
A Mechanism-Based Framework for Predicting Routine Procedural Errors

Michael D. Byrne (byrne@acm.org)
Department of Psychology
Rice University, MS-25

Houston, TX 77005

Abstract

Routine procedural errors are facts of everyday life but
have received little empirical study and have eluded
prediction. Leading frameworks for thinking about such
errors have not been successful in generating predictions,
either. This paper describes the desiderata for error
prediction, and notes that the MHP was a step in the right
direction. Because it generally meets the criteria, ACT-R is
proposed as a simulation framework for making
predictions about routine procedural errors, and some of
the critical mechanisms explored.

Introduction
Even in the execution of known routine procedures, people
make non-random errors. Everyone has had this experience,
whether it is leaving one’s bank card in an ATM or failing
to attach a promised file to an email message. While many
such errors have little or no real cost, many such errors have
dire consequences, including loss of human life (Casey,
1993). Clearly, an understanding of the cognitive and
perceptual mechanisms underlying such error, and therefore
knowledge about how to potentially defeat them, would be
valuable. However, this problem has spawned surprisingly
little research. Senders and Moray (1991, p. 2) identify
probably the major explanation: “one reason for this is that
error is frequently considered only as result or measure of
some other variable, and not a phenomenon in its own
right.” Empirical work on systematic errors in the execution
of routine procedures is dominated by anecdotal accounts
(e.g., Casey, 1993) but controlled experiments on this
subject are quite rare.

Before going into more detail, it is important to delineate
scope. First, the current effort is not concerned with all
forms of human error, but only routine procedural error.
This is a more restrictive definition, and for the purposes of
this discussion, will be taken to mean errors which occur
during the execution of a routine cognitive skill, as defined
by, for example, Card, Moran, and Newell (1983) and John
and Kieras (1996). That is, the person involved in the
activity has the correct knowledge and needs to execute that
knowledge. While there are certainly a wide array of other
error types, some of which even have useful functions
(Ohlsson, 1996), this restricted domain of inquiry is both
rich and significant. For example, this describes many of
the errors made by extensively-trained and highly-motivated
people in safety-critical situations, such as commercial
pilots and medical professionals.

A second issue is the definition of error itself. A wide
variety of definitions have been proposed, but many of them

suffer shortcomings of one kind or another. For example,
Reason (1990) defines human error as “the failure of a
physical or mental action to achieve an intended outcome “
(p. 9). The fundamental problem is that the same human
cognitive-perceptual-motor system that produces “errors” is
also the one which produces “correct” behaviors. Thus, it is
difficult to posit an error definition based solely on either
overt behaviors or internal psychological states; Reason’s
definition is hampered by reliance on the notion of
“intended outcome.” If an operator forms an “incorrect”
subgoal in performing a complex task, but performs that
subgoal correctly, is that an error? The answer is unclear and
is not solved by the classic slip/mistake dichotomy
(described below) because intentions are formed at multiple
levels.

 Instead, it is the joint internal and external context of
task performance that defines a particular action as an
“error.” Thus, an error could be a failure to produce
behaviors which meet a particular task demand (e.g. the
correct sequence of actions is performed, but so slowly the
biological sample dies), or failure to meet some requirement
imposed by the tool or artifact used in the task (e.g. not
selecting letter paper when printing an A4-formatted
document), or even by the state of the task environment
(e.g. lowering the flaps to reduce speed when airspeed is too
high). Thus, one way to define an error in the context of a
routine cognitive skill is any action which causes the actor
to fail to meet the performance requirements (either
internal or external) of their task. Most (but, critically, not
all) performance requirements of many tasks are defined
external to the agent performing the task. This will become
important in later discussions of error mechanisms.

Extant Taxonomies
The dominant theoretical paradigm in this area is certainly
the one proposed by Reason (1990), which is more a
taxonomy than a theory. Reason classifies errors into two
types: “mistakes,” which are the result of forming an
incorrect intention to act, and “slips,” which are failures to
correctly execute an intention. These are tied to
Rasmussen’s (1987) skill-rule-knowledge (SRK) hierarchy
of skill execution.

At the lowest levels of skill acquisition, behavior is
controlled by essentially declarative knowledge that must be
interpreted on-line by the cognitive system, which is taxing.
Further along the skill curve, behavioral control is
dominated by explicit rules, hence behavior is said to be
rule-based. Finally, behavior at the skill level is governed
by stored patterns of preprogrammed instructions,

204

corresponding roughly to Shiffrin and Schneider’s (1977)
notion of automaticity. In the account of errors derived from
this framework, mistakes are usually errors at the knowledge
level; that is, the person making the error has incorrect
knowledge about how to perform the task. While this is
certainly the explanation for many errors, it does not appear
to apply to many interesting forms of systematic procedural
error in which the person does know the correct set of steps.
Reason generally attributes errors at the skill or rule levels
of performance to various kinds of failures of attention:
inattention, overattention, informational overload, and the
like. This has enormous face validity and has been useful in
understanding errors in a variety of contexts. However, from
the perspective of trying to predict errors, this account
simply shifts the locus of the problem to another area of
research, attention, which presently lacks a predictive
performance theory.

Another prominent figure in the study of errors is Norman
(e.g. Norman, 1988). Norman’s well-known “seven stages
of action” framework is depicted in Figure 1. In this
framework, each goal to be achieved must be translated into
an intention to act upon the world, then that intention
converted into a sequence of actions, and so on. Once the
action has been taken, it is necessary to assess the outcome,
which requires perceiving the state of the world, then
interpreting that intention, etc.

Goal

Intention to
act

Sequence of
actions

Execution of
sequence

Evaluation of
interpretations

Interpreting
perception

Perceivng
world state

The World

Figure 1. Norman’s “seven stages of action”

It is possible to base an error taxonomy on this
framework by asking the question “at what stage did the
error occur?” Norman’s framework is in some ways more
comprehensive than the Reason scheme because it gives a
larger role to the perception of the outcomes of action.
However, Norman’s framework is also neither mechanism-
based nor predictive. However, Zhang, et al. (2002) describe
a taxonomy based on an extended version of this framework
that does make some attempts to be predictive. This is
clearly a step in the right direction but the effort is geared

more toward error classification than error prediction.
If the goal is prediction of errors, there are two

fundamental problems with taxonomic efforts. First, from
the standpoint of causal mechanisms, they group unlike
things together and like things apart. For example, there a
variety of cognitive mechanisms which can produce errors in
executing an action sequence, some of which can produce
errors at other stages of action. Thus, “execution errors” will
be heterogeneous, while mechanisms that might produce
errors in other stages will be categorized as being different
from those execution errors which share their cause. This
defeats the purpose of a taxonomy. Second, and more
critically, these taxonomies, because they are not based on
mechanisms, cannot generally be predictive.

In defense of extant taxonomies, they clearly have had
value in non-predictive real-world fault diagnosis and
system design, and have successfully guided various error
interventions—this is not intended as a criticism of the
taxonomies for the purposes for which they were developed.
For the purpose of prediction, however, other methods will
be required.

Criteria for a Framework
If the goal is an obvious one, to reduce or prevent routine
procedural errors, a method which predicts which errors will
be made, preferably with a frequency estimate attached,
would certainly be helpful. No extant framework or model
supports such prediction in general (though there have been
specific tasks and errors for which this has been approached,
for example see Byrne & Bovair, 1997; Gray, 2000). In
fact, in the general case, there is not even a good empirical
method for such an inquiry. One might try, for a particular
task, to recruit or observe human operators to get error
frequency counts. However, this will not necessarily yield
useful predictive data unless the number of subjects that can
be recruited and run is quite large. Especially in domains
where the operators are highly-trained and in great demand
(again, pilots and medical professionals are excellent
examples), collecting even a small sample can be
prohibitively expensive. A second difficulty faced by such
an empirical enquiry is the determination of causality. Even
when an error is observed under controlled conditions, the
root cause of the error is not always clear, and thus
strategies for remediation are not apparent.

One possible solution to this problem would be to
develop a model based on human operators that could
perform the relevant task repeatedly under a variety of
conditions and faster than real time. This would allow for
the collection of large amounts of data and thus more stable
frequency counts and, critically, this could be done on an a
priori basis. Note also that this idea—essentially, Monte
Carlo simulation—requires some stochasticity in either the
operator model, the task environment, or both. Otherwise,
every simulation run would yield the same outcome, which
would hardly be useful.

How could we arrive at such a system? There are probably
multiple possible approaches, but it is clear that to be
successful in safety-critical applications with demanding
time constraints, such an approach requires a sophisticated
model of the operator at a fine grain size of behavior. It has

205

to include end-to-end processing from perceptual to
cognitive to motor, and it has to have a variety of
mechanisms in it which are capable of producing errors even
when the operator model is supplied with the “correct”
knowledge.

The Model Human Processor (MHP) of Card, Moran, and
Newell (1983) might serve as a starting point for such an
endeavor. The MHP was a synthesis of the cognitive
psychology and human performance of the time, cast
somewhat in the form of a “modal” theory of cognitive
architecture. The system consists of a number of memories
and “stores” as well as cognitive, perceptual, and motor
processors. The processors are themselves serial but work in
parallel with one another. Each of the MHP stores had
certain information-processing parameters and the processors
were guided by several principles of operation.

For example, the MHP working memory has limited
capacity and degrades as a function of both decay and
interference. The MHP’s long-term memory is cue-based,
affected by frequency, recency, and similarity. The
principles guiding the cognitive processor included
standards such as search through a problem space and
constrained adaptation supported by ubiquitous learning. In
very general terms, the MHP was not especially contentious
at least in part because it tended to be more inclusive than
exclusive. Also, one of its great strengths was also its fatal
weakness in terms of error prediction: the MHP was not
implemented as a running system, so commitments were
never made to the exact form taken by most of the proposed
mechanisms.

The lack of commitments to specific details skirted many
of the kinds of arguments about representation and process
that occupy much of the cognitive science literature today;
however, in some circles (primarily within the HCI
community) this became a guiding conceptualization. But,
of course, it does not meet the goal of allowing prediction
by simulation.

What is needed is an instantiation of the MHP that does
address the range of cognition, perception, and motor
activity and that is also executable. This would allow for
repetitive simulation to ultimately obtain frequency counts.
In addition, if a trace of the system could be kept, it may be
possible to record the causal mechanism which produced
each error. This may lead to insight into what might be
possible in terms of remediation.

A Candidate System: ACT-R
A system that appears to meet the desiderata laid out thus
far is ACT-R 5.0 (Anderson, Bothell, Byrne, & Lebiere,
2002; this version subsumes all previous versions of ACT-
R, including ACT-R/PM). It is important to be clear that
this is not a suggestion that ACT-R is the only possible or
ultimately best such system, but it currently does satisfy
many of the aforementioned conditions. And though ACT-
R is quite comprehensive, this is not necessarily an
endorsement of either the completeness or correctness of
ACT-R’s mechanisms. Rather, this is a claim that ACT-R
is a tenable platform for exploring the idea of predictive
human error simulation for routine procedural errors.

The major components (except for the Speech and

Audition Modules) of ACT-R 5.0 are depicted in Figure 2.
Like the MHP, ACT-R contains multiple active processing
units, which include the perceptual-motor modules and the
production system pattern matcher. Also like the MHP,
each one of these units is essentially serial but all the units
operate in parallel with one another. As is usual for
production systems, it contains two memories, a declarative
memory and a procedural memory (though the Vision and
Audition Modules each contain their own temporary stores
as well). Communication between system components is
managed through a representation of the current system
state, which resides in a set of special memory elements
referred to as “buffers.”

Figure 2. Major components of ACT-R 5.0. Boxes represent
memories, ovals active processes.

Unlike the MHP, however, the workings of the various
processes and memories have been specified in detail (see
Anderson, Bothell, Byrne, & Lebiere, 2002 for a more
complete description; see Anderson, 1990, for the “rational”
justification for many of these mechanisms) and the system
is runnable, producing as its output a timestamped sequence
of behaviors, both overt (e.g. keystrokes) and covert (e.g.
retrieval from declarative memory). In order to produce this
output, ACT-R requires two inputs: knowledge and an
environment with which to interact. The knowledge consists
of declarative memory elements (termed “chunks”) and
production rules, as well as some parameters which affect
how that knowledge will be used (more on this shortly).
ACT-R also requires a runnable environment which
responds to its actions and produces stimuli.

So, ACT-R meets the “runnable” criterion. The next
question is whether or not ACT-R is capable of producing
errors in the execution of routine procedures. And if so, how
might that lead to an improved taxonomy or remediation
strategies?

206

The answer to the first question appears to be “yes.”
ACT-R contains a number of mechanisms that can produce
errors despite the presence of “correct” knowledge.
Furthermore, in places where it does not appear that ACT-R
has appropriate error-producing mechanisms, modifications
that would produce them appear to be straightforward. Thus,
while it most certainly is not a complete or necessarily
correct theory everywhere, it might serve as a starting point
for systematic explorations into routine procedural errors.
To make the case more clear and concrete, two mechanisms
will be elaborated in some depth.

Procedural Memory Mechanisms
In ACT-R, the basic unit of procedural memory is the
production rule (or simply production). This is a condition-
action pair, IF a particular pattern is present in the buffers,
THEN take one or more actions. These actions include
modifications of the contents of a buffer (e.g. a change in
the state of the current goal) and requests of the other
subsystems (e.g. retrieve a declarative memory, initiate
some perceptual-motor action). It seems apparent that if the
correct productions are in place, then the correct action
sequence should be output.

However, this is not always the case. It can be (and often
is) the case that more than one production will match on a
given cycle. Since the production system is serial—that is,
only one production at a time can fire—there needs to be a
way to arbitrate when multiple productions match. In ACT-
R, this is done with a simply utility calculation. Each
production has a utility (U) associated with it, and the
matching production with the highest utility is the one
selected.

The utility is computed with the formula PG–C, where P
represents the estimated probability that the firing of that
production will lead to success in pursuing the current goal
and C the estimated cost (in terms of time) until that
success if the production is allowed to fire. G represents the
value of the current goal. Importantly, this computation is
noisy. This means that the production with the highest
utility will not always be chosen. In fact, the system
delivers what is sometimes referred to as “soft max”
behavior; the probability of a production being selected is
higher when its utility is higher, and thus the one with the
highest utility is the one mostly likely to be selected. But it
will not always be. Thus, when in a situation where there
are multiple viable alternatives, ACT-R will choose
stochastically from among them. This can lead to the
selection of strategies or actions which are not as well-
matched as they might be. This, in turn, can lead to failure
to meet task requirements, even when the actions taken are
by some definition “correct.”

The second issue is with the PG–C quantities themselves.
P and C for each production can be set by the modeler or
learned by the system over time; they are intended to
represent the true probabilities and costs in the history of
the agent being modeled. G is generally left fixed. However,
this leads to a potentially interesting situation: what
happens when the environment changes? This might be best
illustrated with a somewhat simplified example.

Suppose the model has two strategies for executing a

simple procedure, say, driving home from the office. There
are two possible routes, with known probabilities and costs,
which leads the model to consistently choose route A.
However, on a particular trip home, unbeknownst to the
model, there is utility construction along route A. Because
of the model’s preferences based on P and C, it will choose
route A. This can be an error if the construction yields a
delay long enough that the performance requirements (e.g.,
get to day care by 6:30 pm) are not met. Thus, the system
can err despite the presence of the correct knowledge. Note
that the situation described above pushes on the definition
of “correct;” in the changed environment, it might be
reasonable to say that the model’s knowledge is no longer
correct. However, this is a fine line, since the model does
have the correct knowledge about how to navigate route A.
Ultimately, this semantic question is probably not that
important in predicting errors; we’d like to know where
human errors are likely to occur, and humans are likely to
have similar imperfections in the tuning of their knowledge
when the world changes.

Another important point here is that while ACT-R has
default values it will supply for P, G, and C, these can be
taken with a grain of salt. With Monte Carlo techniques, it
is be possible to simply repeatedly sample the space of
reasonable values and from that derive a distribution of
predicted error frequencies. Obviously, the better the values
selected, the better the model output will be, but supplying
even a good approximate range should yield useful outputs.

Declarative Memory Mechanisms
ACT-R’s other memory system is an even richer potential
source of error. To understand why, some detail regarding
how it works will be necessary. First, ACT-R’s declarative
memory system is engaged when a production requests the
retrieval of a chunk matching a particular pattern. If the
system is able to retrieve such a chunk, then the retrieved
chunk is placed in one of ACT-R’s buffers so it can be
accessed directly by productions.The time that it takes is a
function of the retrieved chunk’s activation, with more
active chunks taking less time to be retrieved. Chunk
activation plays other key roles as well. First, because there
is a system-wide threshold for chunk activation, it
determines whether a chunk can be retrieved at all. Second,
when multiple chunks match the pattern specified by the
retrieval, the chunk with the highest activation is the one
actually retrieved. Thus, chunk activation is a critical
quantity. The activation of chunk i is given by the
following equation:

†

Ai = Bi + W jS ji +eÂ
[1]

where epsilon represents stochastic noise added to all
chunk activations at each retrieval request. Like with
production utilities, this leads to soft max behavior; the
chunk with the highest pre-noise activation is the one most
likely to have the highest post-noise activation, but this is
not guaranteed. The other terms require explanation as well.
The summation is across each chunk which is an element of
the current goal (termed a “source;” note that goals in ACT-
R are also chunks), where Wj is the total source activation
W (usually W is set to 1) divided by the number of such

207

chunks. Sji is the strength of association between the source
chunk j and the target chunk i. In essence, this is the
summed strength of the chunk’s relationship to the current
context, scaled to account for the amount of such context.

The other equation of importance is the one determining
base-level activation of a chunk, Bi in equation 1:

†

Bi = ln t j
-dÂ()

[2]
where the summation is across each previous access j of

the chunk, t represents the time since that access, and d is
system-wide constant (usually 0.5). Thus, the base-level
activation of a chunk is a function of both frequency and
recency of access, with more accesses leading to higher
activation, and more recent accesses weighing more heavily
than older accesses.

Taken together, what this means is that despite the
presence of the “correct” chunk in declarative memory, it
may not be accessible when requested. Furthermore, an
“incorrect” chunk may be retrieved in its place. The fact that
such an event can occur is certainly promising for the
prospective error modeler, but it is more interesting to
consider the conditions that are most likely to lead to such
failures.

First, note that chunks’ base-level activations decay over
time. This can be overcome with additional accesses (e.g.,
rehearsal), but of course additional access takes time and,
since the declarative memory system can only retrieve one
chunk at a time, this prevents it from being used for other
parts of task performance. This makes the obvious
prediction that dynamic pieces of task information (e.g.
partial products, state information) will be forgotten if not
accessed enough; more importantly, it specifies the
likelihood of forgetting under various conditions.

Additionally, for most chunks, they require more than
just base-level activation to be above threshold, they require
the activation spread from the current context (the slots of
the current goal). Retrievals can fail if there is a shortage of
this activation as well. What conditions lead to this? The
two components in the equation tell us. First, there is the
strength of the sources (Wj). As the goal chunk gets bigger
and bigger in an attempt to store more state or context,
spreading activation gets more diffuse, making all retrievals
both slower and more likely to fail. This is essentially a
workload effect; the greater the workload of the system, the
more likely it is that a retrieval will fail, possibly leading to
an error.

Second, there are the effects of the strength of association,
which is essentially an index of the specificity of the cues.
Cues that are too general are less effective. For example,
adding a red indicator light to cue the pilot that something
is in an error condition, even if the pilot sees the indicator,
is unlikely to help if many things are associate with a red
indicator light. Again, this is hardly a novel idea or
prediction. But again, ACT-R makes specific predictions
about the effects of such manipulations, and also makes
predictions about how all three factors discussed trade off
with one another.

Thus, even a model with the “correct” set of productions
can fail if it cannot access the declarative information it

needs to meet the task requirements successfully. Moreover,
this effect is stochastic and depends on the values of some
system-wide and memory-specific parameters. Again, a
space of reasonable values could be sampled repeatedly to
generate error frequency predictions.

Timing, Combinations, and Cascades
Space constraints prohibit an exhaustive discussion of other
potentially error-generating mechanisms in ACT-R, but
such mechanisms, or the potential for them, certainly exist
in the other ACT-R subsystems such as the visual system.
For example, the visual system has limited bandwidth (only
one set of eyes) meaning, among other things, difficult
visual searches can be time-consuming.

In fact, timing is another crucial error source. Many tasks
in dynamic environments (e.g., again, aviation and
medicine) have stringent timing requirements, and
performance that is simply too slow may also be considered
erroneous. Timing plays a critical role internally in ACT-R
as well. Since the various systems act asynchronously, this
raise the possibility of the right thing being done at the
wrong time, especially, too late. For example, some visual
search takes longer than expected, after which time the
critical piece of state information is no longer accessible
because it has decayed. This points out another important
aspect of the system’s behavior: it is often potentially the
case that no single mechanism is “responsible” for a
particular error, but rather that multiple mechanisms were
involved. This suggests that one of the reasons that
taxonomies of errors may be so difficult to successfully
construct, is that the lines of demarcation are not clear at a
mechanistic level.

Furthermore, when searching for the cause of a particular
error, in some sense the cause may not always be proximal.
ACT-R’s behavior is both non-linear (see equation 2 for an
example) and stochastic, and thus chaotic in the
mathematical sense. That is, a small perturbation in the
activation of a chunk at time t may produce a much larger
shift in behavior at time t + n. Anyone who has run
multiple people through an experiment where the same
conditions are presented multiple times can appreciate the
face validity of such a system as a model of human
behavior. And again, this points to the necessity of Monte
Carlo simulations.

Discussion
The central point here is not that ACT-R is the ultimate
solution to predicting human error, rather, that it is a
candidate system that at least potentially meets the
requirements for making such predictions, at least in the
case of routine procedural errors. The availability of such a
system is a relatively recent innovation; now is the time to
take seriously the idea of simulation modeling for human
error prediction.

Obviously, the amount of effort and resources required to
do such modeling is not trivial. The knowledge engineering
required to model people with even moderate real-world
expertise in executing complex but routine (for them)
procedures is significant, and running large Monte Carlo

208

simulations is also resource-intensive. However, as noted,
even traditional empirical methods in such domains can be
quite expensive to administer and often provide quite
limited results. For safety-critical applications where
millions of dollars and/or human lives are at stake, the costs
of such simulation-based prediction may well pay off.

This is something of a departure from how such errors
have been approached in the past. Systematic exploration of
human error has traditionally been the domain of human
factors researchers, while this simulation-based approach
requires a great deal of expertise in computational cognitive
modeling, an area more familiar to the cognitive scientist.
Fortunately, these communities overlap and my hope is that
people from both groups will be drawn to this kind of
approach.

For that to happen, the approach will have to demonstrate
some empirical success. Such efforts are have been initiated
(Schoppek, Boehm-Davis, Diez, Hansberger, & Holt, 2000;
see also Byrne & Kirlik, 2002, 2003) and look promising.
Hopefully other candidate systems (such as APEX, Freed &
Remington, 1998) can be identified and put into use this
way to provide a broader gauge of the ultimate tractability
of this approach.

Acknowledgements
I would like to acknowledge the support of the Office of
Naval Research under grant number N00014-03-1-0094 and
the National Aeronautics and Space Administration, grant
number NDD2-1321. The views and conclusions contained
herein are those of the author and should not be interpreted
as necessarily representing the official policies or
endorsements, either expressed or implied, of ONR, NASA,
the U.S. Government, or any other organization.

I would also like to thank Alex Kirlik and Wayne Gray
for numerous helpful discussions and Stellan Ohlsson for
helpful comments on an earlier draft.

References
Anderson, J. R. (1990). The adaptive character of thought.

Hillsdale, NJ, USA: Lawrence Erlbaum Associates, Inc.
Anderson, J. R., Bothell, D., Byrne, M. D., & Lebiere, C.

(2002). An integrated theory of the mind. Manuscript
submitted for publication and available at
http://actr.psy.cmu.edu/papers/403/IntegratedTheory.pdf.

Byrne, M. D., & Bovair, S. (1997). A working memory
model of a common procedural error. Cognitive Science,
21, 31–61.

Byrne, M. D., & Kirlik, A. (2002). Integrated Modeling of
Cognition and the Information Environment: Closed-
Loop, ACT-R Modeling of Aviation Taxi Errors and
Performance. Technical Report AHFD-02-19/NASA-02-
10, Institute of Aviation, University of Illinois at Urbana-
Champaign.

Byrne, M. D., & Kirlik, A. (2003). Integrated Modeling of
Cognition and the Information Environment: A Closed-
Loop, ACT-R Approach to Modeling Approach and
Landing with and without Synthetic Vision System
(SVS) Technology. Technical Report AHFD-03-4/NASA-
03-3, Institute of Aviation. University of Illinois at
Urbana-Champaign.

Card, S. K., Moran, T. P., & Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Casey, S. (1993). Set phasers on stun. Santa Barbara, CA:
Aegean Publishing.

Freed, M. and Remington, R. (1998) A conceptual
framework for predicting errors in complex human-
machine environments. In Proceedings of the Twentieth
Annual Conference of the Cognitive Science Society (pp.
356–361). Mahwah, NJ: Erlbaum.

Gray, W. D. (2000). The nature and processing of errors in
interactive behavior. Cognitive Science, 24(2), 205-248.

John, B. E., & Kieras, D. E. (1996). The GOMS family of
user interface analysis techniques: Comparison and
contrast. ACM Transactions on Computer-Human
Interaction, 3, 320-351.

Norman, D. (1988). The design of everyday things. New
York: Doubleday.

Ohlsson, S. (1996). Learning from performance errors.
Psychological Review, 103, 241–262.

Rasmussen, J. (1987). The definition of human error and a
taxonomy for technical system design. In K. D. J.
Rasmussen, & J. Leplat (Ed.), New technology and
human error (pp. 53–62). Chichester: John Wiley &
Sons.

Reason, J. T. (1990). Human error. New York: Cambridge
University Press.

Schoppek, W., Boehm-Davis, D. A., Diez, M., Hansberger,
J. T., & Holt, R. W. (2000, August). Letting ACT-R fly-
A model of the interaction between trained airline pilots
and the flight management system. Paper presented at the
7th Annual ACT-R Workshop, Carnegie Mellon
University, Pittsburgh, PA

Shiffrin, R. M., & Schneider, W. (1977). Controlled and
automatic human information processing II: Perceptual
learning, automatic attending and a general theory.
Psychological Review, 84, 127–190.

Zhang, J., Patel, V. L., Johnson, T. R., & Shortliffe, E. H.
(2002). Toward an action based taxonomy of human error
in medicine. In W. D. Gray & C. D. Schunn (Eds.),
Proceedings of the Twenty-Fourth Annual Conference of
the Cognitive Science Society (pp. 970–975). Mahwah,
NJ: Erlbaum.

209

