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In a brain imaging study of children learning algebra, it is shown
that the same regions are active in children solving equations as are
active in experienced adults solving equations. As with adults,
practice in symbol manipulation produces a reduced activation in
prefrontal cortex area. However, unlike adults, practice seems also
to produce a decrease in a parietal area that is holding an image of
the equation. This finding suggests that adolescents’ brain re-
sponses are more plastic and change more with practice. These
results are integrated in a cognitive model that predicts both the
behavioral and brain imaging results.

The study reported here integrates behavioral methods, func-
tional brain imaging (functional MRI), and cognitive mod-

eling to study how children learn to solve equations. In partic-
ular, the children were solving equations like the following: 7x �
1 � 29. Past research with adult college students (1) modeled
algebra equation solving by the interaction of three cognitive
modules in the adaptive control of thought-rational (ACT-R)
cognitive architecture (2, 3). There was an imaginal module that
held a representation of the equation and performed imagined
transformations on the equations. There was a retrieval module
that retrieved algebraic rules and arithmetic facts in the solution
of this equation. Finally, there was a manual module that
programmed the output of the answer by the hand. A region in
the left parietal cortex, which has been associated with imagery
(4–6) and spatial processing (7) in other studies, was found to
correspond to the imaginal module. A region in the left pre-
frontal cortex, which has been associated with retrieval in other
studies (8–14), was found to correspond to the retrieval module.
Finally, a region in the left motor and sensory cortices, which
controls the right hand, was found to correspond to the manual
module.

After having identified these regions in algebra equation
solving, we performed a series of experiments to determine
whether they were specifically involved in algebra or were also
involved in nonmathematical information-processing tasks (1,
15, 16). Similar involvement of these regions was found in a
nonmathematical isomorph of algebra (artificial algebra) (1).
Subsequent research (15), in which college students practiced
the isomorph, found a speed-up that could be accounted for
entirely in terms of reduced retrieval time. This finding was
reflected in reduced activation in the prefrontal region of
interest. There was not a comparable reduction in either the
motor or parietal region.

The present research addresses the question of whether the
brain activation patterns observed from adults will be shown in
children learning algebra. Specifically, do children who are just
learning equation solving show activation of the same regions as
in adults’ algebra (1) and will their improvement be explained in
terms of reduction just in the prefrontal retrieval region shown
in adults’ artificial algebra learning (15)? There is reason to
suspect that we might see changes in activation in more regions
because children are presumably in a more plastic stage of neural
development. Past brain imaging studies of children have shown
that, during adolescent years, the white matter volume keeps
increasing (some local areas changing even rather rapidly) and

the gray matter volume in parietal and prefrontal cortex has
begun to decrease, consistent with the findings from develop-
mental neuroscience of myelination and synaptic pruning
(17–23).

Methods
Subjects. Ten normal pre-algebra students (expecting to take
Algebra I the following year) who replied to an advertisement in
a local Pittsburgh newspaper participated in this experiment
[right-handed, native English speaker, 12–15 yr old (averaged
13.1), sixth to eighth grade, three females]. Participants were
accompanied with their parents and were provided written
informed consent in accordance with the Institutional Review
Boards at the University of Pittsburgh and at Carnegie Mellon
University.

Procedure. Children in this experiment solved three types of
equations: 0-step equations (e.g., 1x � 0 � 4), 1-step equations
(e.g., 3x � 0 � 12, 1x � 8 � 12), and 2-step equations (e.g., 7x
� 1 � 29). So that the children’s performance would be close to
that of adults (see refs. 24 and 25), the solutions to all problems
were the digits 2–5 [5–9 in adults (1)], which mapped onto the
fingers of the right hand in a data glove. Also, in contrast to the
adult problems, there were no borrowing operations in 2-step
equations.

The paradigm of the learning procedure was very similar to
that of adults’ learning artificial algebra (15). The experiment
lasted 5 days, with an event-related functional MRI (fMRI) scan
on day 1 and day 5 and practice without scan from day 2 to day
4, plus a pre-scan training session on the day before day 1. In the
pre-scan training session, the children were given a tutorial on
algebra equation solving and key practice, and performed two
blocks of the real tasks in an fMRI simulator. There were 16
trials per block (see Fig. 1 for the structure of a trial), 8 blocks
for each scan day, and 10 blocks for each practice day. On the
scan days, event-related fMRI data were collected by using a
single-shot spiral acquisition on a GE 3T scanner, 1,200-ms
repetition time (TR), 18 ms echo time (TE), 70° flip angle, 20-cm
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Fig. 1. The protocol of a trial. A trial lasted 21.6 s, with a red cross shown in
the first 1.2 s as warning (the stimulus was visually shown on a black screen),
then a 12-s period for the participants’ solving the equation (which was
showing in white characters) and keying the answer on the data glove,
followed by 9.6 s for intertrial interval (ITI; showing a white star).
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field of view (FOV), 21 axial slices each scan with 3.2-mm-thick,
64 � 64 matrix, and with AC-PC (anterior commissure-posterior
commissure) on the second slice from the bottom.

fMRI Data Analyses. Before focusing on the three regions identi-
fied in past research, we performed an exploratory analysis to
find out which brain regions varied significantly with condition.
The regions of interest (ROIs) were selected according to the
interaction in a 6-condition � 18-scan ANOVA. The six condi-
tions came from two levels of practice (day 1 and day 5) � three
levels of complexity conditions of the equations. To have a
conservative test that dealt with nonindependence of scans, we
used the Greenhouse–Geisser correction of assigning only five
degrees of freedom to the numerator in the F-statistic for the
6-condition � 18-scan interaction term. The interaction was
examined in each voxel. To ignore the small particles, we selected
regions that met the criteria of a minimum of 30 contiguous
voxels with significant interaction at P � 0.05. According to
Forman et al. (26), the probability of a false positive should be
�0.05. In the confirmatory analysis, the three ROIs are the same
as in adults’ artificial algebra (15): a left motor area [Brodmann’s
area (BA) 4�3], a left posterior parietal area (BA 39�40), and a
left prefrontal area (BA 45�46). Each region was defined as 100
voxels (5 wide � 5 long � 4 deep), �16 � 16 � 13 mm3, as shown
in Fig. 3B.

Results
Latency and Accuracy Results. The average accuracy of the partic-
ipants’ behavior was high (91.3% in day 1 and 93.3% in day 5)
and close to that of adult algebra (93.6%). The average reaction

time of correct trials (RT) showed significant differences among
the three equation types on both day 1 and day 5, and the
difference of RT between these two days was also significant [on
day 1, F(2,27) � 12.68, P � 0.0005; on day 5, F(2,27) � 21.5,0
P � 0. 0001; comparing day 1 and day 5, F(1,54) � 8.0, P � 0.01].
Fig. 2 shows the decrease in RT across the five days along with
the fit of an ACT-R model that will be described.

Event-Related fMRI Findings. Exploratory analysis. With the very
conservative criteria mentioned above, nine ROIs were selected
according to the interaction in a 6-condition � 18-scan ANOVA.
Table 1 and Fig. 3A indicate these regions. Fig. 4 illustrates the
overall blood oxygen level-dependent (BOLD) functions ob-
tained from each of these nine regions, averaged over complexity
conditions and practice. These functions are plotted as percent
increase above the baseline defined by the average activation of
the first two and last two scans. ROI 1 corresponds to the
anterior cingulate gyrus, and it has been found to yield effects in
other of our experiments. ROIs 2, 3, and 4 correspond to the
motor, parietal, and prefrontal regions found in prior research
(1, 15, 16). ROIs 5 and 6 are the right and left supramarginal
gyrus and yield negative functions, consistent with Gusnard and
Raichle (27). We have found them to yield negative responses in
our studies of algebra equation solving in adults. ROI 7 is in the
left occipital, ROI 8 is the left head of caudate nucleus (extends
to thalamus), and ROI 9 is the left putamen. Both ROIs 8 and
9 are areas in the basal ganglia.

Table 1 indicates which regions show the effects of condition
and practice in terms of t values. The t values are positively signed
if the 2-transformation condition yielded a larger BOLD func-
tion than the 0-transformation condition (df � 18) and if day 1
yielded a larger BOLD function than day 5 (df � 9). It can be
seen that six regions yielded a larger BOLD function in the more
complex conditions. With respect to the motor region, the effect
that led to its selection in the condition-by-practice interaction
is that its peak is delayed in more complex condition but the
average BOLD response remains the same. The left and right
supramarginal gyri yield negative t values, consistent with their
overall negativity.

Only three of the six regions with positive BOLD functions
yielded effects of practice. Two of these, the left parietal (ROI
3) and left prefrontal (ROI 4), showed lower activation on day
5 than day 1. The effect for the prefrontal region replicates our
results with adults, but the effect for the parietal region is
different from the adult population. The left putamen (ROI 9)
shows a greater BOLD function on day 5 than day 1. The adults’
data (15) did not show this trend in this area.
Confirmatory analysis. Fig. 3B shows the regions predefined on the
basis of adult results (1, 15, 16). Their overlap with the explor-
atory regions is quite striking. However, working with pre-
defined regions rather than exploratory regions has the advan-

Fig. 2. Time to solve equations of differential complexity as a function of
practice (observed data and the fit of an ACT-R model).

Table 1. ROI, locations of centroid, and significances in exploratory analysis

ROI Region of interest BA
Voxel
count

Center Talairach coordinate,
mm (x, y, z)

Mean
percent

t value
(complexity)

t value
(practice)

1 Anterior cingulate 32�24 150 �3, 13, 39 0.100 9.26** 1.75
2 Left motor 4�3�2 45 �38, �22, 45 0.084 0.13 1.81
3 Left parietal 40�39 80 �27, �64, 35 0.075 7.87** 4.18**
4 Left prefrontal 9�46�45�44 223 �40, 14, 23 0.069 10.14** 5.97**
5 Right supra-marginal gyrus 40�39�22 133 42, �54, 25 �0.053 �4.90** �2.71*
6 Left supra-marginal gyrus 40�39�22 49 �47, �61, 21 �0.080 �3.19* �4.20**
7 Left occipital 31�17�18�19 42 �23, �73, 13 0.012 2.94* 0.65
8 Left head of caudate nuclei Extends to thalamus 33 �7, 4, 5 0.043 6.17** 0.64
9 Left putamen 37 �26, �9, 5 0.026 2.73* �2.48*

*, P � 0.05; **, P � 0.01.
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tage that our estimation of their response is not biased by the
statistical selection criteria. Fig. 5 illustrates the BOLD functions
obtained for the three regions illustrated in Fig. 3B for both days
1 and 5. As typical BOLD functions, they rise to a peak �5 s after
the events of interest. The BOLD functions for the motor area
rise to similar peaks that are delayed with the emission of the

response. The BOLD functions for the parietal region rise to
different heights to reflect the number of transformations of the
problem state. The same is true for the BOLD functions for the
prefrontal region except that in the 0-step condition they show
almost no rise. We performed a series of statistical tests to
confirm the significance of what is apparent in the BOLD
functions. According to Anderson et al. (1), one can measure the
hemodynamic demand in a condition by the total area of these
BOLD functions above the baseline. Therefore, ANOVA were
performed on measures of these areas for each of the three
regions where the factors were equation complexity and day of
practice. There were no significant effects for the motor region
[F(1,9) � 0.79 for practice; F(2,18) � 0.30 for transformation],
but both effects were significant for the parietal region [F(1,9) �
15.43, P � 0.005 for practice; F(2,18) � 30.49, P � 0.0001, for
transformation] and the prefrontal regions [F(1,9) � 21.10, P �
0.005, for practice; F(2,18) � 22.70, P � 0.0001, for transfor-
mation]. Another analysis was performed of whether the peak
times of the BOLD functions differed as a function of condition.
The only significant effect was the effect of number of steps for
the motor particle. Thus, the statistical tests confirm the trends
that are most apparent in Fig. 5.

Note that, in adults’ learning artificial algebra (15), the
practice BOLD effect in the parietal region was not significant.
This difference between children and adults in this region is not
because children learned more than the adults. The practice
effect in behavior (average RT of correct trials in day 1 �
average RT of correct trials in day 5) of children was in fact less
than that of the adults [mean(adults) � 1,432, SD � 551,
mean(children) � 885, SD � 504, t(16) � 2.19, P � 0.043 for
two-sample, two-tail t test). If we define behavioral ratio-of-
practice-effect (rpe) as [(average RT of correct trials in day 1) �
(average RT of correct trials in day 5)]�(average RT of correct
trials in day 1), this trend would be even stronger
[mean(adults) � 0.356, SD � 0.115; mean(children) � 0.222,
SD � 0.08; t(16) � 2.88, P � 0.011 for two-sample, two-tail t

Fig. 3. (A) Activation map for 16 slices starting at the third slice from the top, showing areas with a significant interaction between scan and condition. Only
regions with �30 contiguous voxels and P � 0.05, df � 5, are chosen. See Table 1 for identification of regions. The AC-PC (anterior commissure-posterior
commissure) line is two slices below slice 17 in this figure. Left is the left side of the brain. (B) ROIs for confirmatory analysis. Each is of 100 (5 � 5 � 4) voxels (16 �
16 � 13 mm3). The Talairach coordinates of the center for the left prefrontal region (BA 45�46) are x � �40, y � 21, z � 21; of the left posterior parietal region
(BA 39�40), x � �23, y � �64, z � 34; and of the left motor area (BA 4�3), x � �37, y � �25, z � 47.

Fig. 4. The BOLD functions obtained from each of the ROIs selected by
exploratory analysis, averaged over complexity conditions and practice.
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test). If we put child and adult data together and sort them based
on their rpes, we can get three subsets (following refs. 24 and 25):
(i) a matched group, formed by children and adults with very
similar rpe (six children, mean � 0.278, SD � 0.048; five adults,
mean � 0.289, SD � 0.062; t(9) � �0.33, P � 0.749 for
two-sample, two-tail t test); (ii) the remaining four children with
smaller rpe formed a nonmatched child group (mean � 0.139,
SD � 0.02, comparing matched with nonmatched children,
t(8) � 5.32, P � 0.001, for two-sample, two-tail t test); (iii) the
remaining three adults with larger rpe formed nonmatched adult
group (mean � 0.468, SD � 0.09, comparing matched with
nonmatched adults, t(6) � �3.30, P � 0.016, for two-sample,
two-tail t test). In matched group, children had significant
practice BOLD effect in the parietal region [F(1,5) � 7.74, P �
0.039], but adults did not [F(1,4) � 0.965, P � 0.382]. In
nonmatched groups, children still had significant practice BOLD
effect in the parietal region [F(1,3) � 26.12, P � 0.014]. There
was some practice effect shown in the nonmatched adult group
but not significant [F(1,2) � 7.11, P � 0.117]. It seems that age
and not performance is the major factor causing the significant
practice effect in the parietal region.

ACT-R Modeling. Fig. 5 also shows the predictions of an ACT-R
model of this task, which we will now describe, and Fig. 6 shows
the operations of four ACT-R modules in solving the equation
7x � 1 � 29. There are modules associated with visual encoding
of the equation, mental transformation of the equation, retrieval
of algebraic and arithmetic information, and keying of the
response. No brain region was found corresponding to the visual
module, presumably because an equation of the same visual

complexity is presented for the same duration in all conditions.
The other three modules have the following correspondence to
our predefined regions: imaginal module corresponds to left
parietal, retrieval module to left prefrontal, and manual module
to left motor.

The actual ACT-R module is a computer simulation of a
production system that reads the equation, solves it, and keys the
answer. In addition to the module activity illustrated in Fig. 6,
there are varying number of production rule firings that coor-
dinate the activity of the modules. Each of these production rule
firings takes 0.05 s. These 50 ms rule firings, the visual encodings
of elements from the equation (0.135 s per element), and the
time to program and execute the key press (0.4 s) constitute the
fixed components of the model. All of these fixed times are based
on prior values in the ACT-R architecture. We assume that the
imaginal and retrieval activities will speed up, corresponding to
the decrease in the BOLD response for these modules in Fig. 5.
The predictions of response times in Fig. 2 are simply a result of
adding up these fixed and decreasing components. The following
are the equations for the time for the three conditions of the
experiment

Condition 0 (Day) � 1.26 � 1.0 � Transformation (Day) [1]

Condition 1 (Day) � 1.47 � 2.0 � Transformation (Day) �

1.5 � Retrieval (Day) [2]

Condition 2 (Day) � 1.69 � 3.0 � Transformation (Day) �

3.0 � Retrieval (Day), [3]

Fig. 5. The BOLD functions obtained for the three regions illustrated in Fig. 3B for both days 1 and 5 and the predictions of an ACT-R model of the task.
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where Transformation(Day) is the time spent transforming the
equation on a day and Retrieval(Day) is the time spent retrieving
information. The intercepts (1.26, 1.47, and 1.69) reflect the
fixed costs for that condition and the transformation and re-
trieval factors are multiplied by the number of transformations
and retrievals for that condition. Assuming that transformation
and retrieval follow power laws (28), they were set to be

Transformation (Day) � T � Day�c [4]

Retrieval (Day) � R � Day�c . [5]

In fitting the latency data in Fig. 2, the parameters T and R were
both estimated to be both 0.63 s and c was estimated to be 0.28.
These estimations yield reasonable fits to the observed latencies
(correlation coefficient � 0.986).

Having now set the times of the various components of
processing, predictions can be made about the BOLD functions
in the three regions of interests. See Anderson et al. (1) for the
details of the methodology. Briefly, with the timing information
(t) of the model, the BOLD response can be predicted by

CB�t	 � M�
0

t

i�x	B� t � x
s �dx, [6]

where M is the magnitude scale for response, s is the latency
scale, i(x) is 1 if the module is occupied at time x and 0 otherwise,
and B(t) is a gamma function

B�t	 � tae�t [7]

that describes the BOLD response to an event that varies
according to time t since the event (29–31). The predictions
shown in Fig. 5 were obtained from the module time course
shown in Fig. 6 by using this methodology.

Whereas the exact shapes of the BOLD functions depend on
the estimation of the parameters M, s, and a (Table 2), the
relative areas under the curves and the peaks are parameter-free
predictions of the timing of the modules. The differential timing
of the response is controlling the shifting peaks in the motor
region, but the actual BOLD function is not changing because
the programming of the response is not changing. With respect
to the parietal region, the BOLD response reflects the number
of transformations: there are up to two to rework the equation
and a final transformation to retrieve the response from the
equation. With respect to the prefrontal regions, there are
potentially three things to be retrieved (all three are illustrated
in Fig. 6) depending on condition. The effect of condition on the
magnitude of the BOLD response reflects the number of
transformations or retrieval. The one qualitative difference
between the parietal and the prefrontal region is that the parietal
region shows a response even in the 0-step condition (because
the answer has to be extracted from the equation) whereas the
prefrontal region does not (because nothing needs to be re-
trieved in this condition). It is worth noting that the magnitude
of reduction of the BOLD response in these two regions is
predicted directly from fitting the latency speed-up and required
no additional estimation.

Discussion
Accumulated brain imaging evidence has shown similar brain
activation patterns of adolescents and adults in performing
various high-level cognitive tasks as well as certain differences in
some areas depending on the tasks (20, 32–37). The exploratory
analysis of the current study shows that the active areas in
children’s algebra equation learning are similar to areas active in
adults (1, 15). The results of the confirmatory analysis largely
confirm the results obtained with adults (15). The one difference
is that the parietal cortex showed a practice effect whereas this
was not found with adults.

It should be noted that the ACT-R theory provides a more
detailed account of what is behind the speed-up in the retrieval
component and the decreased activation in the prefrontal re-
gion. According to a connectionist implementation of ACT-R
(38), the process of retrieval of a memory is the process of
selecting the correct memory trace in competition with other
memory traces. As a memory trace is strengthened with practice,
the signal corresponding to the target trace is enhanced and it
takes the system fewer cycles to settle into a state corresponding
to the target trace. However, there is no corresponding learning
process in ACT-R corresponding to the speed with which the
system can transition from one problem representation to an-

Fig. 6. The operations of four ACT-R modules in solving the equation 7x �
1 � 29.

Table 2. Parameters and the quality of the BOLD function
prediction

Imaginal Retrieval Manual

Scale (s) 1.557 1.735 1.201
Exponent (a) 4.760 4.305 4.582
Magnitude:

M 
 (a � 1)* 0.733 1.612 4.303
Correlation day 1 0.950 0.946 0.913
Correlation day 5 0.902 0.882 0.953

*This is a more meaningful measure because the height of the function is
determined by the exponent as well as M.
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other, but the data from the parietal region seem to suggest that
children are capable of speeding that process up with practice.

It has previously been observed (39) that basic imagery
operations like mental rotation, which activate the parietal area
(40), are speeding up as adolescents mature and show substantial
learning effect in children. Protracted developmental changes in
prefrontal and posterior parietal areas were also observed in
visual-spatial working memory study (32, 33). Our predefined
posterior parietal ROI is very close to the area M (intraparietal
sulcus) in Fig. 2 of Sowell et al. (23), which showed clear decrease
of gray matter density during human adolescent period. Using
time-lapse two-photon laser scanning microscopy imaging,
Lendvai et al. (41) observed greatest experience-dependent
plasticity of dendritic spines during a critical period of the rats
in vivo. Recently Gan et al. (42), using transgenic mice that
express yellow fluorescent protein in axons, found that axonal

branches frequently retracted or extended on a time scale of
minutes in young adult mice, but seldom in mature animals. Our
observation of the practice effect in the activation patterns of
human parietal cortex of adolescents, but not adults, might be
parallel to these findings.

In addition, our exploratory analysis found an increase of
activity in the left putamen. It might be related to the striatal
region changes observed in adolescents (17). Although we are
uncertain what this finding might signify, this is again a result
that we did not find with adults. Together, the greater response
of adolescents’ brain to practice suggests that this period might
be a more appropriate time for the instruction of algebra.
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