemical analysis,
circuit design, protein/DNA analysis, musical analysis, and seis-
mic, sonar, and radar recognition, in both software and VLSI mi-
crochips (e.g., Carpenter & Milenova 2000; Carpenter et al. 1999;
Granger et al. 2001). The criticism of CM connectionism “that
complex, sequentially organized, hierarchical behavior” cannot be
modeled also does not apply to ART (e.g., Bradski et al. 1994; Co-
hen & Grossberg 1986; Grossberg 1978a; Grossberg & Kuperstein
1989; Grossberg & Myers 2000; also see the section on dynamic
behavior later in this commentary).

Real-time performance. ART models are manifestly real-time
in design, unlike CM connectionist models.

Adaptive behavior. ART provides a rigorous solution of the sta-
bility-plasticity dilemma, which was my term for catastrophic for-
getting before that phrase was coined. “Limitations like short-
term memory” (target article, sect. 5.3) can be derived from the
LTM Invariance Principle, which proposes how working memo-
ries are designed to enable their stored event sequences to be sta-
bly chunked and remembered (Bradski et al. 1994; Grossberg
1978a; 1978b).

Vast knowledge base. ART can directly access the globally
best-matching information in its memory, no matter how much it

has learned. It includes additional criteria of value and temporal
relevance through its embedding in START models that include
cognitive-emotional and adaptive timing circuits in addition to
cognitive ART circuits (Grossberg & Merrill 1992; 1996).

Dynamic behavior. “Dealing with dynamic behavior requires a
theory of perception and action as well as a theory of cognition”
(sect. 2.5). LAMINART models propose how ART principles are
incorporated into perceptual neocortical circuits and how high-
level cognitive constraints can modulate lower perceptual repre-
sentations through top-down matching and attention (Grossberg
1999a; Raizada & Grossberg 2003). ART deals with novelty
through complementary interactions between attentional and ori-
enting systems (Grossberg 1999b; 2000b), the former including
corticocortical, and the latter, hippocampal, circuits. Action cir-
cuits also obey laws that are complementary to those used in per-
ception and cognition (Grossberg 2000b), notably VAM (Vector
Associative Map) laws. VAM-based models have simulated iden-
tified brain cells and circuits and the actions that they control (e.g.,
Brown et al. 1999; Bullock et al. 1998; Contreras-Vidal et al. 1997;
Fiala et al. 1996; Gancarz & Grossberg 1999; Grossberg et al.
1997), including models of motor skill learning and performance
(Bullock et al. 1993a; 1993b; Grossberg & Paine 2000).

Knowledge integration. ART reconciles distributed and sym-
bolic representations using its concept of resonance. Individual
features are meaningless, just as pixels in a picture are meaning-
less. A learned category, or symbol, is sensitive to the global pat-
terning of features but cannot represent the contents of the expe-
rience, including their conscious qualia, because of the very fact
that a category is a compressed, or symbolic, representation. Res-
onance between these two types of information converts the pat-
tern of attended features into a coherent context-sensitive state
that is linked to its symbol through feedback. This coherent state,
which binds distributed features and symbolic categories, can en-
ter consciousness. ART predicts that all conscious states are reso-
nant states. In particular, resonance binds spatially distributed 
features into a synchronous equilibrium or oscillation. Such syn-
chronous states attracted interest after being reported in neuro-
physiological experiments. They were predicted in the 1970s
when ART was introduced (see Grossberg 1999b). Recent neuro-
physiological experiments have supported other ART predictions
(Engel et al. 2001; Pollen 1999; Raizada & Grossberg 2003). Fuzzy
ART learns explicitly decodable Fuzzy IF-THEN rules (Carpen-
ter et al. 1992). Thus ART accommodates symbols and rules, as
well as subsymbolic distributed computations.

Natural language. ART has not yet modeled language. Rather,
it is filling a gap that ACT-R has left open: “ACT-R lacks any the-
ory of the processes of speech perception or speech production”
(sect. 4.5, para. 3). ART is clarifying the perceptual units of speech
perception, word recognition, working memory, and sequential
planning chunks on which the brain builds language (e.g., Board-
man et al. 1999; Bradski et al. 1994; Grossberg 1978a; 1978b;
1999b; Grossberg et al. 1997a; 1997b; Grossberg & Myers 2000;
Grossberg & Stone 1986a; 1986b). Such studies suggest that a rad-
ical rethinking of psychological space and time is needed to un-
derstand language and to accommodate such radical claims as,
“Conscious speech is a resonant wave.” ACT-R also does not have
“mechanisms . . . [of] perceptual recognition, mental imagery,
emotion, and motivation” (sect. 4.5). These are all areas where
ART has detailed models (e.g., Grossberg 2000a; 2000c). Speech
production uses complementary VAM-like mechanisms (Callan et
al. 2000; Guenther 1995). After perceptual units in vision became
sufficiently clear, rapid progress ensued at all levels of vision
(http://www.cns.bu.edu/Profiles/Grossberg). This should also
happen for language.

Development. ART has claimed since 1976 that processes of
cortical development in the infant are on a continuum with
processes of learning in the adult, a prediction increasing sup-
ported recently (e.g., Kandel & O’Dell 1992).

Evolution. “Cognitive plasticity . . . What enables this plasticity
in the architecture?” (sect. 5.11). ART clarifies how the ability to
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learn quickly and stably throughout life implies cognitive proper-
ties like intention, attention, hypothesis testing, and resonance.
Although Bayesian properties emerge from ART circuits, ART
deals with novel experiences where no priors are defined.

Brain. CM connectionism is said to be “best,” although its main
algorithms are biologically unrealizable. ART and VAM are real-
ized in verified brain circuits.

It might be prudent to include more ART in ACT. I also rec-
ommend eliminating straw man “debates” that do not reflect the
true state of knowledge in cognitive science.
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Abstract: We share with Anderson & Lebiere (A&L) (and with Newell
before them) the goal of developing a domain-general framework for mod-
eling cognition, and we take seriously the issue of evaluation criteria. We
advocate a more focused approach than the one reflected in Newell’s cri-
teria, based on analysis of failures as well as successes of models brought
into close contact with experimental data. A&L attribute the shortcomings
of our parallel-distributed processing framework to a failure to acknowl-
edge a symbolic level of thought. Our framework does acknowledge a sym-
bolic level, contrary to their claim. What we deny is that the symbolic level
is the level at which the principles of cognitive processing should be for-
mulated. Models cast at a symbolic level are sometimes useful as high-level
approximations of the underlying mechanisms of thought. The adequacy
of this approximation will continue to increase as symbolic modelers con-
tinue to incorporate principles of parallel distributed processing.

In their target article, Anderson & Lebiere (A&L) present a set of
criteria for evaluating models of cognition, and rate both their own
ACT-R framework and what they call “classical connectionism” on
the criteria. The Parallel Distributed Processing (PDP) approach,
first articulated in the two PDP volumes (Rumelhart et al. 1986)
appears to be close to the prototype of what they take to be “clas-
sical connectionism.” While we cannot claim to speak for others,
we hope that our position will be at least largely consistent with
that of many others who have adopted connectionist/PDP models
in their research.

There are three main points that we would like to make.
1. We share with A&L (and with Newell before them) the ef-

fort to develop an overall framework for modeling human cogni-
tion, based on a set of domain-general principles of broad applic-
ability across a wide range of specific content areas.

2. We take a slightly different approach from the one that
Newell advocated, to pursuing the development of our frame-
work. We think it worthwhile to articulate this approach briefly
and to comment on how it contrasts with the approach advocated
by Newell and apparently endorsed by A&L.

3. We disagree with A&L’s statement that classical connection-
ism denies a symbolic level of thought. What we deny is only the
idea that the symbolic level is the level at which the principles of
processing and learning should be formulated. We treat symbolic

cognition as an emergent phenomenon that can sometimes be ap-
proximated by symbolic models, especially those that incorporate
the principles of connectionist models.

In what follows, we elaborate these three points, addressing the
first one only briefly since this is a point of agreement between
A&L and us.

The search for domain-general principles. There is a long-
standing tradition within psychological research to search for gen-
eral principles that can be used to address all aspects of behavior
and cognition. With the emergence of computational approaches
in the 1950s and 1960s, and with the triumph of the von Neumann
architecture as the basis for artificial computing devices, this
search could be formulated as an effort to propose what Newell
called “a unified architecture for cognition.” An architecture con-
sists of a specification of (1) the nature of the building blocks out
of which representations and processes are constructed, (2) the
fundamental rules by which the processes operate, and (3) an
overall organizational plan that allows the system as a whole to op-
erate. Newell’s SOAR architecture and A&L’s ACT-R architecture
are both good examples of architectures of this type. For our part,
we have sought primarily to understand (1) the building blocks
and (2) the fundamental rules of processing. Less effort has been
devoted to the specifics of the overall organizational plan as such,
although we do take a position on some of the principles that the
organizational plan instantiates. Because the organization is not
fully specified as such, we find it more congenial to describe what
we are developing as a framework rather than an architecture. But
this is a minor matter; the important point is the shared search for
general principles of cognition.

We are of course well aware that this search for general princi-
ples runs counter to a strong alternative thread that treats distinct
domains of cognition as distinct cognitive modules that operate ac-
cording to domain-specific principles. Such a view has been artic-
ulated for language by Chomsky; for vision, by Marr. Fodor and
Keil have argued the more general case, and a great deal of work
has been done to try to elucidate the specific principles relevant
to a wide range of alternative domains. Although we cannot prove
that this approach is misguided, we have the perspective that the
underlying machinery and the principles by which it operates are
fundamentally the same across all different domains of cognition.
While this machinery can be tuned and parameterized for do-
main-specific uses, understanding the broad principles by which
it operates will necessarily be of very broad relevance.

How the search for domain-general principles is carried out.
If one’s goal is to discover the set of domain-general principles that
govern all aspects of human cognition, how best is the search for
such principles carried out? Our approach begins with the funda-
mental assumption that it is not possible to know in advance what
the right set of principles are. Instead, something like the follow-
ing discovery procedure is required.

1. Begin by formulating a putative set of principles.
2. Develop models based on these principles and apply them

to particular target domains (i.e., bodies of related empirical phe-
nomena).

3. Assess the adequacy of the models so developed and attempt
to understand what really underlies both successes and failures of
the models.

4. Use the analysis to refine and elaborate the set of principles,
and return to step 2.

In practice this appears to be the approach both of Newell and
of A&L. Newell and his associates developed a succession of cog-
nitive architectures, as has Anderson; indeed, Newell suggested
that his was only really one attempt, and that others should put
forward their own efforts. However, Newell argued for broad ap-
plication of the framework across all domains of cognition, sug-
gesting that an approximate account within each would be satis-
factory. In contrast, we advocate a more focused exploration of a
few informative target domains, using failures of proposed mod-
els to guide further explorations of how the putative set of princi-
ples should be elaborated. To illustrate the power of this approach,
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we briefly review two cases. Note that we do not mean to suggest
that A&L explicitly advocate the development of approximate ac-
counts. Rather, our point is to bring out the importance of focus
in bringing out important principles of cognition.

1. The interactive activation model (McClelland & Rumelhart
1981) explored the idea that context effects in perception of let-
ters – specifically, the advantage for letters in words relative to sin-
gle letters in isolation – could be attributed to the bidirectional
propagation of excitatory and inhibitory signals among simple pro-
cessing units whose activation corresponds to the combined sup-
port for the item the unit represents. When a letter occurs in a
word, it and the other letters will jointly activate the unit for the
word, and that unit will in turn send additional activation back to
each of the letters, thereby increasing the probability of recogni-
tion. Similar ideas were later used in the TRACE model of speech
perception (McClelland & Elman 1986) to account for lexical in-
fluences on phoneme identification. Massaro (1989; Massaro &
Cohen 1991) pointed out that the interactive activation model
failed to account for the particular quantitative form of the influ-
ence of context on the identification of a target item. He argued
that the source of the problem lay specifically in the use of bidi-
rectional or interactive activation between phoneme or letter units
on the one hand and word units on the other. Since the interac-
tive activation model fit the data pretty well, Newell might have
advocated accepting the approximation, and moving on to other
issues. However, close investigation of the issue turned out to lead
to an important discovery. Subsequent analysis (McClelland 1991;
Movellan & McClelland 2001) showed that the failure of the in-
teractive activation model arose from faulty assumptions about the
source of variability in performance.

Discovering this was made possible by the failure of the model.
It then became possible to consider what changes have to be made
in order to fit the data. McClelland (1991) showed that the model
had a general deficiency in capturing the joint effects of two dif-
ferent sources of influence even if they were both bottom up and
activation was only allowed to propagate in a feedforward direc-
tion. The problem was attributed instead to the fact that in the
original McClelland and Rumelhart model, the interactive activa-
tion process was completely deterministic, and activations were
transformed into response probabilities only at the moment of re-
sponse selection. This led to the discovery of what we take to be
an important principle: that the activation process is not only
graded and interactive but also intrinsically variable. Reformu-
lated versions of the model incorporating intrinsic variability, in
addition to graded representation and interactive processing,
were shown through simulations (McClelland 1991) and mathe-
matical analysis (Movellan & McClelland 2001) to produce the
right quantitative form of contextual influence on phoneme and
letter identification. This principle of intrinsic variability has been
incorporated in several subsequent models, including a model
that addresses in detail the shapes of reaction time distributions
and the effects of a variety of factors on these distributions (Usher
& McClelland 2001).

2. Seidenberg and McClelland (1989) introduced a model that
accounted for frequency, regularity, and consistency effects in sin-
gle word reading. The model relied on a single network that
mapped distributed input representations of the spellings of
words, via one layer of hidden units, onto a set of output units rep-
resenting the phonemes in the word’s pronunciation. However, as
two independent critiques pointed out (Besner et al. 1990; Colt-
heart et al. 1993), the model performed far worse than normal hu-
man subjects at reading pronounceable nonwords. Both critiques
attributed this shortcoming of the model to the fact that it did not
rely on separate lexical and rule-based mechanisms. However,
subsequent connectionist research (Plaut et al. 1995; 1996)
demonstrated that the particular choice of input and output rep-
resentations used by Seidenberg and McClelland (1989) was in-
stead the source of the difficulty. These representations tended to
disperse the regularity in the mapping from spelling to sound over
a number of different processing units. This was because the in-

put units activated by a given letter depended on the surrounding
context, and the output units representing a given phoneme were
likewise context dependent. Because the learning in the model is
in the connections among the units, this led to a dispersion of the
information about the regularities across many different connec-
tions and created a situation in which letters in nonwords might
occur in contexts that had not previously been encountered by the
network. This led to the discovery of the principle that to succeed
in capturing human levels of generalization performance, the rep-
resentations used in connectionist networks must condense the
regularities. Subsequent models of word reading, inflectional
morphology, and other cognitive tasks have used representations
that condense the regularities, leading them to achieve human lev-
els of performance with novel items while yet being able to learn
to process both regular and exception words.1

These two case studies bring out the importance of taking seri-
ously mismatches between a model’s behavior and human perfor-
mance data, even when the model provides an approximate ac-
count of most of the relevant phenomena. We believe that such
mismatches are important forces in driving the further develop-
ment of a framework. Of course, such mismatches might also re-
flect a fundamental inadequacy of the framework as a whole or of
its most fundamental grounding assumptions. Analysis is required
to determine which; but whatever the outcome, the examination
of failures of fit is an important source of constraint on the further
development of the framework.

With these comments in mind, we can now turn to the framing
of the goals of cognitive modeling as articulated in the sorts of cri-
teria that Newell proposed and A&L have adopted with their own
modifications. We agree that it is useful to focus attention on some
of these general issues, and that there is more to a good cognitive
model than simply a close fit to experimental data. We would note,
however, that making the effort at this stage to achieve the sort of
breadth that Newell’s criteria imply may distract attention from
addressing critical discrepancies that can only be revealed through
close comparison of models and data. We have chosen to adopt a
more focused approach, but we do not deny that a broader ap-
proach may reveal other limitations, and that it may be worthwhile
for some researchers to follow Newell’s strategy.

The importance and nature of the symbolic level. A&L suggest
that the shortcomings of the connectionist approach are funda-
mental, deriving from its failure to acknowledge a symbolic level
of thought, whereas the shortcomings of the ACT-R theory are
temporary, and derive from its failure as yet to address certain of
Newell’s criteria. We have a very different reading of the situation.

First of all, our PDP approach does not deny a symbolic level
of thought. What we deny is only that the symbolic level is the ap-
propriate level at which the principles of processing and learning
should be formulated. We treat symbolic thought as an emergent
phenomenon which can sometimes be approximated to a degree
by a model formulated at the symbolic level, but which, on close
scrutiny, does not conform exactly to the properties that it should
have according to symbolic models.

As is well known, the issue here is one that has been extensively
explored in the context of research on the formation of past tenses
and other inflections of nouns and verbs. A recent exchange of ar-
ticles contrasts the PDP perspective (McClelland & Patterson
2002a; 2002b) and Pinker’s symbolic, dual-mechanism account
(Pinker & Ullman, 2002a; 2002b). Here we will present the PDP
perspective.

In several places, Pinker and his colleagues have argued that the
past tense of English is characterized by two mechanisms, one in-
volving symbolic rules, and the other involving a lexical mecha-
nism that operates according to connectionist principles. A sym-
bolic rule, according to Pinker’s approach, is one that applies
uniformly to all items that satisfy its conditions. Furthermore,
such conditions are abstract and very general. For example, the
past-tense rule applies uniformly to any string of phonemes, pro-
vided only that it is the stem of a verb. In many places Pinker also
states that symbolic rules are acquired suddenly; this conforms to
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the idea that a rule is something that one either has or does not
have. Finally, the symbolic rule is thought to require a completely
different kind of mechanism than the one underlying the inflec-
tion of exceptions, leading to the prediction that brain lesions
could selectively impair the ability to use the rule while leaving the
inflection of irregular forms intact.

Although Pinker and his colleagues have pointed to evidence
they believe supports their characterization of the mechanism that
produces regular past-tense inflections, in their review of that ev-
idence McClelland and Patterson (2002a) found instead that in
every case the evidence supports an alternative characterization,
first proposed by Rumelhart and McClelland (1986a), in which
the formation of an inflected form arises from the interactions of
simple processing units via weighted connections learned gradu-
ally from exposure to example forms in the language.2 First, the
evidence indicates that the onset of use of regular forms is grad-
ual (extending over a full year; see Brown 1973; Hoeffner 1996).
It is initially restricted to verbs characterized by a set of shared se-
mantic properties, and then gradually spreads to other verbs start-
ing with those sharing some of the semantic properties of the
members of the initial set (Shirai & Anderson 1995). Second, us-
age of the regular past tense by adults is not insensitive to phonol-
ogy but instead reflects phonological and semantic similarity to
known regular verbs (Albright & Hayes 2001; Ramscar 2002).
Third, purported dissociations arising from genetic defects (Gop-
nik & Crago 1991) or strokes (Ullman et al. 1997) disappear when
materials are used that control for frequency and phonological
complexity (Bird et al. 2003; Vargha-Khadem et al. 1995); indi-
viduals with deficits in inflection of regular forms show corre-
sponding deficits with appropriately matched exceptions. In short,
the acquisition and adult use of the regular past tense exhibits ex-
actly those characteristics expected from the connectionist for-
mulation. Ultimate adult performance on regular items conforms
approximately to the predictions of the rule; for example, reaction
time and accuracy inflecting regular forms is relatively insensitive
to the word’s own frequency. But exactly the same effect also arises
in the connectionist models; as they learn from many examples
that embody the regular pattern, the connection weights come to
reflect it in a way that supports generalization to novel items and
makes the number of exposures to the item itself relatively unim-
portant.

In summary, the characteristics expected on a connectionist ap-
proach, but not the symbolic rule approach of Pinker, are exhib-
ited by human performance in forming inflections. Such charac-
teristics include fairly close approximation to what would be
expected from use of a symbolic rule under specifiable conditions,
but allow for larger discrepancies from what would be predicted
from the rule under other conditions (i.e., early in development,
after brain damage of particular kinds, and when the language en-
vironment is less systematic).3

What implications do the characteristics of human performance
in forming inflections have for the ACT-R approach of A&L? They
have already described an ACT-R model (Taatgen & Anderson
2002) of past-tense formation in which the acquisition of the reg-
ular past tense occurs fairly gradually, and we have no doubt that
with adjustment of parameters even more gradual acquisition
would occur. Furthermore, we see relatively little in A&L’s for-
mulation that ties them to the assumption that the conditions for
application of symbolic rules must be abstract as Pinker (1991;
Pinker & Ullman 2002a) and Marcus (2001) have claimed. Nor is
there anything that requires them to posit dissociations, since pro-
duction rules are used in their model for both regular and excep-
tional forms. Thus, although the past tense rule actually acquired
in the Taatgen and Anderson model is as abstract and general as
the one proposed by Pinker, a modified version of their model
could surely be constructed, bringing it closer to the connection-
ist account. To capture the graded and stochastic aspects of hu-
man performance, they have introduced graded strengths that are
tacked onto symbolic constructs (propositions and productions),
thereby allowing them to capture graded familiarity and regular-

ity effects. To capture similarity effects, there is no reason why the
condition-matching operation performed by rule-like productions
could not be formulated as graded constraints, so that the degree
of activation of a production would depend on the degree to which
its conditions match current inputs. Indeed, A&L note that by al-
lowing graded condition matching in ACT-R, they can capture the
graded, similarity-based aspects of human performance that are
naturally captured within the connectionist framework.

Even these adjustments, however, would leave one aspect of
connectionist models unimplemented in the Taatgen and Ander-
son model. This is the ability of connectionist models to exploit
multiple influences simultaneously, rather than to depend on the
output generated by just one production at a time. Specifically, in
the Taatgen and Anderson account of past-tense formation, a past-
tense form is generated either by the application of the general -
ed rule or by the application of an item-specific production; the
form that is generated depends on only one of these productions,
not on their simultaneous activation. We argue that this is a seri-
ous weakness, in that it prevents the Taatgen and Anderson model
from exploiting the high degree of conformity with the regular
pattern that exists among the exceptions. In our view this is an im-
portant and general limitation of many symbolic models, even
ones like ACT-R that have moved a long way toward incorporat-
ing many of the principles of processing espoused by connection-
ists.

As McClelland and Patterson (2002b) have noted, fully 59% of
the exceptional past-tense verbs in English end in /d/ or /t/. In the
connectionist models, the same connection-based knowledge that
imposes the regular inflection on fully regular verbs also operates
in the inflection of these exceptional cases. That is, the same con-
nections that add /t/ to the regular verb like to make liked also add
/t/ to the irregular verb keep to make kept. In the case of kept, ad-
ditional influences (from experience with kept itself and other
similar cases) also operate to allow the model to capture the al-
teration of the vowel that makes this item an exception. In con-
trast, in the Taatgen and Anderson model and many other dual-
mechanism models, only one production at a time can fire, so that
a past-tense form is either generated by the rule (in which case it
will be treated as regular) or by a production specific to it as an ex-
ception. Given this, no benefit accrues to an exception for sharing
properties of the regular past tense, and all exceptions might as
well be completely arbitrary. This is problematic because it leaves
unexplained important aspects of the distributions of word forms.
Across languages, there are many forms that are partially regular
and very few that are completely arbitrary, and those that are com-
pletely arbitrary are of very high frequency (Plunkett & March-
man 1991); the same is true for irregular spelling-to-sound corre-
spondences. This suggests that human language users are highly
sensitive to the degree to which exceptions share properties with
regular items, contrary to the properties of the Taatgen and An-
derson model.

In response to this, we anticipate that A&L might be tempted
to modify the ACT-R framework even further in the direction of
connectionist models by allowing application of multiple produc-
tions to work together to produce an individual inflected word
form. We certainly think this would lead to models that would be
more likely than current ACT-R–based accounts to address the in-
fluence of regularities in exceptions, and would bring ACT-R
more fully into line with the fundamental idea of parallel distrib-
uted processing. After all, the essence of PDP is the idea that every
act of cognition depends on and is distributed over a large num-
ber of contributing units, quite different from what happens
presently in ACT-R, where any given output is the product of the
application of a single production.

While such a change to ACT-R would, we believe, improve it
considerably, we want to simply note two points in this context.
First, this would continue the evolution of symbolic models of hu-
man cognition even further in a connectionist-like direction. This
evolution, which has been in process for some time, is not, in our
view, accidental, because with each step in this direction, symbolic
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models have achieved a higher degree of fidelity to the actual
properties of human cognition. What this indicates to us is that,
although the shortcomings of symbolic models may be temporary
(as A&L suppose), they are most likely to be overcome by incor-
poration of the very principles that govern processing as defined
at the connectionist level.

Second, as symbolic modelers take each new step in the direc-
tion of connectionist models, they do so accepting the fact that the
phenomena to be explained have the characteristics that served to
motivate the exploration of connectionist models in the first place.
This, in turn, undermines the stance that the fundamental princi-
ples of human cognition should be formulated at the symbolic
level, and instead further motivates the exploration of principles
at the connectionist level. While we acknowledge that connec-
tionist models still have many limitations, we nevertheless feel that
this does not arise from any failure to acknowledge a symbolic
level of thought. Instead we suggest that it arises from the fact the
connectionists (like symbolic modelers) have not yet had the
chance to address all aspects of cognition or all factors that may
affect it.

In spite of our feeling that the facts of human cognition are com-
pletely consistent with the principles of parallel distributed pro-
cessing, we do not wish to give the impression that we see no merit
in modeling that is directed at the symbolic level. Given that sym-
bolic formulations often do provide fairly good approximations, it
may be useful to employ them in cases where it would be helpful
to exploit their greater degree of abstraction and succinctness. We
believe that work at a symbolic level will proceed most effectively
if it is understood to be approximating an underlying system that is
much more parallel and distributed, because at that point insights
from work at the connectionist level will flow even more freely into
efforts to capture aspects of cognition at the symbolic level.
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NOTES
1. It is necessary to note that none of the models we have discussed fully

embody all the principles of the PDP framework. For example, the inter-
active activation and TRACE models use localist, not distributed, repre-
sentations, while the models of spelling-to-sound mapping (Seidenberg &
McClelland 1989; Plaut et al. 1996) do not incorporate intrinsic variabil-
ity. This fact can lead to confusion about whether there is indeed a theo-
retical commitment to a common set of principles.

In fact, we do have such a commitment. The fact that individual mod-
els do not conform to all of the principles is a matter of simplification. This
leads to computational tractability and can foster understanding, and we
adopt the practices only for these reasons. Everyone should be aware that
models that are simplified embodiments of the theory do not demonstrate
that models incorporating all of its complexity will be successful. In such
cases further research is necessary, especially when the possibility of suc-
cess is controversial. For example, Joanisse and Seidenberg (1999) used
localist word units in their model of past-tense inflection, and Pinker and
Ullman (2002a; 2002b) have argued that this is essential. In this context,
we fully accept that further work is necessary to demonstrate that a model
using distributed semantic representations can actually account for the
data.

2. It should be noted here that none of these models assume that learn-
ing occurs through correction of overtly generated errors. Instead, it is as-
sumed that exposure provides examples of appropriate usage in context.
The learner uses the context as input to generate an internal representa-
tion corresponding to the expected phonological form. Learning is driven
by the discrepancy between this internal representation and the actual
perceived form provided by the example.

3. Marcus et al. (1995) claimed that German has a regular plural (the
so-called �s plural) that conforms to the expectation of the symbolic ap-
proach, in spite of the fact that it is relatively infrequent. However, subse-
quent investigations indicate that the �s plural does not exhibit the prop-
erties one would expect if it were based on a symbolic rule (Bybee 1995;
Hahn & Nakisa 2000).

Evaluating connectionism: A developmental
perspective
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Abstract: This commentary questions the applicability of the Newell Test
for evaluating the utility of connectionism. Rather than being a specific
theory of cognition (because connectionism can be used to model nativist,
behaviorist, or constructivist theories), connectionism, we argue, offers re-
searchers a collection of computational and conceptual tools that are par-
ticularly useful for investigating and rendering specific fundamental issues
of human development. These benefits of connectionism are not well cap-
tured by evaluating it against Newell’s criteria for a unified theory of cog-
nition.

In this commentary, we question Anderson & Lebiere’s (A&L’s)
project of grading connectionism according to the Newell Test as
an appropriate means of assessing its utility for cognitive science.
In our view, connectionism, unlike ACT-R, is not a specific theory
of cognition. It can be used to model nativist, behaviourist, or con-
structivist theories by modifying parameters with respect to built-
in representational and architectural or computational structures.
Rather, connectionism is a set of computational and conceptual
tools that offer researchers new and precise ways of thinking about
and investigating complex emergent behaviour. From this stand-
point, if we take the view that theory evaluation in science is best
conceived as a comparative affair in which mature theories are
evaluated along a number of dimensions to determine which pro-
vides the best explanation of the phenomena in question (e.g.,
Lakatos 1970; Thagard 1992), then connectionism does not offer
an appropriate theoretical alternative against which to evaluate
ACT-R. Moreover, the current appraisal of connectionism against
Newell’s criteria actually misses many of the positive applications
of connectionist tools in cognitive science research. In develop-
mental psychology, for example, this methodological and con-
ceptual toolbox has been put to use in the service of tackling
long-standing issues about the mechanisms responsible for devel-
opmental change and, more generally, has supported renewed 
efforts to construct a genuinely interactional account as a theoret-
ical framework for cognitive development (Elman et al. 1996;
Karmiloff-Smith 1992; Newcombe 1998). It has also been suc-
cessfully used to clarify the fundamental differences between
adult neuropsychological patients and children with developmen-
tal disorders (Karmiloff-Smith 1997; 1998; Karmiloff-Smith et al.
2002; 2003; Thomas & Karmiloff-Smith 2002) and to model how
language acquisition can follow atypical developmental trajecto-
ries (Thomas & Karmiloff-Smith 2003).

Connectionist models have been shown to be highly relevant to
the concerns of developmental researchers, first, because they of-
fer a valuable means of investigating the necessary conditions for
development. That is, connectionist models provide concrete
demonstrations of how the application of simple, low-level learn-
ing algorithms operating on local information can, over develop-
mental time, give rise to high-level emergent cognitive outcomes
(Elman et al. 1996; Karmiloff-Smith 1992; Karmiloff-Smith et al.
1998; Plunkett et al. 1997). These demonstrations in turn have
forced researchers to revisit assumptions about what can actually
be learned as opposed to what has to be prespecified, and to rec-
ognize that far more structure is latent in the environmental input
and capable of being abstracted by basic learning algorithms than
previously imagined.

Concerning assumptions about the nature of the starting state
in the developing individual, explorations with connectionist mod-
els have been pivotal in clarifying the issue of innateness and iden-
tifying a range of potential ways in which innate constraints can be
realised (Karmiloff-Smith et al. 1998). As Elman et al. (1996)
make clear, despite the current dominance of nativist approaches
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to the development of language and cognition, scant attention has
been given to the issue of biological plausibility in discussions of
innate properties, and there has been little investigation of the po-
tential variety of ways in which something could be innate. In con-
trast, and as a direct result of their experience with connectionist
models, Elman et al. (1996) not only present a case against the
plausibility of “representational nativism,” but also offer a frame-
work for developing alternative conceptions of innate constraints
on development that draws on architectural and timing con-
straints in connectionist models as a guide.

In addition to clarifying the necessary conditions for develop-
ment, connectionist models also provide a vehicle for exploring
the dynamics of development. One of the key insights provided by
connectionist models is that the mapping between overt behav-
iour and underlying mechanism is often nonlinear. As Elman et al.
(1996) emphasize, contrary to assumptions underpinning much
developmental research, qualitative changes in behaviour do not
necessarily signal qualitative changes in the mechanisms respon-
sible for that behaviour. Instead, these models demonstrate that
sudden dramatic effects in terms of the output of a system can be
produced by tiny, incremental changes in internal processing over
time. In the case of ontogenetic development, this suggests that
apparent discontinuities in conceptual or linguistic understanding
or output may not be the result of new mechanisms coming on-
line at certain points in development as has often been assumed,
but instead reflect the continuous operation of the same mecha-
nism over time.

Added to demonstrations of how the same mechanism can be
responsible for multiple behaviours, connectionist models can
also illuminate the reverse case in which a single outcome or be-
haviour arises through the action of multiple interacting mecha-
nisms. Further, Elman et al. (1996) point to instances where the
same behavioural outcome can be produced in a number of dif-
ferent ways, as in the case of degraded performance in artificial
neural networks. (See Karmiloff-Smith 1998 for how crucial this
is in understanding so-called behaviour in the normal range in
some developmental disorders). Precisely because connectionist
models allow researchers to probe the potential range of relations
that can exist between behavioural outcomes and their underlying
causes, they overturn assumptions of straightforward one-to-one
mapping between mechanisms and behaviour and are therefore
useful in revealing the “multiplicity underlying unity” in develop-
ment (Elman et al. 1996, p. 363).

The preceding are but a few examples that identify specific is-
sues in developmental psychology where connectionist tools have
demonstrated natural applications. More generally, the resources
of connectionism have also been a critical factor in recent attempts
to develop a viable interactionist framework for cognitive devel-
opmental research. Commenting on the connectionist inspired
framework advocated by Elman et al. (1996), Newcombe (1998)
points to a recent trend in cognitive developmental theorising that
eschews the extremes of nativist and empiricist approaches to
learning and cognition, in favour of an account that offers some
substantive ideas about the reciprocal actions of organism and en-
vironment in producing developmental change. From this stand-
point, the resources of connectionism can be seen to contribute to
this project by offering researchers a specified, formal account of
the developmental process that goes well beyond the verbal ac-
counts typical of developmental theory. Moreover, as Elman et al.
(1996) point out, the striking resemblance between the process of
error reduction in artificial neural networks and earlier attempts
to depict epigenesis in natural systems (e.g., Waddington 1975) of-
fers further evidence of the utility of connectionism for attempts
to formalize the interactional nature of development.

The preceding sketch serves to highlight some of the variety of
ways in which the computational and conceptual resources of con-
nectionism have been usefully applied in developmental psychol-
ogy. Yet these pragmatic benefits of connectionist models are not
readily apparent in A&L’s present evaluation of connectionism
against the Newell Test designed to reveal an adequate theory of

cognition. As it stands, their evaluation falls short of a compre-
hensive comparative appraisal of ACT-R as a candidate theory of
cognition, and it fails to bring forth the utility of the connectionist
toolbox for cognitive science research.
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Abstract: One supposition underlying the Anderson & Lebiere (A&L)
target article is that the maximally broad “encompassing of its subject mat-
ter – the behavior of man” (cf. sect. 6, last para.) is regarded as an un-
questioned quality criterion for guiding cognitive research. One might ar-
gue for an explicit specification of the limitations of a given paradigm,
rather than extending it to apply to as many domains as possible.

Anderson & Lebiere (A&L) set out on an important and ad-
mirable mission: to evaluate theories within the more or less well-
defined area of cognitive science from one set of criteria in order
to avoid a dissolving of theories into disconnected paradigms. We
shall not criticise their general idea of measuring comparable the-
ories with a common yardstick, nor the actual grading of ACT-R
and connectionism presented by A&L. However, the very ap-
proach implies that there is a set of theories that can legitimately
be labelled “cognitive theories.” To decide whether a given theory
falls under the category “cognitive science” and thus decide which
theories it would be meaningful to grade with the Newell Test,
certain basic requirements must be fulfilled. One could ask
whether such basic requirements would be identical to the crite-
ria in the A&L version of the Newell Test. If that were indeed the
case, we could have no theory that could truly be called cognitive
to this day. For instance, we have no theory to explain why con-
sciousness is “a functional aspect of cognition” (let alone one that
also explains dynamic behaviour, knowledge integration, etc.)
(Chalmers 1996; Velmans 1991). Furthermore, it would be a cir-
cular enterprise indeed to measure a theory according to criteria
identical to the ones it must already fulfil.

Most likely, however, one would not equate the basic require-
ments for cognitive science with the criteria of the Newell Test. For
such a purpose, the criteria seem to be set much too high. Rather,
one would look at the many different usages of the term cognitive
within the research field in general and establish relevant criteria
on this basis. This, however, leads us into the situation where we
presently stand, that is, a situation where “cognitive science” is
loosely defined. We have a number of core theories that definitely
are cognitive – such as Treisman’s attenuation model (Treisman &
Gelade 1980) or the SAS model of visual attention (Norman &
Shallice 1986) – and several borderline cases – such as Gibson’s
ecological perception theory (Gibson 1979) – where it is unclear
whether the theory is truly a cognitive psychological theory.

Although our conceptualisation of cognitive science does not
seem very exact, it seems safe to say that it has developed histori-
cally as an attempt to explain the transition from stimulus to re-
sponse by “internal variables” (see Tolman 1948). Thus, all cogni-
tive theories – the core cases as well as the less clear-cut ones –
intend to give explanations in terms of functions. No matter how
the specific theories are construed, all cognitive theories explain
the function of some mental phenomenon, whether they collect
empirical data from behavioural measures, computer simulations,
mathematical models, or brain scannings. This common point of
departure has certain consequences for the kind of theory that can
be developed. First and foremost, any cognitive theory must be
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able to model or causally explain observable behaviour. Response
times, button presses, verbal reports, and the like, must be the ba-
sis of any such theory; without such third-person information, a
cognitive science theory would have nothing to explain.

Returning to the problem of consciousness (or the mind-body
problem): Why do certain cognitive and emotional processes have
specific experiential or so-called qualitative features? Block
(1995) has argued for a difference between so-called access-con-
sciousness (A) and phenomenal consciousness (P). A mental state
is A-conscious if it can be poised as premise in reasoning, rational
control of action and speech. A mental state is P-conscious if there
is something it is like to be in that state (Nagel 1974). The mind-
body problem is, then, normally interpreted as a problem of ex-
plaining how P is related to (other) physical matter.

Any cognitive theory should be able to explain or model what
happens when subjects report about consciousness, or about any-
thing else, for that matter. In themselves, however, such explana-
tions or modelling exercises do not necessarily point at anything
more than correlations between two sets of psychological third-
person data, for example, verbal reports and brain activity. At best,
this will give us an understanding of A-consciousness, but not nec-
essarily of P. When describing a cognitive process in terms of its
functions or causal processes, P does not fit in unproblematically.
Even when turning to some of the more optimistic accounts, one
finds arguments that cognitive science can inform a solving of the
mind-body problem but not actually solve it (Overgaard, in press).
Epistemologically speaking, one can easily describe one’s experi-
ences exactly without ever referring to the kinds of descriptions
and models used by cognitive scientists. Vice versa, one can make
a full description of a cognitive process in terms of mathematical
models or the often-seen “boxes with arrows between them” with-
out ever referring to experiential qualities. On this basis, one
might reasonably question whether an explanation of conscious-
ness is a realistic goal for cognitive science.

For this reason, we are sceptical of one basic supposition un-
derlying the A&L target article: that the maximally broad “en-
compassing of its subject matter – the behavior of man” (Newell
1973, p. 288, cited in sect. 6, Conclusion, last para.) shall be re-
garded as an unquestioned quality criterion for theoretical mod-
els guiding cognitive research. On the contrary, one might argue
that it would be a more theoretically sound approach to explicitly
specify the limitations of a given paradigm and its possible open-
ness and connectedness with other paradigms, rather than trying
to extend it to apply to as many domains as possible.

The one existing type of language in which everything can be
spoken about is natural, everyday language. The all-encompassing
semantic capacity of natural, everyday language is bought at the
price of a low degree of specificity as far as the identification of
statements’ truth conditions is concerned. The potential utility
value of theoretical languages lies in their capacity to isolate and
specify knowledge domains characterised by high degrees of epis-
temic consistency (for scientific purposes) and action predictabil-
ity (for technological purposes). Definitely, at this stage of cogni-
tive science, we fear this utility value may become jeopardised if
success in theory building gets simplistically equated with breadth
of coverage.

Connectionism, ACT-R, and the principle
of self-organization
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Ecomon Ltd., Selskohosyastvennaya str 12-A, Moscow, Russia.
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Abstract: The target article is based upon the principle that complex men-
tal phenomena result from the interactions among some elementary enti-
ties. Connectionist nodes and ACT-R’s production rules can be considered
as such entities. However, before testing against Newell’s macro-criteria,
self-organizing models must be tested against criteria relating to the prop-
erties of their elementary entities. When such micro-criteria are consid-
ered, they separate connectionism from ACT-R and the comparison of
these theories against Newell’s Tests is hardly correct.

The target article by Anderson & Lebiere (A&L) is devoted to the
demonstration of the possibilities of the ACT-R theory. To this
end, the authors compare their theory against connectionism on
the basis of Newell’s criteria for a theory of cognition. However, it
is difficult to understand from the article why A&L have decided
to select connectionism as a competitor of ACT-R. Indeed, if ACT-
R is an unified framework, but the term “connectionism” is “used
in the field to refer to a wide variety of often incompatible theo-
retical perspectives” (target article, sect. 3, para. 7), then A&L
could test ACT-R against, for example, a bunch of symbolic mod-
els sharing certain common characteristics.

It seems that the main reason for A&L’s choice (acknowledged
by A&L only partially) is the principle of self-organization, that is,
the assumption that complex mental phenomena can be described
as a result of the interactions among some elementary entities.
This principle has been suggested by me elsewhere (cf. Prudkov
1994), and it was based on the following two facts. First, we know
that mental processes are heavily connected to various aspects of
brain functioning, though the mechanism of this connection is still
unclear. Second, neuroscience data demonstrate that the complex
forms of brain activity result from the interactions among some el-
ementary brain entities. Brain areas, single neurons, parts of a
neuron, distributions of electrical fields, and the like, can be
treated as such entities in accordance with the level of brain func-
tioning considered. It seems impossible to reduce all neural levels
to a basic one.

The principle of self-organization requires no correspondence
between cognitive elementary entities and any of their neural
counterparts, though such correspondence is possible. But all
characteristics of a cognitive self-organizing process must result
from the properties of its elementary entities and interactions
among them, without involving any factors external to the system.
The architecture of a self-organizing system is defined by three
sorts of characteristics (Prudkov 1994). First, it is necessary to de-
fine the elementary entities of the system. Second, the results of
the interactions between the entities must be determined. Be-
cause the idea of interaction supposes changes in components of
the entities, one can say self-organizing models by definition are
hybrid. And, third, all conditions or probabilities of the interac-
tions to occur must be described. Learning, then, corresponds to
long-term changes in a self-organizing system.

With connectionist nodes as elementary entities, it is intuitively
clear that connectionism complies with the principle (a more de-
tailed representation is in Prudkov 1994). With the biological im-
plausibility of many connectionist methods, the principle is likely
to be the main reason to use connectionism for understanding
cognition (Green 1998). To convert the ACT-R theory into self-or-
ganization terms, suppose that production rules are elementary
entities, matching the conditions of production rules, and the state
of declarative memory determines which entities can interact at
the given time. Finally, the rule selected for firing, the result of the
firing along with the corresponding changes in declarative mem-
ory, is the consequence of an interaction.

Of course, this principle must be considered as a heuristic
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rather than an established theory. It allows one to construct a wide
variety of models and theories, but their efficiency should be
tested against various criteria in order to construct adequate mod-
els. To some extent, this principle corresponds to the idea that var-
ious physical phenomena stem from the interactions among atoms
or molecules. Before 1905, when Einstein proved the existence of
these particles, this idea was also a heuristic, but its usefulness for
physics is obvious.

However, the idea itself is not sufficient to construct physical
models, so these interactions must correspond to various physical
laws, such as the laws of thermodynamics. In a similar vein, the
self-organizing models of cognition initially must be tested against
some criteria relating to the properties of its architecture. Such
micro-criteria seem absent (or not stated explicitly) in the target
article; however, without using them, the comparison against
macro-criteria such as Newell’s is hardly correct because of the
considerable arbitrariness in the models constructed. For in-
stance, different models can merely describe various levels of the
phenomenon under study.

Of course, the theory of cognition still does not have such strict
laws as in physics, but several micro-criteria appear useful to judge
self-organizing models. The first micro-criterion is the similarity
in relevant brain functioning. Since self-organizing models of cog-
nition implicitly refer to self-organizing brain activity which can
involve various levels of brain functioning, various models can be
compared if their architecture meets the same levels of brain func-
tioning. The architecture of connectionism meets the level of sin-
gle neurons, but the ACT-R architecture corresponds to cortical
regions.

The second micro-criterion is the similarity in the determina-
tion of initial settings. Various models can be compared when sim-
ilar efforts are necessary to establish their initial settings and these
settings are equally robust to their changes. The robustness of
connectionist settings is well known; ACT-R seems to require
more precise but vulnerable settings. For example, the ACT-R
model of learning the past tense in English (Taatgen & Anderson
2002) performs well, but the model seems to be vulnerable to the
choice of the production rules and learning mechanisms used. It
is not obvious that the model with slightly different characteristics
could show similar results.

The last micro-criterion assumes that the complexity of entities,
interactions, and conditions must be approximately the same in
the models judged, or the architecture of one model must natu-
rally result from emergent processes in the other. The architec-
ture of connectionist models is simpler than ACT-R’s and, rea-
lizing this, A&L describe another model, ACT-RN, which imple-
ments ACT-R by standard connectionist methods. However, this
implementation seems artificial, for A&L simply predetermine
the existence of ACT-R’s slots and production rules instead of 
deriving them from more primitive features of a connection-
ist model. In principle, A&L simply demonstrate that ACT-RN
(and, accordingly, ACT-R) meets the principle of self-organiza-
tion.

One can conclude that three micro-criteria separate connec-
tionism from ACT-R; these theories describe different levels of
cognition; therefore, their direct comparison is hardly correct.

Dual-process theories and hybrid systems

Ilkka Pyysiäinen
Helsinki Collegium for Advanced Studies, University of Helsinki, FIN-00014,
Finland. ilkka.pyysiainen@helsinki.fi
http://www.helsinki.fi/collegium/eng/staff.htm

Abstract: The distinction between such differing approaches to cognition
as connectionism and rule-based models is paralleled by a distinction be-
tween two basic modes of cognition postulated in the so-called dual-
process theories. Integrating these theories with insights from hybrid sys-
tems might help solve the dilemma of combining the demands of
evolutionary plausibility and computational universality. No single ap-
proach alone can achieve this.

Not only are cognitive scientific “paradigms” disconnected; it also
seems to be difficult for a theory of cognition to meet both
Newell’s criteria 1 and 11. An evolved cognitive architecture ap-
parently cannot be computationally universal (e.g., Bringsjord
2001). Anderson & Lebiere (A&L) thus emphasize that humans
can learn to perform almost arbitrary cognitive tasks, but they do
not explain why some tasks are easier to learn than others. They
suggest that applying a broad enough range of criteria might help
us construct an exhaustive theory of cognition, referring to Sun’s
(1994; 2002) hybrid systems integrating connectionism and a rule-
based approach as an example (see also Sun & Bookman 1995). I
argue that the distinction between connectionist and functionalist
models is paralleled by a distinction between two types of actual
cognitive processing, as postulated within the so-called dual-
process theories. These theories, developed in social psychology,
personality psychology, and neuropsychology, for example,
strongly suggest that there are two different ways of processing in-
formation, variously labeled

Intuition and implicit learning versus deliberative, analytic
strategy (Lieberman 2000)

A reflexive and a reflective system (Lieberman et al. 2002)
Associative versus rule-based systems (Sloman 1996; 1999)
An experiential or intuitive versus a rational mode of thinking

(Denes-Raj & Epstein 1994; Epstein & Pacini 1999; Epstein et al.
1992; Simon et al. 1997)

An effortless processing mode that works through associative
retrieval or pattern completion in the slow-learning system
elicited by a salient cue versus a more laborious processing mode
that involves the intentional retrieval of explicit, symbolically rep-
resented rules from either of the two memory systems to guide
processing (Smith & DeCoster 2000)

Implicit versus explicit cognition (Holyoak & Spellman 1993)
Intuitive versus reflective beliefs (Cosmides & Tooby 2000a;

Sperber 1997)
Although the terminologies vary, there is considerable overlap

in the substance of these distinctions. The two systems serve dif-
ferent functions and are applied to differing problem domains.
They also have different rules of operation, correlate with differ-
ent kinds of experiences, and are carried out by different brain sys-
tems. Some consider these two mechanisms as endpoints on a
continuum, whereas Lieberman et al. (2002) argue that they are
autonomous systems (see, e.g., Chaiken & Trope 1999; Holyoak &
Spellman 1993).

By synthesizing the extant theories, with a special focus on Slo-
man (1996) and Lieberman et al. (2002), we may characterize the
spontaneous system as follows. It operates reflexively, draws in-
ferences, and makes predictions on the basis of temporal relations
and similarity; and employs knowledge derived from personal ex-
perience, concrete and generic concepts, images, stereotypes, fea-
ture sets, associative relations, similarity-based generalization, and
automatic processing. It serves such cognitive functions as intu-
ition, fantasy, creativity, imagination, visual recognition, and asso-
ciative memory (see especially, Sloman 1996). It involves such
brain areas as the lateral temporal cortex, amygdala, and basal gan-
glia. The lateral temporal cortex is, for example, most directly in-
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volved in the construction of attributions, whereas the amygdala
and basal ganglia are responsible for trying to predict possible
punishments and rewards related to one’s actions (Lieberman et
al. 2002; cf. Rolls 2000).

This system consists of a set of neural mechanisms tuned by a
person’s past experience and current goals; it is a subsymbolic, pat-
tern-matching system that employs parallel distributed process-
ing. It produces that continuous stream of consciousness we ex-
perience as “the world out there,” whereas the rational system
reacts to the spontaneous system, producing conscious thoughts
experienced as reflections on the stream of consciousness (Lieber-
man et al. 2002). As a pattern-recognition system, the spontaneous
system tries to combine all perceived features into a coherent rep-
resentation; this is because the relevant neurons have been so
paired by past experience that the activation of some will also ac-
tivate others. The spontaneous system cannot consider the causal
or conditional relationships between percepts because it does not
operate by symbolic logic and because its links are bidirectional.
Thus, simply asking a dispositional question (e.g., “Is this man
prone to violent behavior?”) may easily lead to an affirmative an-
swer (Lieberman et al. 2002).

The rational system involves such brain areas as the anterior
cingulate, prefrontal cortex, and hippocampus (Lieberman et al.
2002). It is a rule-based system able to encode any information
that has a well-specified formal structure. Such a structure also al-
lows the generation of new propositions on the basis of systematic
inferences carried out in a language of thought which has a com-
binatorial syntax and semantics. It explicitly follows rules. This sys-
tem thus seeks for logical, hierarchical, and causal-mechanical
structure in its environment; operates on symbol manipulation;
and derives knowledge from language, culture, and formal sys-
tems. It employs concrete, generic, and abstract concepts; ab-
stracted features; compositional symbols; as well as causal, logical,
and hierarchical relations. It is productive and systematic; ab-
stracts relevant features; is strategic, not automatic; and serves
such cognitive functions as deliberation, explanation, formal
analysis, verification, ascription of purpose, and strategic memory
(Sloman 1996).

The rational system either generates solutions to problems en-
countered by the spontaneous system, or it biases its processing in
a variety of ways. A pre-existing doubt concerning the veracity of
one’s own inferences seems to be necessary for the activation of
the rational system. The rational system thus identifies problems
arising in the spontaneous system, takes control away from it, and
remembers situations in which such control was previously re-
quired. These operations consist of generating and maintaining
symbols in working memory, combining these symbols with rule-
based logical schemes, and biasing the spontaneous system and
motor systems to behave accordingly (Lieberman et al. 2002).

It could thus be argued that the spontaneous system is a col-
lection of evolved mechanisms with an adaptive background,
whereas computational universality is based on the ability of the
rational system to exploit the evolved mechanisms to create algo-
rithms for the performance of any cognitive task (see Pinker 1997,
pp. 358–359; Atran 2002). This explains the fact that in many ar-
eas of everyday life people rely both on evolutionary intuitions and
explicit theories. This distinction has recently been studied with
regard to peoples’ religious intuitions and their theological theo-
ries (e.g., Barrett 1998; 1999; Barrett & Keil 1996; Boyer 2001;
Pyysiäinen 2003; Whitehouse 2002). Interaction between work on
these types of real-life problem fields and on construction of hy-
brid systems might help us develop more integrated theories of
human cognition.
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The hardest test for a theory of cognition:
The input test
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Abstract: This commentary defines an additional characteristic of human
learning. The nature of this test is different from the ones by Newell: This
is a hard, pass/fail type of test. Thus a theory of cognition cannot partially
satisfy this test; it either conforms to the requirement fully, or it doesn’t. If
a theory of cognition cannot satisfy this property of human learning, then
the theory is not valid at all.

The target article by Anderson & Lebiere (A&L) is very refresh-
ing in the sense that it turns the focus back on accountability and
tests for any theory of cognition. In examining theories of cogni-
tion, a look at system identification in science and engineering may
be in order. In system identification, the basic idea is to construct
an equivalent system (model) that can produce “behavior” that is
similar to the actual system. So the key idea is to produce “match-
ing external behavior.” The equivalent system may not necessarily
match the internal details of the system to be identified, but that
is fine as long as it matches the system’s external properties. And
the external properties to match may be many. This is not to say
that one should not take advantage of any information about the
internals of the system.

Therefore, the crucial task for this science is to define the ex-
ternal behavioral characteristics that any system of cognition is
supposed to exhibit. Understanding and characterizing the phe-
nomenon to be modeled and explained is clearly the first and main
step towards developing a theory for it. If that is not done, it is very
likely that wrong theories will be proposed, because it is not
known exactly what the theory should account for. This commen-
tary defines an additional characteristic of human learning other
than the ones in the Newell Test (Roy et al. 1997). In the spirit of
the Newell Test, this is a characteristic of the brain that is “inde-
pendent of” (1) any conjectures about the “internal” mechanisms
of the brain (theories of cognition) and (2) the specific learning
task. That is, this property of human learning is independent of a
specific learning task like learning a language, mathematics, or a
motor skill. The nature of this test is quite different from the ones
provided by Newell: This is a hard, pass/fail type of test. In that
sense, a theory of cognition cannot partially satisfy this test; it ei-
ther conforms to its requirement fully, or it doesn’t. This pass/fail
test would allow one to quickly check the validity of alternative
theories of cognition. If a theory of cognition cannot satisfy this
property of human learning, then the theory is not valid at all. So
this particular test is good enough for initial screening of theories.
As explained in the following paragraphs, classical connectionism
fails this test. One has to take a closer look at ACT-R and ACT-RN
to pass judgment on them.

So what is this real hard test for theories of cognition? It can be
summarized as follows: A brain-like system, constructed on the
basis of some theory of cognition, is not permitted to use any in-
puts in its construction phase that are not normally supplied to a
human brain. So the real hard test for any theory is in the inputs
required to construct the relevant system of cognition. Let this test
be called the “Input Test.” The human brain has two sources of in-
puts during its development, both inside the womb and outside.
Biological parents are the first source, and certain structures and
systems can be inherited through that source. The other source of
inputs for its development is the environment after birth. So any
theory of cognition has to clearly delineate what pieces of its func-
tioning system are inherited from biological parents and what
pieces are developed subsequently through interactions with the
environment. For humans, it is known for a fact that certain func-
tionality of the brain is definitely not inherited, like the ability to
speak a certain language, do mathematics, and so on. The mod-
ules for these functionalities/tasks do not come pre-built in the hu-
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man brain; rather, they are developed and constructed gradually
over time. So, to reiterate this point, the first task of a theory of
cognition is to clearly delineate what pieces of its functioning sys-
tem are inherited and what pieces are developed subsequently
through interactions with the environment. And with regard to
what can come pre-built (inherited), it has to provide sensible ar-
guments.

Once a proposed theory of cognition maps out what is pre-built
in the system in the sense of being inherited from biological par-
ents, then the problem for the theory is to show how it develops
and constructs the modules that are not pre-built. And whatever
the means are for developing and constructing these modules, the
hardest test for the theory is this: It has to demonstrate that it is not
using any inputs for developing and constructing these modules
that are not provided to humans from the environment. This input
test can be explained nicely by examining classical connectionism.
In classical connectionism, for example, network designs and other
algorithmic information have to be externally supplied to the learn-
ing system, whereas no such information is ever an external input
to the human brain. The well-known back-propagation algorithm
of Rumelhart et al. (1986) is a case in point. In fact, many different
network designs and other parameter values often have to be sup-
plied to these learning systems on a trial-and-error basis in order
for them to learn. However, as far as is known, no one has ever been
able to externally supply any network designs or learning parame-
ters to a human brain. So classical connectionism clearly violates
this input test and is not a valid theory of cognition.

In general, for previously unknown tasks, the networks could
not feasibly come predesigned in human brains; thus network de-
signs cannot be inherited for every possible unknown learning
problem faced by the brain on a regular basis. And the networks
required for different tasks are different; it is not a one-size-fits-
all situation. Since no information about the design of a network
is ever supplied to the brain externally, it therefore implies that the
brain performs network designs internally. Thus, it is expected
that any theory of cognition must also demonstrate the same abil-
ity to design networks and adjust its own learning parameters
without any outside intervention. But the connectionist learning
systems can’t demonstrate this capability, and that again implies
that classical connectionism is not a valid theory of cognition.

In summary, in this input test, a theory of cognition should be
restricted to accepting information that is normally supplied to a
human from the environment, nothing more.

Rethinking learning and development in the
Newell Test

Sylvain Sirois
Department of Psychology, The University of Manchester, Manchester
M13 9PL, United Kingdom. sylvain.sirois@man.ac.uk
http://www.psy.man.ac.uk/staff/sirois.htm

Abstract: The Newell Test is an ambitious and promising project, but not
without pitfalls. Some of the current criteria are not theoretically neutral,
whereas others are unhelpful. To improve the test, the learning and de-
velopment criteria are reviewed and revised, which suggests adding a mat-
uration criterion as well. Such changes should make the Newell Test more
general and useful.

Anderson & Lebiere (A&L) have certainly embarked on an ambi-
tious project: to transform Newell’s (1980; 1990) functional crite-
ria for human cognitive architectures into the ultimate test of cog-
nitive theories. I certainly sympathise with such ambitions,
especially given their emphasis on the functional aspects of the cri-
teria that should be used. For example, we recently conducted a
similar (albeit substantially more humble) exercise for models of
infant habituation (Sirois & Mareschal 2002). We identified a set
of seven behavioural and neural criteria that functional models of

the phenomena need to satisfy. This proved extremely useful to
highlight the limitations of current models, but also (and perhaps
more importantly) to suggest what the next generation of models
needed to address. Given the relatively small scale of the problem
addressed in our work, one could conceivably expect huge and
varied rewards from A&L’s far more valiant endeavour.

Whereas the rewards may prove an exponential function of
those we observe in analogous but restricted projects, so may the
problems. The authors quite rightly acknowledge that their crite-
ria (which are a slightly modified version of Newell’s) are not the
only criteria by which a theory can be assessed. But far more cru-
cial than how many criteria (which makes the test more or less lib-
eral) is the question of which criteria (which makes the test more
or less useful). If the stated goal of such a test is to avoid theoret-
ical myopia, then a few of the criteria are certainly problematic be-
cause they either imply that a model adheres to a specific school
of thought or to tests of models against highly disputable stan-
dards. For example, knowledge integration may have been retitled
from Newell (1990) but owes no less to symbolic tradition than
when it was proposed by Newell. As such, the grading of this cri-
terion is unduly biased towards models and theories originating
from this tradition. The consciousness criterion is even more prob-
lematic: Whether the criterion has any functional value depends
on an eventual theory that would make such a suggestion!

Other commentators will likely address the relevance or appro-
priateness of the various criteria, if not of the test itself. Despite
inherent difficulties in such projects, I believe that a revised for-
mulation of the Newell Test could be quite useful. I would thus
like to focus on two criteria that, in my view, should be kept in the
Newell Test: learning and development. Surprisingly, the authors
evacuated the functional role of learning in their discussion.
Moreover, they discuss development as a (perhaps functional)
constraint rather than as a functional mechanism. In fact, what
they present as development sounds remarkably like maturation.

The authors should not be blamed too harshly for reproducing
a common problem in developmental psychology: confounding
learning and development by discussing them in terms of out-
comes rather than mechanisms (Liben 1987). This is most explicit
when they present the slow learning of classical connectionism as
satisfying the development criterion. If anything, and contrary to
what the authors suggested, the sort of learning in classical con-
nectionism can be characterised as a nativist learning theory
(Quartz 1993; Sirois & Shultz 1999).

Fortunately, the notions of learning and development can be ex-
pressed formally as non-overlapping functions (Sirois & Shultz
1999). Learning can be defined as parametric changes that enable
a given processing structure to adapt to its environment. Devel-
opment, however, can be defined as structural changes that foster
more complex adaptations, given learning failure. These defini-
tions not only constrain the contribution of each mechanism to
cognitive change, but also specify the relationship between learn-
ing and development. Learning causes the current structure to
adapt, but when that fails, development alters the structure to pro-
mote further learning. It must be noted that either form of change
is a function of experience. Within this framework, then, matura-
tion becomes an experience-independent structural change that
delays learning, in line with what A&L discussed as development.

Like others (including A&L), I believe that an adequate theo-
retical formulation of cognition must be consistent with learning
and developmental issues. Moreover, given the significant changes
that can be introduced by maturation (i.e., the cognitive structure
increases in complexity), I would suggest that the Newell Test
also incorporates maturation as one of its criteria. The grading is
relatively straightforward for the learning, development, and
maturation criteria. If a theory allows for parametric changes as a
function of experience, it can learn. If it allows for experience-
dependent structural changes that support further learning, it sat-
isfies development. Finally, if it allows for experience-independent,
programmed structural changes that modify the learning space, it
satisfies maturation.
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These learning, development, and maturation criteria are gen-
eral by design, and so are the grading proposals, in line with
Newell’s wish to avoid theoretical myopia. A cognitive theory
should be granted with the ability to satisfy any of these criteria if
it satisfies the relevant functional properties, irrespective of how
the mechanisms are actually realised. This general nature does not
imply that the criteria are vague, however. We initially proposed
these definitions to discuss various classes of neural networks as
they are applied to developmental problems. We found that the
classical connectionist framework only satisfied the learning crite-
ria (Sirois & Shultz 1999). But we applied the same framework to
discuss the various mechanisms of Piagetian theory, clarifying
them in the process, and allowing for a formal distinction between
learning and developmental notions in Piaget’s work (Sirois &
Shultz 2003). If we apply these definitions to ACT-R as discussed
by A&L, we could grant ACT-R with the ability to satisfy learning
and developmental criteria (the latter through the construction of
new rules).

To summarise, the idea of a Newell Test is quite attractive but
not without design pitfalls. Whereas there may be some inadver-
tent myopia in the choice of criteria, most of these may well be re-
tained (but perhaps reformulated). The peer commentaries in this
journal will hopefully provide the next few steps towards the de-
sign of a generally satisfying test of cognitive theories.
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Abstract: I present reasons for adding an embodiment criterion to the list
defended by Anderson & Lebiere (A&L). I also entertain a likely objec-
tion contending that embodiment is merely a type of dynamic behavior
and is therefore covered by the target article. In either case, it turns out
that neither connectionism nor ACT-R do particularly well when it comes
to embodiment.

The principle that cognitive theories should be evaluated accord-
ing to multiple criteria is worth adopting, and Anderson &
Lebiere’s (A&L’s) development of Newell’s proposals in this re-
gard is useful. One important criterion seems to be missing,
though, and that is embodiment.

By embodiment, I understand, loosely, physical implementa-
tion in an environment. Humans, clearly a key consideration of the
target article, are, of course, embodied. They exhibit striking vir-
tuosity at moving around the world and exploiting the resources
available in it. Perhaps more important for present purposes, we
are talented at exploiting the structure of environments (and of
our bodies in them) for cognitive ends, or as some would have it,
engaging in “distributed cognition” (e.g. Hutchins 1995). One ex-
ample is locomotion, where recent research (Thelen & Smith
1994) indicates that the architecture of the body, and the proper-
ties of the body in interaction with the environment, play signifi-
cant roles in control of behavior. Another example, rather closer
to the concerns of traditional cognitive science, is the game of
Tetris, where it has been shown (Kirsh & Maglio 1994) that hu-
man players use external actions to improve the efficiency (speed,
accuracy, error rate) of the spatial manipulations and judgements
demanded by the game. External rotation of a Tetris piece, along
with inspection to establish whether the rotated piece is in a
preferable orientation (compared to before), is often faster and
less error-prone than mental rotation for the same purpose. This
suggests that at least some cognitive problems are tackled using a
coalition of internal and external resources, and that an important
feature of our cognitive makeup is that we can detect opportuni-

ties for this. (Further examples in humans, other animals, and
(some) robots abound. Clark [1997] is a useful survey.) This in turn
indicates that a theory of cognition that fails to take embodiment
seriously is unlikely to capture such features of our own cognitive
performance.

A likely objection here notes that A&L’s criterion 5 is “dynamic
behavior.” Since this criterion concerns the relationship between
a cognitive system and an environment, perhaps, properly under-
stood, it includes embodiment and distributed cognition. Distrib-
uted cognition just is, the objection goes – a kind of dynamical
coupling between an information-processing system and a struc-
tured body and environment. This objection may be taking char-
itable interpretation too far. A&L’s discussion of their “dynamic
behavior” criterion (sect. 2.5 of the target article) places consid-
erable emphasis on dealing with the unexpected, and relatively
less on exploiting external structure. When evaluating the relative
performance of classical connectionism and ACT-R with respect
to the dynamic behavior criterion (sect. 5.5 of the target article),
their emphasis is on real-time control, not embodiment. Rather
than try to settle the question whether embodiment is or is not a
version of dynamic behavior, I propose to consider how connec-
tionism and ACT-R fare in the case where embodiment is added
as a separate criterion, and where dynamic behavior is interpreted
to include it.

Were embodiment added as a criterion, I suggest that connec-
tionism would achieve mixed results. In some cases it does extra-
ordinarily well. Consider Quinn and Espenschied’s (1993) neural
network for controlling a hexapod robot. The success of this sys-
tem depends to a significant extent on allowing features of the
physical construction of the robot, in interaction with the envi-
ronment, to play a role in control – so that the motion of individ-
ual feet will be inhibited if other specific feet do not yet have se-
cure positions. One way of understanding this is to regard the
changing physical links between some neurons, parts of the robot
anatomy, the physical environment, other parts of the anatomy
and (eventually, and sometimes) other neurons, as functioning like
additional neurons, or interneuron connections, transforming or
transmitting information about footing, load on joints, and so on.
In other cases, though, it is not (yet) clear how to go about build-
ing a network, embodied or otherwise, to handle tasks (such as air
traffic control) involving fairly specific and detailed functional de-
composition, tasks for which systems such as ACT-R seem well
suited.

ACT-R, I argue, scores worse for embodiment. Its successes at,
for example, modelling driving are in constrained simulation en-
vironments, where embodied interaction with the “feel” of the ve-
hicle and its relation to the road surface, are absent, and where at-
tendant opportunities for exploiting environmental structure
(engine tone, vibration) to help cue such actions as gear changes
are absent for both the human subjects who provide the target
data, and the ACT-R models of driving behavior which do well at
approximating the behavior of such humans.

However, we might reinterpret A&L’s “dynamical behavior” cri-
terion in a way that includes embodiment as a subtype of dynamic
behavior. In this case, and in the light of what is said in the target
article and so far in this commentary, connectionism should retain
its mixed score. In this case ACT-R should also, I argue, receive a
mixed score: It doesn’t do well at plain embodiment, but does bet-
ter at non-embodied forms of dynamic behavior. In either case,
the moral to draw is that if embodiment is a genuinely important
criterion, then neither connectionism nor ACT-R seem, as they
stand, in a good position to perform consistently well on it.
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Conceptions and misconceptions
of connectionism

Ron Sun
CECS Department, University of Missouri-Columbia, Columbia, MO 65211.
rsun@cecs.missouri.edu http://www.cecs.missouri.edu/~rsun

Abstract: This commentary examines one aspect of the target article – the
comparison of ACT-R with connectionist models. It argues that concep-
tions of connectionist models should be broadened to cover the whole
spectrum of work in this area, especially the so-called hybrid models. Do-
ing so may change drastically ratings of connectionist models, and conse-
quently shed better light on the developing field of cognitive architectures.

John Anderson has been one of the pioneers of cognitive archi-
tectures. His and Christian Lebiere’s work on ACT-R has been
highly influential. In many ways, their work defines this field to-
day.

However, instead of going on praising ACT-R, I shall here focus
on shortcomings of the target article. One shortcoming, as I see it,
is in Anderson & Lebiere’s (A&L’s) treatment of connectionist
models or, more precisely, in their very conception of connection-
ist models. In the target article, as a comparison to ACT-R, A&L
focus exclusively on what they term “classical connectionism”
(which I would call “strong connectionism”) – the most narrowly
conceived view of connectionist models, from the mid-1980s, as ar-
ticulated by the classic PDP book (Rumelhart & McClelland
1986). In this view, connectionist models are the ones with regular
network topology, simple activation functions, and local weight-
tuning rules. A&L claim that this view “reflects both the core and
the bulk of existing neural network models while presenting a co-
herent computational specification” (target article, sect. 3, last
para.).

However, it appears that connectionist models conforming to
this view have some fundamental shortcomings. For example, the
limitations due to the regularity of network topology led to diffi-
culty in representing and interpreting symbolic structures (de-
spite some limited successes so far). Other limitations are due to
learning algorithms used by such models, which led to lengthy
training (with many repeated trials), requiring a priori input/out-
put mappings, and so on. They are also limited in terms of bio-
logical relevance. These models may bear only remote resem-
blance to biological processes.

In coping with these difficulties, two forms of connectionism
became rather separate: Strong connectionism adheres closely to
the above strict precepts of connectionism (even though they may
be unnecessarily restrictive), whereas weak connectionism (or hy-
brid connectionism) seeks to incorporate both symbolic and sub-
symbolic processes – reaping the benefit of connectionism while
avoiding its shortcomings. There have been many theoretical and
practical arguments for hybrid connectionism (see, e.g., Sun
1994). Considering our lack of sufficient neurobiological under-
standing at present, a dogmatic view on the “neural plausibility”
of hybrid connectionist models is not warranted. It appears to me
(and to many other people) that the death knell of strong connec-
tionism has already been sounded, and it is time now for a more
open-minded framework without the strait-jacket of strong con-
nectionism.

Hybrid connectionist models have, in fact, been under devel-
opment since the late 1980s. Initially, they were not tied into work
on cognitive architectures. The interaction came about through
some focused research funding programs by funding agencies.
Several significant hybrid cognitive architectures have been de-
veloped (see, e.g., Shastri et al. 2002; Sun 2002; Sun et al. 2001).

What does this argument about the conception (definition) of
connectionism have to do with ratings on the Newell Test? In my
own estimate, it should affect ratings on the following items: “a
vast amount of knowledge,” “operating in real time,” “computa-
tional universality,” “integrating diverse knowledge,” and possibly
other items as well. Let’s look into “a vast amount of knowledge,”

as an example. What may prevent neural networks from scaling up
and using a vast amount of knowledge is mainly the well-known
problem of catastrophic interference in these networks. However,
the problem of scaling and “catastrophic interference” in neural
networks may in fact be resolved by modular neural networks, es-
pecially when symbolic methods are introduced to help partition
tasks (Sun 2002). With different subtasks assigned to different net-
works that are organized in a modular fashion, catastrophic inter-
ference can be avoidable. Thus, if we extend the definition of con-
nectionist models, we can find some (partial) solutions to this
problem, which are (at least) as good as what is being offered by
ACT-R to the same problem. Similar things may be said about “in-
tegrating diverse knowledge” or “operating in real time,” and so
on. Overall, when our conceptions of connectionist models are
properly expanded, our ratings of connectionist models will have
to be changed accordingly too; hence the significance of this issue
to the target article.

A related shortcoming of the target article is the lack of ade-
quate discussion and rating of hybrid connectionist models be-
sides ACT-R. Ratings of these models and comparisons with ACT-
R can shed further light on the strengths and weaknesses of
different approaches. There have been some detailed analyses and
categorizations of hybrid connectionist models, which include
“classical” connectionist models as a subset, that one might want
to look into if one is interested in this area (see, e.g., Sun & Book-
man 1994; Wermter & Sun 2000).

Finally, I would like to echo the authors’ closing remarks in the
conclusion (sect. 6) of the article: If researchers of all theoretical
persuasions try to pursue a broad range of criteria, the disputes
among theoretical positions might simply dissolve. I am confident
that the target article (and more importantly, this entire treat-
ment) may in fact contribute toward this end.
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Poppering the Newell Test
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Abstract: The Newell Test as it is proposed by Anderson & Lebiere (A&L)
has the disadvantage of being too positivistic, stressing areas a theory
should cover, instead of attempting to exclude false predictions. Never-
theless, Newell’s list can be used as the basis for a more stringent test with
a stress on the falsifiability of the theory.

The idea of the Newell Test is obviously inspired by its illustrious
predecessor, the Turing Test (Turing 1950) and can be considered
as an elaboration of the topics that have to be addressed by a the-
ory to make it a plausible basis for an intelligent machine. There
is a subtle difference between the two tests: Although the Turing
Test stresses the fact that the computer should be able to make
meaningful conversation, the main point is that the judge in the
Turing Test is supposed to do everything possible to expose the
computer as a fraud. This aspect of the test is very important, be-
cause noncritical discussion partners of the computer can easily
be fooled by programs like ELIZA (Weizenbaum 1966; also see
Lodge 1984) and its successors. Analogous to the Turing Test, the
Newell Test has two aspects: a positivistic aspect (i.e., the theory
should allow models of all areas of cognition) and a falsifiability as-
pect (i.e., the theory should restrict and eventually disallow all
“false” models) (Popper 1963). The latter aspect, however, has
much less prominence in the Newell Test than the former. I would
like to criticize this and argue that the aspect of excluding false
models is at least as important, and maybe much more important,
than permitting true models.
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Figure 1 illustrates the issue. Consider the set of all possibly
conceivable cognitive phenomena, of which only a subset contains
phenomena that can actually occur in reality. Then the goal of a
theory is to predict which of the conceivable phenomena are ac-
tually possible, and the success of a theory depends on the over-
lap between prediction and reality. The problems of a theory can
be found in two categories: counterexamples, phenomena that are
possible in reality but are not predicted by the theory, and incor-
rect models, predictions of the theory that are not possible in re-
ality. The issue of incorrect models is especially important, be-
cause an unrestricted Turing Machine is potentially capable of
predicting any conceivable cognitive phenomenon. One way to
make the Newell Test more precise would be to stress the falsifi-
ability aspects for each of the items on the test. For some items
this is already more or less true in the way they are formulated by
Anderson & Lebiere (A&L), but others can be strengthened, for
example:

Flexible behavior. Humans are capable of performing some
complex tasks after limited instructions, but other tasks first re-
quire a period of training. The theory should be able to make this
distinction as well and predict whether humans can perform the
task right away or not.

Real-time performance. The theory should be able to predict
human real-time performance, but should not be able to predict
anything else. Many theories have parameters that allow scaling
the time predictions. The more these parameters are present, the
weaker is the theory. Also the knowledge (or network layout) that
produces the behavior can be manipulated to adjust time predic-
tions. Restricting the options for manipulation strengthens the
theory.

Knowledge integration. One property of what A&L call “intel-
lectual combination” is that there are huge individual differences.
This gives rise to the question how the theory should cope with in-
dividual differences: Are there certain parameters that can be set
that correspond to certain individual differences (e.g., Lovett et
al. 1997; Taatgen 2002), or is it mainly a difference in the knowl-
edge people have? Probably both aspects play a role, but it is of
chief importance that the theory should both predict the breadth
and depth of human behavior (and not more).

Use natural language. The theory should be able to use natural
language but should also be able to assert what things cannot be
found in a natural language. For example, the ACT-R model of
learning the past tense shows that ACT-R would not allow an in-
flectional system in which high-frequency words are regular and
low-frequency words are irregular.

Learning. For any item of knowledge needed to perform some
behavior, the theory should be able to specify how that item has
been learned, either as part of learning within the task, or by show-
ing why it can be considered as knowledge that everyone has. By
demanding this constraint on models within a theory, models that
have unlearnable knowledge can be rejected. Also, the learning
system should not be able to learn knowledge that people cannot
learn.

Development. For any item of knowledge that is not specific to
a certain task, the theory should be able to specify how that item
of knowledge has been learned, or to supply evidence that that
item of knowledge is innate. This constraint is a more general ver-
sion of the learning constraint. It applies to general strategies like
problem solving by analogy, perceptual strategies, memorization
strategies, and the like.

Another aspect that is of importance for a good theory of cog-
nition is parsimony. This is not an item on Newell’s list, because it
is not directly tied to the issue of cognition, but it was an impor-
tant aspect of Newell’s research agenda. This criterion means that
we need the right number of memory systems, representations,
processing, and learning mechanisms in the theory, but not more.
An advantage of parsimony is that is makes a stronger theory. For
example, SOAR has only one learning mechanism, chunking. This
means that all human learning that you want to explain with SOAR
has to be achieved through chunking, as opposed to ACT-R, which
has several learning mechanisms. Of course, SOAR’s single mech-
anism may eventually be found lacking if it cannot account for all
human learning.

To conclude, research in cognitive modeling has always had a
positivistic flavor, mainly because it is already very hard to come
up with working models of human intelligence in the first place.
But as cognitive theories gain in power, we also have to face the
other side of the coin: to make sure that our theories rule out
wrong models. This is not only an issue for philosophers of science,
but a major issue if we want to apply our theories in human-com-
puter interaction and education. There, it is of vital importance
that we should be able to construct models that can provide reli-
able predictions of behavior without having to test them first.

Cognitive architectures have limited
explanatory power

Prasad Tadepalli
School of Electrical Engineering and Computer Science, Oregon State
University, Corvallis, OR 97331-3202. tadepall@cs.orst.edu
http://www.eecs.orst.edu/~tadepall

Abstract: Cognitive architectures, like programming languages, make
commitments only at the implementation level and have limited explana-
tory power. Their universality implies that it is hard, if not impossible, to
justify them in detail from finite quantities of data. It is more fruitful to fo-
cus on particular tasks such as language understanding and propose
testable theories at the computational and algorithmic levels.

Anderson & Lebiere (A&L) undertake the daunting task of eval-
uating cognitive architectures with the goal of identifying their
strengths and weaknesses. The authors are right about the risks of
proposing a psychological theory based on a single evaluation cri-
terion. What if the several micro-theories proposed to meet dif-
ferent criteria do not fit together in a coherent fashion? What if a
theory proposed for language understanding and inference is not
consistent with the theory for language learning or development?
What if a theory for playing chess does not respect the known com-
putational limits of the brain? The answer, according to Newell,
andA&L, is to evaluate a cognitive theory along multiple criteria
such as flexibility of behavior, learning, evolution, knowledge in-
tegration, brain realization, and so forth. By bringing in multiple
sources of evidence in evaluating a single theory, one is protected
from overfitting, a problem that occurs when the theory has too
many degrees of freedom relative to the available data. Although
it is noncontroversial when applied to testable hypotheses, I be-
lieve that this research strategy does not work quite as well in eval-
uating cognitive architectures.

Science progresses by proposing testable theories and testing
them. The problem with cognitive architectures is that they are
not theories themselves but high-level languages used to imple-
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ment theories, with only some weak architectural constraints.
Moreover, these languages are computationally universal and thus
are equivalent to one another in the sense that one language can
simulate the other. How does one evaluate or falsify such univer-
sal languages? Are the multiple criteria listed by the authors suf-
ficient to rule out anything at all, or do they simply suggest areas
to improve on? The authors’ grading scheme is telling in this re-
spect. It only evaluates how an architecture satisfies one criterion
better than another criterion, and does not say how to choose be-
tween two architectures. One cannot, of course, duck the question
merely by choosing an architecture based on the criterion one is
interested in explaining. This is precisely the original problem that
Newell was trying to address through his multiple criteria.

The authors suggest that timing constraints and memory limi-
tations imply that one cannot only program arbitrary models in
ACT-R. But that still leaves room for an infinite variety of models,
and ACT-R cannot tell us how to choose between them. To take
an analogy to programming languages: it is possible to design an
infinite variety of cognitive architectures and implement an infi-
nite variety of models in each one. Can we ever collect enough ev-
idence to be able to choose one over another?

This suggests to me that a cognitive theory must be carefully
distinguished from the concrete implementation and the under-
lying architecture. Just as a programming language can implement
any given algorithm, a cognitive architecture can instantiate any
cognitive theory (albeit with some variations in time efficiencies).
This should not count as evidence for the validity of the architec-
ture itself, any more than good performance of an algorithm
should count as evidence for the validity of the programming lan-
guage. Cognitive science can make better progress by carefully
distinguishing the algorithm from the architecture and confining
the claims to those parts of the algorithm that are in fact respon-
sible for the results. Consider, for example, ACT-R’s theory of
past-tense learning by children. More specifically, consider the
empirical observation that the exceptions tend to be high-fre-
quency words. A&L attribute this to the fact that only high-fre-
quency words develop enough base-level activation to be re-
trieved in ACT-R. In more general terms, only high-frequency
words provide sufficient training data for the system to be able to
learn an exception. How much of this explanation is a result of the
particulars of ACT-R theory as opposed to being a necessary con-
sequence of learning in a noisy domain? If any learning system
that operates in a noisy environment needs more training data to
learn an exception, why should this be counted as evidence for the
ACT-R theory? Similar criticisms can be leveled against other cog-
nitive architectures and mechanisms such as SOAR and chunking,
connectionism and backprop.

In other words, even when multiple criteria are used to evalu-
ate a cognitive architecture, there still remains an explanatory gap
(or a leap of faith) between the evidence presented and the para-
digm used to explain it. To guard against such over-interpretation
of the evidence, Ohlsson and Jewett propose “abstract computa-
tional models,” which are computational models that are designed
to test a particular hypothesis without taking a stand on all the de-
tails of a cognitive architecture (Ohlsson & Jewett 1997). Similar
concerns are expressed by Pat Langley, who argues that the source
of explanatory power often lies not in the particular cognitive ar-
chitecture being advanced but in some other fact such as the
choice of features or the problem formulation (Langley 1999).
Putting it another way, there are multiple levels of explanations for
a phenomenon such as past-tense learning or categorization, in-
cluding computational theory level, algorithmic level, and imple-
mentation level. Computational theory level is concerned with
what is to be computed, whereas algorithmic level is concerned
with how (Marr 1982). Cognitive architecture belongs to the im-
plementation level, which is below the algorithmic level. Where
the explanatory power of an implementation mostly lies is an open
question.

Only by paying careful attention to the different levels of ex-
planations and evaluating them appropriately can we discern the

truth. One place to begin is to propose specific hypotheses about
the algorithmic structure of the task at hand and evaluate them us-
ing a variety of sources of evidence. This may, however, mean that
we have to put aside the problem of evaluating cognitive archi-
tectures, for now or forever.
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Cognitive modelling of human temporal
reasoning
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Abstract: Modelling human reasoning characterizes the fundamental hu-
man cognitive capacity to describe our past experience and use it to form
expectations as well as plan and direct our future actions. Natural language
semantics analyzes dynamic forms of reasoning in which the real-time or-
der determines the temporal relations between the described events,
when reported with telic simple past-tense clauses. It provides models of
human reasoning that could supplement ACT-R models.

Real-time performance, the second criterion for a human cogni-
tive architecture in Newell (1990), requires the system to operate
as fast (or as slow) as humans (target article, sect. 2, Table 1) on
any cognitive task. Real time is hence considered a constraint on
learning as well as on performance (sect. 5). Although I certainly
consider it an advantage of the ACT-R system that it does not rely
on artificial assumptions about presentation frequency in the way
classical connectionist systems do (Taatgen & Anderson 2002), the
limited focus the two systems share on the acquisition of the mor-
phological variability in the simple past-tense inflection in English
ignores its obvious common semantic properties, which also must
be learned. In this commentary, I propose to include in real-time
performance the characteristic human ability to use time effec-
tively when using language to encode information that systemati-
cally depends on contextual parameters, such as order of presen-
tation or time of utterance.

Human linguistic competence includes automated processes of
temporal reasoning and understanding, evidence of which is pre-
sented in our linguistic intuitions regarding the temporal relations
that obtain between events described in coherent discourse. The
presentation order in which simple past-tense clauses are pro-
duced in real time often contains important clues for the correct
interpretation. As opposed to the past progressive ( John was leav-
ing) and the past perfect ( John had left), the English simple past
tense ( John left) refers to an event that not only precedes the time
of utterance but also is temporally located with respect to other
events described by prior discourse. The following examples, (1)
and (2), show that the order of presentation affects our under-
standing of what happened.

(1) John lit a cigarette. He left.
(2) John left. He lit a cigarette.

From (1) we understand that John left after he had lit a cigarette.
But (2) makes us understand that the described events occurred
in the opposite order. Obviously, the real-time order of presenta-
tion in this case determines the temporal relations between the
events described. But this is not always so, as we see from exam-
ples (3) and (4), where reversing the order of the simple past-tense
clauses does not affect the temporal relations between the events.

(3) John slept for hours. He dreamt of Mary.
(4) John dreamt of Mary. He slept for hours.

Either (3) or (4) makes us understand that John dreamt of Mary
while he slept, which is reinforced by the lexical presupposition of
dreaming requiring that the dreamer be asleep.
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The differences observed between the interpretations of (1)–
(4), coincidentally all morphologically strong past-tense inflec-
tions, are attributed to the aspectual class of the clauses, which
may be telic or atelic (Partee 1984; Hinrichs 1986). Although the
compositional characterization of telicity has been a core item on
the linguistic research agenda for quite some time, it is generally
agreed that in English, clauses that may be modified by durative
adverbials, such as for hours, are atelic, and clauses that are unac-
ceptable with durative modifiers are telic (ter Meulen 1995;
Verkuyl 1996). Temporal precedence effects, which conceptually
shift the reference time, are determined by order of presentation
of telic clauses in simple past-tense clauses.

Children gradually learn to produce cohesive discourse with
simple past-tense clauses, effectively using order of presentation,
instead of connecting clauses in their stories with and the . . . and
then . . . É. It depends on their understanding of logical or causal
relations between lexical items; for example, dreaming entails
sleeping, leaving entails moving elsewhere. It also requires mas-
tering deductive or abductive forms of reasoning, into which nei-
ther classical connectionism nor ACT-R have many modelling in-
sights to offer, as Anderson & Lebiere (A&L) readily admit.
Reasoning in context and exploiting the dependencies between
tense and other indexical features of linguistic expressions cannot
be reduced to conditioned correlations between lexical items and
concepts, as classical connectionists may want to argue, because it
needs a representation of the agent’s own information structured
information state, as well as a representation of the external do-
main described by linguistic input and other agents it communi-
cates with. Human understanding of information communicated
in ordinary language discourse should, therefore, constitute a core
task on the common agenda of cognitive science, testing not only
Newell’s criteria of real-time performance and natural language,
but also adaptive, dynamic, and flexible behavior, as well as knowl-
edge integration and development. Natural language semantics is
studying the structured dependencies between context, informa-
tion, and described domain (Asher et al. 1994; van Eijck & Kamp
1997; ter Meulen 2000). The “Dynamic Turn” in the semantics of
both formal-logical, and natural languages has profoundly
changed the agenda of the traditional logical systems to require
that a dynamic semantics of natural language ideally provides ab-
stract models of our human cognitive capacities of information
processing, envisaged in Partee (1980; 1997;) as the program to
“naturalize formal semantics.” ACT-R accounts of human cogni-
tion may well find it a congenial companion, supplementing its
self-proclaimed need for an account of human reasoning.

Real-world behavior as a constraint on the
cognitive architecture: Comparing ACT-R
and DAC in the Newell Test

Paul F. M. J. Verschure
Institute of Neuroinformatics, University Zürich–Swiss Federal Institute of
Technology (ETH), Zürich, 8057, Switzerland. pfmjv@ini.phys.ethz.ch
http://www.ini. ethz.ch/~pfmjv

Abstract: The Newell Test is an important step in advancing our under-
standing of cognition. One critical constraint is missing from this test: A
cognitive architecture must be self-contained. ACT-R and connectionism
fail on this account. I present an alternative proposal, called Distributed
Adaptive Control (DAC), and expose it to the Newell Test with the goal of
achieving a clearer specification of the different constraints and their re-
lationships, as proposed by Anderson & Lebiere (A&L).

Anderson & Lebiere (A&L) make the important step to resurrect
a number of benchmarks, originally proposed by Newell, which a
theory of cognition should satisfy. One benchmark that is missing
from this list is that the proposed architecture must be self-con-
tained. Self-contained implies that the knowledge of the cognitive

system is acquired through an autonomous learning process; that
is, its ontology is derived from the interaction between the system
and the world. Both ACT-R and classical connectionism do not
score well on this constraint. ACT-R fails because it focuses on the
use of predefined knowledge in its productions and its recombi-
nation by means of chunking. The implementation of its memory
structures using artificial neural networks and the inclusion of a
subsymbolic/symbolic nomenclature does not address this prob-
lem. Classical connectionism fails because it relies on learning
rules, for example, backpropagation, that allow the user to com-
pile a predefined input-output mapping into the model (Ver-
schure 1990; 1992). In both cases the models do not tell us how
knowledge is acquired in the first place. One could argue that solv-
ing this problem of priors is the most fundamental challenge to
any candidate theory of cognition (Verschure 1998).

In order to challenge the authors to define more precisely what
it takes to satisfy the Newell Test, I present an alternative proposal
for a cognitive architecture, called Distributed Adaptive Control
(DAC). DAC describes an embodied cognitive architecture im-
plemented by a neuronal system in the context of real-time, real-
world behavior. DAC assumes that behavior is organized around
three tightly coupled layers of control: reactive, adaptive, and con-
textual (Fig. 1A). The typical paradigms in which we have devel-
oped this architecture are robot equivalents of random foraging
tasks (Fig. 1B). It should be emphasized that DAC develops its
own domain ontology out of its continuous interaction with the
world. Hence, as opposed to ACT-R, DAC is self-contained.

Flexible behavior (“better”). DAC has been shown to organize
landmark-based foraging behavior in different types of robots
(Verschure et al. 1992; 1996; Verschure & Voegtlin 1998), has
been applied to simple games such as tic-tac-toe (Bouvet 2001),
has controlled a large scale public exhibit (Eng et al. 2003), and
has been shown to be equivalent to an optimal Bayesian interpre-
tation of goal-oriented problem solving (Verschure & Althaus
2003). By satisfying this last constraint, DAC implicitly addresses
a wide range of cognitive phenomena (Massaro 1998). This latter
constraint argues that our models should attack abstract models
describing large repertoires of performance as opposed to single
instances of particular behaviors.

Real-time performance (“better”). As opposed to ACT-R, DAC
takes real time literally as the time it takes to control real-world
behavior. In biologically detailed models, derived from the DAC
architecture, of both the sensory (i.e., the learning-dependent
changes in receptive field properties of the primary auditory cor-
tex, as reported by Kilgard & Merzenich 1998) and motor aspects
(focusing on the cerebellum) of classical conditioning, we have
shown that these principles can account for learning performance
both in terms of number of trials and in terms of the relevant real-
time interstimulus intervals (Sanchez-Montanez et al. 2002; Hof-
stötter et al. 2002). Hence, these models generalize the hypothe-
sis of DAC towards the neuronal substrate and can account for
properties of performance in terms of the underlying neuronal
mechanisms. Important here is that temporal properties of be-
havior are not redescribed in functional terms, which is an under-
constrained problem, but directly interpreted in terms of neu-
ronal mechanisms. This illustrates that the benchmarks cannot be
interpreted as independent constraints.

Adaptive behavior (“best”). The DAC architecture has been
designed in the context of real-world embodied cognition (see also
flexible behavior). The claim is that only such an approach can ac-
count for this constraint. ACT-R is not embodied.

Vast knowledge base (mixed). DAC shows how task-depen-
dent knowledge can be acquired and used to organize behavior
and has been applied to a range of tasks (see flexible behavior).
However, the full neuronal implementation of its structures for
short- and long-term memory is not mature enough to make
strong statements on its capacity and flexibility (Voegtlin & Ver-
schure 1999). Hence, DAC takes satisfying neuronal constraints
as a fundamental benchmark in answering functional challenges.
ACT-R seems to stop at a functional interpretation.
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Dynamic behavior (“best”). DAC has been applied to real-
world tasks that include goal conflicts, changing motivational
states, and dynamically changing environments, for example, the
large-scale exhibition Ada (see flexible behavior). In contrast,
ACT-R has only been tested on closed problem domains and has
not considered the motivational components underlying the orga-
nization of dynamic behavior.

Knowledge integration (“better”). DAC has been shown to
both acquire the content of its memory structures and to form
goal-related recombinations of these representations. Given its
Bayesian equivalence, DAC satisfies properties of inference mak-
ing and induction. However, what is required is a more explicit
specification of the experimental data that should be accounted
for.

Natural language (“worse”). DAC has not been applied to any
form of language acquisition or expression. However, DAC claims
that its general learning properties will generalize to language;
that is, an explanation of language should emerge from the gen-
eral principles that underlie the organization of adaptive behavior
and not require yet another a priori functional module. In con-
trast, ACT-R appears to develop in terms of a collection of func-
tionally distinct and independent modules.

Consciousness (“worse”). For now, there is no ambition in the
DAC project to attack this phenomenon.

Learning (“best”). DAC was initially conceived to address the
behavioral paradigms of classical and operant conditioning. These
forms of learning, as opposed to the ones the authors focus on,
deal with the problem of autonomous acquisition and expression
of knowledge. The biologically detailed models derived from
DAC, described above, for instance, account for the phenomenon
of blocking central to the Rescorla-Wagner rule of classical con-
ditioning in terms of neuronal mechanisms and not only in func-
tional terms (Hofstötter et al. 2002). This again emphasizes that
functional and structural constraints must be satisfied simultane-
ously and that constraints should be defined around general mod-
els, such as the Rescorla-Wagner laws. Moreover, this approach il-

lustrates that a theory of a cognitive architecture will probably be
accompanied with a large set of specific derived models that vali-
date a specific subset of its assumptions.

Development (“better”). The DAC architecture interprets de-
velopment as the progressive involvement of its adaptive and con-
textual control layers. We have shown that this progression can dis-
play stage transitions characteristic for cognitive development
(Verschure & Voegtlin 1998). However, the authors should be
more precise in specifying what the exact datasets are that should
be explained to satisfy this benchmark.

Evolution (“mixed”). Following classic examples of, for exam-
ple, Pavlov (1928), DAC assumes that cognition arises out of a
multilayered architecture that requires a minimum of prior spec-
ification. Because the phenomenon of classical conditioning has
also been observed in insects (Menzel & Muller 1996), we are cur-
rently investigating whether the DAC principles do generalize to
insects. Hence, although the results are not in, the claim is that
phylogenetic continuity of principles underlying cognition should
be evaluated following this comparative approach.

Brain (“better”). As mentioned earlier, the basic principles un-
derlying the adaptive and reactive layers of DAC have been im-
plemented and tested using biophysically and anatomically con-
strained models. Although the contextual layer makes predictions
about the functional properties of neuronal organization, in par-
ticular, in relation to the hippocampus, basal ganglia, and pre-
frontal cortex, these predictions still need to be verified by devel-
oping biologically constrained models of these structures. ACT-R
seems to stop at finding a correlation between neuronal responses
obtained with fMRI measurements and its functional decomposi-
tion of cognition. This might not be sufficient. A&L should be con-
gratulated for proposing a common test for theories of cognition
and exposing ACT-R to it. The Newell Test in its current form,
however, is not mature enough to use it as a gold standard for the-
ories of cognition. This step should be taken in order to advance
our understanding of mind, brain, and behavior.

In Figure 1, panel A, the reactive control layer provides a be-
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Figure 1 (Verschure). A. The DAC architecture. B. One example of the application of DAC to robot random foraging using a Khep-
era micro-robot (K-team, Lausanne).



having system with a prewired repertoire of reflexes (uncondi-
tioned stimuli and responses – US, UR) that enable it to interact
with its environment and accomplish simple automatic behaviors.
The activation of any reflex, however, also provides cues for learn-
ing that are used by the adaptive control layer via representations
of internal states. Adaptive control provides the mechanisms for
the adaptive classification of sensory events (conditioned stimulus
– CS) and the reshaping of responses (conditioned responses –
CR) supporting simple tasks, and can be seen as a model of clas-
sical conditioning. The sensory and motor representations formed
at the level of adaptive control provide the inputs to the contex-
tual control layer that acquires, retains, and expresses sequential
representations using systems for short- and long-term memory.
The contextual layer describes goal-oriented learning as observed
in operant conditioning. Central-processing steps at this level in
the architecture are the following: (1) The representations of sen-
sory cues (Sns) and associated motor states (Act) acquired by the
adaptive layer are stored in short-term memory (STM) as a seg-
ment. (2) If a goal state is reached, that is, a target found or a col-
lision suffered, the contents of STM are retained in long-term
memory (LTM) as a sequence. Each segment of LTM consists of
a sensori-motor representation (Sns, Act) a trigger unit (black) and
a collector unit (white). (3) The reactive and adaptive control lay-
ers can still trigger actions and stand in a competitive relation to
the contextual control system. (4) Each Sns state of the adaptive
layer is matched against those stored in LTM. (5) The collector
units of LTM can trigger actions dependent on the biased com-
petition between LTM segments. By modulating dynamic thresh-
olds of each LTM segment, different chaining rules can be imple-
mented.

In panel B of Figure 1, the robot learns to use the color infor-
mation in the environment, the patches on the floor and the walls,
in order to acquire the shortest route between goal locations, that
is, light sources (grey circles). The trajectory visualized is gener-
ated during a recall task where the light sources are switched off,
after learning for about 30 min. The environment measures about
1.5 by 0.8 m; and the robot, about 55 by 30 mm.

A multilevel approach to modeling
human cognition

Hongbin Wang,1 Todd R. Johnson, and Jiajie Zhang
School of Health Information Sciences, University of Texas Health Science
Center at Houston, Houston, TX 77030. hongbin.wang@uth.tmc.edu
todd.r.johnson@uth.tmc.edu jiajie.zhang@uth.tmc.edu
http://www.shis.uth.tmc.edu

Abstract: Although we agree with Newell and Anderson & Lebiere (A&L)
that a unified theory of cognition is needed to advance cognitive science,
we disagree on how to achieve it. A hybrid system can score high in the
Newell Test but may not offer a veridical and coherent theory of cognition.
A multilevel approach, involving theories at both psychological and brain
levels, is suggested.

Newell certainly had a very good reason for being frustrated over
the progress towards a scientific understanding of the human
mind. The human mind is undoubtedly one of most complex en-
tities in the world. It is systematically shaped by genetic and evo-
lutionary forces; fundamentally constrained by physical and bio-
chemical laws; influenced by cultural, social, and environmental
factors; and manifests itself both psychologically and neurophysi-
ologically. Given its inherent complexity and our limited knowl-
edge in each of these aspects, it is conceivable that we may not be
able to achieve a thorough understanding of the mind’s work for a
long time.

While we share Newell’s frustration, we doubt that the Newell
Test, as proposed in the target article, would offer us relief. On the
one hand, the attainability of the test is theoretically questionable.

It remains controversial, for example, whether self-awareness and
consciousness are computationally implementable (e.g., Penrose
1989; 1996; 1997). This controversy helps to explain why both con-
nectionism and ACT-R were graded “worse” on criterion 8 (self-
awareness and consciousness) in the target article. On the other
hand, even if we ignore the possible theoretical difficulties, we
may still encounter practical problems in developing theories of
mind that can pass the test, as we elaborate later.

After evaluating connectionism and ACT-R based on the
Newell Test and suggesting that neither was satisfactory on all cri-
teria, the authors Anderson & Lebiere (A&L) go on to recom-
mend some remedies. One major remedy suggested is that we
should somehow dissolve the distinctions and join the two ap-
proaches close together. Specifically, ACT-R needs to be “more
compatible with connectionism,” and connectionism needs to be
concerned “with more complex tasks and symbolic processing”
(sect. 6, para. 3). The authors note that building hybrid systems
that can integrate the two approaches is particularly promising
(ACT-R itself is already a form of hybrid system). By combining
the advantages of different sub-approaches, the authors seem to
suggest that hybrid systems would bring us one step closer to a
Theory of Mind (ToM) that can score high in the Newell Test.

Unfortunately, there are at least three problems with this hy-
brid system approach. First, it should be noted that there are two
(out of 12) criteria on which both connectionism and ACT-R score
worse or worst. They are criterion 8 (self-awareness and con-
sciousness) and criterion 11 (evolution). The simultaneous failure
of both approaches on both criteria suggests that simply hybridiz-
ing the two approaches might not provide a solution.

Second, what if we develop a theory of self-awareness and an
evolutionary ToM, and then hybridize these two theories with the
hybrid system we constructed earlier? Does this give us a better
ToM? Well, maybe. If doable, it will certainly boost the Newell
Test score! But it also induces a paradox. Focusing on isolated and
segmented subtheories of mind is what frustrated Newell and mo-
tivated the creation of the Newell criteria in the first place. If we
first need to develop subtheories to develop high-scoring hybrid
systems, we then lose the very point of the Newell Test.

Third, and most important, hybrid systems are artificially as-
sembled systems and thus bear little true psychological and neu-
rophysiological significance. Although we all agree that the human
mind is a complex, multilevel construct and involves mechanisms
and operations at, among others, both psychological and neuronal
networks levels, simply piecing them together is ad hoc and trivi-
alizes the problem. A ToM that explains one phenomenon using a
neural-network-level mechanism and explains another phenome-
non using a rule-based, symbolic-level mechanism may be a con-
venient hybrid ToM, but is certainly not the unified ToM that
Newell had wished for (cf. Newell 1990).

In our view, any principled ToM must recognize that the human
mind may adopt different mechanisms and follow different laws
at different levels. In addition, it is highly unlikely that there ex-
ists any simple and linear one-to-one mapping across levels. Pen-
rose, for example, went so far as to hypothesize that there is a non-
computational and nonlocal process called “objective reduction”
that connects physics and consciousness (see also Woolf &
Hameroff 2001). We would argue that a similar nonlinear rela-
tionship exists between the neuronal-network-level and the psy-
chological level, and that each level tells a veracious but ade-
quately distinct story of mind. Such a multilevel view is also
consistent with both Marr’s (1982) and Newell’s (1990) conception
of multiple-level description of human cognition. Consequently,
we should not expect a single architecture, even a hybrid one, to
explain all of the phenomena of mind.

We regard both ACT-R and connectionism as celebratory can-
didates for a ToM, but at different levels. Whereas ACT-R fo-
cuses on the symbolic mental structures and processes and of-
fers a psychologically plausible explanation that closely links to
empirical behaviors, connectionism adopts subsymbolic neural-
based mechanisms and permits a biologically realistic explanation
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of mind that closely links to brain functions (e.g., O’Reilly & Mu-
nakata 2000). The two approaches are distinct in that symbols sim-
ply do not exist at a subsymbolic level. A unified ToM needs to en-
compass both levels of description, though each may be embodied
in separate cognitive architectures. We regard the attempt to ver-
tically stretch one level of analysis to linearly map to another as
problematic. For example, we doubt that there is such a simple
one-to-one mapping between ACT-R components and brain
structures, as suggested in Figure 1 of the target article. It is hard
to imagine (and not supported by neuroscience evidence) that the
damage to the basal ganglia would completely destroy the work of
mind given the fundamental role that production rules play in
ACT-R.

In summary, although we agree with Newell and A&L that a
unified ToM is needed to advance cognitive science, we have dif-
ferent opinions regarding how to achieve such a unified theory.
Our position is that, instead of hybridizing different approaches or
linearly mapping them to boost the Newell Test score, we need to
recognize the multilevel nature of the human mind and develop
complementary theories at both psychological and connectionist
levels, and cross-validate them.

NOTE
1. Hongbin Wang is the corresponding author for this commentary.

Newell’s program, like Hilbert’s, is dead;
let’s move on

Yingrui Yanga and Selmer Bringsjordb
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NY 12180; bDepartment of Computer Science, Rensselaer Polytechnic
Institute, Troy, NY 12180. yangyri@rpi.edu selmer@rpi.edu
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Abstract: We draw an analogy between Hilbert’s program (HP) for math-
ematics and Newell’s program (NP) for cognitive modeling. The analogy
reveals that NP, like HP before it, is fundamentally flawed. The only al-
ternative is a program anchored by an admission that cognition is more
than computation.

As most readers will know, Hilbert’s program (HP) was devoted to
building a system at or below the level of Turing machines (and
their equivalents) to definitively settle all mathematical questions.
Most readers will also know that in 1931, a young Viennese logi-
cian, Kurt Gödel, proved two incompleteness theorems – and
Hilbert’s program (HP) instantly died. Out of this death was born
a much more sophisticated approach: In a word, true meta math-
ematics arose. One specific innovation was to devise and study in-
finitary logics not bound by Gödelian incompleteness, because,
from an information-processing perspective, these logics are be-
yond Turing machines (Barwise 1980). Newell’s program (NP) –
the attempt to build a system at or below the level of Turing ma-
chines able to satisfy the criteria that Anderson & Lebiere (A&L)
distill for us – has likewise expired. The difference is that appar-
ently many influential cognitive scientists want to pretend the fu-
neral never happened.

A&L, and in fact all those who see themselves as advancing NP,
presuppose an exceedingly convenient sense of universality. Ac-
cording to this sense, a system is “universal” if and only if it can
compute all Turing-computable functions. The construal is con-
venient because the vast majority of functions (in the relevant
classes; e.g., functions from N to N) aren’t Turing-computable
(Boolos & Jeffrey 1989). A&L, the classical connectionists they
evaluate, those they count as fans (e.g., Dennett), and so forth –
all assume that human cognition can be nicely packaged beneath
the Turing Limit. Yet, after decades of work, no system at or be-
low the Turing Limit has the conversational power of a toddler (to
pick just one criterion: 7). You would think the notion Newell (and

his similarly sanguine partner, Simon) so confidently preached at
the dawn of cognitive science (that thinking is computing at or be-
low the Turing Limit, and computers operating at or below this
limit with human-level intelligence will soon arrive) would, like
Hilbert’s dream, be a carcass at this point, but yet here is a BBS
target article still stubbornly clinging to the religion (by cheerfully
acting as if everyone is a believer). What arguments support the
doctrine that cognition can be captured by standard computation?
Surely no cogent argument is to be found on the basis of what has
been built. LOGIC THEORIST, at the 1956 Dartmouth confer-
ence that kicked off AI, was able to prove the marvelously subtle
theorem that if p then q implies if not-q then not-p, and this
prompted Simon to declare that thinking machines would soon be
among us. The situation is no different now: Here are A&L con-
fidently pressing on to capture cognition in simple computation –
but on the strength of what impressive artifact? Since seeing is be-
lieving, you will pardon us for not believing.

The problem isn’t just criterion 7. Faced with consciousness,
NP irremediably fails. Yet A&L once again cook up the conve-
nient: They construe consciousness (in criterion 8) so that it sim-
ply leaves out the concept that threatens Newell’s enterprise:
namely, phenomenal consciousness. Block (1995) has recently ex-
plained the issue in this very journal. ACT-R and all forms of con-
nectionism, and indeed every approach to sustaining NP, can’t
even take the first step toward expressing, in a third-person
scheme, what it feels like to taste deep chocolate ice cream. ACT-
R will be used to at most create what one of us (Bringsjord 2000)
has called “zombanimals,” that is, artificial animals with no inner
lives. A robot with the behavioral repertoire of a dog, but with the
inner life of a rock, might well be something NP, fueled by ACT-
R, can produce.

That NP, as driven specifically by ACT-R, is dead, can be seen
with help from concrete, not just philosophical, challenges. ACT-
R is wholly incapable of modeling beliefs of the sort that human
readers have when reading murder mysteries. For example, as de-
tailed in Bringsjord (2000), readers have n-order beliefs about vil-
lains and detectives, and they make inferences based on these be-
liefs. For example, the reader of a murder mystery often believes
that the villain believes that the detective believes that the villain
believes the villain will never be caught. You can’t represent this
in ACT-R, period, because ACT-R is at best part of first-order
logic devoid of doxastic operators. Of course, one could hook up
a robust theory of human and machine reasoning (e.g., see Yang
& Bringsjord, forthcoming) to ACT-R, but then in what sense is
that new composite system ACT-R? If ACT-R is to be genuine sci-
ence, it must be falsifiable. Yet A&L seem to describe an evolu-
tion in which serious challenges are handled by simply augment-
ing the system.

Just as the death of HP gave birth to infinitary logic, so should
the death of NP give rise to cognitive modeling untrammeled by
standard computation. Cognitive modelers need to step outside
the notion that mere computation will suffice. They must face up
to the fact, first, that the human mind encompasses not just the
ordinary, humble computation that Newell and all his followers
can’t see beyond, but also hypercomputation: information pro-
cessing at a level above Turing machines, a level that can be for-
malized with help from analog chaotic neural nets, trial-and-error
machines, Zeus machines, and the like (Bringsjord & Zenzen
2003; Siegelmann 1999).

In his famous “twenty questions” paper, Newell (1973) tells us
that a sound science of the mind should not be steered by the
willy-nilly dictates of experiment-driven empiricism. Instead, we
are to do computational cognitive modeling. But such modeling,
if limited by NP, fails to let cold hard reality lead the way. Instead,
it lets speculative assumptions (e.g., that the mind processes in-
formation at or below the Turing Limit) prevent nature from pro-
claiming that we are more than ordinary machines.
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Cognitive architectures need compliancy,
not universality

Richard M. Young
Psychology Department, University of Hertfordshire, Hatfield, Herts AL10
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Abstract: The criterion of computational universality for an architecture
should be replaced by the notion of compliancy, where a model built
within an architecture is compliant to the extent that the model allows the
architecture to determine the processing. The test should be that the ar-
chitecture does easily – that is, enables a compliant model to do – what
people do easily.

Anderson & Lebiere (A&L) are to be congratulated on advancing
the agenda of assessing cognitive architectures (or other cognitive
theories of broad scope) as a whole. The inspiration is clearly
Newell’s, but the authors take a major step towards bringing
Newell’s criteria down to earth by operationalising them and
bringing them closer to objective criteria and tests. This present
commentary is offered as a minor contribution to that same goal.

In section 2.1, A&L follow Newell in identifying the criterion
of flexible behavior with computational universality, that is, equiv-
alence to a Turing machine. But Turing computability is inappro-
priate as a criterion for cognitive architectures. It is by nature an
all-or-nothing test: Can, or cannot, the architecture be pro-
grammed to compute any Turing-computable function, yes or no?
The authors certainly do themselves no favours by adopting Tur-
ing universality as the touchstone for flexible behaviour. Indeed,
it forces them into a contradiction. Although in section 4.5 they
deny that “ACT-R is a general computational system than can be
programmed to do anything,” that is indeed what being Turing
universal means, that the architecture can be “programmed to do
anything.” What is needed instead is a graded measure, reflecting
the reality that, as A&L acknowledge, “some things are much eas-
ier for people to learn and do than others.” Ideally, the architec-
ture should learn and do easily the things that people learn and do
easily and, similarly, find the same things difficult.

Of course, what is meant by an architecture doing or learning
something easily itself needs careful definition and explication. It
is no trivial matter to replace the all-or-nothing concept of Turing
computability by a more appropriate measure that both captures
and makes precise these important but rather vague ideas about
“doing something easily” or doing it by means “in keeping with the
spirit of an architecture.” However, a start has been made, with
the concept of the compliancy of models constructed within a cog-
nitive architecture. The idea has been worked through most thor-
oughly for SOAR, but is applicable in principle to any cognitive ar-
chitecture.

In Howes and Young (1997), we approach the issue by consid-
ering how in practice architectures are used by cognitive mod-
ellers, and how credit and blame for the resulting models get as-
signed in the light of agreement with empirical data (or other
evaluative criteria). We note how, in applying an architecture to a
particular domain or task, the modeller inherits all the theoretical
commitments of the architecture and then adds further commit-
ments, often expressed in the form of production rules, which are
specific to the domain or task being modelled. We refer to these
additions as model increments, by analogy with the method incre-
ments which Laird (1986) identifies as giving rise to the “weak
methods” of problem solving. We are led thereby to pose a
methodological question: Given that a model (of this kind) con-
sists of a cognitive architecture together with a specific model in-
crement, in cases where the model does well, that is, provides a
good prediction and explanation of the data, where does the credit
belong: to the architecture, to the model increment, or somehow
to both? And likewise if the model does badly, where lies the
blame?

We note too that the extent to which cognitive architectures

constrain and shape the models constructed within them, and
thereby contribute to their predictions, is not widely recognised
by those without first-hand experience of such architectures.
Building model increments is not at all like writing programs in a
theoretically neutral programming language. An architecture is
not simply a programming environment for constructing cognitive
models according to the modeller’s fancy. Indeed, some architec-
tures, of which SOAR (Newell 1990) is an example, are themselves
capable of generating behaviour once they are given a specifica-
tion of the task to be performed, even without further information
about how it is to be performed. In such cases, the role of the
model increment becomes not so much to generate behaviour, as
to modulate or modify the behaviour which the architecture is al-
ready advocating.

That observation leads us to introduce the idea of compliancy.
A model increment is compliant to the extent that it follows the
architecture’s lead, that is, takes advantage of the architecture’s
own tendency, allowing it mostly to do what it wants, intervening
just occasionally to keep it on track. A model increment with low
compliance, by contrast, disregards or overrules the architecture’s
own tendencies and simply forces the architecture to do what the
model increment wants. (If the architecture is indeed Turing uni-
versal, then a model increment can always be written to produce
any specified behaviour, but the increment may have to fight
against the architecture in order to achieve that behaviour.)

The notion of compliancy allows us to answer the question
about credit assignment. To the extent that the model increment
is compliant with the architecture, much of the credit or blame at-
taches to the architecture itself. But to the extent that the model
increment is noncompliant, responsibility for the resulting behav-
iour, whether good or ill, rests mostly with the model increment.

My suggestion is that compliancy also offers promise as a route
for explicating what it means for an architecture to perform a task
easily or with difficulty. An architecture can be said to find a task
easy if a compliant model increment suffices to build a model to
do it. Contrariwise, the architecture finds a task difficult if a non-
compliant model increment is required, which therefore has to
“force” the architecture to do it in a way “not in keeping with its
spirit.” By utilising compliancy, Newell’s criterion of flexible be-
haviour can be interpreted as a requirement that the architecture
does or learns easily (in other words, enables a compliant model
to do or learn) what people find easy to do or learn, and finds dif-
ficult (in other words, requires a noncompliant model to do or
learn) what people find difficult.

Authors’ Response

Optimism for the future of unified theories

John R. Anderson and Christian Lebiere
Department of Psychology, Carnegie Mellon University, Pittsburgh, Pa 15213.
ja@cmu.edu cl@andrew.cmu.edu

Abstract: The commentaries on our article encourage us to be-
lieve that researchers are beginning to take seriously the goal of
achieving the broad adequacy that Newell aspired to. The com-
mentators offer useful elaborations to the criteria we suggested for
the Newell Test. We agree with many of the commentators that
classical connectionism is too restrictive to achieve this broad ad-
equacy, and that other connectionist approaches are not so limited
and can deal with the symbolic components of thought. All these
approaches, including ACT-R, need to accept the idea that
progress in science is a matter of better approximating these goals,
and it is premature to be making judgments of true or false.
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We begin by noting how pleased we were with the com-
mentaries. Most commentators found something to dis-
agree with, but these disagreements were by and large con-
structive and advanced the goals of defining criteria by
which cognitive theories should be evaluated and using
these criteria to evaluate many theories. In reading the com-
mentaries and devising our responses we both increased our
appreciation of alternative theories and refined our goals in
pursuing ACT-R. We also increased our appreciation of the
current state of theory development. The space of cognitive
theories is indeed much more complex than our use of only
two candidates could have suggested, with theories sharing
some features and mechanisms while differing on others. As
Herb Simon was advocating, one needs to go beyond evalu-
ating theories as brands and consider them as a collection of
mechanisms and evaluate them as such.

R1. Correcting the misconceptions

Before addressing specific points in the commentaries, we
will correct a pair of misconceptions that were found with
varying degrees of explicitness in some of the commen-
taries, reflecting a natural misreading of the paper. We were
not using the criteria on the Newell Test as a basis for com-
paring classical connectionism and ACT-R, and we were not
proposing them as a way to judge whether a theory should
be deemed a success or a failure. We were not grading con-
nectionism relative to ACT-R because it would not be cred-
ible for us to serve as either judge (in specifying the tests)
or jury (in deciding which was best) in a contest between
our theory and another one. However, it is perfectly rea-
sonable for others to take these criteria and make judg-
ments about the relative merits of the theories, as indeed
some of the commentators have done.

Although it is fine for others to use these criteria for com-
paring theories, it is at least premature to be in the business
of judging any theory an overall success or failure. All the-
ories need a lot more development, and the point of such a
set of criteria is to identify places where more work is
needed. Therefore, we used a zero-sum grading scheme
that forces one to identify where a theory needs the most
work. Such a grading scheme forces a humbleness and self-
criticism that the field could use.

With respect to the issue of falsification, a number of com-
mentators (e.g., Agassi, Taatgen) speak with some fondness
about the Turing Test in that it provides a criterion for re-
jecting theories. We too have some fondness for the Turing
Test and frequently apply it to ACT-R simulations, not to pro-
vide an ultimate test of the theory but to force ourselves to
see where ACT-R needs development. To try to repeat one
of Herb Simon’s frequent rejoinders as exactly as we can re-
member it: “If you just want to know whether the theory is
wrong, then we can go home now. What I want to find out is
how it is wrong and how it can be improved.” The reason we
formulated the Newell Test when the Turing Test was al-
ready available is because we wanted to provide some struc-
ture in this search for improvement.

The commentary by Yang & Bringsjord is surely the
strongest in arguing for a yes-no judgment on theories.
They argue that the whole class of computational theories,
including ACT-R and classical connectionism, is dead.
Their choice of the word “dead” rather than “false” gives
away a lot. Unlike Gödel, whom they hold up as the ideal,

Yang & Bringsjord provide nothing approaching a proof in
their claims. As they should know from that important mo-
ment in the history of thought, the standards for making
such sweeping negative pronouncements should be high.
Gödel is such an important figure because he achieved
those standards in his proofs.

We would like to particularly commend Gray,
Schoelles, and Myers (Gray et al.) for bringing attention
to cognitive engineering as a factor to shape these criteria.
As they note, Newell thought cognitive engineering was an
extremely important criterion for evaluating theories and
much more than “just an application.” Cognitive engineer-
ing gets at extremely profound issues about the nature of
our science and the richly textured considerations that have
to be brought to bear in evaluating cognitive theories and
why simple yes-no, true-false judgments are typically inap-
propriate. This is a matter that deserves an elaborate com-
munity discussion. Such a discussion would reveal that the
individual Newell tests are just the tips of a great iceberg.

R2. Developing the criteria

Agassi is correct that it is not always clear how to fully eval-
uate some of the criteria. In such cases the criteria should
be stimuli for further thought and investigation so that they
can be more fully applied. Indeed, many of the commenta-
tors have already proposed improvements and elaborations
to the criteria. We particularly want to recommend the
elaborations offered by Taatgen.

Gelepithis does a service in raising the issue of the ex-
act relationship between the criteria we propose and those
in Newell. As we think he creates too negative an impres-
sion of our scholarship, we will add some elaborations on
this point. Ten of our criteria are verbatim from Newell
(1980) and in the same order. We discuss at length in the
target article the need to reformulate Newell’s criterion 6
(symbols) as our criterion 6 (knowledge integration). Our
criterion 12 (“be realizable within the brain”) merges his
criteria 12 (“be realizable within the brain as a physical sys-
tem”) and 13 (“be realizable as a physical system”) because
his distinction is not important to our paper nor is it a dis-
tinction that survived in his 1990 list. It is true that our list
bears a less exact relationship to the 1990 list but at just
three points: As can be seen from Gelepithis’s Table 2,
Newell in 1990 merged vast knowledge and robust behav-
ior (criteria 4 and 5 in our table and in his 1980 table) into
a single criterion (number 4 in the 1990 list), broke the de-
velopmental criterion (number 10 in our Table 1 and his
list) into two criteria (8 and 12 in the 1990 list), and intro-
duced a new criterion (social).

Criterion 4 in Newell’s 1990 list covers our criteria 4 and
5 plus more. It is close to the embodiment criterion that
Spurrett advocates, and Newell’s reasons for reorganizing
his list here may have been close to the arguments given by
Spurrett. We think Spurrett’s judgment of the relative per-
formance of ACT-R versus connectionism on the criterion
of embodiment is rather ungenerous. As Gray et al. note,
ACT-R does well in addressing a range of HCI issues where
connectionism has been almost totally silent. Nonetheless,
robots are compelling demonstrations and hopefully some-
one in the ACT-R community will take up robots to satisfy
Spurrett (and, we are sure, others).

Something may have been lost in collapsing Newell’s
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1990 developmental and embryological growth criteria into
just the developmental criteria. Sirois offers a somewhat
similar distinction between maturation, which he sees as a
functional constraint, and development, which he sees as a
functional ability to be explained.

Gelepithis offers a number of additional potential crite-
ria from his 1999 paper. We agree that his suggestion of
emotion and Newell’s 1990 social behavior are two well-jus-
tified criteria. We made no claim to be exhaustive in choos-
ing Newell’s original 12. Our goal in working with those 12
was to have a manageable number for a BBS target article
and to have criteria that came from some authoritative ex-
ternal source (to avoid the circularity that Overgaard &
Willert mention).

As noted in the target article, the big missing criterion
was accuracy of empirical predictions – having one’s theory
correspond to the details of empirical data. The criterion
was missing only because it was not on Newell’s lists, and it
was not on Newell’s lists only because he was talking about
functionality at the points he introduced the lists, not be-
cause he did not strongly believe in its importance. Having
a list that excludes predictive accuracy serves as something
of a counterweight to the predominant tendency to con-
sider only empirical adequacy and thus produce theories
that are narrowly accurate in their predictions but inca-
pable of being integrated into a complete functional theory
of human cognition. However, in any final list that will serve
as a “gold standard” (Verschure) the accuracy of empirical
predictions needs to be given first place. It might make
sense to give empirical adequacy half the weight in evalu-
ating a theory and give the other half of the weight to func-
tional criteria like those in Newell’s list. As Altmann notes,
such functional criteria can be crucial in deciding among
theoretical accounts of particular phenomena that are hard
to distinguish on the basis of their predictions. Functional
criteria force the theories to consider difficult real-world
problems rather than split hairs on tiny tasks that might not
provide stringent enough tests to differentiate theories.
One lesson that could be learned from the history of AI is
the danger of focusing on abstract toy problems and the
benefits of tackling the hard real-world problems.

One of the criteria that created some distress among sev-
eral commentators (e.g., Pyysiäinen, Young), and for the
reasons anticipated in the target article, is our attempt to
operationalize flexible behavior as universality. Young has
produced a superior version of this criterion in terms on
what he calls “compliancy.” It includes the test of univer-
sality as a component but connects differential difficulty of
the models with the characteristics of the architecture. His
development falls short of an explicit definition of what it
means for one model to be more compliant than another.
However, as is the case with other Newell criteria, that is a
stimulus for further thought. Even in its current form it is
better than the answer we could have composed to respond
to Tadepalli’s worries about the range of models one can
develop in an architecture.

Some commentators (Wang et al.; Yang & Bringsjord,
Overgaard & Willert; Sirois) wonder whether it is possi-
ble to satisfy the consciousness constraint within any such
framework. As both Overgaard & Willert and Yang &
Bringsjord note, the answer to this question depends on
what one takes to be consciousness. If we take it to be those
aspects of consciousness that are amenable to scientific in-
vestigation, then we think the answer is yes. That may not

include Block’s (1995) phenomenal consciousness under
some construals.

Wang asserts it is not possible to achieve all 12 criteria at
the same level of explanation. For instance, he contends that
ACT-R is too high-level to map onto brain structure. We dis-
agree and offer the papers by Anderson et al. (2003), Qin et
al. (2003), and Sohn et al. (2003) as emerging counterevi-
dence. It is precisely because ACT-R is targeted at the ar-
chitectural level of cognition that it is relevant to explaining
the type of data generated by experimental neuroscience
techniques such as fMRI. We think the mappings we pro-
posed in Figure 1 of the target article have a lot of merit, but
we agree with Wang that the connections displayed are not
complete and that neuroscience evidence indicates that
there are direct connections between some modules that do
not go through the basal ganglia. Rather than be discouraged
by this shortcoming, in the spirit of the Newell Test we take
it as stimulus for further theoretical work.

Despite the fact that the list contains the two overlapping
criteria of learning and development, a number of the com-
mentators (Commons & White, Prudkov, Roy, and Ver-
schure) argue that we did not give enough credit to self-or-
ganization. What they want is more emphasis on having a
system that really constructed itself from experience without
the guiding hand of the theorist. Though advocates of this cri-
terion may not be giving adequate credit to what the system
brings to the task as part of its genetic endowment, it is one
of the holy grails of functionality. Perhaps it should be raised
to a more prominent position. In addition to satisfying the
subliminal “mad scientist” desire to see a being grow de novo
in a computer program, achieving this serves an important
role in constraining the degrees of freedom in proposing
models within an architecture. Roy and Verschure are quite
correct in noting that classical connectionism does not
achieve this criterion even in its learning simulations, but we
think this criterion is the dimension on which ACT-R suffers
most in comparison to classical connectionism. As Prudkov
notes, more has to be specified in typical ACT-R models be-
fore ACT-R learning can take over, than needs to be speci-
fied in connectionist models before connectionist learning
can take over. We think this is because ACT-R models ad-
dress more complex cognition, but the consequence is that it
is more difficult to teach ACT-R aspirants what they need to
know to become competent ACT-R modelers. One of our
major goals in the future development of ACT-R is to move
closer to achieving this holy grail.

Clancey challenges us to account for dysfunctional be-
havior as well as the functional. Of course, one cannot re-
ally have a theory of what is dysfunctional without first
defining and accounting for functionality. This may not be
another criterion to add to the list; rather it seems a differ-
ent emphasis in evaluating the criteria that Newell has al-
ready given. However, we certainly agree with the impor-
tance of accounting for dysfunctionalities. Accounting for
the full range of functional and dysfunctional behavior
would also constitute a response by cognitive modeling to
those who suggest that it is merely a parameters tuning
game (since specific parameter values may map onto spe-
cific dysfunctionalities).

R3. Theories to which the criteria can be applied

An issue in applying the Newell criteria to classical con-
nectionism or ACT-R is the degree to which these are re-
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ally theories that can be so evaluated. O’Loughlin &
Karmiloff-Smith argue that connectionism is a collection
of tools that are useful. A similar point is often raised about
ACT-R (e.g., by Tadepalli), and often elaborated in dis-
cussions of the distinctions between models and the archi-
tecture. We are certainly aware that connectionism in its
largest sense is too broad for such an evaluation but we tried
to focus on what we chose to call classical connectionism.
McClelland et al. believe they have something to be eval-
uated, although they prefer to call it a framework in con-
trast to ACT-R, which they correctly call “an architecture.”
Nonetheless, they do regard themselves as having a “theo-
retical commitment to a common set of principles” that can
serve as a basis for evaluation.

It is true that from among these theories one can define
many models for performing tasks and that different mod-
els may differ in their predictions. However, it is just be-
cause of this fact that one needs to take the broader per-
spective of the overall functionality of the architecture. In
part, this is so one can judge which models are in the spirit
of the architecture, or “compliant” in Young’s term.

Many commentators (Commons & White, Garzón,
Gelepithis, Grossberg, Sun, and Verschure) think that
we unnecessarily restricted the kinds of neural networks
considered by focusing on classical connectionism. Gross-
berg refers to classical connectionism as “Carnegie Mellon
connectionism,” implying that we were provincial in our
outlook. Sun reminds us that we wrote that classical con-
nectionism reflects “the core and the bulk” of existing
neural network models (cf. target article, last para. of sect.
3). We clearly misspoke when we said “bulk” but we think
we can still defend the claim that it is “the core” and not just
a reflection of our provincialism. However, such a defense
would be a digression here and we will just note our point
of agreement with these commentators: They believe that
classical connectionism is too restrictive and suffers weak-
nesses that more liberal uses of neural net ideas do not suf-
fer. In particular, other forms of neural networks need have
no problem with symbols. We agree and indeed view ACT-
R as just a higher-level description of such a nonclassical
connectionist theory. But there is a trade-off between as-
suming an overly broad definition of a framework that can
account for anything (and its opposite) and an overly nar-
row one that leaves out many related efforts. We tried to
strike the best balance possible in our definition of classical
connectionism, expressing a common set of principles that
are significantly constraining but broad enough to encom-
pass a substantial part of connectionist efforts.

One of the things that encouraged us most was that some
of commentators (Clancey, Garzón, Grossberg, Ver-
schure) took many or all of the Newell criteria seriously
and evaluated their theories on the basis of these criteria.
Reading their short descriptions helped us appreciate those
theories and caused us to read some of the sources they
cited. Having done so, we do not want to take issue with
their self-evaluations, and we hope the exercise helped
them to see how they could improve their architectures.

R4. Past-tense issues

The target article held up the Taatgen and Anderson past-
tense model as a paradigm of what could be accomplished
in current ACT-R (cf. sect. 4.4; Taatgen & Anderson 2002),

and the claims of that model came in for some analysis. One
of the reasons for highlighting this model is that it depends
so much on ACT-R learning mechanisms and so little on the
initial structuring of the problem. As such it comes closest
to achieving the de novo test that others want. Still, Tade-
palli wonders to what degree its behavior reflects charac-
teristics of the problem rather than ACT-R. This is an im-
portant question that needs to be asked more often.
However, we do list things this model achieves that most
other models facing the same problem do not achieve.

A number of commentators correctly point out short-
comings of the current model. Ter Meulen points out the
inadequate conception of the semantics of past tense and
failure to embed the model in a system that generates full
utterances. McClelland et al. point out the impoverished
conception of phonology, which limits the ability to extend
the model because it relies on measures of phonological
cost. One of the virtues of taking the Newell Test seriously
is that one cannot just circle the wagons in response to crit-
icisms like these and say that they are beyond the scope of
the model. These are valid criticisms and point to directions
for future work. Indeed, some steps have already been
taken to enrich the treatment of the phonology (Misker &
Anderson 2003; Taatgen & Dijkstra 2003). Taatgen and
Dijkstra show how the approach can be used to produce “ir-
regular generalizations like bring-brang.” The Misker and
Anderson analysis shows how complex phonological con-
straints like those in optimality theory (Prince & Smolensky
1993) can be represented and computed within ACT-R.
Although it has not yet been done, we believe that if the
Taatgen and Anderson (2002) learning approach were em-
bedded on top of the Misker and Anderson approach, we
would be able to account for such things as the distribu-
tional evidence that McClelland et al. cite with respect to
the phonological characteristics of past tense exceptions.

R5. McClelland, Plaut, Gotts, and Maia
(McClelland et al.)

We tried to define classical connectionism somewhat more
broadly, but it is worthwhile to follow the lead of McClel-
land et al. and consider parallel distributed processing
(PDP) specifically. The similarities between the broad goals
of ACT-R and PDP and between some of their mechanisms
can appear quite striking. From the perspective of a com-
mentary like that of Yang & Bringsjord, our disagree-
ments might seem like disputes between Baptists and
Methodists. Aspects of ACT-R have been strongly influ-
enced by connectionist ideas (frequently specifically PDP
ideas) as described in the target article. Indeed, we think
one of the major reasons for the success of the ACT-R ef-
fort is our willingness to incorporate good ideas – whether
they come from EPIC (Meyer & Kieras 1997) or PDP.

The McClelland et al. commentary brings out three is-
sues between ACT-R and PDP that need discussion. One
has to do with the word “approximate,” the second with the
word “unified,” and the third with the word “symbolic.”

With respect to the word “approximate” one cannot help
but read the commentary as using it a little bit as a dirty
word (presumably in contrast to a good word like “exact”).
In fact, to avoid any sense of not being collegial in their
commentary, McClelland et al. hasten to note that they do
not mean to suggest that we advocate approximation al-
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though they wonder if Newell would. We cannot find where
he said it in print, but one of the remarks we remember
from our interactions with Newell is his assertion that the
development of scientific theories is like an “approximating
sequence.” We agree with Newell on this score. Presumably
no one can lay claim to having the true theory. McClelland
et al. describe the symbolic level as “sometimes useful as
high-level approximations to the underlying mechanisms of
thought” (see their commentary Abstract). However, surely
the units in a PDP model are only approximations to any
neural processing which can at most claim to be useful as
well. Their own recounting of the history of the develop-
ment of their ideas is surely well described as an approxi-
mating sequence.

If one acknowledges that one’s theory is an approxima-
tion that one is trying to make closer to the truth, then it be-
comes a strategic decision where one wants to work on im-
proving the approximation. McClelland et al. advocate
sticking within a well-circumscribed domain and working at
getting their account closer and closer. Certainly we have
done this, trying for more than 25 years (Anderson 1974;
Anderson & Reder 1999b) to get an account of associative
interference or the fan effect correct because we view this
as central to the ACT theory. However, we do agree that we
have put more attention in getting the approximations to
work reasonably well across domains. This is even true in
our work on the fan effect where we have tried to study it
over a wide range of tasks. It is a strategic decision whether
to try get some things really well, narrowly, and then go on
to other topics, or whether to try to get a broad range of top-
ics relatively well and then seek better approximations
everywhere. The jury is surely still out on which is the bet-
ter strategy. If the field of operations research offers any les-
son in this regard, it is that the number and distribution of
points that one is trying to fit is a stronger constraint than
how closely they are fitted.

The second word, “unified,” comes from the title of
Newell’s book, but thinking about it helps us understand
the differences and similarities between the ACT-R and the
PDP research strategies. Unified can mean two things: (1)
that the theory tries to explain everything from the same
few basic principles and (2) that the theory tries to explain
how the broad range of intellectual functions is achieved in
a single brain. We will refer to the first sense as “unitary”
and the second sense as “integrated.” Theoretical efforts
can be cross-classified as to where they stand on these two
dimensions. As McClelland et al. note, most theoretical
accounts are neither unitary nor integrated, and PDP ef-
forts share with Newell’s SOAR and the ACT-R effort the
aspiration to achieve more. However, it turns out that ACT-
R, SOAR, and PDP each occupy a different cell of the re-
maining three in the two-by-two cross-classification. PDP
shares with SOAR and differs from ACT-R in the desire to
find a unitary theory – a small set of domain-general prin-
ciples. ACT-R’s predecessor, ACT* (Anderson 1983), did
aspire to the same sort of unitary theory as SOAR and PDP.
However, in response to the need to make progress on the
Newell criteria we found this constraint to be an obstacle.
Also, our understanding of biology “inspires” us to take the
modular view described in Figure 1 of the target article.
Imagine trying to account for respiration and digestion
from a unitary set of principles! We see no more reason in
our understanding of the brain to have that attitude about,
for example, audition and manual control. (However, when

possible we do try to exploit common principles in ac-
counting for different modules – for we too like general-
izations that work.)

On the other hand, we share with Newell and differ from
the described PDP goals in having the aspiration to produce
an integrated theory that explains how diverse and complex
behaviors arise from one brain that has one set of mecha-
nisms. This naturally leads to a focus on more complex be-
haviors such as mathematical problem solving or driving.
We suspect we are more sympathetic to ter Meulen’s ar-
gument that the past tense model should be extended to
deal with more complex constructions. If one believes that
it is the same few principles working out the same way in
domain after domain, then it makes sense to look at rela-
tively simple tasks and model them intensely. If one be-
lieves that it is many modules interacting to produce com-
plex adaptations, then it makes sense to look at a number of
complex tasks.

Of course, there is the danger of becoming a jack of many
trades and a master of none. This is why Anderson in his
work on tutoring (Anderson et al. 1995; Koedinger et al.
1997) has focused almost exclusively on mathematical
problem solving (and of a high school variety at that) be-
cause one has to understand that domain deeply. Newell
(1973) himself saw the need to focus in depth on topics like
chess to properly treat their richness. Fortunately, others in
the ACT-R community have taken up other topics such as
driving (Salvucci 2001) or past tense. Therefore, we cer-
tainly respect the decision of PDP researchers to focus on
certain domains such as reading of words. One enviable fea-
ture of connectionism is the number of researchers who
have taken up applying it to different domains. However,
our bet is that the lack of concern with integration will lead
to systems that cannot be put together – all the king’s horses
and all the king’s men won’t be able to put Humpty Dumpty
together.

Finally, there is the word “symbolic.” We changed
Newell’s criterion 6 to avoid the use of that word because it
seemed too hopelessly loaded to ever serve as a useful cri-
terion (and because his specification of this criterion really
did not fit the functional character of the other criteria).
Despite the frequency with which “symbolic” is used in
Cognitive Science it seems to be more often a hindrance to
communication than a help. A case in point is our claims
about McClelland et al.’s attitude toward the symbolic
level. McClelland et al. deny that the symbolic level is “the
appropriate level at which principles of processing and
learning should be formulated.” That is what we meant
when we said they did not “acknowledge a symbolic level to
thought” (target article, Abstract), but apparently for them
treating the symbolic level as sometimes a “fairly good ap-
proximation” amounts to acknowledging it. We did under-
stand this about the PDP account (e.g., see Anderson 1990,
pp 11–14). So we agree on what the PDP position does and
does not say about the symbolic level, even if we cannot
agree on the words to describe it.

For better or worse, we cannot entirely abandon using
the word “symbolic” because we have long since commit-
ted to describing certain of ACT-R’s principles as being at
the symbolic level and others being at the subsymbolic
level. Presumably, McClelland et al. would deny the ap-
propriateness of the ACT-R principles that we describe as
being at the symbolic level. We and others believe that it is
this failure to incorporate such principles that produces the
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limitations in their accounts. As we described in the target
article, ACT-R’s symbolic account cashes out at a connec-
tionist level as prior constraints on the communication
among the modules. Although McClelland et al. may not
want to acknowledge such constraints, other connectionists
have done so in terms of things like architectural constraints
(Elman et al. 1996).

R6. Conclusion

Ours was a different target article than Newell (1992) and
so naturally provoked a different set of commentaries. Still,
we think that if he were to compare the commentaries in
2003 with those in 1992 he would see growth in the atti-
tudes in Cognitive Science, maturation in the theories, and
hope for the future.
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