
Altmann, E. M. & Trafton, J. G. (1999). Proceedings of the twenty first annual meeting of the Cognitive Science Society (pp. 19 - 24). Hillsdale, NJ: Erlbaum.

Memory for Goals: An Architectural Perspective

Erik M. Altmann (altmann@gmu.edu)
Human Factors & Applied Cognition

George Mason University
Fairfax, VA 22030

J. Gregory Trafton (trafton@itd.nrl.navy.mil)
Naval Research Laboratory, Code 5513

4555 Overlook Ave., SW
Washington, DC 20375-5337

Abstract
The notion that memory for goals is organized as a stack i s
central in cognitive theory in that stacks are core con-
structs leading cognitive architectures. However, the stack
over-predicts the strength of goal memory and the preci-
sion of goal selection order, while under-predicting the
maintenance cost of both. A better way to study memory
for goals is to treat them like any other kind of memory
element. This approach makes accurate and well-
constrained predictions and reveals the nature of goal en-
coding and retrieval processes. The approach is demon-
strated in an ACT-R model of human performance on a ca-
nonical goal-based task, the Tower of Hanoi. The model
and other considerations suggest that cognitive architec-
tures should enforce a two-element limit on the depth of the
stack to deter its use for storing task goals while preserv-
ing its use for attention and learning.

Introduction
The ability to decompose a complex problem into subgoals
is to complex cognition roughly as the opposable thumb is
to complex action. However, despite a generation of research
into cognitive goal-based processing strategies like means-
ends analysis, and into goal-based processing in artificial
intelligence, we lack an adequate theory of how cognition
manages the fine-grain goals of everyday tasks. The most
common description we have is the stack — that is, a data
type taken from computer science and interpreted as a de-
scription of cognitive processing.

The stack is an appealing descriptive tool because it ele-
gantly captures the structure of everyday tasks that have to
be decomposed to become achievable (Miller, Galanter, &
Pribram, 1960). For example, traveling to a conference may
entail taking an airplane, and whereas getting to the confer-
ence is in some sense the top-level goal, getting on the air-
plane has to happen first. Thus the order in which steps are
planned (conference, then airplane) is opposite the order in
which steps are executed (airplane, then conference). This is
precisely the kind of reversal supplied by a stack, if goals are
pushed in the order they are planned and popped in the order
they are achieved (Figure 1). The theoretical inference has
been that, because tasks are often decomposable in this way,
the human cognitive architecture incorporates a stack to
support such processing.

However, from a theoretical and empirical perspective, the
stack is an idealized model of memory for goals that raises

more questions than it answers. For example, the stack im-
plemented in the ACT-R architecture invites questions about
reactivity, dual-tasking, and memory for old goals (Anderson
& Lebiere, 1998). The stack implemented in Soar (Newell,
1990) invites similar questions about similar issues (John,
1996; Rosenbloom, Laird, & Newell, 1988; Young &
Lewis, in press).

We offer a critical analysis of the stack as cognitive the-
ory. The supply of such theory is limited essentially to the
ACT-R and Soar cognitive architectures, but in both cases
the stack has been used to model a broad range of goal-based
behavior. The role of the stack is typically to store goals
associated with the task — task goals — like taking a flight
or attending a conference. In both architectures, stacked task
goals are immediately available for error-free retrieval with
their order preserved regardless of when they were placed on
the stack and regardless of how much or how little they were
used since. These properties make the stack as poor a cogni-
tive theory as it is useful a programming construct. As a
theory it masks strategic adaptation and variation in goal
management across tasks and individuals, and its usefulness
as a programming tool simply adds to the problem by
tempting the analyst. A better way to represent goals is to
treat them like any other kind of memory element and then
ask what (if any) supporting processes are necessary to ac-
count for how people remember them.

We start by comparing predictions of the task-goal stack
to evidence from the literature. We then present an ACT-R
model of the Tower of Hanoi, a task often taken to reveal
the cognitive reality of the task-goal stack (Anderson & Le-
biere, 1998; Anderson, Kushmerick, & Lebiere, 1993; Egan
& Greeno, 1973). The model conforms to our proposal to
treat task goals like any other kind of memory element, and
shows that stacking them is not necessary to account for
human performance. The model uses ACT-R’s stack in prin-

Figure 1: Pushing and popping task goals on a stack.
Getting to the conference means flying, which in turn
means shuttling to the airport.

conference

shuttle

push

achieve and
pop

conference

airplane

conference

airplane

conference

airplane

push

Memory for Goals 2

cipled ways to support encoding and retrieval processes, and
goes beyond a previous ACT-R model to predict errors as
well as response-time data. We analyze this and other uses of
the stack in ACT-R and Soar to propose a limit of two ele-
ments as an architectural constraint on stack depth.

The Stack: Predictions and Contradictions
A stack is an ordered set of elements, with the element at
one end designated the top. The only operations defined on a
stack affect this top element. A new element can be pushed
onto the stack, covering the top element and itself becoming
the top, or the top element can be popped off the stack, un-
covering the element underneath it as the new top element
(Figure 1).1 Thus stack elements are ordered by age, with the
newest element always on top.

One property of the stack is that once an element is
pushed, it remains on the stack until it is popped. If the
element is a task goal being pushed onto a stack as part of a
planning process, then that goal remains on the stack as
long as it takes to accomplish all task subgoals pushed on
top of it. This is how task goals are stored on the ACT-R
stack. The top goal controls the system’s behavior, and
when that goal is popped, the next older one takes over, no
matter how old it is. Thus, ACT-R’s stack predicts that
memory for old goals is perfect.

Empirically, however, memory for pending goals (often
referred to as prospective memory) is generally variable and
strategic. Subjectively it seems quite common to embark on
a simple errand or chore and midway through forget the pur-
pose. In one study of intentions, actions to be carried out
directly were remembered better than actions to be verified as
carried out by someone else (Goschke & Kuhl, 1993). A
stack-based account, in which memory for goals is perfect,
predicts that memory should be at ceiling in either case.

A second property of the stack is that its elements are or-
dered last-in first-out, or LIFO. If these elements are again
task goals pushed as they arise during planning, then the
stack preserves that order perfectly, in addition to the ele-
ments themselves.

LIFO goal selection is not as pervasive as an architectural
stack might predict. For example, goal selection in arithme-
tic can be highly variable both within and between subjects,
and the variance is better explained by idiosyncratic goal
selection strategies than by uniform LIFO ordering (Van-
Lehn, Ball, & Kowalski, 1989). Similarly, goal selection in
mundane tasks like VCR programming is guided by back-
ground knowledge and by simple difference-reduction strate-
gies that make extensive use of perceptual information
(Gray, in press). Finally, a phenomenon that defies LIFO
goal selection is post-completion error, for example leaving
the originals in the photocopier after taking the copies
(Byrne & Bovair, 1997). Making copies is the top level goal
and hence should be the first goal pushed and the last goal

1 The pop operation in Soar is generalized to allow popping

any stack element along with all newer elements. This lets Soar
react to events that, for example, achieve an older task goal and
thus make all its subgoals on the stack moot. However, this
more flexible pop operation does not materially alter the predic-
tions of perfect, zero-cost memory for goals and goal order.

popped, with no stragglers. Thus if cognition had a task-
goal stack, post-completion error would not be the common
procedural error that it is.

A third property of the stack, at least as implemented in
Soar and ACT-R, is that it depletes no resources directly
affecting declarative memory. An element on the stack re-
quires neither activation nor active maintenance to stay
available and maintain its rank. Thus, memory for goals is
not only perfect but free.

Several studies show that maintaining goals in memory
does involve cognitive opportunity cost. For example, goal
management strategies that reduce memory load have been
linked to performance on Raven’s Progressive Matrices in
that better strategies allow more activation to be focussed on
the underlying inference task (Carpenter, Just, & Shell,
1990). Similarly, working memory capacity has been linked
to goal-selection errors in the Tower of Hanoi (Just, Carpen-
ter, & Hemphill, 1996). Finally, fewer post-completion
errors occurred when completed goals were allowed to decay,
suggesting that activation is a limited resource that can shift
among goals (Byrne & Bovair, 1997). The traditional task-
goal stack, for example as found in ACT-R and Soar, sim-
ply cannot account for these results.

In sum, a variety of evidence suggests that memory for
pending goals is strategic and effortful rather than perfect and
automatic, contradicting the stack’s fundamental predictions.

Storing Task Goals in Memory
If the analyst must do without the stack as a goal store, then
other storage mechanisms must provide whatever critical
functionality is lost. The natural stores to consider as substi-
tutes are those that hold other kinds of declarative informa-
tion, namely memory and the environment. These stores,
together with supporting cognitive processes, would have to
provide memory for goals and guidance for goal selection,
and do so at reasonable cognitive cost.

To examine this possibility, we modeled human perform-
ance on a canonical goal-based task, the Tower of Hanoi.
The structure of this task is such that the overall goal (of
relocating a tower of disks) has to be recursively decomposed
into subgoals (of moving individual disks). The task has
been widely studied and modeled, generally on the assump-
tion that people manage this decomposition using a stack.

Our starting point was a model by Anderson and Lebiere
(1998) that uses ACT-R’s stack in traditional fashion to
store task goals. Their model (Traditional Goal Stack, or
TGS) fits their data set (Anderson et al., 1993) remarkably
well, with R2 = .99 for response times on 4-disk trials and
R2 = .95 for 5-disk trials.

Our model (Memory as Goal Store, or MAGS) fits the
same data set equally well, with R2 = .99 for 4-disk trials
and R2 = .95 for 5-disk trials.

MAGS also goes beyond TGS to predict errors. TGS per-
forms every trial perfectly in the fewest possible moves,
which is 15 moves for 4-disk trials and 31 moves for 5-disk
trials. In contrast, MAGS veers off the optimal path due to
noisy retrieval of task goals from memory. In Monte Carlo
simulations MAGS predicted a mean of 18.0 moves per 4-
disk trial (3.0 errors) and 50.4 moves per 5-disk trial (19.4
errors). In the Anderson et al. (1993) data, empirical means

Memory for Goals 3

are 19.2 moves per 4-disk trial and 53.5 moves per 5-disk
trial, both within 10% of our predictions.

Instead of a task-goal stack, MAGS incorporates com-
monly-recognized limitations on memory like decay and
noise. Task goals are ordinary memory elements that have to
be encoded and retrieved in ways that overcome these limita-
tions. The processes that accomplish this goal management,
adopted from an independently-constructed memory model
(Altmann & Gray, 1999), account for response-time patterns
in the data set. Moreover, instead of goal order being retained
internally, goal selection is guided by cues from the envi-
ronment. Finally, in addition to functioning without the
stack, MAGS uses fewer free parameters than TGS.2

Figure 2 shows response-time data from 4-disk trials
solved in the fewest possible moves. The empirical data
(solid ink) are from Anderson et al. (1993), and the simula-
tion data (dashed ink) are from MAGS. There are several
patterns in the data that both MAGS and TGS account for,
but we focus on how MAGS accounts for the large latency
peaks at moves 1, 9, and 13, the latency valleys at even-
numbered moves, and the small peaks at remaining moves.

Task Goals in the Tower of Hanoi
The algorithm used by the Anderson et al. (1993) partici-
pants combines the goal-recursive and perceptual strategies
described by Simon (1975). The algorithm, shown in Figure
3, starts by focusing on the largest out-of-place disk, which
we refer to as the LOOP disk. The LOOP disk is initially
disk 4 and rests on peg A with target peg C. The algorithm
first checks whether disk 3 blocks disk 4. (One disk blocks
another if it is smaller than the other and rests on the other’s

2 Default values are used for the ACT-R parameters of goal ac-

tivation (W = 1.0), base-level learning (d = 0.5), and latency
factor (F = 1.0). Transient activation noise (s = 0.3) and re-
trieval threshold (τ = 4.0) are taken from a model of a different
but related goal-management task (Altmann & Gray, 1999),
along with the mechanisms that depend on them. Encoding time
(185 msec) is taken from ACT-R models of menu scanning and
the Sperling task (Anderson, Matessa, & Lebiere, 1998). The
one free parameter is move time, which we set to the same value
as the Anderson and Lebiere model (2.15 sec). The model code i s
available for downloading at hfac.gmu.edu/people/altmann/toh.

source or target pegs.) Disk 3 blocks disk 4 so it must be
moved out of the way to peg B. This move is blocked by
disk 2, so disk 2 must be moved to peg C. This move is
blocked by disk 1, which must be moved to peg B (the filled
arrow in Figure 3). Thus, moving disk 4 to peg C (which
we designate 4:C) entails a plan whose first step is 1:B.

A task goal in this context is an association between a
disk and a target peg. The first task goal produced by the
algorithm is 4:C, the second 3:B, and the third 2:C. The
first of these (4:C) is readily inferred from the display by
comparing the current state of the puzzle to the end state.
However, the recursive task goals formulated in service of
4:C are not as easily available. These must be re-inferred
after every move using the algorithm or they must be stored
in memory and retrieved at the right time. Thus, for exam-
ple, once 1:B has been made, the next move could be in-
ferred anew by focussing on disk 4 again, then on disk 3,
and then on disk 2. Alternatively, if a task goal for 2:C had
been stored in memory during the first pass of the algo-
rithm, and if that task goal could be retrieved now, then a
second pass could be spared; memory would indicate 2:C.

The Anderson and Lebiere TGS model stores task goals
on the ACT-R stack. For example, the model pushes 4:C,
3:B, and 2:C as it infers 1:B. After making 1:B the model
examines the stack to see what move is on top. The top
move is 2:C, which can now be made. If the top move had
been blocked instead, the model would have pushed a new
goal to move the blocking disk. For example, once 2:C is
made, 3:B (underneath 2:C on the stack) is blocked because
disk 1 is at peg B, so the model would push a goal for 1:A.3

The MAGS model, in contrast, treats a task goal like any
other memory element. This poses two functional chal-
lenges. First, declarative memory elements in ACT-R, or
chunks, decay over time. Thus an old goal, like 3:B in the
example above, could be difficult to retrieve. Second, when
one goal is achieved another must be selected. LIFO ordering
is optimal for the Tower of Hanoi, so without the stack a
useful selection order must come from some other source.

One of the patterns in the data in Figure 2 is that the
peaks at moves 1, 9, and 13 decrease in size. These peaks
correspond to the planning phase in the MAGS model, and
the decrease is caused by successive shortening of the plan-

3 Note that the retention interval is longer for 3:B than it i s
for 2:C, at both ends: 3:B is both encoded earlier and retrieved
later. Despite this, both goals are equally available at retrieval
time because the stack preserves them perfectly.

0.0

2.0

4.0

6.0

8.0

10.0

1 3 5 7 9 11 13 15
Move number

RT
(sec)

Empirical
Simulated (MAGS)

Figure 2: Tower of Hanoi response times (RTs) for 4-
disk problems. Empirical RTs are from Anderson and Le-
biere (1998) and simulated RTs are from the MAGS model.

Figure 3: Planning a move in the Tower of Hanoi. Disk
4 must move to peg C (4:C), which entails 3:B, which
entails 2:C, which entails 1:B as the move.

3

2
1

B A C

44

Memory for Goals 4

ning phase. For example, planning move 1 means starting
with disk 4, whereas planning move 9 means starting with
disk 3, because disk 4 is in place and can be ignored for the
rest of the trial. With one fewer task goal to encode, plan-
ning move 9 is faster than planning move 1.

Encoding and Retrieving Task Goals
The first challenge in storing task goals in memory is to
encode them so as to resist decay. In MAGS the process that
accomplishes this is interleaved with the planning algo-
rithm. Whenever the model recurses to focus on a blocking
disk, it encodes a task goal for where it wanted to move the
blocked disk. The encoding process strengthens a goal using
cumulative mental rehearsal to a criterion that anticipates the
retention interval (Altmann & Gray, 1999). This process
accounts for the large latency peaks at moves 1, 9, and 13
(Figure 2). On these moves the model focuses on the LOOP
disk and encodes a task goal for that disk, then focuses on
the blocking disk and encodes a task goal for it, and so on,
until it reaches a disk it can move. These task goals repre-
sent a plan that was time-consuming to encode in memory.

The second challenge to storing task goals in memory is
to retrieve them in a useful order. In the Tower of Hanoi,
perceptual cues afford the same ordering information as the
stack does, and the MAGS model makes use of this informa-
tion. For example, when the model uncovers a disk it asks
itself, Where did I want to move the disk I just uncovered?
The nature of the task is such that simple heuristics like this
suffice to generate stack-like behavior.

Three simple heuristics produce optimal retrieval cues
from perceptual information.4 The first heuristic, retrieve-
uncovered, applies when a move uncovers a disk on the
source peg, and says simply to use the uncovered disk as a
cue (as described above). The second heuristic, retrieve-
larger, applies when a move empties a peg instead of uncov-
ering a disk. It says to use the next larger disk as a cue,
wherever that disk is now.

The third rule, retrieve-next, is needed because task goals
can become “stale”. Some disks move more than once while
the LOOP disk is being unblocked, so an old task goal may
indicate an obsolete target. For example, when the LOOP
disk is 4, disks 4 and 3 each move once, disk 2 moves
twice, and disk 1 moves four times before disk 4 is un-
blocked. The model encodes no task goals for disk 1, be-
cause disk 1 can always be moved. The first time disk 2 is

4 Pseudo-productions for the three heuristics are:
retrieve-uncovered:
 if the last move uncovered a disk,
 then retrieve a task goal for the uncovered disk.
retrieve-larger:
 if the last move emptied the source peg,
 and there is a next larger disk,
 then retrieve a task goal for the larger disk.

 retrieve-next:
if a task goal was retrieved for a disk,
and it says to move that disk to a peg,
and the disk is already on that peg,
and there is a next larger disk,
then retrieve a task goal for the larger disk.

used as a cue, its task goal indicates the correct target. The
second time, however, its task goal incorrectly indicates the
peg to which disk 2 was moved before. Retrieve-next recog-
nizes this situation and tries to retrieve a task goal for the
next larger disk.

When the model retrieves a task goal, it makes that move
if it can. If instead the move is blocked, the model invokes
the planning algorithm and focuses recursively on the block-
ing disk. However, the algorithm takes less time than it
would have otherwise, because the cue disk is a better start-
ing point than the LOOP disk for inferring the next move.

Some moves can be selected efficiently without retrieving
goals from memory. An admissible heuristic in the Tower
of Hanoi is don’t-undo, which produces a single candidate for
all even-numbered moves. A second heuristic, one-follows-
two, is that when disk 2 moves, disk 1 should always be
moved on top of it. In one closely-studied Tower of Hanoi
session, the participant used both heuristics throughout de-
spite being a novice (VanLehn, 1991). On these grounds we
assume that the Anderson et al. (1993) subjects also used
both heuristics, and incorporating them in our model im-
proved its fit to the data. Don’t-undo is responsible for the
latency valleys at even-numbered moves, and one-follows-
two reduces the small peaks at moves 3, 7, and 11 to less
than the small peak at move 5 (Figure 2). Thus many
moves in the Tower of Hanoi can be governed by simple
perceptual information, reducing the burden on memory for
goals and the need to posit a mechanism like the stack.

Roles for the stack
Our analysis suggests that a stack is not necessary to ac-
count for human performance in a canonical goal-based task.
This undermines the traditional rationale for the architectural
stack in theories like Soar and ACT-R, raising more general
questions about the stack’s role in cognitive theory. We
suggest that the stack has several roles to play, but argue
that it can and should be constrained to grow no more than
two elements high at run time. The argument is based on a
closer examination of our model and of learning mechanisms
in both architectures.

Focusing Attention
MAGS uses the stack to focus attention on task goals. In
ACT-R, the construct of attention is represented in part as
activation, which affects the availabilty of chunks in mem-
ory. The more active a chunk, the greater the speed and like-
lihood of its retrieval (Anderson & Lebiere, 1998).

Activation in ACT-R has two components, source activa-
tion and base-level activation. Source activation captures the
effect of context. Metaphorically, source activation acts as a
spotlight on one chunk in memory. This focussed-on chunk,
always the top chunk on the ACT-R stack, then radiates
source activation to other, related chunks in memory. The
link through which source activation spreads, which we refer
to as a cue, is itself a chunk contained in the focussed-on and
related chunks. Should the related chunk be the target of a
retrieval, source activation is one component of its total
activation. The other component is the target's base-level
activation, which captures the effect of history. Base-level
activation increases (strengthens) with use and decreases (de-

Memory for Goals 5

cays) without. Noise in memory is represented as transient
fluctuation in total activation.

The need to focus attention arises because the amount of
source activation is fixed and divided equally among the cues
in the focussed-on chunk. Thus the more cues there are, the
less effective is any one of them in activating a given target.
The stack enables strategic control over attention by allow-
ing the system to push a subgoal containing cues selected so
that all available source activation reaches the target. When
retrieval succeeds (or the attempt is abandoned), the subgoal
pops and the architecture restores the greater context by refo-
cussing on the older goal. The hypothesis is that with prepa-
ration (creating and pushing a subgoal), cognition can main-
tain context through intervals of focussed attention.

In MAGS, the need to focus attention arises because the
model keeps a variety of state information in the focussed-on
chunk. This information includes the source and target pegs
of the previous move and the disks that were covered and
uncovered. This information interferes with task-goal re-
trieval by drawing source activation away from the cue disk.
To overcome this interference, the model pushes a subgoal
containing only the cue disk, which then directs all available
source activation to the target task goal. After retrieving the
task goal the model pops the retrieval subgoal, causing
ACT-R to refocus on the chunk below it on the stack. This
older chunk contains the same state information it did be-
fore, now augmented with the target peg from the task goal.

The encoding process also needs to focus attention, be-
cause it needs to simulate the retrieval context to know
when to stop. The encoding process functions by strengthen-
ing the task goal's base-level activation. To determine when
this activation is high enough, the encoding process pushes
a subgoal containing only the retrieval cue and attempts a
retrieval.5 If this retrieval succeeds, the encoding process
exits because it has verified that the task goal's retrieval de-
mands are likely to be met.

In sum, ACT-R’s stack plays a key role in MAGS, not
directly by storing task goals but indirectly by supporting
the processes that encode and retrieve them. Thus the stack
remains a core construct, but at a finer grain of analysis than
its traditional interpretation as a theory of memory for goals.

Learning
The stack plays other roles in both ACT-R and Soar, one of
which is learning of productions. Productions specify a con-
ditional transformation on the current focus of attention, or
state. Half the production (the condition) specifies the input
state to the transformation, and the other half (the action)
specifies the output state. Learning a new production there-
fore entails retaining a memory of the input state while the
output state is generated. The stack is a natural way to im-
plement this learning. For example, Soar models often learn
by pushing a duplicate of the input state onto the stack and
transforming the duplicate into the output state. When the
transformation is done, both states are available as blue-
prints for the new production, whose conditions are patterned

5 This test retrieval is scaled to the size of the disk, to model

our assumption that practiced subjects will adapt to the fact that
task goals for larger disks have longer retention intervals.

on the input state and whose actions are patterned on the
output state. The new production caches in one step the se-
quence of steps that transformed the state

Several learning mechanisms in ACT-R also make use of
the stack. First, in declarative learning a chunk enters long-
term memory when popped off the stack, on the premise
that any information deliberately focussed on leaves a trace
in memory. Second, production learning is also deliberate in
that it requires pushing a special kind of subgoal to create a
new production. In both cases, the stack maintains a previ-
ous context while the system focuses temporarily on learn-
ing, much as the stack maintains an older context while
MAGS focuses attention. Third, in learning the utility of
productions ACT-R credits a production pending the out-
come of the goal created by that production. This credit as-
signment requires that the old goal stay available over time.
Fourth, the stack has been used to control the associations
learned between cues and facts (Anderson & Lebiere, 1998,
Ch. 9) in a manner also related to attention focussing.

A two-high stack suffices for the architectural learning
processes outlined above. Two states support symbolic
learning, and support subsymbolic learning for one unit of
procedural knowledge or one declarative association at a
time. A two-high stack is also sufficient for modeling com-
plex, goal-based behavior in a range of domains, including
programming (Altmann & John, in press), exploratory
learning (Howes & Young, 1996; Rieman, Young, &
Howes, 1996), and serial attention (Altmann & Gray, 1999),
as well as the Tower of Hanoi. Indeed, representation deci-
sions concerning goals and goal selection are simpler when
there is no open-ended choice for the analyst to make about
what stack depth best accounts for the participant’s state of
mind at a given instant.

Conclusion
The stack captures the means-ends structure of many tasks,
but, we argue, is a poor explanation of cognitive perform-
ance on those tasks. It over-predicts memory for goals and
goal order and under-predicts the cost of encoding and re-
trieval. We made this case in part with reference to data on
prospective memory, goal selection order, and the relation-
ship between goals and working memory.

We also made the case with an analysis of the Tower of
Hanoi. This task is traditionally assumed to induce cognitive
goal stacking, and the TGS model of Anderson and Lebiere
(1998) incorporates this premise. However, our MAGS
model improves on TGS in several ways. First, it dispenses
with the task-goal stack, which we argue is cognitively im-
plausible, while achieving an equally good fit to response-
time data. Second, in place of the task-goal stack MAGS
incorporates independently-constrained memory mechanisms
(Altmann & Gray, 1999). Third, MAGS goes beyond TGS
to predict errors as well as response times. Fourth, MAGS
uses fewer free parameters at the subsymbolic level. MAGS
thus offers an accurate, well-constrained, and broad account
of empirical data, increasing our confidence that performance
in the Tower of Hanoi reflects the reality of memory and
attention rather than the reality of the task-goal stack.

The use of perceptual cues in MAGS is congruent with
routine use of such cues in behavior that appears plan-like to

Memory for Goals 6

the observer (Suchman, 1987; Vera, in press). It also pre-
dicts that tasks will be much more difficult when goal order
is relevant but perceptual cues to order are not available. In
such situations goal order must be explicitly encoded in
memory, requiring more time and possibly the knowledge
and techniques underlying skilled memory (Ericsson &
Kintsch, 1995). If selection order is not relevant, then selec-
tion should be guided by factors like the recency and fre-
quency with which pending goals were checked or rehearsed.

Whereas the stack is a poor theory of memory for task
goals, a limited stack is a natural basis for sub-theories of
attention and learning. Moreover, a limit of two elements
has proven not only workable but parsimonious in several
models of goal-based behavior, and thus may be appropriate
to enforce in cognitive architectures like ACT-R and Soar.

Cognition may of course still provide specialized, stack-
like support for means-ends processing under circumstances
that we have not anticipated. In favor of this view, one could
argue that memory has likely adapted to the means-ends
structure of the environment as it has adapted to the structure
of the environment in other ways (Anderson, 1990). It re-
mains for future research to identify control processes or
memory subsystems that function like a stack under appro-
priate circumstances, or to add to the evidence that pending
goals are stored in memory like any other information.

Acknowledgments
The first author is supported by Air Force Office of Scien-
tific Research grant F49620-97-1-0353, and the second
author by funds from the Office of Naval Research. We
thank B. D. Ehret, W. T. Fu, W. D. Gray, I. R. Katz, A.
W. Lipps, S. L. Miller, L. D. Saner, M. J. Schoelles, C.
D. Schunn, S. B. Trickett, S. Varma, and an anonymous
reviewer for their comments.

References
Altmann, E. M. & John, B. E. (in press). Episodic index-

ing: A model of memory for attention events. Cognitive
Science.

Altmann, E. M. & Gray, W. D. (1999). Serial attention as
strategic memory. Proceedings of the twenty first annual
conference of the Cognitive Science Society, to appear.

Anderson, J. R. (1990). The adaptive character of thought.
Hillsdale, NJ: Erlbaum.

Anderson, J. R. & Lebiere, C. (1998). The atomic compo-
nents of thought. Hillsdale, NJ: L. Erlbaum.

Anderson, J. R., Kushmerick, N., & Lebiere, C. (1993).
The Tower of Hanoi and goal structures. In J. R. Ander-
son (Ed.), Rules of the mind. Hillsdale, NJ: L. Erlbaum.
121-142.

Anderson, J. R., Matessa, M., & Lebiere, C. (1998). ACT-
R: A theory of higher-level cognition and its relation to
visual attention. Human-Computer Interaction, 12 , 439-
462.

Byrne, M. D. & Bovair, S. (1997). A working memory
model of a common procedural error. Cognitive Science,
21, 31-61.

Carpenter, P. A., Just, M. A., & Shell, P. (1990). What
one intelligence test measures: A theoretical account of

the processing in the Raven Progressive Matrices test.
Psychological Review, 97, 404-431.

Just, M. A., Carpenter, P. A., & Hemphill, D. D. (1996).
Constraints on processing capacity: Architectural or im-
plementational? In D. M. Steier & T. M. Mitchell (Eds.),
Mind matters: A tribute to Allen Newell. Hillsdale, NJ:
L. Erlbaum. 141-178.

Egan, D. S. & Greeno, J. G. (1973). Theory of rule induc-
tion: Knowledge acquired in concept learning, serial pat-
tern learning, and problem solving. In L. W. Gregg (Ed.),
Knowledge and cognition. Hillsdale, NJ: Erlbaum. 43-
103.

Goschke, T. & Kuhl, J. (1993). Representation of inten-
tions: Persisting activation in memory. Journal of Ex-
perimental Psychology: Learning, memory, and cogni-
tion, 19, 1211-1226.

Gray, W. D. (in press). The nature and processing of errors
in interactive behavior. Cognitive Science.

Ericsson, K. A. & Kintsch, W. (1995). Long-term working
memory. Psychological Review, 102, 211-245.

Howes, A. & Young, R. M. (1996). Learning consistent,
interactive and meaningful task-action mappings: A com-
putational model. Cognitive Science, 20, 301-356.

John, B. E. (1996). Task matters. In D. M. Steier & T. M.
Mitchell (Eds.), Mind matters: A tribute to Allen Newell.
Hillsdale, NJ: L. Erlbaum. 313-324.

Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans
and the structure of behavior. New York: Holt, Rinehart,
& Winston.

Newell, A. (1990). Unified theories of cognition. New
York: Harvard.

Rieman, J., Young, R. M., & Howes, A. (1996). A dual-
space model of iteratively deepening exploratory learning.
International Journal of Human-Computer Studies, 44 ,
743-775.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1988).
Meta-levels in Soar. In P. Maes & D. Nardi (Eds.), Meta-
level architectures and reflection. Amsterdam, The Nether-
lands: Elsevier Science Publishers B.V. 227-240.

Simon, H. A. (1975). The functional equivalence of prob-
lem solving skills. Cognitive Psychology, 7, 268-288.

Suchman, L. A. (1987). Plans and situated action: The prob-
lem of human-machine communication. New York: Cam-
bridge University Press.

VanLehn, K. (1991). Rule acquisition events in the discov-
ery of problem solving strategies. Cognitive Science, 15 ,
1-47.

VanLehn, K., Ball, W., & Kowalski, B. (1989). Non-LIFO
execution of cognitive procedures. Cognitive Science, 13 ,
415-465.

Vera, A. H. (in press). By the seat of our pants: The evolu-
tion of research on cognition and action - Review of Plans
and situated action. Journal of the Learning Sciences.

Young, R. M. & Lewis, R. L. (in press). The Soar cogni-
tive architecture and human working memory. In A. Mi-
yake & P. Shah (Eds.), Models of working memory:
Mechanisms of active maintenance and executive control.
New York: Cambridge University Press.

