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Dynamik der Kognition: Ein ACT-R Modell
zur Kognitiven Arithmetik

Zusammenfassung.Forschungsarbeiten zur Kognitiven A-
rithmetik untersuchen die mentale Repräsentation von Zah-
len und arithmetischen Fakten sowie die kognitiven Prozesse
die diese generieren, abrufen und manipulieren. Das Span-
nungsfeld zwischen der scheinbar einfachen formalen Struk-
tur dieses Aufgabenbereichs und den Schwierigkeiten, die
Kinder bei seiner Beẅaltigung haben, stellt einen einzigarti-
gen Zugang zum Studium kognitiver Prozesse dar. Der vor-
liegende Beitrag präsentiert einen Erklärungsansatz der zen-
tralen Befunde des Forschungsgebietes auf der Grundlage ei-
nes ACT-R Modells zur Lebenszeit-Simulation des Erwerbs
arithmetischen Wissens. Die Anwendung der Bayesischen
Lernmechanismen der ACT-R Architektur zeigen auf, wie
sich diese Befunde auf die statistische Struktur des Aufga-
bengebiets zurückführen lassen. Aus den präzisen Vorher-
sagen der Simulation werden sowohl Hinweise zur Vermitt-
lung arithmetischen Wissens abgeleitet als auch Erkenntnisse
über die Architektur ACT-R selbst gewonnen. Im Rahmen
einer formalen Analyse wird gezeigt, daß sich die vorge-
stellte Simulation als dynamisches System betrachten läßt,
dessen Lernergebnis unmittelbar von Parametern der Archi-
tektur abḧangt. Eine Untersuchung der Sensitivität der Para-
meter der Simulation belegt, daß die Werte, die zur besten
Anpassung an die empirischen Daten führen, auch eine in
einer optimalen Performanz resultieren. Die Implikationen
dieses Ergebnis für die grundlegende Adaptivität menschli-
cher Kognition werden diskutiert.

Abstract. Cognitive arithmetic studies the mental represen-
tation of numbers and arithmetic facts and the processes that
create, access, and manipulate them. The contradiction bet-
ween the apparent straightforwardness of its exact formal
structure and the difficulties that every child faces in maste-
ring it provides an important window into human cognition.
An ACT-R model is proposed which accounts for the central
results of the field through a single simulation of a lifetime
of arithmetic learning. The use of the architecture’s Bayesian
learning mechanisms explains how these effects arise from
the statistics of the task. Because of the precise predictions
of the simulation, a number of lessons are derived concer-

ning the teaching of arithmetic and the ACT-R architecture
itself. A formal analysis establishes that the simulation can
be viewed as a dynamical system whose ultimate learning
outcome is fundamentally dependent upon some architectu-
ral parameters. Finally, an empirical study of the sensitivity
of the simulation to its parameters determines that the va-
lues that yield the best fit to the data also provide optimal
performance. The implications of these findings for the fun-
damental adaptivity of human cognition are discussed.

1 Introduction

Cognitive arithmetic studies the mental representation of
numbers and arithmetic facts (counting, addition, subtrac-
tion, multiplication, division) and the processes that create,
access, and manipulate them. Arithmetic is one of the funda-
mental cognitive tasks which humans have to master. Child-
ren go through years of formal schooling to learn first the
numbers, and then the facts and skills needed to manipu-
late them. Many adults have not and will never completely
master the domain. And yet, it is a task that is trivial for com-
puters to perform correctly. Some tasks, such as chess, are
hard for both humans and machines to perform and require
years of learning or engineering. Other tasks, such as vision,
which seem to come naturally to humans, require much pro-
gramming for computers to perform even poorly. One can
attribute that to humans possessing a complex vision system
which resulted from millions of years of evolution but will
require painstaking work to reverse-engineer and replicate in
computers. But a task such as arithmetic seems so straight-
forward and easy to accomplish that it is surprising that it
takes years of learning for humans to master. This suggests
that human cognition at the most basic level embodies some
assumptions about its environment that are at odds with the
structure of arithmetic as it is taught. Arithmetic, being a
formal mathematical theory, assumes a set of precise and
immutable objects (numbers), facts, and procedures. Human
cognition, on the other hand, has evolved to deal with ap-
proximate concepts, a changing environment, and adaptive
procedures. Studying how such a flexible system deals with
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a formal task such as arithmetic provides an excellent win-
dow to its assumptions and mechanisms.

ACT-R is a hybrid production-system theory of human
cognition (Anderson 1993; Anderson and Lebiere 1998). At
the symbolic level, ACT-R is a fairly standard goal-directed
production system, with a declarative memory of long-term
facts, known as chunks, and a procedural memory holding
general production rules. At that level, cognitive arithmetic
is a trivial task for ACT-R. All one needs to do is give ACT-
R the correct chunks representing arithmetic facts and pro-
ductions encoding procedures to manipulate them and per-
fect performance will result. This, however, would not be a
very satisfactory model of human, especially children’s, per-
formance and ignores the impact of ACT-R’s sub-symbolic
level. ACT-R is also an activation-based system in which
the performance at the symbolic level is controlled by real-
valued quantities associated with each symbolic structure.
Those quantities are learned according to Bayesian princip-
les to reflect the architecture’s environment. Retrieval and
matching of memory chunks by production rules is a noisy,
approximate process driven by activation rather than the ex-
act matching of conditions. Thus the behavior of the system
becomes adaptive, stochastic, and error-prone, matching hu-
man behavior better but making cognitive arithmetic a more
challenging, but also more interesting, task. Cognitive arith-
metic is a task that is both well-suited and challenging to
ACT-R for a number of reasons. Unlike tasks artificially
designed for the purpose of isolating a particular cognitive
mechanism, the learning and performance of arithmetic in-
volves most mechanisms of the architecture. It is therefore
an excellent test of whether these parts can perform together
as well as separately. Unlike laboratory tasks, large amounts
of data are available for every cross-section of the population
and every aspect of the task, making it easier to establish
the trends being analyzed.

While arithmetical concepts can refer to concrete objects
and procedures (e.g., children learn the concept “3” by being
shown three rabbits and subtract 2 from 3 by eating two out
of three cupcakes), arithmetic also has a fundamentally ab-
stract structure. It is much less likely that people have brain
structures optimized for performing arithmetic than, for ex-
ample, vision or language, and suggests a near-complete re-
liance on general-purpose learning mechanisms.1 Since each
skill builds on the previous ones, e.g., counting can be used
to perform addition which in turn can be used to perform
multiplication, learning can thus be a mostly self-contained
process, rather than entirely dependent upon external factors
such as teaching. Of course, the learning of arithmetic also
includes an element of pure memorization, e.g., the multipli-
cation table, and the model will therefore include a mixture
of rehearsal and computation. Arithmetic also has an inher-
ently clear, simple and regular structure, with a systematic
organization of knowledge into tables of immutable facts.
This strong regularity, unlike the many exceptions of tasks
such as natural language processing, also helps reduce de-
grees of freedom in modeling the task and provides a good
test of ACT-R’s statistical learning. These factors lead to a
simpler, more regular model that is more predictive than one

1 See (Peterson and Simon, in press) for an ACT-R account of subitizing,
a skill related to both vision and arithmetic.

with many unanalyzed degrees of freedom. This paper pres-
ents an ACT-R model that can account for the main effects
of cognitive arithmetic in a single simulation by exploiting
the architecture’s learning mechanisms.

2 Data

There are two main classes of empirical phenomena in the
domain of cognitive arithmetic. One concerns the fact that
children, and to a certain degree adults, approach answering
arithmetic problems with two basic strategies. One strategy
is to simply retrieve the answer. The second strategy, refer-
red to hereafter as the backup strategy or backup computa-
tion, is to compute the answer. For example, given a problem
such as 3 + 4 children may choose to count (perhaps 4, 5,
6, 7) to provide the answer and given 3∗ 4 they may choose
to add to get the answer (perhaps 4 + 4 + 4).This class of
empirical phenomena involves how people choose between
the computation strategy and the retrieval strategy.

The second class of empirical phenomena involves the
problem-size effect.2 Children and adults take longer to ans-
wer problems involving larger numbers and they also make
more errors on these problems. In the case of backup compu-
tation the reason for this is fairly obvious – one has to count
more to add large numbers and one has to add more things
when multiplying by a larger number. However, while much
reduced, the problem-size effect also occurs for adults. It has
been suggested that this is due to residual use of the backup
strategy (LeFevre et al. 1996), although recent research put
those results in doubt (Kirk and Ashcraft 1997). However,
a more fundamental argument is that smaller problems also
occur more often, offering greater practice and thus better
performance. This unequal problem distribution appears in
studies of textbooks (Ashcraft 1987; Ashcraft and Christy
1995; Hamman and Ashcraft 1986; Siegler 1988) but also
in the world at large, as many (Benford 1938; Newcomb,
1888; Raimi 1976) have noted.

Ashcraft (1987) reports the change in response time for
addition problems in adults, differentiating between tie pro-
blems (equal operands), problems involving zero and other
non-tie non-zero problems (Fig. 1). While most problems ex-
hibit an increase in response time roughly corresponding to
the square of the sum of their operands, the slope for pro-
blems involving a zero operand is approximately flat, and the
increase in response time for tie problems is much smaller
than for other problems. The effect therefore reflects a more
complex measure of problem difficulty than simply problem
size.

Siegler and Shrager (1984) present the pattern of retrieval
errors by four-year-olds for addition facts ranging from 1+1
to 5+5 (Fig. 2). The main effect, similar to the problem-
size effect, is an increase in errors for larger facts, with
the increase being slightly larger for the addend (second
operand) than for the augend (first operand).

Siegler (1988) presents the percentage of errors in the
computation of multiplication problems by repeated addi-
tion for fourth-graders (Fig. 3). Analogous to the addition

2 We use the term “problem size” here to refer to the size of the numbers
involved but other definitions can also be used.
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Fig. 1. Problem-size effect for adults

Fig. 2. Percentage of correct addition retrievals per operand

problems, the probability of error increases with the size of
both the multiplicand and the multiplier. Particularly remar-
kable is the very low percentage of errors for the repeated
addition of 5.

Finally, Ashcraft (1987) describes the decrease in re-
sponse time to addition problems across grades, as well as

Fig. 3. Percentage of erroneous multiplication computations per operand

Fig. 4. Problem-size effect across time (grades)

the gradual flattening of the problem-size effect for large
vs. small problems (meaning two-digit sum vs. single-digit
sum) from first grade to college (Fig. 4).
These effects of problem size and strategy are ubiquitous
throughout the literature on cognitive arithmetic (for reviews
of the field, see, for example, Ashcraft 1992, 1995; Campbell
1995; Geary 1996). While these effects are by far not the
only ones to account for, they constitute a good basis for a
comprehensive model of cognitive arithmetic.

3 ACT-R

ACT-R is an activation-based goal-directed production sy-
stem theory (Anderson 1993; Anderson and Lebiere 1998).
Knowledge in ACT-R is divided into declarative know-
ledge stored in chunks (e.g., arithmetic facts) and procedural
knowledge stored in productions (e.g., how to compute the
answer to an addition problem). Subsymbolic activation pro-
cesses control which productions are used and which chunks
are retrieved. The parameters of these numerical processes
reflect the previous statistics of use for the knowledge struc-
tures to which they are attached. They are learned by Bayes-
ian learning mechanisms derived from the rational analy-
sis of cognition (Anderson 1990). The equations governing
this subsymbolic level will be described below. The reader
should consult Anderson and Lebiere (1998) for additional
details of the ACT-R theory.

In ACT-R, the activation of a declarative memory ele-
ment, or chunk, can be interpreted as reflecting the log po-
sterior odds that the chunk is relevant in the current context.
The activation of a chunk is computed as the sum of the base-
level activation of that chunk plus the sum for all context
elements of their weights (also known as activation source
level) times the strength of association between the context
element and the chunk. In Bayesian terms, the base-level
activation represents the log prior odds of the chunk being
relevant and the strength of association represents the log
likelihood ratio that the chunk is relevant given the context
element. Formally, the activationAi of chunk i is defined
as:

Ai = Bi +
∑

j

WjSji Activation Equation
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whereBi is the base-level activation ofi, Wj is the atten-
tional weight given the context elementj, and Sji is the
strength of association from elementj to chunki. An ele-
ment j is in the focus, or in context, if it is a part of the
current goal, and the total amount of attention is divided
evenly among goal elements.

The base-level activation of a chunk can learn to reflect
the past history of the use of that chunk:

Bi = ln
n∑

j=1

t−d
j Base-Level Learning Equation

where n is the total number of references to the chunk,
tj is the time elapsed since thejth reference (retrieval or
creation) of chunki, andd is the memory decay rate. With
the assumption that occurrences are evenly distributed, the
previous equation reduces to a simpler form that is more
analytically tractable and can be more efficiently computed:

Bi = ln
n · L−d

1 − d
Optimized Learning Equation

whereL is the lifetime of the chunk, i.e., the time since its
creation. Similarly, the strengths of associations can learn
to reflect the past history of the use of a chunk given its
context:

Sji = ln
a · R∗

ji + F (Cj) · Eji

a + F (Cj)
Posterior Strength Equation

whereR∗
ji is the prior strength of association, a is the weight

given to that prior,F (Cj) is the frequency ofj being in the
context (i.e., a source of activation in the goal), andEji is
the empirical strength of association. Initially, the strength
of association is equal to the prior:

ln(R∗
ji) = ln(m/n) Prior Strength Equation

wherem is the total number of chunks in declarative me-
mory and n is the number of chunks which contain the
source chunkj. Their ratio is a static estimation of the in-
creased likelihood of retrieving chunk i containing the chunk
j when j is a source of activation. With extensive experi-
ence, the prior is discounted and the strength of association
converges to the empirical estimation:

ln(Eji) = ln
F (Ni&Cj) · F

F (Ni) · F (Cj)
Empirical Ratio Equation

whereF (Ni&Cj) is the frequency of chunk i being needed
(retrieved) with chunkj in context,F (Ni) is the frequency
of i being needed,F (Cj) is the frequency ofj being in the
context (i.e., a source of activation in the goal), andF is the
total number of opportunities (productions matched) sincei
was created.

In exact matching mode, ACT-R only considers the
chunks that match perfectly to the production condition(s).
In partial matching mode, every chunk of the correct type is
considered, but a mismatch to the production condition re-
sults in a penalty being subtracted from the chunk activation
to yield its match score:

Mip = Ai − MP ·
∑

conditions

(1 − Sim(v, d))

Match Equation

whereMP is the mismatch penalty constant andSim(v, d)
is the similarity between the desired slot valued specified
in the production condition and the actual slot valuev con-
tained in the chunk. Gaussian noise of mean 0 and standard
deviation σ is also added to the activation and the chunk
with the highest final match score is then selected, assuming
that it reaches the retrieval thresholdτ . If one approximates
the Gaussian noise with a logistic distribution, the probabi-
lity that the match score of chunki to productionp is above
the retrieval threshold is:

P =
1

1 + e
Mip−τ

s

Retrieval Probability Equation

wheres =
√

3σ/τ . If no chunk reaches the retrieval thres-
hold, then a retrieval failure occurs and the next available
production is selected. If more than one chunk is competing
for retrieval, the probability of chunki being the one that
is retrieved follows the Boltzmann distribution (e.g., Mous-
souris 1974):

P (i) =
eMip/t

∑

j

eMjp/t
Chunk Choice Equation

wheret =
√

2s. The latencyTip to retrieve (match) a chunk
i with productionp is an exponentially decreasing function
of the chunk’s match score:

Timeip = Fe−fMip Retrieval Time Equation

where F is a time scaling constant andf an activation
scaling constant usually left at its default value of 1. The
productions that can apply to the current goal are matched
sequentially in decreasing order of expected gainE:

E = PG − C Expected Gain Equation

whereG is the value of the current goal,P is its probabi-
lity of success andC is the cost of execution of this and
following productions until completion of the goal. Noise is
also added to the expected gain value, and thus production
selection will also be stochastic and follow the Boltzmann
distribution. The probability and cost parameters can also
be learned according to the record of success and failure of
each production.

4 Model

The types of chunks and productions used in this model
are not particularly novel. They are already used to mo-
del many phenomena and reflect a common approach in the
ACT-R community. Arithmetic problems are represented as
chunks with four slots: one for the operator, one for each
operand, and one for the answer. An arithmetic problem will
be placed in the goal, with the operator and operands spe-
cified and the answer slot empty. TheRetrieval production
retrieves from long-term memory a chunk matching the goal
and copies the answer back to the goal. If retrieval is not
possible, a backup strategy must be used. TheIteration pro-
duction implements one such strategy by creating a subgoal
to compute the answer iteratively, by counting for addition
problems and adding for multiplication problems. As in the
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case of retrieval, the subgoal then returns the answer to the
parent goal. Problems involving 0 as operand are solved by
the special-purpose productionZero. When the answer has
been determined, it is then output and the goal is popped by
the Answer production. The goal, which now contains the
answer, then becomes a new chunk in long-term memory,
or reinforces an existing chunk if an identical one already
exists. This repeated reinforcement will raise the activation
of the arithmetic facts until they can be retrieved reliably.

Since past goals are the only source of chunks (other
than for environmental encoding), this technique of solving
a problem by pushing a goal which can be solved either by
directly retrieving the answer from the corresponding fact or
by using a number of backup strategies (including compu-
ting the answer but also looking it up in a book or asking the
teacher) is a general ACT-R technique to model problem-
solving. By gradually raising the activation of the necessary
facts with practice, it provides a general account of the tran-
sition from general problem-solving strategies toward more
efficient ones. As noted in Anderson and Lebiere (1998),
ACT-R essentially implements Logan’s (1988) proposal for
transition from algorithmic solutions to direct retrieval.

Generally, children will choose to retrieve more often for
smaller problems and choose to compute more often for lar-
ger problems (Siegler 1988). It would of course be possible
to learn the expected gain of the production implementing
each strategy, but that expected gain would not be sensitive
to the problem size. While in general people may use a com-
plex procedure to choose between strategies, in this model
it turns out not to be necessary. Instead, retrieval is always
attempted first and only if it fails is the computation strat-
egy selected. Since smaller problems are more frequent and
therefore more active than larger ones, they will be retrieved
more often. Conversely, retrieval will fail more often for lar-
ger problems, and the answer will then have to be computed.
This preference for retrieval as the first way of solving the
goal can be seen as an instance of the Obligatory Retrieval
Assumption of Logan (1988).

5 Subsymbolic searning

Clearly, the activation of chunks storing arithmetic facts is
going to be very critical to ACT-R’s performance in cogni-
tive arithmetic. The activation of a chunk is given as the
sum of a base-level activation and an associative activation
according to the Activation Equation. The base-level activa-
tion will change with experience according to the Base-Level
Learning Equation in such a way that it grows approximately
as a log function of the amount of practice. The strengths
of association will change with experience according to the
Posterior Learning Equation such that it will vary approxi-
mately as a log function of the odds of the chunki being
needed whenj is in the environment. These activation quan-
tities are converted into match scores that reflect the effects
of partial matching through the Match Equation. In the case
of a perfect match, the match score is just the activation,
but in the case of a mismatch a penalty will be subtracted
from the match score. There is noise in these match scores
because of activation noise. If the match score is above a
threshold the chunk will be retrievable and the probability of

it being retrieved is described by the Retrieval Probability
Equation. If there are multiple possible chunks that might
match, the one chosen is the one with the highest match
score and the probability of any one being chosen is descri-
bed by the Chunk Choice Equation. Finally, match scores
determine latency through the Retrieval Time Equation.

Errors can be committed whether the subject is compu-
ting or retrieving. Let us consider the example of the pro-
blem 2 + 3. Because of ACT-R’s partial matching process it
is possible for ACT-R to retrieve an arithmetic chunk (e.g.,
2 + 4 = 6) other than the correct one. It is possible that even
after the mismatch score is subtracted off, the wrong chunk
will have the highest match score and be retrieved and its
answer stored in the current goal. Errors can also occur using
the backup procedure when the iteration subgoal returns an
erroneous answer because of the misretrieval of a fact used
in the procedure. The erroneous answer will also be stored
in the goal. In both cases of retrieval and computation errors,
not only will the answer to this particular problem be wrong,
but the goal holding the incorrect answer is popped and be-
comes an erroneous long-term fact (here, 2+3 = 6). This fact
can then be retrieved as the answer to future problems and
perpetuate the error. This otherwise correct retrieval of an
erroneous fact becomes another source of error. This is quite
similar to the approach of Siegler (1988) which also involves
competition between memories for both correct and errone-
ous answers. It might seem possible that ACT-R could reach
an unfortunate state where it has so practiced the wrong facts
that it comes to believe them. Indeed this can occur and the
next section describes what must be true for ACT-R to avoid
getting absorbed into such error states.

6 The dynamics of cognition

Cognitive arithmetic performance increases over the years
from marginal (less than 50% correct retrieval of small ad-
dition facts among four-year-olds as reported by Siegler and
Shrager (1984), and even much worse for larger facts) to
almost perfect and efficient retrieval for most adults under
normal circumstances. At some point, children largely stop
using computation to answer their arithmetic problems and
just retrieve the answer, even though they still commit a rela-
tively high percentage of errors. What happens when a child
starts retrieving answers subject to these errors and stops
getting regular feedback on their arithmetic performance?
Can these errors be reduced through sheer practice at retrie-
val? It seems at first that the answer is no. To see that, let
us concentrate without loss of generality on the base-level
activation and ignore spreading activation and mismatch pe-
nalties. If the competing chunksC1 and C2 have the same
lifetime L and are rehearsed with respective frequenciesp1
andp2, then from the Optimized Learning Equation the dif-
ference in activation between them will be:

A1 − A2 = ln
p1

p2

Thus, with more practice these chunks will become more ac-
tive, but assuming that the relative presentation frequencies
of the two chunks are unchanged, their difference in activa-
tion will remain constant. The Chunk Choice Equation then
implies that their respective probabilities of retrieval are also
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unchanged, which would mean that the percentage of mis-
retrieval errors would remain constant instead of gradually
declining. This analysis however makes the fundamental mi-
stake of viewing learning as a static process exclusively dri-
ven by the environment and ignores the dynamic nature of
the retrieval process. Strong chunks will tend to be retrieved
more frequently than weaker ones and thus will be rein-
forced more often, becoming even stronger. However, due
to the stochastic nature of the retrieval process, weak chunks
always have a chance of being retrieved and might gradually
catch up to the stronger ones. To determine which process
will dominate, one needs to formalize the dynamics of the
retrieval process. In the case of two chunksC1 andC2, the
Chunk Choice Equation can be rewritten to express the odds
of retrievingC1 as a function of the difference in activation
between the two chunks:3

Odds1 = e(A1−A2)/s

The previous two equations can be combined to give the
odds of the current retrieval as a function of the past ratio
of rehearsal of the two chunks (i.e.,p1/p2):

Odds1 = Ratio
1/s
1 Dynamic Odds Equation

This equation shows that the current odds of retrieval are
very sensitive to the activation noise level. Ifs > 1, the
current odds of retrieval are closer to even odds than the
past odds. This will ultimately lead to each chunk becoming
equally likely to be retrieved, i.e., a fairly chaotic system.
If s = 1, the current odds of retrieval are equal to the past
odds. This does not imply that the retrieval odds will be
fixed, but rather that they will drift randomly with experi-
ence, driven by chance and external events. Ifs < 1, then the
odds of retrieval become more extreme, with one becoming
arbitrarily large and the other becoming infinitesimal. This
defines a winner-take-all dynamic: strong chunks (hopefully
the correct ones) are more likely to be recalled, which will
strengthen them further, while weak chunks (hopefully the
wrong ones) will be increasingly less likely to be retrieved.
Clearly this is the desired behavior, and this analysis im-
poses a theoretical upper bound on the value of the noise
parameter in ACT-R if this behavior is to be achieved.

Assuming that the noise value is such that some chunks
will gradually dominate the retrieval process, the next step
is to determine the shape and rate of that process. Each
new experience will be added by the declarative learning
mechanisms to the statistics of past history. This incremental
change in the history of retrieval odds can be expressed by
a differential equation, which allows for two approximate
solutions:

Ratio1 ≈ (cn)±1 Rehearsal Ratio Equation

The past frequency ratio of retrieving either chunk gradually
diverges according to a power law in the amount of practice
with exponent−1 for the loser and +1 for the winner (c is a
constant which depends upon initial conditions andn is the
total amount of practice). Combining this with the Dynamic
Odds Equation, the current or observed odds of retrieving

3 The symbols is used in the following analysis instead of the symbol
t from the Chunk Choice Equation to emphasize its origins in the chunk
activation noise.

either chunk, and therefore the odds of commission errors,
are a function of the amount of practice to the power of the
inverse of the noise measure:

Odds1 ≈ (cn)±1/s Retrieval Odds Equation

Another way to view the Retrieval Odds Equation is in terms
of the number of training examples needed to reach a parti-
cular accuracy. The numbern of presentations of a particular
problem needed to lower the odds of confusion errors be-
low a thresholdε grows as a power function of the accuracy
threshold to the exponent of the noise level:

n = 1/cεs

Up to now, this section analyzed the competition between
two chunks that shared the same context but differed in their
base-level activation, e.g., the correct fact 3 + 4 = 7 and an
incorrect fact 3 + 4 = 8. One can extend the analysis to
the competition between two correct facts, 3 + 4 = 7 and
3 + 5 = 8, which are both rehearsed regularly because they
are correct answers but differ in their context, i.e., 3 + 4
vs. 3 + 5. One can show that the determining factor in their
retrieval becomes the strengths of association between the
part of the context in which they differ, i.e., 4 vs. 5, and
the chunks. Since those strengths of association are weighed
in the Activation Equation by their source levelWj and
assuming a total source levelW of 1, these strengths are
then multiplied by a factor of 1/3 since for retrieval purposes
the context of an arithmetic problem is composed of three
sources: the operator and the two operands.4 The Dynamic
Odds Equation then becomes:

Odds1 = Ratio
1/3s
1

The actual noise level has been divided by the 1/3 attentio-
nal weight, which means that the noise will have to be less
than 1/3 for the correct answer to emerge, and the rate of
convergence in the Retrieval Odds Equation will likewise be
divided by 1/3. Generally, this implies that the more com-
plex the problem, i.e., the more sources of activation in the
context, the lower the noise level needs to be to guarantee
convergence and the slower convergence will be.

One can extend this analysis to account for a number of
additional factors (see Lebiere 1998 for details). The mis-
match penalty can be shown to leave the rate of conver-
gence unchanged but multiplies the ratio in the Dynamics
Odds Equation by a factor equal to the exponential of the
activation penalty. One can also generalize the analysis to
more than two chunks. It can be shown from the Chunk
Choice Equation that the odds of retrieving one of many
alternative chunks is the harmonic average of the pairwise
odds of retrieving that chunk over any other. Therefore, the
same dynamic applies in which the strongest alternative will
get increasingly dominant over all others since it dominates
each independently. This result is a variant of Luce’s Choice
Axiom (Luce 1959). Finally, one can study the impact of ex-
ternal interaction such as teacher instruction on the dynamics
of the system. While teacher correction has a major impact

4 Divding source level equally among goal components is a basic ACT-R
assumption. However, Anderson and Reder (in press) have recently que-
stioned that assumption. While operator and operands might have different
source levels, it leaves the gist of this analysis unchanged.
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on the Dynamic Odds Equation early on in the process, it
becomes overwhelmed by the weight of experience if one
allows the system to run uncorrected for a long time. This
may be why ingrained errors are so hard to root out from
human cognition. Error correction will still be possible la-
ter on, but a much larger amount of correct feedback will
then be necessary to reverse the odds in favor of the correct
solution. This need to keep the system relatively stochastic
early on in the learning to prevent the odds from growing
large (and therefore less susceptible to correction) suggests a
positive effect of activation noise upon long-term accuracy.
By keeping the process sufficiently random in the early sta-
ges, it prevents an occasional error (random or otherwise)
from being locked in as the dominant answer too quickly and
allows more time for the correct answer to emerge. Noise
therefore performs a function similar to simulated annealing
in a Boltzmann machine. In other words, noise is not (only)
a shortcoming of the system but an essential contribution to
its robustness in an imperfect environment.

As a final comment, the power law form of the Rehearsal
Ratio and Retrieval Odds Equations can also be found in the
evolution of biological and technological systems between
states of equilibrium (e.g., West and Salk 1987). This is a
consequence of the fact that these systems follow power-
law frequency distributions (e.g., Zipf’s law, Pareto’s law)
similar to those of the cognitive environment (Anderson and
Schooler 1991).

7 Associative interference and its implications

The preceding sections describe the subsymbolic learning
taking place in the model and how it accounts for retrieval
errors. Chunks stating the same problem but different ans-
wers (e.g., 3 + 4 = 7 vs. 3 + 4 = 8) will compete primarily in
their frequency of retrieval. Since the maximum noise level
needed for the right chunk to emerge is relatively large, the
confusion between these facts will not constitute a major
factor in retrieval errors. Chunks stating the correct answer
to different problems (e.g., 3 + 4 = 7 vs. 3 + 5 = 8) will
not primarily compete on rehearsal frequency because they
are both correct facts that will be rehearsed almost as often
despite a slight frequency inequality. What will distinguish
them is the context in which they are most often retrieved,
e.g., 3 + 5 = 8 will usually be retrieved with the sources 3,
+, and 5 (and not 4) in the goal. Thus according to the Po-
sterior Strength Equation those two chunks will have strong
positive associations from the sources 3 and +, and either 4
or 5. In addition, due to the logarithm in the Empirical Ra-
tio Equation, they will also have negative associations to the
other source (5 and 4 respectively) since the frequency ratio
is expected to be significantly less than 1. Moreover, from
the form of the logarithm function, the positive strengths
of association will be strongly limited in value while the
negative associations will quickly grow unboundedly nega-
tive as the frequency ratio gets close to 0. Thus, because
of their unlimited inhibitory potential the negative strengths
of association from incorrect context elements will be more
essential in achieving (near-) perfect retrieval than the po-
sitive associations or the base levels, both of which grow
much more slowly.

This reliance on the strengths of association from unre-
lated context elements has a number of far-reaching conse-
quences for this model and the architecture itself. The first
concerns the basic nature of declarative memory retrievals.
Complex computation subgoals such as those created by the
Iteration production will require many retrievals of counting
and addition facts. However, those subgoals contain many
values, some of which are unrelated to the chunks being
retrieved at any one time. But the presence of these unre-
lated numbers in the context will lead to the strengthening
of the associations between them and the unrelated fact re-
trieved, which will prevent those associations from beco-
ming strongly negative and thus will hinder further gains
in performance. The solution is to subgoal retrievals instead
of performing them directly. This corresponds to moving
the retrievals from the left-hand side of productions to the
right-hand side and pushing subgoals to perform them on the
stack. This operation focuses on the retrieval to be perfor-
med by creating a new goal of the same type as the chunk to
be retrieved and which only includes the activation sources
necessary to the retrieval. Once the retrieval patterns have
been subgoaled, a production must fire to perform the actual
retrieval, complete the pattern, and pop the goal. These pro-
ductions, which complete a goal by matching it to a chunk in
memory, are very basic and can be found in many other mo-
dels (e.g., Lebiere and Wallach, in preparation). Indeed, these
productions are so basic and pervasive that it could be argued
that they correspond to an architectural primitive similar to
the Obligatory Retrieval Assumption of Logan (1988). In
addition to allowing the strengths of association to achieve
optimal predictiveness, this technique increases the modula-
rity of problem-solving knowledge and through the subgoals
creates a permanent declarative memory of each problem-
solving step. Finally, it would be more neurally plausible.
In ACT-RN (Lebiere and Anderson 1993), ACT-R’s neural
network implementation, a declarative retrieval is implemen-
ted by gating all the possible connections from central me-
mory, where the goal is held, to declarative memory. Since
the latter is quite large, this imposes a heavy representatio-
nal burden. This subgoaling proposal would reduce decla-
rative retrieval to a transformation local to the central goal
memory followed by a straightforward broadcast access to
declarative memory. This memory access is similar to the
CAP2 connectionist control architecture (Schneider and Oli-
ver 1991; Schneider and Pimm-Smith 1997).

Another problem with associative learning arises from
the fact that unlike the matching process, spreading activa-
tion is independent of the slot in which a particular source
of activation appears. One instance involves tie problems
(e.g., 7 + 7), in which the same operand appears as a double
source of activation. While because of that doubling those
facts receive more activation from the operands than non-tie
facts, they cannot develop negative connections from their
operands to inhibit facts from the same table row or column,
because they have only one distinct operand (in this case, 7
appearing twice) which appears in every fact of that row and
column. Over time, the (constant) gain in spreading activa-
tion for tie facts is overwhelmed by the lack of inhibitory
connections from their operand to neighboring facts, and tie
problems exhibit an increasingly large percentage of errors.
One solution to prevent this clearly undesirable consequence
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is to recode tie problems to explicitly indicate the redun-
dancy and provide a differentiating source of activation. For
example, the repeated operand in 7+7 will be replaced by a
special chunk calledDouble, resulting in 7+Double. Nega-
tive associations can then develop between the sourceDou-
ble and non-tie facts, inhibiting errors on tie problems. This
explicit re-encoding is consistent with ACT-R’s theory of
chunk creation (see Anderson and Lebiere 1998, pp. 23–24)
and with the experimental findings of Eliaser, Siegler, Camp-
bell and Lemaire (in preparation). They report that subjects
spend more time encoding tie problems than regular pro-
blems and that non-tie problems exhibit better performance
than tie problems in artificial problem sets where tie pro-
blems are the rule rather than the exception as they are in
arithmetic. This suggests that the advantage enjoyed by tie
problems in arithmetic in not intrinsic but instead a mat-
ter of explicit representation. Another instance of confusion
in spreading activation involves so-called near-tie problems,
e.g. 6 + 7, which show better performance than problems
of similar size because their mirror problem (7 + 6) receives
the same spreading activation and suffers little mismatch pe-
nalty, essentially giving them two chances to find the correct
answer. A final example involves so-called corner problems
in which one operand is much larger than the other, e.g., 1+8.
The larger operand, i.e., 8, will prime the answer of another
fact (1 + 7 = 8), which suffers little mismatch penalty (bet-
ween 7 and 8) and thus leads to excessively high error rates.
While these problems can be solved in ad hoc fashion, their
omnipresence in this simulation indicates that the underly-
ing assumption that sources spread activation independently
of their position in the context is deeply questionable. This
assumption is known in the field of machine learning as the
Näıve Bayes Assumption (Mitchell 1997). It provides for a
sometimes enormous computational simplification and has
been quite successful in practical applications, and indeed
in past ACT-R models. However, the limits of this assump-
tion have been exposed by this simulation because of the
fundamental dependency on the learning mechanisms.

How could this problem be resolved in ACT-R? While
maintaining position-specific associations might be both
computationally unfeasible and philosophically dubious, it
might be possible to take advantage of the duality between
the processes of activation spreading and partial matching
and do away with strengths of association entirely. This
would certainly be compatible with ACT-RN, where a slot
value only affects the matching of that slot. One problem
would be to account for the gradual improvement in re-
trieval performance resulting from increased practice. One
possibility would be for the activation noise of a chunk to
decrease with practice:

Sn =
S

1 + log(n)
Noise Reduction Equation

wheren is the amount of practice of that chunk andS is the
initial noise level at chunk creation. It is straightforward to
show that this would provide for a similar power law of prac-
tice as the Retrieval Odds Equation. Decreasing the noise of
chunks over time with their amount of practice is closely re-
lated to the technique of simulated annealing in Boltzmann
machines (Ackley, Hinton, and Sejnowski 1985; Hinton and
Sejnowski 1986), since noise in ACT-R has an effect simi-

lar to temperature in Boltzmann machines through the same
Boltzmann equation. However, there are differences as well.
The Boltzmann distribution in ACT-R is merely descriptive,
whereas it is also used in Boltzmann machines to control
every local unit fluctuation. More fundamentally, simulated
annealing in Boltzmann machines happens on a small time
scale for every pattern presentation, whereas under this pro-
posal it would be a long-term process, with the activation
noise decreasing over a large time scale with each rehearsal.
Finally, temperature in Boltzmann machines is a quantity
global to the entire network, whereas every chunk in ACT-
R would have a different noise as a function of its amount of
practice, with well-settled knowledge being gradually frozen
in place but more recent knowledge showing significant flui-
dity. Geman and Geman (1984) show for their Gibbs Samp-
ler that the fastest annealing schedule assured to converge to
the energy minimum (which corresponds to the maximum a
posteriori (MAP) estimate of the underlying distribution) is
of the form given by the Noise Reduction Equation.

8 Lifetime simulation

Lebiere (1998) presents very close fits of the model to the
data presented earlier by assuming a certain distribution of
knowledge strength at a particular point in time and a parti-
cular set of parameter values. While this method is widely
used in Cognitive Science and often produces both tracta-
ble analyses and excellent simulation fits, it suffers from a
number of disadvantages: it requires additional assumptions
about the state of knowledge at particular points in time, it
allows different parameter values to be estimated for each
fit, and it provides only an incomplete understanding of the
model’s dynamic nature. In the lifetime simulation presen-
ted here, the same model is run with the same parameters
to simulate each data set through the full development of
arithmetic knowledge over time.5 The challenge is whether
the model can provide a good fit to the results given these
additional constraints. The answer is affirmative.

The key assumption is that the frequency of problem pre-
sentation decreases with the size of its arguments. Based on
the studies of textbook presentation frequencies of Hamman
and Ashcraft (1986) and Ashcraft and Christy (1995), the
model was exposed to 4000 problems per simulated year,
with the largest problem being about 2.6 times less frequent
than the smallest. Figure 5 presents the evolution of the
problem-size effect over time at the simulation points for
each grade:

The speeding up of response time for small facts mostly
represents the effect of strengthening through practice. The
speeding up for large facts represents the gradual switch
from computation to retrieval as well as the increase in re-
trieval speed.

The addition retrieval data for four-year-olds is mode-
led by looking at the lifetime simulation after 1000 problem
presentations, corresponding to about one fourth of a year
of training (Fig. 6). The smaller percentage of correct retrie-
vals for larger facts reflects the lower amount of practice

5 The detailed model is available on the ACT-R web site at
http://act.psy.cmu.edu
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Fig. 5. Problem-size effect over time (simulation)

Fig. 6. Percentage correct in addition retrieval in the first cycle (1000 pro-
blems) (simulation)

received. Thus, they are both less likely to reach the thres-
hold, and more likely to be invaded by a more active fact
for a smaller problem. The asymmetry between addend and
augend results from the use of backup computation during
training: a large addend is more likely to result in a compu-
tation error because it involves more iterations. Those errors
become facts when the goal is popped, which in turn can
produce retrieval errors in later trials as is the case here.

The lifetime simulation also reproduces the problem size
effect for both multiplicand and multiplier in the multiplica-
tion computation by repeated addition:

The multiplier effect is due to the number of iterations,
while the multiplicand effect is due to the higher probability
of errors for large facts. The very low percentage of errors
for the multiplicand 5 results from the fact that repeatedly
adding 5 only uses two single-digit addition facts (0 + 5 = 5
and 5 + 5 = 10, which also happen to be a zero problem and
a tie problem), which therefore were rehearsed more often in
past computations than facts for other multiplicands which

Fig. 7. Percentage errors in multiplication computation in cycle 3 (∼4th
grade) (simulation)

Fig. 8. Problem size effect at final state (simulation)

are more distributed. That extra practice translates into better
performance in later trials.6

Figure 8 plots the response times at the end of the si-
mulation (adulthood) for each problem category. The flat
response time for zero problems is due to the use of the
retrieval-freeZero production. The rest of the problems are
overwhelmingly solved by theRetrieval production. The
faster retrievals and lower slope for tie problems is due to
the double-source effect. The problem-size effect generally
stems as usual from the lower activation of larger facts re-
sulting from a smaller amount of practice.

Finally, in Fig. 9 one can look at the behavior of the li-
fetime simulation to confirm the analysis predicting a power
law decrease over time of the odds of retrieval failure (hence
computation) and the odds of retrieval error.

The odds of computation and retrieval error indeed decay
according to a power law, with exponents close to those

6 An alternative explanation would be that 5 is a more prominent num-
ber, leading to additional practice of counting by 5. That assumption is
unnecessary here.
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Fig. 9. Odds of retrieval error and of computation for addition problems as
a function of practice (simulation)

predicted by the analysis. The curves for the multiplication
facts display an even closer fit to the power law, with similar
exponents. In addition to the data fits previously reported,
these computation and retrieval error curves generally fit
the data reported by Siegler and Robinson (1982), Siegler
and Shrager (1984), and Siegler (1988) on the percentage of
strategy use and retrieval errors at various points of deve-
lopment. Together, these results and those presented in the
next sections provide strong corroboration of this model and
ACT-R’s theory of learning.

9 Choosing

This model always attempts to retrieve the answer and only
computes when the retrieval fails. It is often assumed that
human subjects decide which strategy to use based on the
characteristics of the problem, in particular the percentage of
success of each strategy. Siegler and Robinson (1982) and
Siegler and Shrager (1984) report a very strong correlation
between percentage of overt strategy use7 on each problem
and percentage of errors on those problems. The correlation
is quite strong between percentage of overt strategy use and
percentage of errors on retrieval trials, and still present but
much weaker between percentage of overt strategy use and
percentage of errors on overt strategy trials. They also report
a strong correlation between percentage of overt strategy
use on each problem and retrieval latency, and a weaker
correlation between overt strategy use and latency of overt
strategy.

For comparison, the lifetime simulation was run for
about half a year of addition training, and then the corre-
lation between strategy and errors was collected (Fig. 10).

The correlation between percentage of overt strategy use
and percentage of errors on all trials is quite high (0.78). The
correlation between percentage of overt strategy use and per-
centage of errors on retrieval trials is slightly higher (0.81),

7 The term “overt strategy use” refers to trials where the subjects used
an overt (i.e., audible or visible) computation strategy. For example, since
the children were quite young they would put up fingers to count.
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Fig. 10.Correlation between strategy use and errors on all trials (simulation)

Fig. 11. Correlation between strategy use and latencies (simulation)

whereas the correlation between percentage of overt strategy
use and percentage of errors on computation trials is much
lower (0.22). The correlation between the latency and the
percentage of overt strategy use was also computed (Fig. 11).
The correlation between percentage of overt strategy use and
retrieval latency is high (0.75), and the correlation between
percentage of overt strategy use and computation latency is
somewhat lower (0.42). These correlations are quite close to
the values in Siegler et al.’s subject data.

The lifetime simulation can reproduce those correlations,
even though it does not perform any explicit choice of stra-
tegy because all measures tap into the same underlying va-
riables, namely activation strength and problem complexity.
Of course, this does not preclude a more elaborate model,
in which the choice of a strategy would be made depending
upon the characteristics of the problem and the strategy’s
past history of success, as Siegler and Shipley (1995) pro-
pose, but the choice between retrieval and computation can
be made solely on the basis of activation.



C. Lebiere: The dynamics of cognition 15

6 56 05 55 04 54 03 53 02 52 01 51 050
0

5

10

15

20

25

Answers

P
er

ce
nt

ag
e 

of
 A

ns
w

er
s

Fig. 12. Percentage of retrieval answers to 6× 9 by 3rd and 4th graders
from Siegler (1988)

10 Guessing

The patterns of errors for multiplication retrieval are quite
rich, but hard to examine systematically because they take
place over a wider range of values and display some cha-
racteristics (like table errors and close misses) which are
difficult to average and plot together. For those reasons, let
us concentrate on the pattern of errors for a single problem.
Siegler (1988) reports the answers to multiplication problems
for an experiment in which third- and fourth-graders were
instructed to state the answer to the problem without resor-
ting to any explicit strategies. Figure 12 plots the percentage
of answers to the problem 6× 9. The correct answer, 54,
is also the most likely one but only constitutes fewer than
20% of all answers. As in the case of addition errors, most
of the errors are smaller than the correct answer, with the
percentage of answers generally decreasing with the distance
from the correct answer. Some of the errors can be classi-
fied as table errors, i.e., the answers appear in the same row
or column of the multiplication table as the correct answer,
e.g., 48 = 6× 8. But most errors are not table errors, either
because they are answers to facts elsewhere in the multi-
plication table (40 = 5× 8 is neither on the same row or
column as 6× 9) or because they do not appear as answers
in the single-digit multiplication table at all (46 or 52).

Figure 13 plots the percentage of retrieval answers to the
same problem at an equivalent point in the lifetime simula-
tion:

One positive result is that the percentage of correct ans-
wers corresponds closely to the data. Most of the errors are
also smaller than the correct answer and the percentage of
errors tends to decrease with the distance from the correct
answer. This is to be expected since smaller facts are more
active than larger ones, and the mismatch penalty increases
with the distance from the correct fact. Unlike the data, al-
most all the errors are table errors (56 = 7× 8 is one of
the rare exceptions) which is a result of the dominant role
played by the strengths of activation. There are also few
close misses. About half the time no fact would reach the
retrieval threshold and the model would fail to answer. Of
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Fig. 13. Percentage of retrieval answers to 6× 9 (simulation)

course, subjects, too, have poorly established multiplication
facts at that point in their development. But since they were
instructed to state an answer, it is reasonable to assume that
some of them were estimating or guessing the answer. This
would explain the range of errors, the close misses; and the
low percentage of table errors. How could ACT-R guess?
Random guessing would not generate the pattern of errors
reported, and repeated sampling or free association would
still result in a majority of table errors.

But it seems that when humans engage in this sort of
estimation, they do not do so randomly but rather compen-
sate for the lack of a specific fact by relying on a wider
base of related facts. How could that reliance on a set of
facts rather than a single one be implemented in ACT-R?
Such a mechanism has been proposed by Lebiere and Wal-
lach (in preparation) to perform a similar task, interpolation,
in a number of control problems. The solution is to produce
the answer that minimizes the mismatches between that ans-
wer and the answers from each specific fact, weighted by its
probability of retrieval. Formally, the answer is the valueV
that minimizes the following quantity:

V = Min
∑

i

Pi(1 − Sim(V, Vi))
2 Estimation Equation

wherePi is the probability of retrieving chunki, as determi-
ned by the Chunk Choice Equation,Vi is the value specified
by chunki, andSim(V, Vi) is the similarity between values
V and Vi. Thus the term in parenthesis is the dissimilarity
between the values, i.e., the amount of mismatch between
them. If the dissimilarity between the values is interpreted as
the error, then the Estimation Equation can be viewed as a
standard least-squared error method. The well-known result
that least-squared error solutions can be shown under certain
assumptions to correspond to maximum likelihood hypothe-
sis (e.g., Mitchell 1997) provides the connection between
this equation and ACT-R’s Bayesian framework.

By using the Estimation Equation to guess an answer
when no fact reaches the retrieval threshold, the lifetime si-
mulation generates the following pattern of combined retrie-
val and guessing answers for 6×9 (Fig. 14). The proportion
of correct answers is about right, which results from the
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Fig. 14.Percentage of retrieval and guessing answers for 6×9 (simulation)

standard retrievals as shown in Fig. 13. Most of the errors
are smaller than the correct answer, because smaller facts
are more active, and thus have a higher probability of being
retrieved and thus weigh more in the Estimation Equation.
Most of the errors are not table errors, because estimation
is a continuous process in which the answers to actual facts
have little advantage over neighboring numbers. And there
are many near-misses, with the probability of error decre-
asing with the distance to the correct answer. This results
from the fact that while smaller facts are generally more
active, facts closer to the correct answer will have a better
match score because they incur a smaller mismatch penalty,
and thus have a higher probability weight in the Estimation
Equation.

The Estimation Equation is similar to an algorithm known
in machine learning as the Bayes optimal classifier (Mitchell
1997). Instead of applying the Maximum Likelihood or Ma-
ximum A Posteriori hypothesis to categorize a new instance,
the Bayes optimal classifier weighs all the hypotheses accor-
ding to their posterior probabilities, and combines them to
produce the most probable classification. As its name im-
plies, this algorithm cannot be outperformed by any other
classification algorithm that uses the same hypothesis space
and prior knowledge. While it is generally considered too
computationally expensive to be of direct practical use, its
implementation in ACT-R is not prohibitively slow, and its
behavior seems to correspond closely to the human ability
to operate gracefully in continuous environments. And of
course, as Mitchell (1997) points out, more practical algo-
rithms can often be found that asymptotically approximate
the characteristics of less feasible but optimal standards such
as the Bayes optimal classifier.

11 Parameter sensitivity and optimality of cognition

The simulations described here are controlled by a number
of real-valued parameters whose values were chosen to try
to maximize the fit to the experimental data. While some
amount of parameterization is needed in any architecture to
account for individual and experimental variations, estima-

Fig. 15. Odds of retrieval error as a function of activation noiseS

tion of unknown variables (such as previous knowledge) and
the like, there has been recently a concerted effort (Anderson
and Lebiere 1998; Anderson, Bothell, Lebiere, and Matessa
1998) to understand the effect and constrain the values of
ACT-R’s global parameters. This section will examine the
sensitivity of the model to its parameters, including global
parameters such as the activation noise, retrieval threshold,
and mismatch penalty, as well as domain-specific parameters
such as training schedule, problem distribution, and feedback
strategies. The formal analysis established that the activation
noise is the main parameter controlling the speed of conver-
gence to correct fact retrieval. Figure 15 plots the odds of
retrieval error (on a log scale) over time (roughly 2nd grade,
6th grade and adulthood) for a range of activation noise va-
lues.

The results confirm the theoretical analysis with a con-
vergence to almost perfect retrieval (less than 1% error) for
noise values less or equal to the simulation value of 0.25,
and gradual leveling or even increase for larger noise values.
Large noise values, however, increase the probability that a
weak fact would reach the activation threshold earlier, and
thus lead to a faster transition to retrieval. Figure 16 plots
the odds of retrieval as a function of activation noise.

This earlier transition to retrieval will lead to stronger
reinforcement of the facts and therefore to faster retrievals
as well. Thus the lifetime simulation noise level of 0.25
can be seen as optimal in providing the earliest and fastest
possible arithmetic retrieval under the constraint of ensuring
convergence to the correct answers.

A similar analysis applies to the retrieval threshold. Ob-
viously, a higher threshold will delay the transition to retrie-
val as shown in Fig. 17.

But whereas a lower threshold will lead to earlier re-
trieval, it will also cause problems by allowing a rich-get-
richer dynamic to take hold quickly: the chunks which are
strong early invade the weaker ones which have not yet
had a chance to build activation, leading to ingrained errors.
Retrieval thresholds below the simulation value of−3.75
will lead to a leveling and even a gradual increase in er-
rors over time. Larger threshold values will converge to the
correct answers but more slowly because by delaying re-
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Fig. 16. Odds of retrieval as a function ofS

Fig. 17. Odds of Retrieval as a function of retrieval threshold (RT)

trieval they rely more heavily on error-prone computation
strategies which introduce their own errors. Thus the retrie-
val threshold used in the simulation is also optimal in an
even stronger sense than the activation noise (Fig. 18).

A similar analysis can be performed for the mismatch
penalty (see Lebiere 1998 for details). Mismatch penalty
values smaller than the simulation value lead to error odds
increasing over time, whereas larger values lead to slightly
faster convergence to correct answers. Those larger values,
however, lead to somewhat slower transitions to retrieval,
making the mismatch penalty value optimal in the same
sense as the noise. One can also analyze the impact of the
domain-specific parameters. The density of the presentation
schedule, i.e., the average delay between problems, has a
similar impact as the retrieval threshold since its effect from
the Optimized Learning Equation is simply to raise or lower
the base-level activation by a constant amount. The steepness
of the frequency distribution, or how much more common
small problems are than large ones, has relatively little im-
pact on the odds of retrieval and errors, suggesting that while
it is central to the problem-size effect it is not a fundamental
cause of arithmetic learning difficulties. Since students will

Fig. 18. Odds of retrieval error as a function of RT

confront a skewed distribution of problems in the external
world, teachers might as well match that distribution and
optimize the students’ performance on those problems that
they are most likely to encounter. Finally, as the theoretical
analysis predicted, convergence to the correct answer is very
sensitive to the initial feedback probability, emphasizing the
need for constant feedback at the start of the learning curve.

The general conclusion is that while the qualitative be-
havior of the model is preserved across a range of parame-
ter values, the values for each major parameter used in the
lifetime simulation can be shown to produce optimal beha-
vior. While this might not be too surprising for the domain-
specific parameters controlling the teaching of arithmetic,
which might have been selected for precisely the purpose
of optimizing learning, it is extremely unlikely that the pa-
rameters of the human cognitive system were optimized to
perform arithmetic. Human cognition developed in a con-
stantly changing, uncertain world in which stochasticity and
approximation were desirable qualities. That those values
would be optimized for an abstract, exact, and unchanging
task such as arithmetic is quite unlikely. One possibility is
that our form of arithmetic (e.g., a base-10 system instead
of a base-60 system) was developed to fit the capacities of
the human cognitive system. Another, perhaps more likely,
possibility is that human cognition might be even more adap-
tive that had been assumed, either in a parametric or strategic
sense.

12 Conclusion

While other ACT-R models have been more complex (e.g.,
Schunn and Anderson 1998), the lifetime simulation of co-
gnitive arithmetic stretched the limits of the architecture in
a number of directions: its length (tens of thousands of pro-
blems taking hours of simulation), its reliance on learning,
and its dynamical nature. While those dimensions combined
to make this model considerably more difficult to develop
than usual, the constraints provided by this approach yielded
a number of contributions:
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1. A precise account of a number of central results in the
field of cognitive arithmetic. While the model is broadly
consistent with previous activation-spreading theories
of cognitive arithmetic, its basis in a general-purpose
Bayesian learning architecture provides a systematic ac-
count of the causes and conditions of these effects.

2. A number of practical lessons for the teaching of arith-
metic. Because the model makes detailed predictions that
are affected by every aspect of the simulation, it can
predict which conditions are critical to learning (feed-
back, spacing) and which are not (regular frequency dif-
ferences).

3. A number of lessons for the architecture, including the
view of retrieval as subgoaling to limit the sources of
activation to those critical context elements, and ways
to correct the deficiencies of the assumptions behind the
associative learning mechanism. The nature of the task,
requiring a fairly simple model but a very long, mostly
self-correcting, learning simulation, was essential in de-
riving these lessons.

4. A connection to the machine learning field. It suggests
that despite its past success, a popular algorithm such
as the Näıve Bayes classifier has limitations in modeling
the full scale of human cognition. It also suggests that
despite being viewed as too computationally expensive,
a more powerful algorithm such as the Bayes optimal
classifier in fact closely approximates some of the aspects
of human performance, hinting at the possibility of an
efficient neural implementation of that algorithm.

5. A study of the sensitivity of the model to parameter
values, both architectural and domain-specific, which
shows that they are in fact optimal for some measure
of performance. Since the human cognitive system was
presumably not developed to perform precise tasks such
as arithmetic, this raises further questions about the ac-
tual limits of its adaptiveness.

6. A view of cognition as a dynamic system (e.g., van Gel-
der 1998). Unlike fixed models or models that learn ex-
clusively from an external environment, the behavior of
this model and its changes over time are primarily de-
termined by its own operations, which follow internal
dynamics that depend upon the fundamental parameters
of the architecture. Because of the richness and variety
of those non-linear dynamics, those models are better
able to explain the full diversity of human cognition.
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