
Exploring the usability of adaptive menus
with a simple object system

Bruno Emond,
Institute for Information technology, Computational Video Group,

National Research Council Canada.

Robert L. West,
Department of Psychology, and Department of Cognitive Science,

Carleton University.

2/17

Overview

• The ACT-R simulation tool space.

• Simple Object System - ACT-R/SOS.

• Modelling user interactions with adaptive menus.
– Can we make design decisions based on ACT-R

simulations?

3/17

The ACT-R simulation tool space

• Interaction with external applications or environment
– SegMan, sim-eye, sim-hand, SNIF-ACT-R, jACT-R,

ACT-R robots, and Intelligent Human Computer Interfaces.

• High fidelity simulated task environments
– ACT-R/PM.

• Low fidelity simulated task environments
– ACT-R/SOS.

4/17

Simple Object System - ACT-R/SOS

• What is it?
– Work in progress
– Tool to build low fidelity simulated environments to run against

ACT-R cognitive models.
– Focused on “What”, not “Where” are external objects.
– Definition of plus-rhs buffer functions:

• Perception module: modification of parameters
(object selection method, and cost method).

• Action module: support for calling motor actions defined in a
model (action-cost, and object-response-time).

– Definition of object classes, methods, and motor action methods:
• Inheritance, class application and chunk slots.
• Object methods for motor buffers.

5/17

Simple Object System - ACT-R/SOS

• Why bother?
– Cognitive modelling and simulation development through

successive refinements.
– Make explicit, in the model, the mechanisms of perception and

motor action.
– Make explicit, in the model, the external objects behaviour.
– Tool to learn ACT-R.
– Link to ACT-R/PM as a device plugin.

(yet-another-task23
isa to-do-list-item
list to-do-list45
description sos-as-an-ACT_R/PM-device-plugin)

6/17

Simple Object System - ACT-R/SOS

• Who would be interested anyway?

– People who want to learn ACT-R.

– People who want to explore buffer computational properties.

– People who want to generate some hypothesis based on simulation
results.

– People who want to use simulated users for usability testing.

– People on the rush, they just want to get going.

7/17

Model structure

• Class and method definitions

• Class instances

• Buffer definitions

• ACT-R model

8/17

Classes and method definitions (WYSIWYG)

(define-sos-object-class target-list
 :inherit-from (interface-object)
 :application-slots (current-targets sos-menu)
 :chunk-slots (current-target-name))

(defmethod set-target ((target-list target-list))
 (let ((target (car (current-targets target-list))))
 (setf (current-targets target-list)
 (cdr (current-targets target-list)))
 target))

(define-sos-object-action-method get-target ((target-list target-list))
 :action-cost #’(lambda () 0.05)
 :sos-object-response-time #’(lambda () (system-busy-meter))
 (setf (current-target-name target-list)
 (set-target target-list)))

The Chunk type for sos-object-class TARGET-LIST is:
 (CHUNK-TYPE TARGET-LIST CURRENT-TARGET-NAME)
The Chunk type for sos-object-class MOTOR-ACTION is:
 (CHUNK-TYPE MOTOR-ACTION TARGET-OBJECT ACTION-METHOD)

9/17

Class instances

(add-sos-objects
 (mt01 isa-sos-object target-list
 current-targets (t01 t02 t03 t01 t03 end)
 sos-menu sos-menu01)
 (sos-menu01 isa-sos-object sos-menu))

10/17

Definition of plus-rhs buffer functions
(defparameter *perceptual* nil)
(defparameter *motor* nil)

(define-plus-rhs-perception-function find-sos-object
:selection-function #'(lambda (indx-obs sos-obs)

(if indx-obs
 (nth (random (length indx-obs)) indx-obs)
 (nth (random (length sos-obs)) sos-obs))))
 :cost-function #'(lambda (indx-obs sos-obs)
 (declare (ignore indx-obs sos-obs))
 default-action-time)))

(define-plus-rhs-motor-function sos-action)

(define-buffer perceptual *perceptual* :plus-rhs find-sos-object)
(define-buffer motor *motor* :plus-rhs sos-action)

11/17

A production
(p get-target-menu
 =goal>
 isa goal
 step get-target-menu

 =perceptual>
 isa target-list

 ==>

 =goal>
 step look-at-target-menu

 +motor>
 isa motor-action
 target-object =perceptual
 action-method get-target

 +perceptual>
 isa target-list)

12/17

An example: Simulation of adaptive menus

• Motivation for the simulation
– Are adaptive user interfaces usable?
– Can ACT-R help us making design decisions?

• Adaptive menu options
– Random: it says it all, never the same
– Fixed: : it says it all, always the same
– Stacked: last chosen goes on top, pushing down the rest
– Frequency: Sorted based on frequency access
– Activation: Sorted based on activation (frequency and

time). *No model telepathy*

13/17

Distribution of menu items

• A simulated subject sees 10 successive sets of 30 targets
in the four adaptive menu conditions (menu of size 12)

– Random targets 1-30: ("t08" "t08" "t08" "t08" "t11" "t11" "t11" "t02" "t02" "t05")
– Early targets 1-15: ("t07" "t07" "t07" "t07" "t10" "t10" "t10" "t01" "t01" "t04")
– Late targets 16-30: ("t09" "t09" "t09" "t09" "t12" "t12" "t12" "t03" "t03" "t06")

• The model is reset for each menu condition.

• Parameters
– Randomness and Base level learning (0.5).

• Productions.
– get-new-target, retrieve-target-position (with success or failure), scan-

menu-for-target (upward or downward), test-target-success, add-
target-to-menu.

14/17

Simulation results

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0-30 30-60 60-90 90-120 120-150 150-180 180-210 210-240 240-270 270-300

Learning cycles (number of targets presented)

A
v
e
ra

g
e
 n

u
m

n
e
r

o
f

s
c
a
n

s
 t

o
 f

in
d

 a
 t

a
rg

e
t

RANDOM
ACTIVATION
FREQUENCY
STACK
FIXED

15/17

Conclusion

• Data collection on adaptive menu task

• ACT-R simulations for user interface design decision

16/17

Current and other work

• Usability testing with simulated users.
– Robert West and COGNOS.

• Modelling media player usage in the context of music
learning.
– Reviewing music coaching session (ensemble).
– MusicGrid: NRC, NAC, CRC, School boards.

• Modelling quality of experience judgments and person-
person interaction.
– Advanced collaborative environments: NRC, CRC,

NewMic.

17/17

Thank you :)

Bruno.Emond@nrc-cnrc.gc.ca

