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Abstract

We present an ACT-R model of signal-to-respond lexicai
decision. This model is based on a mental lexicon
constructed from a complete list of English four-letter
words with associated word frequencies A number of
(sighal-to-respond)  lexical decision phenomena  are
explained by the model, without having to rely on
mechanisms  specific o lexical decision  Besides
explaining these phenomena, the mode] also illustrates
the necessity of a competitive latency mechanism
According to this mechanism, the time necessary for
retrieving an element from declarative memory is a
function of the activation of all other elements in
declarative memory We argue that the data presented
here can only be explained using a competitive laiency
mechanism

General Introduction

A task often used to study the human mental lexicon is
lexical decision. In a lexical decision task, participants
are presented strings of letters that have to be
categorized as word (e g, “wree”) or nonword {eg.
“arda™) Experiments involving lexical decision are
generally aimed at shedding light on the issues related
to the storage and retrieval of words during normal

linguistic processing. However, most accounts of

human Jexical decision performance involve task-
specific mechanisms that are imelevant to normal
Hnguistic processing. The model presented in this paper
proposes an explanation for lexical decision that solely
relies on mechanisms involved in everyday memory
processing.

This paper focuses on the empirical data reported by
Wagenmakers et al. (2001, Exp. 2), parts of which were
earlier published in Steyvers, Wagenmakers, Shiffrin,
Zeelenberg, and Raaijmakers (2001). The work
presented by Wagenmakers et al. focuses on three
phenomena: (1) The word frequency effect. Words that
occur more often are recognized faster and more
accurately than words that occur less often. (2} The
repetition priming effect. If a word has been presented
recently, second presentations are associated with faster
correct classifications However, nonwords are often
reported to have a decreased accuracy on second
presentation  (3) The wnonword lexicality effect
Nonwords that are more like legal words (eg, by
following the orthographic rules of a language more
closely) take longer to be classified than nonwords that
deviate more substantially from legal words.
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Participants in classical respond-when-ready (or
“speeded”) paradigms of lexical decision are typically
instructed to respond “as fast and accurately as
possible”. Besides introducing the classical speed-
accuracy trade-off, the respond-when-ready paradigm
also limits the information available for inspection to
one data point after processing has been finished As
the dynamics of processing might be different between
conditions that eventually result in similar data, it can
be difficult to distinguish between different accounts of
behavior. In a signal-to-respond task setting (Antos,
1979; Hintzman & Curran, 1997), participants are
required to respond at an (audible) signal. By
distributing a number of signals over a typical lexical
decision reaction time, intermediate accuiacy
information becomes available that reflects the time
course of processing.

In their study, Wagenmakers et al presented
participants’ four types of stimuli of either four or five
jetters in a signal-to-respond lexical decision task: 168
high frequent (HF) words, 168 low frequent (LF)
words, 168 pronounceable nonwords (NW1) that had
been constructed by replacing one letter from a word,
and 168 pronounceable nonwords (NW2) that differed
at least two letters from a word. Because of modeiling
constraints, we will focus in this paper on the four-letter
words, leaving 48 words per condition. The time (tag)
between presentation of the stimulus and the respond
signal was 75, 200, 250, 300, 350, or 1000
milliseconds. Each of the stimuli was presented twice,
and after each presentation, accuracy and timing
feedback was provided to the participant

The four-letter word results for both the initial
presentation (open markess) and repeated presentation
(closed markers) are presented in Figure | as a function
of lag. The y-axis represents the proportion of word
answers to the stimuli presented for the various
conditions. As this axis represents the answer for the
correct response for the word conditions but represents
the incorrect response for the nonwords, this figure can
be thought of as a hit/false-alarm plot. The data points
at the right side of this figure, at a lag of 1000
milliseconds, resemble data commonly found in
respond-when-ready lexical decision tasks: high

! Note that a disadvantage of the signal to respond method
is its difficulty from the participants’ perspective It is not
uncommon to have to remeove the data of 25% of all
perticipants because of poor response timing, excess errois,
eic
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accuracy for HF and NW2 conditions, lower accuracy
for LF and NWI conditions

asﬁanselglgnai {in s}

Figure 1 FEmpirical observed hit and false-alarm
rates for the subset of four letter words in the
signal-to-respond  experiment as reported in
Wagenmakers et al (submitted, Exp 2) Note
that the data is plotted based on the signal time,
not on the actual reponse times See text for the
explanation of the abbrevations

The most striking effect shown in this figure is the
effect of processing time on the P(W) for both word and
nonword conditions: the more time is given for a
response, the higher the accuracy (ie, the higher the
chance of a word-answer for word stimuli and the lower
the chance of a word-answer for nonwoids) However,
whereas both the HF and NW2 condition show a fast
increase in accuracy, performance for the LF condition
is toughly at chance for the first five lags, only to
improve for the longest lag. The NW] condition takes
an intermediate position, dropping not as fast as the
NW2 condition, but also not rematning as long at
chance level as the LF condition

The effect of repetition priming is straightforward for
both word conditions: the second presentation shows
improved accuracy. Although this effect is relatively
small for HF words - probably due to ceiling effects -
LF words show a latge effect of repetition priming,
almost resembling the accuracy for HF words at first
presentation  With respect to the nonword conditions,
the accuracy decreases over time for both NWi and
NW2 stimuli, but the deciease of the NW2 condition is
relatively small compared to the decrease of the NW1
condition

The increase in accuracy for the word conditions
might be explained by assuming instance-based
memories, linking the stimuli to the feedback given at
the end of each trial However, the significant decrease
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in performance for the NW! condition refutes this
explanation. That is, if instances formed at the first
ptesentation would be used to answer the second
presentation; the NW1 and NW2 conditions should also
have shown an increased accuracy instead of the
observed decrease (Steyvers et al , 2061)

The ACT-R Model of Lexical Decision

ACT-R

ACT-R (Anderson & Lebiere, 1998} is a hybrid
architecture in which production rules control behavior,
This behavior is often mediated by the availability of
declarative knowledge . The current discussion is mainly
focused on declarative memory, as this part of the
architecture underlies the model’s explanations of
behavior. Declarative memory in ACT-R consists of
typed memory structures, referred to as chunks. Each
type of chunk has a predetermined number of slots,
representing, for example, the individual letters of a
word Furthermore, each chunk has an associated
activation (B)), calculated as:

B =ln(2.1;*)

This function determines the relative contribution of
a previous encounter {/) to the base-level activation of
chunk i as a power function of the time (tj'd) that has
passed since that encounter The decay parameter (d) is
traditionaily set at 5

When a production rule requests the retrieval of a
chunk, the activations of all chunks are updated to
reflect the context of the current retrieval request. As B,
reflects the activation of a chunk when the context fully
matches, this updating involves accounting for
mismatches between context and chunk slots The
activation of a chunk can therefore be expressed as:

4,=B-Y D, +o

where [ is a fixed penalty if the letter in slot j
mismatches The last term in this formula, o, reflects
the moment-to-moment normal distribution based noise
added to the activations {mean of ), 5D of 0.5). After
this updating, the most active chunk is selected for
farther 1etrieval. One of the competitors for retrieval is
the retrieval threshold (t) That is, if none of the chunks
has an activation above t, the threshold is “retrieved”,
signaling a failed retrieval.

In contrast to the default ACT-R chunk retrieval
latency mechanism, the current model wuses a
competitive |atency mechanism {Lebiere, 2001) This
change from a local latency mechanism to a global,
competitive latency mechanism will be extensively
discussed in the Discussion According to this
competitive latency mechanism, the time necessary to
retrieve the most active chunk {i} depends both on its
own activation (A;), the activation of al] other chunks
(A}, the retrieval threshold (7), and two scaling
parameters {F and £, of which F was fixed at 1)
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The Model

The model hypothesizes that the behavior of a
participant in the lexical decision task consists of the
following steps:

1. The presented letter string is encoded in a
production rule that initiates the retrieval request

2. The procedural part of the model waits for an event
to occur, being either a signal-to-respond or the
finished declarative retrieval.

3. If a word is retrieved before the signal sounds, note
that the answer is “word” and wait for the signal
before pressing the word-button

4. If the declarative system reports that all words are
less active than the retrieval threshold, note that the
answer is “nonword” and wait for the signal before
pressing the nonword-button.

5 If the sigpal-to-respond is perceived after a
word/nonword decision has been made based on
information from the declarative memory, report
that decision

6 If the signal-to-respond is perceived before the
retrieval is finished, guess the answer by choosing
between word and nonword with a pre-specified
ratio

Assuming that the encoding of the stimulus and the
response processes take a fixed amount of time, the
main determinant of behavior is the retrieval process,
initiated at Step | and finalized at either Step 3 or 4
The data shown in Figure 1 plots the P(W) against the
signal times, not against the {average) reaction times.
The average difference between the actual response and
the signal is 216 ms, which is roughly similar what
would have been predicted by the perceptual/motor
interface of ACT-R for the encoding of a string and the
pre-programmed pressing of a button.

Traditionally, ACT-R models rely on a relatively
smail number of declarative facts that are learned
during the course of a simulated experimental session.
However, a mode] of lexical decision necessarily
requires the incorporation of a mental lexicon that
represents the aggregation of long-term experience with
word recognition Although literature reports several
successful models with mental lexicons of limited size
and artificial lexicons, the model discussed here is
based on the complete CELEX four-letter word lexicon
of English (Baayen, Piepenbrock, & Van Rijn, 1993)
That is, each word in the original database is
represented in declarative memory as a memory
structure with four slots, each of these slots representing
a position-encoded letter. The total number of four-
letier words in the CELEX database is slightly less than
7000. However, for simplicity we assume that
homographs share their orthographic representations,
bringing the number of chunks in the model down to
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2479 Each of these words has an associated base-level
activation, determined on the basis of its CELEX
wordform frequency (in the case of the homographs,
based on their summed frequency) which is added 1o 2
base fiequency of 50 As no information is available
about the distribution of word encouniers, we assume
an evenly spaced distribution of encounters Given this
assumption, the base-level activation is determined by
the optimized version of the base-level activation
equation:

B, =ln[1 ”d)—dln(T)

In this equation, i equals the word’s frequency and T
represents the total age of the chunk As we have no
information of the age of individual chunks, this value
is approximated for ali chunks by the sum of all word
frequencies (i.e., T=2{n;) ).

1f a word was retrieved during the first presentation,
its baselevel activation is increased by the ACT-R
learning mechanism Based on the details of the task of
the experiment we assumed 48 seconds between first
and second presentations’. The optimized activation
formula used for the frequency based activation and the
repetition priming activation component are combined
by: Bg,,d"—“ln(en"‘+B,-), in which By is the activation at
the start of the second presentation, By is the activation
based on the CELEX frequency, and B is the activation
related to the recent encounters (see Petrov &
Anderson, 2000, for a similar approach)

This process is straightforward to apply to the items
in the word conditions If a word is retrieved, its
number of references and therefore its activation is
updated With respect to the nonword conditions, we
assume that if a “word” answer is given, the nonword
might have been incorporated in the declarative
memory in a representation similar to the “normai
words” These new representations start out with a
frequency equal to the frequency of the lowest frequent
word.

Taken together, the assumptions underlying the
repetition priming in the current model iz that when a
word answer is given, a word representation is primed,
either by increasing the activation of an existing word,
or by the construction of a new chunk representing the
presented stimulus

Simulation Results

Figure 2 depicts the simulation results of the above-
discussed model®. To average out the effects of noise in
activation, this figure shows the averaged results of 10
model runs. The lines with the filled markers represent

? Ag aretrieval often involves the subsequent representalion
of that chunk in a production rule, a single retrieval is
typically represented 28 two closely spaced references In the
model presented in this paper, both t values are set at 48
seconds

' An R simulation (Ihaka & Gentleman, 1996) of this
mode! is available at httpu//www. van-rijn org/hedderik/storld
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the first presentation data; the lines with open markess
represent the second presentation data.

Tf the modei encountered the signal-to-respond betore
having any other information available, it guesses an
answer The proportion of word answers when guessing
was set at 44, being the mean P(W) of the LF words
and the two nonword conditions at the first lag As the
HF word condition already seems to have an effect on
P(W) at the shortest lag, this condition was not included
in setting the guessing parameter

Simulation Data:’ ‘
- First vs Second Presentation

Figure 2 Simulation results for the four-letter words.

For the data of the first presentation, the f parameter
was set at 05 to constrain the effects of the laige
number of chunks on the competitive latency. The
mismatch penalty was estimated at [ = 6 and the
retrieval threshold at T = -3. Based on these estimations,
the model’s fit of the first piesentation data is R'= 97
For the second presentation’s data, no parameters have
been changed nor are new parameters introduced. As
discussed earlier, references to words in the nitial
presentation increase the words activation by a value
directly derived from the experimental setup The
model’s fit of the second presentation is R = 94,
resulting in an overail R?of 95

The answers given by the model can be either guess
based (P(W)=44), based on the reizieval threshold
(P(W)=0), or based on the retrieval of a correct or an
incorrect word (P(W)=1) The breakdown of the
behavior of the model for the first presentations in
terms of these undetlying mechanisms is shown in
Figure 3. This figure shows the underlying dynamics of
the simulation depicted in Figure 2 At short lags,
specifically for the NW1 and LF words conditions, the
answer mechanisms have not had the chance to
influence the answer decision, yielding the majority of
answering being based on guessing, which results in a
P(W) of about 44 At longer lags, the deciarative
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memory system has enough time to return informatjop
either being a retrieved word or representing a ’“e“‘%@Va{
failure. Together, the word retrievals and the retrieyvq)
threshold determine the accuracy.

T o 200 400 60 80D

7 77 Raspanso gl (inms)

- HW1 Condition

P{Mpchanism} -

- @ 200 400, 500 800

i ;ﬁu§gun§n$i§ﬁdlkinmsi :

Figure 3 Breakdowns of mechanisms underlying
behavior for the first presentation simulations
Solid lines marked with circles represent the
proportion of answers based on the retrieval
threshold, dashed lines marked with tiangles
represent retrieval of another word than the
target word, and dotted lines with plusses
represent the retrieval of the target word Nol
shown are the puesses whose proportion is |
minus the observed propartions.

Figure 3 illustrates that most of the answers at long
lags are based on the (correct) retrieval of the target
word, or on the inability to retrieve a word. Only in the
NW1 condition, the model retrieves an incoriect word
in a number of cases. As the model does not check the
retrieved chunk against the perceived input. i simply
answers word based on this retrieval. The figure also
shows that for each condition one mechanism
dominates the others; the time course of this mechanisa
is the main predictor of the behavior of the model For
both the HF words and the NW2 conditions, the 1elative
contribution of the involved mechanisms quickly 1ises
to almost 100% usage with very little guessing For
both the LE words and the NWI conditions. the
performance rises more gradually As both the ret jeval
of a word and the retrieval threshold mechanisims take
fonger, behavior is close to chance level for a longer
period This is caused by the combination of wo
processes. As the activation of the LF woids is
relatively low, their latencies are relative long When it
takes longer to retrieve something from memory and
therefore to base an answer on retrieval, the guess
mechanism determines behavior for a longer period
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The other process is related to the competitive latency
mechanisn. As the ratio between the targeted chunk (or
the retrieval threshoid) and the other chunks is small, it
will take longer to retrieve that information, yielding a
similar effect as described above For the LF words, this
ratio is small because of their relative low frequencies.
For the NW1 condition, the latency for the retrieval
threshold is increased because of the higher number of
gimilar word competitors {“neighbors™)

With respect to the repetition priming for the word
conditions, because of the new additional references to
the word chunks, their P(W) increases However, as
ACT-R predicts a greater impact of additional
references on the activation of low activated words (ie,
Jow frequency words) than on the activation of high
activated words, the model shows an increased effect
for the LF words compared to the HF words. The
ceiling effect discussed in the context of Figure I is
therefore not purely based on a ceiling in the P(W)
statistic, but would also exist based on the leveiing
properties of the ACT-R activation and retrigval
equations as an additional reference would not add
much activation in absolute terms to an already highly
active chunk. The repetition priming of the nonword
conditions is explained by the assumption that the
“word” answers o nonwords can lead to representing
that nonword in memory. 1f the model retrieves the
representation of that nonword at the second retrieval,
the model answers “word”. Theiefore, P{W) will also

increase for the nonwoid conditions. As the number of

word responses during the first presentation is lower for
the NW2 condition than for the NW1 condition, the
increase in P(W) will be smaller for NW2 than for
NW1

Discussion

in the introduction, three phenomena were identified
that are often associated with lexical decision The
model presented in this paper can explain all three
phenomena relying solely i terms of mechanisms that
would play a role in normal word recognition or
memory

The explanation for the word fiequency effect 1s most
straightforward. The observed empirical frequencies of
all words are used to determine their activations. As the
activation of a chunk is the main determinant of the
time necessary lo retrieve that chunk, the word
frequency effect is easily explained However, the
model does show that (1) empirically gathered
frequencies are good inputs for determining the
activation of chunks representing words; and (2) the
model shows correct behavior for both frequency
conditions, even when a complete, corpus-based
lexicon is included, and does not have the scaling-up
problems as often associated with computational
models (although representational issues remain, as the
current model only incorporates four-letter woids).
With respect to the first issue, the model predicts both
the effects for the HF and LF words using the raw
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frequencies {with the additional base frequency) No
further transitions were necessary, and because the
activation is directly based on the frequency, no
parameters have to be used to define the relation
between the HF and LF words {cf, Wagenmakers
etal, 2001} An additional advantage of using a
complete corpus as mental lexicon is that it provides a
direct way to assess the behavior of {(individual) words.
This provides an opportunity to eventually compaie
empirical data and the behavior of the modei at a finer
grain size. The second issue also illustrates the
robustness of the ACT-R implementation of this model
By including a complete lexicon, the model avoids
issues such as scaling-up problems or brittleness
Furthermore, this approach also allows easy conversion
to other corpora. The model can be equipped with a
different lexicon without concemns aboul necessary
extensive retraining, as long as a sensible estimate I8
known for each word's frequency
The repetition priming effect is explained by increasing
the number of references (i.e, the frequency) 10 2
chunk Again, the basic ACT-R mechanisms suggested
a straightforward implementation of this phenomenon
that proved to be highly successful in that the model’s
repetition priming predictions are essentially a zero-
parameter fit Given the nature of the activation
formulae, the relative increase in activation for a HF
chunlk is smaller than the relative increase in activation
for a LF chunk. Because of this negative cosrelation
between the amount of additional activation from
priming and the before-priming activation of the primed
chunk, ACT-R does inherently predict the larger
priming effects for LF words

Without the competitive latency equation, the
nonword lexicality effect could probably not have been
explained within the ACT-R framework Given the
importance of this change, it will be discussed in more
detail below.

Competitive Latency and Nowword Lexicality Effects
When using the defauit ACT-R latency equation, the
retrieval latency of a chunk is a direct function of the
activation of that chunk (A;) scaled by two parameters
(F and /, of which the latter is often fixed at 1)
Time, = Fe ™

The time to register a retrieval failure is determined
by the retrieval threshold (1), replacing the activation
(A with the threshold’s value According to this
formulation, the time to register a retrieval failure is
solely based on the activation of the threshold itself. As
the threshold is obviously set to a fixed value for all
levels of an experiment, no difference in behavior can
be observed for conditions in which behavior is mainly
determined by the retrieval threshold Therefore,
observed differences in the nonword conditions as
shown in Figure 1 cannot be explained using the default
ACT-R latency equation to determine the latency of a
retrieval failure. A solution that seems to be
straightforward is to assume that because of the relative
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higher word resemblance of NW1 stimuli than of NW2
stimuli, the model 1etrieves more often words similar to
the NW1 stimuli This way, the P(W) would increasg if
one assumes a word retrieval results in a “word”
response. However, as the difference in P(W) for the
NW1 and NW2 condition starts at very short lags, the
retrievals of similar words have to be about as fast as in
the HF word condition And although the median of the
frequencies of the wotds most similar NW1 nonwords
is higher than that of the LF words (585 vs 69), it is not
close to the median frequency of the HF words {1323)
Fven if this difference would cause P(W) to be
increased for the short lags, it would also assume that
the relative difference between the P(W) ratios for NW1
and NW2 would increase over lags That is, the longer
the lag, the higher the chance that a similar word has
been retrieved As Figure 1 shows, the difference
between the P(W) ratios for NW1 and NW2 does not
become bigger (In fact, the difference shows an
inverted U-shape, being smali at the short and long lags,
and bigger at the intermediate lags ) Therefore, it seems
that there is no straightforward way to explain the
results for the NW1 and NW2 conditions using the
default latency equation and the assumption that the
retrieval of a word always results in a “word” reponse
If one would assume that the retrieval of ar incorrect
word vields a “nonword” respone, an explanation using
the default latency equation becomes even harder. As
the NW1 stimuli share more features (i e, letters) with
existing words, these similar words will be retrieved
more frequently for NW1 stimuli than for NW2 stimuli.
As the retrieval of an incorrect word yields a decrease
in P{W), this would predict P{W) for NW1 to be lower
than for NW2

Using the competitive latency equation combined
with the when a word is retrieved, give “word” as
response notion provides an intuitive solution to this
problem As has been described earlier, this mechanism
states that the retrieval latency of a chunk {or the
retrieval threshold) is a function of the activation of all
other chunks in declarative memory Because NWI
stimuli are more like “normal” words, these stimuli
share more features with words in the mental lexicon
than NW2 stimuli. Therefore, the total mismatch
penalty administered is smailer in the case of an NW1
stimufus trial than in 2 NW2 stimulus trial. Because of
the higher overall activation (caused by less decrease),
the numerator of the competitive latency equation is
bigger, resulting in slower retrievals. As the retrieval
threshold can be thought of as a chunk that competes
for retrieval, its latency will also be increased.
Therefore, the onset of responses based on the retrieval
threshold will be delayed, causing the model to guess
its answer for a longer period As guessing results in
higher P(W) values, the NW! condition wili show
higher false-alarm rates.
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