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1. Introduction

It is generally conceded to be a rather significant fact about humans that
they learn language. Since the early speculations of Solomonoff (1958, 1964) there
have been a number of attempts to try to understand what sort of mechanisms
might be responsible for language acquisition. Seome, although not all of
these attempts, have taken the form of computer simulation models. The point
of this chapter is to review some of this work, assess its psychological
relevance, and present some recent work of my own.

This chapter is divided into a number of sections. Section 2 will be con-
cerned with establishing a formal framework in which to study the general
problem of induction. Language acquisition can profitably be seen as a
special case of the induction problem. The formal results werwi11 establish
in that section will be with us throughout the remainder of the chapters.

In Section 3, a formal analysis will be given of the special problem of
Tanguage acquisition. In this section the syntactic and semantic approaches
will be compared. The syntactic approach attempts to induce a characterization
of the language which will permit us to judge which strings are grammatical
and which are not. The semantic approach attempts to induce a procedure
which will allow the system to translate from semantic referents to sentences
that express the referents. The semantic approach is of principal interest
in this chapter. In Section 4 I will review various semantics-based
heuristics for language induction that have been proposed.' Section 5 will
attempt to review the psychological literature on language acquisition with

the intent of assessing the psychological validity of these mechanisms.
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The remainder of the chapter will present my work attempting to develop a
viable computer simulation model of language acquisition. This computer model,
LAS, uses a memory system called HAM (see Anderson & Bower, 1973). Therefore,
Section 6 describes the essential aspects of this memory system. Section 7
describes the LAS system for speaking and comprehension. It uses a variant
of Woods' (1970) network grammar. Sections 8 and 9 describe two versions of
the induction program. The system is still in development. So this is by

no means a final report.
e

2. The General Problem of Induction

The study of Tanguage acquisition is important for a number of reasons.
There is a practical purpose in that such research might aid the development
of competence in one's language. It is common to find remarks in the
psycholinguistics literature (e.g., Chomsky & Miller, 1963) that full com-
petence in a language comes to almost all humans despite their differing
experiences and general intelligence. This would seem to deny that any
practical benefits could arise from an understanding of language acquisition.
However, competence in a language is not an all-or-none affair. Most members
of our society suffer deficits in their language ability. The difficulty I
have in writing this chapter is witness to the fact that a Ph.D. is no
guarantee of perfection in the use of language. If we understood how
Tanguage is acquired and organized, it might be possible to improve the use-
fulness of language as a tool for all of us.

The study of language acquisition also derives its significance from a
point of view promoted in linguistics by Noam Chomsky. He often formulated
problems of linguistic theory as questions about the construction of a

language-acquisition device. 1In his view, the deepest problems of Tinguistics
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were specifying what such a device would have to know in order to acquire a
" language. As Chomsky saw it, this would constitute specifying the defining
(universal) features of natural language.

From my own point of view, the principle significance of language acquisition
is that it is a paradigm case of the induction problem. The question of induc-
tion is central to my attempt to develop a general model for human intelligence.
Other induction tasks studied by psychologists (e.g., concept formation,
pattern formation, sequence learning, rule induction) are all much simpler
(at least, in the laboratory experiments that study them) than language learning.
The consequence is that the theories that evolve for these tasks tend to not
be powerful enough to handle the induction problem in its full generality.

An adequate set of induction mechanisms for Tanguage acquisition, however,
will be much less vulnerable to such problems of Togical adequacy.

In Section 2 and 3 I will be drawing heavily from the results and the
spirit of analysis in two papers by Gold (1965, 1967). The formally trained
reader is urged to consult these original papers. I think they are essential
to anyone interested in the problem of induction. My presentation does not
do full justice to Gold's work.

I have borrowed from him techniques for analyzing a formal framework in
which all induction problems can be conceptualized. Language learning is
just a special case within this framework. The basic problem of induction
is to learn to respond to input with the desired output. In terms of Tanguage
acquisition, this means learning to respond to a semantic intention with the
sentence that communicates that intention. In terms of concept formation,
this means appropriately labelling a stimulus array. In terms of sequence

extrapolation, this means responding to an initial part of a sequence with
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the correct ending. In terms of playing chess, this means responding with the
correct move to a board position. In terms of riding a bike, this means res-
ponding with compensatory adjus£ments of weight to changes in speed and ver-
tical orientation of the bike. In terms of being a scientist, it means
constructing the correct hypothesis in response to a set of data.

This analysis of induction may seem vacuous, but it is all that is needed
to make some important points. The analysis consists of three things:
a learner, the desired input-output relation to be learned, and the learner's
current hypothesis about that.relation. In Gold's framework each of these
objects is embodied by a formal machine. Consider Figure 1. Here we have
an Induction Machine that is trying to build an Hypothesis Machine which will
behave 1ike a Target Machine. The Induction Machine is a formal embodiment
of the learner; the Target Machine embodies the desired relation; and the
Hypothesis Machine the current hypothesis of the learner. The Induction
Machine can submit input to the Target Machine and observe the output.
After each such experiment it produces a Hypothesis Machine. It should be
emphasized that the input to the Induction Machine is the input-output
pair of the Target Machine. The output of the Induction Machine is the
Hypothesis Machine. The induction problem is considered solved when the
Hypothesis Machine mimics the behavior of the Target Machine for all future
input.

o = o o o e~

What does it mean to submit input to the Target Machine and observe the
output? This assumes that our human learner can try out various responses

to a particular stimulus until he finds the correct one. Once he has done
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this he has observed one input-output sample from the Target Machine.

The machine framework in Figure 1 is an attempt to abstract the logical
essence of the induction problem. We speak of machines because we want to call
on formal resu1fs from automata theory and related disciplines. It turns out
that one can say some interesting things about what induction problems are
tractible and what problems are not. These statements depend only on the
logical character of the problem and not on the nature of the device that

is performing the induction.

The Ahistorical Case

There are two possibilities about the relation between input and output.
In one case, the output at time t depends only on the input at time t. 1In
the other case, the output depends on the past history of inputs. The first,
the ahistorical case, is much more tractible than the second, the historical
case. I will focus on the ahistorical case because it seems more represen-
tative of the psychological situation (see Gold, 1965, for the historical case).
The correct interpretation of a sentence does not depend on all of our past
experience with the language. It might depend on the past few sentences,
. of course. However, as long as the response depends only on a fixed finite
portion of the immediately preceeding inputs, the induction problem is
equivalent to the ahistorical case. That fixed portion of the past input
can be regarded as the input at time t.

Theubasic induction proB]em is for the Induction Machine to produce a
Hypothesis Machine which is the same as the Target Machine. There is a sense
in which this cannot be done for many interesting classes of machines.

This is because two different machines can display the identical behavior.



Anderson 6

But this clearly is not an interesting problem from the point of view of human
induction. It should suffice that the Hypothesis Machine display the same
behavior as the Target Machine. [t is meaningless to require that it have

the same form since the Target Machine was only a convenient flictieon for

formalizing the desired relation between input and output.

Identification in the Limit

We will say rather that the Target Machine is identified in the limit if,

after some finite time, a Hypothesis Machine is constructed that mimics the
Target Machine and the Induction Machine does not change the Hypothesis
Machine thereafter. With this criterion for success at the induction problem,
we can ask the question of what classes of machines are identifiable in the
1imit. By this it is meant the following: Suppose we know the machine comes
from class C. Is there an effective algorithm for identifying in the 1imit
which machine it is?

As an example, suppose the Target Machine can be any Turing Maching (TM).
Can it be identified in the 1imit? The answer is No. The reason has to do
with the Halting Problem for TMs. Since it is not possib1e to specify whether
a TM will halt for a particular input it is not possﬁble to decide whether
the responses of a Hypothesis Machine matches the observed response of the
Target Machine. Therefore, it is not possible to reject that Hypothesis Machine.

However, we can restrict a class of machines to those TMs for which
the Halting Problem is solvable. These TMS happen to correspond to a
well defined set of functions in the formal study of Arithmetic (see Minsky,
1967). These are the primitive recursive functions. So we will call these
Primitive Recursive Turing Machine (PRTMs). It turns out that PRTMs can be

jdentified in the 1limit.
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The-data for the induction problem is a sequence of observed inputs and
outputs. It will be assumed that this sequence is not under the control of
the Induction Machiné. It will also be assumed that somewhere in the infinite
sequence is to be found all possible input-output pairs. There may be
repetitions in this sequence. Assuming this 1ittle about the information
sequence it can be shown that PRTMs are identifiable in the Timit.

The proof is fairly simple. Consider the following algorithm: There
is an effective enumeration of all PRTMs. By this I mean it is possible to
order all PRTMs to carrespond to the positive integers in such a way that an
algorithm can be specified for generating the nth PRTM. This enumeration
gives an infinite sequence of PRTMs. For instance, the machines could be
ordered by an alphabetic enumeration of the rules which define the machine.
Despite the fact that this enumeration is infinite, each PRTM has some finite
position in it.

The algorithm starts out considering the first PRTM as the Hypothesis
and stays with it until it finds some input-output pair that is inconsistent
with it. The algorithm then searches for the next PRTM in the ordering which
is consistent with all the existing data. In general, it stays with a PRTM
until inconsistent evidence is found and then proceeds to the next consistent
machine in the enumeration. Since the information sequence contains all input-
output pairs it will reject any incorrect PRTM after some finite time. Since
the correct PRTM occupies some finite position in the ordering and since
each incorrect PRTM preceeding it will be rejected after a finite amount
of information, the correct PRTM will be uncovered after a finite time.

This is called the enumeration algorithm. If the reader doesn't 1ike

it, I don't blame him. It obviously does not correspond to a
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psychologically adequate model. In addition, it is hopeless as a useful means
of induction. The position of the correct PRTM in any obvious ordering of
PRTMs is almost certainly so astronomical for most induction problems that
it could not be computed by the fastest computer after centuries of computing.

However, there is a startling fact which can be proven about this
enumeration algorithm. There is no other algorithm uniformly faster than it.
To make sense of this last statement we need a definition of what constitutes
a uniformly faster algorithm. Algorithm A is uniformly faster than Algorithm
A' if (a) A will identify all target machines at least as fast as A' and (b)
A will identify at Teast one target machine faster.

Suppose there was an algorithm, A, which was uniformly faster than the
enumeration algorithm, E. Then there must be some machine, M, which it iden-
tifies faster. Let n be the trial at which A first guesses M. On that trial

E must guess some other machine M]. M1 is consistent with the input-output

so far observed. Suppose the target machine really were M1 rather than M.

Then E would identify M] by trial n. If A is to be uniformly faster than E

it must have identified M] on an earlier trial ny- We can Took at E's guess

on n;. It will be M, and it could have been correct. A must have guessed

M2 on an earlier trial ny- I don't think there is any need to continue.

As the reader can see, eventually we are going to reason our way back to the
first guess. By that time E must have made a guess before A and that guess

could have been correct.

Computational Aspects of the Enumeration Algorithm

There are a number of aspects of the enumeration algorithm which make it

undesirable. First, it must remember all past input-output pairs so that its
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current guess is consistent with all past information. Such a memory is
unreasonable psychologically and would also prove burdensome in a computer

implementation.

Suppose the enumeration is considering machine Mi and its guess is dis-
confirmed by the next input-output pair. Then it ma;_Have to skip through many
million machines before it comes to the next machine compatible with the input
so far. Each of these machines would have to be tested with the existing in-
formation and rejected. So, while in the abstract sense it is Jjust one step
from Trial n to n+l1, computationally that can be a very complex procegs.

It would be useful if the space of possible machines were so organized
that the incorrect alternatives could be rejected without consideration.

For instance, it might be able to organize the machines according to some
sort of tree structure. On the basis of one piece of evidence, a whole branch
of the tree might be rejected. This sort of structuring has been done with

‘finite state machines
some success with simpler machines such asY#&¥s (see Biermann, 1972 for an

example). This will not reduce the number of trials to success, but will

cut down on the amount of computation per trial.

Decreasing Number of Trials

It is important to cut down on the number of trials required before the
correct machine is identified. There is basically only one way to do this.
One must have the induction algorithm try first machines which are more likely.
This means, of course, that less likely machines will be identified even later
by this algorithm than an algorithm which does not use an ordering by plausibility.
However, it is a price one should be willing to pay. The simple fact is that

most PRTMs are not plausible candidates as Target Machines.
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For instance, one can consider one of the many computer programs for
generating random numbers. These are really not random and could be embodied
by a PRTM. A human faced with identifying the principle used by such a PRTM
would almost certainly end in failure. Therefore, we would not want to have
to consider such a PRTM. This can be accomplished either by choosing an
algorithm which would never guess that PRTM or by choosing an algorithm which
would postpone it until more plausible hypotheses had been rejected. The
first task amounts to restricting oneself to a subclass of PRTMs. The second
amounts to using an enumeration of PRTMs ordered by plausibility.

It becomes an interesting question as to what defines the plausibility
of a PRTM. One frequent suggestion is that it is done on the basis of simplicity.
Some metric is computed measuring the number and complexity of the rules used
by the machine. Machines are considered in order of their complexity. How-
ever, this does not seem the correct interpretation of plausibility. The
random number generators are often very simple. Certainly, they are much
simpler than a machine adequate to understand natural language. However,
the random number generator is not considered by a human while he does even-

tually induce a language comprehension system.

3. Formal Analysis of Language Acquisition

The purpose of this section is to continue the formal analysis of induction
of the preceeding section but to specialize it for the case of language
acquisition. First, we will consider the results that characterize the
syntactic approach. The goal in this approach is to induce an algorithm
that will be able to identify the grammatical sentences of the language and

separate these from ungrammatical strings. While this syntactic approach has
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dubious psychological relevance it was the first formal approach and results

from it can be transferred in part to a semantic approach to language acquisition.
The goal of the semantic approach is to induce an algorithm which permits one

to go from a sentence to a characterization of its meaning and also to go from
meaning to sentence. This is clearly much closer to the psychological problem

of language acquisition. A syntactic characterization of the language

emerges as a by-product, only, of the map acquired between sentence and meaning.

Ungrammatical sentences are those which do not properly map into an interpretation.

Syntactic Approach

An early, important paper in the field was by Gold (1967). He provided
an explicit criterion for success in a language induction problem and proceeded
to formally determine which Tearner-teacher interactions could achieve that
criterion for which languages. The framework in which he places the problem
is similar as the framework given in Figure 1. (Indeed I developed the
approach in Section 2 as a generalization of Gold's approach to language
induction.) In this framework, the learner can observe strings input to the
Target Machine and see the output of that machine. Since the Target Machine
only makes grammaticality judgments a binary output is required - 0 for
ungrammatical and 1 for grammatical. The task of the inducer is to develop
a Hypothesis Machine which mimics the behavior of the Target Machine. To do
this is to induce a syntactic characterization of the target language.

The psychological equivalent of this abstract model is a learner who
hears strings of words marked as sentence or non-sentence. It is easy to see
how the human learner would receive the positive information about what is a

sentence. Every time someone utters a sentence he can assume it is grammatical.
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It is much less clear from where his information about non-sentences comes.
We might consider him trying out non-sentences and being corrected. However,
this does not jive with the facts of the matter (Brown, 1973; Braine, 1971).
Language learners do not try out all combinations of words. Second, they are
often not corrected when they utter a syntactically incorrect sentence.
Third, they appear to make little use of what negative feedback they get.
However, it needs to be emphasized that this framework assumes that the

human learner gets both positive and negative feedback.

The results from the previous situation can be translated to this situation.
Any language which can be recognized by a PRTM can be induced. This includes
the class of context-sensitive Tanguages and the sub-classes of context-free
and finite-state languages. It does not include all transformational
languages as some of these require a full-powered TM for recognition.

Also the results about learning time can be directly translated to the
language acquisition problem. For any sequence of information about sentences
and non-sentences there is no algorithm uniformly faster than the enumeration
algorithm. Again it is necessary to make aésumptions about what are likely

languages and to construct algorithms which consider these first.

Positive Information Only

One might wonder what would happen if the inducer were only given positive
examples of sentences in the language. This seems to be the information that
a human receives. Gold shows that not even the class of finite state languages
can be induced given such an information sequence. The proof is deceptively
simple. Among the finite state languages are all languages of finite
cardinality (i.e., with only finitely many sentences). Suppose the learner
is given a sequence of positive instances consistent with an infinite

cardinality finite state language. At every point in this information sequence
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the learner will not know if the language is generated by one of the infinite
number of finite cardinality languages which includes the sample of sentences
seen so far or an infinite cardinality finite state grammar which includes

the sample. Logically, it would be either. Negative information would get

the learner out of this bind because it would allow him to reject any incorrect
Tanguage after finite time.

Thus positive information only is useless. This result is disturbing
because we know that the human learner does not have negative information
available to him. We will shortly see that the solution to this dilemma falls
out when we take into account the role of semantics.

There are a number of circumstances in which a syntax-based approach
will yield identification of the target grammar without negative evidence.
A1l require that stronger assumptions be made about the Tanguage learning
situation. It is worthwhile to review these. So far we have considered only
the possibility that the sequence of sentences are randomly presented to
the informant. However, suppose there is a principle in the sequencing of
sentences. Then Gold shows us that there is a sense in which the language
can be learned. Suppose that some PRTM is deciding according to some
algorithm what the nth sentence should be in the information sequence. Then
we can transform the grammar induction problem with positive information into
something tractable. Rather than trying to induce the grammar, try to induce
the PRTM which maps the g_intd a choice of a sentence. Given the results of
Section 2 this PRTM is identifiable. Then one has a semi-effective algorithm
for recognizing a sentence of the language. Given a string s, proceed to
compute the output of the induced PRTM for the integers. For each integer,

the induced PRTM will generate a sentence s'!. The recognition algorithm
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checks if s' is the target string s. If it is, the algorithm stops and recog-
nizes the sentence. If s is not in the language the algorithm will go on
forever. Thus, it can recognize sentences but cannot identify non-sentences.
For this reason the algorithm is referred to as semi-effective.

It is very important to understand why one cannot directly induce a recog-
nition algorithm for the language from positive instances but can induce
the PRTM that is enumerating the positive instances. In the first problem
one is not presented with all possible inputs for the recognition algorithm.
That is, one only sees grammatical strings not ungrammatical strings. In
contrast, one does eventually see all the inputs fbr the enumerating PRTM.
That is, one sees all the integers n where n is the position in the sequence.
The induction problem of Figure 1 can only be solved when the inducer has
eventual access to all possible inputs.

Horning (1969) provides a version of the positive-information-only case
which has a solution. He achieves this by assigning probabilities to grammars
in light of the observed sample of sentences. He assigns to each rule in a
grammar a certain probability. The case he most considers is the one in which
the rewrite rules involving a particular non-términa] are equi-probable. For

instance, consider the following simple grammar and example derivation in it:

S XS ¥ - Pyl
> Pr = 1/2
X+ Xa Pr= 2
e ) Pr = 1/2
Y=b¥Yhb Br=-1/2
= Pr = 1/2

S AS Vo aXtasYrabhady

S abratic Y 2 aiib A ¢ @
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Each of the non-terminals (S, X, and Y) are involved in two rewrite rules.
Therefore, each rule has probability 1/2. The reader may verify that the
probability of this particular string, abaca, is 1/32.

Horning assumes that the information sequence being observed is being
produced by a stochastic device which is generating sentences according to
these probabilities. His goal is to select the most probable grammar in Tight
of the evidence.

In deciding the most probable grammar, Horning has to select the grammar

Gi which maximizes the following quantity: P(GilS) = P(Gi)P (S/Gi)

P(S)
where P(Gi/S) is probability of the grammar G, given the sample S, P(Gi) is
the prior probability of the grammar; P(S/Gis—}s the probability of the sample
given Gi’ and P(S) is the prior probability of the sample. This is of course,
just B;;és Theorem. To maximize P(Gi/S), a algorithm must maximize the com-
bination of P(Gi) and P(S/Gi).- The value of P(S/Gi) can be computed from
the probabilities assigned to individual rules in the grammar. It is less
obvious how to measure P(Gi). Horning introduces a "grammar-grammar" which
generates grammars in a canonical form. By associating probabilities to the
rewrite rules in the grammar-grammar it is possible to assign a probability
to a'grammar derived from it - just as it is possible to assign probabilities
to sentences derived from a grammar.

Horning proves that it is hot only possible to select a correct grammar
in this situation, but also to select the most probable grammar of the
equivalent correct grammars. The reason is that we again have a situation
in which each possible input is assigned an output. That is, in this case
each string of words is assigned a probability which is its relative frequency

in the sample. The situation is tricky because these probabilities are
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constantly being updated as new sentences come in. Nonetheless, with sufficient
time the observed probabilities of sentences will come arbitrarily close to
their true probabilities.

Horning also shows that in selecting the most probable grammar he is
also selecting the simplest. Here simplicity is measured by the number of
rules in the grammar and the number of applications of rules needed to derive
sentences in the sample. Clearly, the more rules in the grammar, the lower
the probability of deriving it from the grammar-grammar. The more applications
of rules required to derive a sentence from the grammar, the lower the
probability of the sentence in the grammar. Thus, Horning's procedures can be
interpreted as trying to maximize the simplicity of a grammar which is a
frequently stated linguistic goal. That probability and simplicity should
be related is just what one would expect from information theory.

I think Horning's work represents the best of the syntax-based approaches.
He shows how, by trying to optimize probability or simplicity, one can in
principle induce any context-sensitive language from positive information
only. He has also done some work (whiéh I have not reviewed) on improving
the efficiency of the induction algorithm over the case of pure enumeration.
However, his methods are basically enumerative and, despite all his impressive
advances, hopelessly inefficient.

There are two ways one might go to improve efficiency. One is to work
with greatly restricted sub-classes of languages and so avoid the magnitude

of the combinatiorial explosion he faces - even when he works with finite

state grammars. This may be possible in some applications, but I think it is
clear from the work in linguistics, that the syntactic structures of natural

languages are very diverse and do not fall into a narrowly circumscribed class.
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The other method is to make available other non-linguistic information
which helps indicate the structure of the Tanguage.

For instance, one idea that has appeared in the syntax-based work, is
that induction of context-free languages would be much easier if information
was given as to the phrase §tructure of sentences. Both Pao (1969) and
Crespi-Reghizzi (1970) have developed relatively efficient algorithms that
made use of such surface structure information. In fact, for a restricted sub-
class of languages (a special subset of operator-procedence languages) Crespi-
Reghizzi was able to obtain language identification with only positive infor-
mation. The problem with their work is that this information about phrase
structure is provided in an ad hoc manner. The sentence is provided to the
induction algorithm bracketed to indicate surface structure. This has the
flavor of "cheating" and certainly is not the way things happen with respect
to natural language induction. I will show in later sections how this
surface structure information can be inferred by comparing the sentence to

its semantic referent.

The Semantics Approach

The importance of semantics has been very forcefully brought home to
psychologists by a pair of experiments by Moeser and Bregman (1972, 1973)
on the induction of artificial languages. They compared language Tearning
in the situation where their subjects only saw well-formed strings of the
language versus the situation where they saw well-formed strings plus
pictures of the semantic referent of these strings. In either case, the
criterion test was for the subject to be able to detect which strings of

the language were well-formed - without aid of any referent pictures. After
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3000 training trials subjects in the no-referent condition were at chance
in the criterion test, whereas subjects in the referent condition were essen-
tially perfect.

Results 1like these have left some believing that there must be magical
powers associated with having a semantic referent. I would Tike to pursue a
more sober and rigorous analysis of the contribution of semantics. To do
this requires that we set up the formal framework in Figure 2. The situation
depicted there is a Target PRTM which generates sentences (yt) in response
to semantic referents (xt). The inducer has access to the semantic referents
and the sentences. It produces as guesses Mt which are guesses as to the
structure of the target PRTM. The Mt are a;;b PRTMs which map semantic

referents into sentences.

It is important to understand what are the psychological correlates of
the objects in this formal framework. The Induction Machine is the language
learner. He observes situations in his environment. His perceptions of
these situations constitute the semantic referents. He hears sentences spoken
to describe the semantic referents.- It is the pair of these perceptions and
sentences which are the basic data for the learner. The Target Machine
formalizes the desired relationship. The learner's task is to construct
a system which will produce appropriate sentences to semantic referents.

The Hypothesis Machine Mt formalizes the current state of that induced system.

The semantic referents have an internal structure. In my applications

I will regard this structure as being basically that of a HAM propositional
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network (Anderson & Bower, 1973). However, for purposes of this formal
analysis it is not necessary to specify what the structure is. It is only
assumed that there is a semantic grammar, SG, which generates these semantic
structures. Also it is assumed that the inducer knows SG. It is also assumed
that SG is sufficiently simple that there is an effective recognition procedure

for it. For instance, SG might be a context-sensitive grammar.

Positive Information

It can be shown in this context that the inducer can learn the language
given only positive information about what are sentences of the language -
provided the learner receives an information sequence in which he will even-
tually hear the appropriate sentence for all semantic referents. Since the
1nducer‘knows SG he has a procedure for enumerating all the semantic structures.
That is to say, he can generate each semantic referent. This means, in addition,
that the inducer has a procedure for assigning integers to semantic referents.
Each semantic referent gets as a number its position in the enumeration.

There is a procedure NUM which assigns semantic referents to numbers and a
procedure EXPAND which gives the semantic referent corresponding to a particular
number. Both of these functions can be calculated by PRTMs if SG is context-
sensitive.

The importance of NUM and EXPAND will become clear shortly. Note that
the semantic referents are concatenations of symbols but that not all con-
catenations are necessarily acceptable. This follows from the fact that they
have rules of formation. Consequently, the inducer will not see all possible
semantic inputs; it will only see the well-formed ones. As we saw earlier,
it cannot, in general, induce a target TM unless it has access to the responses

for all inputs.
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This is where NUM and EXPAND come in. They allow us to circumvent the
problem. Rather than trying to identify T, the inducer tries to identify
M' = T (EXPAND) which denotes the machine which EXPANDs an integer into a
semantic referent and then calls on T to produce a sentence for that referent.
The following describes the behavior of the inducer. It sees a semantic referent
x input to T and notes the output sentence y. It computes NUM(x) = z which is
the integer corresponding to x. It then tries to induce the machine which maps
z into y. This machine M' = T (EXPAND) is a PRTM and so can be induced given
the results in Section 2. Lets call the INDUCER's t-th guess as to the identity

of T (EXPAND) Mt‘. From this guess it can form a guess M£ = Mt' (NUM) which

denotes machine Mt' applied to the integer corresponding to the semantic
referent. Since_ﬁ} will eventually be identified we know M will also be
identified. M is the desired machine mapping referent into sentences.

Important in this demonstration is the fact that the grammar SG is known
and EXPAND and NUM may be calculated. Without these it wouid not have been
possible to create a tractible induction problem. The reader should understand
that NUM and EXPAND are not meant to correspond to psychological processes.
They only are brute-force formal means of showing that M can be identified
P tﬁe grammar of the semantic referent is known.

So we have shown that the introduction of a semantic referent makes it
possible to work with positive information only. One might suppose that we
can also have an improvement over blind enumeration as an induction procedure
when semantic information is available. However, it can be shown that there
is no procedure uniformly faster than enumeration of all possible relations
between the semantic referent and sentences. The proof of this claim was

given in Section 2 when we discussed the general induction problem. The

reader should also realize that with respect to computational efficiency, the
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enumeration algorithm is as hopeless a means for identifying the relation
between semantic referent and sentence as it was for learning to recognize
well-formed sentences. In point of fact, the space of semantic functions
is much richer than of recognition functions. Recognition functions associate
with each sentence 0 or 1 while semantic function associate with each sentence
one of an infinite number of semantic interpretations. So really the set of
possibilities is larger when we consider semantic functions. Therefore,
there is a sense in which it would take the enumeration algorithm even longer
to find the correct semantic relationship than the correct syntactic relationship.
I find it difficult to appreciate what is being talked about when I
mention the space of all possible semantic relations. I am realizing that
there are very bizarre relations in that space. For instance, corresponding
to every syntactic recognition function RL for a language one can construct

a semantic function, FL' FL operates as follows:

1. It takes a semantic referent x and calculates z = NUM(x) which is
the integer giving the position of x in the enumeration induced by the
semantic grammar, SG.

2. It takes z and converts it to w, which is a string of words in the
language recognized by RL. By a process known as Guodelization (see Yasuhara,

1971) it is always possible to uniquely convert between integer and strings

of symbols.

3. It uses the recognition function RL to detect whether w is a sentence

i L. IF & s 76 computeas y = WJ# which denotes the string w concatenated

with the special symbol #. Otherwise y = w.

4. The output of F s y.
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Thus, corresponding to each distinct language L there will be a new,
different semantic relation FL. Of course, there are many other semantic

relations. However, the point about the relations FL is that they provide us
with examples of some of the many perfectly absurd ;;}ations that exist! The
reason why the enumeration algorithm for semantic relations is so slow is

that it must consider the absurd candidates. The reason it must is because

we have no precise notion of what it means for a relation to be absurd.
However, such information must be implicitly encoded into the human induction
system or else it would not succeed. Thus, it becomes a significant psycho-
logical question to identify what constitutes an absurd vs. a natural semantic
relation.

This is the fundamental point about the success of language induction in
the human case. It proceeds rapidly because relatively strong assumptions are
being made about the relation between semantic referent and sentence. The
problem is that no one has clearly formulated what these constraints are.

One of the principle tasks that will occupy us throughout the remainder of

this chapter is a partial specification of what these constraints are.

4. Heuristics for Language Learning

A frequently made distinction in computer science involves the difference
between a heuristic and an algorithm. An algorithm is a computational pro-
cedure which is guaranteed, by proof, to provide a solution to a class of
problems. A heuristic does not come with such formal guarantees, but does
often work. Heuristics are often preferred over algorithms because they
can be faster.

We have already seen that no algorithm will be uniformly faster than the

enumeration algorithm. Therefore, it is not surprising that one should turn
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to heuristics for learning natural languages. This section contains a dis-
cussion of a number of possible heuristics. No combination of these heuristics
would be sufficient to learn an arbitrary language. However, the claim is that
these heuristics will work with natural languages and will result in relatively
rapid learning. If the claim is correct, then it is due to peculiarities of
natural language. We will review in the next section the evidence that humans
bring these heuristics to bear in Tearning languages. One might argue that
humans have developed these heuristics because they are the ones that will

work with natural languages. However, I think the matter goes deeper than that:
Natural languages are the way they are because these are the sort of languages

humans could learn, given their heuristics.

Enumerative vs. Constructive Approaches

In the last section we principally considered enumerative approaches to
language identification. These procedures basically enumerate all the possible
languages until they come across one which is consistent with the information
being received about the language. Their great virtue is that they are
guaranteed to find the target language if it is among the class of languages
being enumerated. Their basic drawback is that they take so very long.

Horning (1969) worked hard at developing heuristics which would make the
process computationally quicker. However, he was only able to deal with the
most trivial languages. At the end of his dissertation he conceded:

Although the enumerative procedure . . . is formally optimal,
its Achilles' heel is efficiency . . . the enumerative
problem is immense; our implementation . . . can infer only
grammars of extremely modest proportions within reasonable
bounds gn computation.

(pp. 151-152)
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The alternative is to use constructive methods for language learning.
These methods start with an initial grammar of no rules and proceed to add and
generalize rules so that they will account for incoming information. The method
is called constructive because the grammar is built up rule by rule. It also
tends to be a growth process in another éense. The number of strings it will
accept generally increases as the learning progresses. The number of sentences
acceptable has to grow faster than the number of sentences observed. This is
because the goal of language learning is to develop a grammar which will
accept an infinite number of sentences after observing only finitely many.

The inevitable consequence of the necessary generalizations is the danger of
error. The grammar might be over-generalized to accept ungrammatical sentences.
This cannot be avoided by any constructive algorithm. The algorithm, in this
regard, is at the mercy of the languages it is trying to Tearn. For any
algorithm that is going to generalize one can construct a language for which
these generalizations are all wrong.

It is interesting that we only regard a constructive program as making
errors when it accepts an unacceptable sentence and not when it rejects an
acceptable sentence. This is a consequence of the growth feature of con-
structive algorithm - that they naturally come to accept more and more
sentences. So it is difficult for them to recover from overgeneralizations
but it is in their nature to be able to immediately recover from under-

generalizations.

The Need for Error Recovery

There are two ways to deal with the problem of over-generalizations in

learning natural languages. One is to try to coin a set of learning heuristics
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which will not lead to any errors for natural languages. Of course, there are
languages for which these heuristics would fail miserably but one could claim

that these are not natural languages. This seems to be the approach of

Siklossy (1971, 1972). However, this is not true to the psychological data.
Children are notorious for their over-generalizations in language learning.
If one is going to permit the program to overgeneralize then one must
specify procedures for recovery from these overgeneralizations. One could
either delete the rules wﬁich led to the overgeneralization or modify them in
some way. The strategy of modifying erroneous rules seems to have been the
one evolved by Klein (1970, 1973). Klein modifies rules upon explicit negative
feedback from an informant. This does not seem true to the psychological
circumstance. It seems rather that more accurate versions of rules slowly
evolve and replace the old rules.
' I would 1ike to discuss now some principles for rule construction, their
generalizations, and the dangers of these principles. I will go through a
Japanese example used by Klein (1973). This will serve to illustrate some
of the prinéip]es of grammar construction. However, the progression through
this gxamp]e will be interrupted by Tong digressions into matters not dealt
with in the Japanese example. Klein's approach is in many ways similar to
that of Siklossy. I have choéen to focus on Klein because I find him easier

to understand.

1. Coining Initial Rules

The first sentence in Klein's sequence is:
1) Nara wa hanasi o kiita (Nara heard the story).
In general there is very little that can be done on the input of the first sen-

2he
tence except to encode it in a very particulate rule. So Klein proposes 4& rule:
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S1 - nara wa hanasi o kiita
and stores its semantic interpretation. As we will see in Section 8 it
is possible to structure the grammar for the initial sentences so as to facilitate
the process of generalization with Tater sentences. But until one can compare

a number of sentences it is pretty well impossible to make any generalizations.

2. Principal of Minimal Contrast

The second sentence in the Klein example is

2) Jon wa hanasi o kiita. (John heard the story.)
Comparing these two sentences, only one contrast is detected. This naturally
leads to the conjecture that the two mismatching words (Jon and Nara) belong to
a single form class and that they appear in otherwise syntactically identical
sentences. Therefore, the following rules are constructed:

S1 > S2wa hanasi o kilta

S2 -+ nara, jon ‘ |

The third sentence is:

3) nara wa jono kiita (Nara heard.John.)

This sentence mismatches with rule S1 at but one point. Therefore, on the

basis of this minimal contrast the grammar is again changed to merge jon and
hanasi into the same form class:

ST -~ S2 wa S3 o kiita
S2 - nara, jon
S3 - jon, hanasi

This generation of classes on the basis of minimal contrast between sentences
and grammatical rules 1ike S1. It has produced the first generalization. The

grammar above would produce jon wa jon o kiita which it did not encounter.

Whether this sentence is grammatical or not I do not know, but one can produce
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English examples where the generalization is not valid. Consider the following

three sentences:

They are cooking apples
Frenchmen are cooking apples
They are delicious apples

Using the same principle of minimal contrast, this would lead the grammar into
accepting

Frenchmen are delicious apples

which is unacceptable. This overgeneralization might have been avoided if
reference had been made to the meaning of the three sentences on which the
‘generalization was based. Although they had similar surface syntax, they did
not have identical meaning structure. This leads to another principle for

grammar induction:

3. Principle of Semantics-Induced Equivalence of Syntax (PSIES)

Only merge rules or components of rules if they serve identical semantic
functions. In this way, Klein would be able to generalize in the Japanese case
but avoid the problem in the English case. However, it can still be shown that,
even with this restriction, generalization by means of minimal contrast can
lead to error. Consider the following example:

The boys danced
The girl danced
The girl dances

From these three sentences the induction routine would generalize to the accept-

ability of The boys dances which violates verb-number agreement. In the three

source sentences the subject-verb structure has the same semantic interpretation.

Therefore, there is no semantics-based way of avoiding the generalization.
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There is no real protection against such overgeneralizations. It is com-
forting that they also occur in child acquisition of language. Faced with
the fact that such overgeneralizations will occur it is necessary to provide
the induction algorithm with principles by which to recover. It is not clear
what Klein's recovery mechanisms are for this case. I would favor one in

which the constant hearing of The boys dance would strengthen a rule that

would eventually come to dominate the incorrect, overgeneral rule.

| The Principle of Semantics-Induced Equivalence of Syntax (PSIES) can be
used as more than a mere check on potential generalizations. It can be used
to suggest generalizations. Suppose a learner saw the following two sentences:

The boy kicked a girl
A woman stabbed the man

Suppose, further that the Tearner already knew the meanings of the words boy,

kicked, girl, woman, stabbed, and man. It is not unreasonable to suppose

we learn individual word meanings before we learn the interpretations of
sentences. Finally, suppose that the semantic structure of these sentences
was indicated so the learner could see that they were of the form subject-
verb-object. Then, it would not seem unreasonable for the learner to emerge
with reTatively strong generalizations from this example. He might posit
the following grammar:

S o NP VNP

NP -~ ART N

N - boy, girl, woman, man

V > kicked, stabbed

ART - a, the
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The reader may confirm that this grammar has generalized from the acceptability
of just two sentences to the acceptability of 128. Note that these generali-
zations were not made on the basis of minimal contrast. Rather the learner
just assumed that similar grammatical constructions which served the same

semantic function were interchangeable.

4., Left Generalization

There is a type of generalization advocated by Klein and Kuppin (1970)
which is a slight variant of generalization by minimal contrast. It is illus-
trated by the example below:

I Tike the boy
I Tike the girl
I Tike the girl who is tall

The natural generalization to make from these three sentences is that both boy
and girl may occur in the same position and that either may be followed by a
relative clause 1ike who is tall.

However, once again this type of generalization can lead to oVergenera]i-
zations. Consider the following example

I Tike the songs
I Tike the poem
I Tike the poem which is short

From these three examples, one would generalize to the acceptability of I like

the songs which is short.

5. Lexicalization

Klein uses minimal contrasts not just to make grammatical generalizations
but also to make hypotheses about the meaning of a word. Suppose two sentences

are identical except that where the first has word X, the second has Y. Also
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suppose that the meaning representation for these two sentences is the same
except that where the first representation has element A the second element has
B. Then it is a reasonable hypothesis that word X means A and that word Y
means B. Klein's program will make such conjectures. On the basis of the
Japanese sentences 1-3 that have been presented, it makes the hypotheses

jon = John, nara = Nara, and hanasi = story.

More generally, lexicalization can be accomplished by comparing a grammatical
rule with a sentence. So far I have only been talking as if pairs of sentences
were being compared. It is more efficient if grammatical rules are compared
to incoming sentences. This avoids the need to retain in memory all past
sentences. It also makes possible certain minimal contrasts not otherwise
possible. Thus the principle for lexicalization can be stated as follows:

If a sentence can be generated by a grammar except for one word and if the
semantics accompanying that sentence match the semantics associated with the
generation by the grammar except for one semantic element, then the meaning
of the word is that one semantic element.

At first, this principle seems universally valid for natural language.
However, even in this case one can concoct examples where it would fail.
Suppose a language learner sees Bill hitting a girl with a stick and hears

Bi1l hits a girl. Another time he sees Bill hitting a girl with his hand,

and hears Bill hits the girl. Assume visual inputs to be what the learner

regards as the meaning of the sentences. Then he would come to the conclusion

a = stick and the = hand. The basic problem here is that the information in

the semantic referent and in the sentence may not perfectly correspond. This
surely is a realistic difficulty in natural language learning situations.
A learner's guess as to the meaning of a speaker's sentence will not always

perfectly correspond with what the speaker is conveying in the sentence.
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If we assume that there were perfect correspondence between sentence and
semantic referent, then the principle underlying lexicalization seems universally
cate. This ds.@ testimoﬁy to the morphemic structure of natural language.

That is, there exist units of a sentence, namely the morphemes, which correspond
to units of meaning. However, it would be easy to concoct artificial languages
where this principle was not valid.

The principle used by Klein for lexicalization is an obvious one and has
been used by others (e.g., Siklossy). Despite the fact that it seems based
on a universal truth of natural language, I do not think it is péych01ogica]]y
valid. First, it does seem unreasonable to suppose a perfectly accurate
semantic interpretation. Second, it requires that the learner retain infor-
mation about meaningless strings of words (either the strings themselves or
a grammar that generates the meaningless strings) so that this information
can be contrasted with later strings and minimal contrasts noted. I think
it more reasonable to assume that children initially learn the meanings of
words in contexts which are very simple. For instance, a child sees a book, it
is pointed out, and the chifd hears book. After many such pairings he probably
builds up the concept of book and associates it with the word. Probably all
initial lexicalization is accomplished this way. Later words may be acquired
in context of elaborate sentences but it is only when the child already knows
most of the important words in the sentence and there are just one or two

unknown words.

6. Category Merging

Note in the Japanese example that the subject category S2 contains jon and

nara and the object category S3 contains hanasi and jon. Thus, the two
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categories overlap in one word - jon. On this basis, a generalization is made
by Klein that they are the same category which is called S2:

ST =52 Wa S2 o kiita

S2 - nara, jon, hanasi
The underlying assumption is that words tend to participate in only one or a
few grammatical categories. Therefore, if one sees a word in two places one
can assume the same category occurs in the two places. This clearly is not
universally valid. In this very example the generalization leads to the un-

acceptable sentence hanasi wa jon o kiita.

7. Questioning of the Informant

Klein's solution is to have his program generate the sentence and get
feedback from the informant as to its unacceptability. With this negative
information he then reformulates the grammar again:

St »-52 wa §3 0 Ibita
S2 > nara, jon
S3 » nara Jjon, hanasi

This questioning mode does not seem psycho]ogica]iy valid. Moreover, it
cannot work generally. Whenever a generalization is made which results in
adding an infinite number of sentences to the vocabulary one cannot check
them all. It was fortunate that Klein's simulation chose to check the bad
sentence and not the sentence:

jon wa nara o kiita

which the informant would have accepted. In any case, by just checking one
sentence one cannot hope to assure the validity of a generalization.
I do not think that informant feedback was needed to correct this particular

overgeneralization. Its semantic interpretation is unacceptable. Therefore,
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such a grammar would never generate the sentence and in attempting to interpret
such a sentence, a human speaker would probably not reject it as ungrammatical
but rather as nonsense. This is one of the important features about having a
semantic referent. Remember the task is to learn a mapping from semantic
referents 10 sentences. Negative information is not necessarily required.
The reason it is not is that it is not important what the mapping does with
il1-formed semantic referents.

However, there are other situations where category merging will cause
difficulties even when there are semantic safeguards. Consider the following
three French sentences:

Le carre est grand
Le carre est bleu
Le grande carre est au-dessus du cercle

On the basis of the first two grand and bleu would be merged into a single

category. On the basis of the third sentence this category would be inserted

in front of carre. This would lead to the sentence Le bleu carre est au-dessus

du cercle which is not acceptable because French requires bleu to follow the noun.

8. Learning Rules of Semantic Interpretation

The pairing of sentence with semantic referent not only allows one to learn
the meaning of words but also the correspondence between grammatical structures
in the sentence and rules of semantic interpretation. So by this point, Klein's
program has learned to interpret the first noun as subject and second as object
in an underlying meaning structure. The fourth sentence is:

4. Nara wa jon o sinzita (Nara believed John)

On the basis of minimal contrast it decides sinzita and kiita are also in a

common category. It also assumes that this category refers to the verb of the

sentence. So now the complete grammar has the structure:
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f 1
S1+-S2 wa S3 o S S-V-0
| L.._l_ i

n
S2 +~ jon, Mara

S3 » jon, nara, hanasi
S4 - kiita, sinzita
With S1 I have indicated its semantic interpretation.
The next three sentences are
5. Anata wa nara o kiita (You heard Nara)
6. Nara wa jon o sinzita (Nara believed John)

7. Anata wa nara ga hanasi o kiita to sinzita (You believe that
: -.Nara.ggggg the story)
Sentence (5) is parsed by the existing grammar except that Anata must be added
to the S2 and S3 categories. Klein initially adds pronouns to all object
categories and deletes them as evidence warrants. Sentence (6) is completely
parsed by the existing grammar. Sentence (7) is destined to force major
revisions in the grammar. At first there is just an analysis of the sentence

into the known categories. This is accomplished by means of rule S5:

S5+52 wa S2 ga S3 o S4 to S4  S-Y-O

_l

sV-¢
|

9. The Graph Deformation Condition

Note that the underlying structure that Klein wants to assign to semantic

referent is: 51_V1-01

52-V2—02

That is, in the structure 52-V2-02 is organized into a distinct substructure.
Klein wants to assign a surface structure to the sentence that reflects the

semantic structure. This can be better illustrated if we represent the phrase
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structure of the sentence and the semantic referent as trees. This is done in
Figure 3. We have illustrated there a phrase structure for the sentence (Part a)
and a tree structure for the semantic referent (Part b). Note that the

sentence's phrase structure is a graph deformation of the semantic referent.

That is, all the connections among nodes have been preserved but there is a
rearrangement of the location of the 1inks relative to one another. The
semantic structure specifies nothing about the non-meaning-bearing morphemes
in the sentence (i.e., wa, ga, 0, to). Therefore, these are left unbracketed

in the sentence.

It frequently seems that the appropriate surface structure for a sentence
is a graph deformation of its underlying semantic structure. This graph defor-
mation condition is thoroughly discussed in Anderson (1975). I will provide a
discussion in Section 8 of its implementation in LAS. While Klein does not
explicitly state that this is what he is doing, he is basically taking advantage
of the graph deformation condition to decide the surface structure for

sentence (6). He posits the new grammar:

S5+ $2 wa S6 to S§_ S-V-0

] f— |
S6 %2 ga S3 o S4 S-V-0

J

In this grammar, S6 is derived from S5 and it rewrites into a substructure.
The substructure derived from S6 corresponds to the subtree structure in Figure 3.
Note that there are no generalizations, per se, in going from the previous

single rule for sentence (6) to the pair above. However, it does alter the



(a)

S/E\

2 0, .
| |

1

ANATA WA NARA GA HANASI 0 KIITA TO SINZITA

(b) ' <
S]/V]\ 0]
i\
2 B 5
.
YOU BELIEVE NARA HEAR  STORY

Fig. 3. (a) Surface structure of the content words in a Japanese sentence:
(b) Tree structure of concepts in the semantic referent.
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structure of the rules in the grammar. Consequently, it will drastically affect
the course of future generalizations. .

The graph deformation condition imposes strong constraints on what an
acceptable sentence can be like. All acceptable sentences must have a phrase
structure of the sort in Figure 3. That is, there is a tree structure in
which no branches cross. The graph deformation condition asserts that this
surface structure must be a graph deformation of an underlying semantically-
based structure. Many strings of words could not be graph deformations of
any reasonable semantic structure. Consider two examples in Figure 4. 1In
Figure 4 we have a possible semantic referent for the English sentence The small

square is above the large circle. This can very easily be used to impose an

appropriate surface structure over the content words of this sentence. How-
ever, suppose some language chose to express this by the sentence, The large

square is above the small circle, in which the object adjective preceeded the

subject noun and vice versa. As illustrated in Figure 4, there is no way to
use the graph structure of the semantic referent to get a surface structure
for the sentence. No matter how it is done, some branches must cross. The
graph deformation conditions claim that such sentences could not be used in

natural languages to express the semantic referent.

However, Figure 4b shows the one example I have been able to find of English
sentences which violate the graph deformation conditions. These are

respectively sentences. In the semantic representation the pair John and runs

and the pair Bill and walks are naturally put together in substructures. How-

ever, the respectively sentence orders these words in just the way that makes

it impossible to extract a surface structure from the semantic referent.



(a) . ATTEMPTED
SEMANTIC REFERENT SURFACE STRUCTURE

i R

SQUARE  SMALL ABOVE CIRCLE LARGE THE LARGE SQUARE IS ABOVE THE SMALL CIRCLE

(b) ATTEMPTED
SEMANTIC REFERENT SURFACE STRUCTURE
JOHN RUNS BILL WALKS JOHN AND BILL RUN AND WALK, RESPECTIVELY

Fig. 4.  Two violations of the graph deformation condition. Example (a) is
fictitious and presumably represents a non-natural language.
Example (b) comes from English.
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Respectivelg‘senfences and other similar constructions like vice versa seem
to be in a class apart from the rest of English. They are only acquired very
late after the rest of the language is well-established. It is my suspicion
that special control structures are set up which convert a spoken sentence of
this class into another simpler sentence. For instance, upon hearing John and

Bill runf and wa]g}, respectively these processes might convert it into

John runs and Bill walks. Then the more primitive language devices operate

on these sentences. Similarly, in speaking, the simpler sentence is first
generated and then transformed into the more complex sentence. With such
sentences the evidence for transformations seems overwhelming. However, the
work of myself and others on mechanisms for language acquisition is focused

on inducing grammars for simpler, pre-transformational sentences.

10. The Relational Structure of Language

The main assertion of a sentence is a relational structure consisting of

one or more relational terms and one or more noun phrases. For instance,

in the sentence The ball is red, The ball is a noun phrase and is red a

relational term. In the sentence The quarterback threw the ball over the

linebacker, The quarterback, the ball, and the linebacker are the noun phrases

and threw and over the relational terms. Alternatively, one could analyze

over the linebacker as an embedded relational structure consisting of one

relation and one noun phrase.
Noun phrases serve to gather together information about an object in the

semantic referent--e.g., The tall girl in my class who talks very Toud.

In principle, this information about the object could be scattered throughout
the sentence, but because of the graph deformation condition this is not

possible.



Anderson 38

Relational structures occur at the level of the main assertion, as
modifiers in noun phrases; as modifiers of other relations, and in the place of

a8 noun phrase as in John believes Mary stole the book. Thus, a sentence is

a sequence of embeddings of grammatical structures where each level of embedding
either corresponds to a noun phrase or relational structure. Clearly, arbitrary
languages need not have this structure. It is a remarkable fact about natural
languages that they do. Relational structures are subject to the graph defor-
mation condition just Tlike noun phrases are. That is, one cannot intersperse
elements from multiple relational structures. Thus, while one can say John

believes that Mary stole the book one should not say John of the book believes

that Mary stole,

Consider the following semantic referent. A man is holding a cane.

He gives ten dollars to a florist. In exchange the florist gives him a dozen

roses. The roses are for Mary. A1l this might be conveyed by the sentence:

The man who is holding a caﬁebought with ten dollars a dozen roses for Mary

from a florist. Consider the fo]]owing'unacceptab1e sentence: The man who gave

the florist ten dollars bought with a cane a dozen roses for Mary. This sentence
is unaccéptab]e because the graph deformation condition does not let one insert
in the middle of the relational structure for buy the object of hold. But this
is arbitrary. There could be a verb which had as its relational structure
something of the form (Agent)(verb) with (object being held by agent) (object
being received) for (benefactor). What distinguishes this from the case
structure of the acceptable sentence? - (agent) (verb) with (object being given
up by agent) (object being received) for (benefactor) from (person receiving

the money).
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1t seems the language is somewhat arbitrary in having some relational terms
Tike buy with certain case structures but not other terms with other conceivable
case structures. The solution taken in the work of Sik]éssy and Klein is to
assume as semantic primitives the appropriate relations and their case structures.
However, this tack will not succeed because different languages have different
relations with different case structure. Although there is considerable agree-
ment on how to cut up the world relationally, there is by no means complete
consensus across languages. The consequence is that the relational structure
must be learned by a language learning program, not assumed. There are probably
quite strong semantic constraints on what are acceptable candidates for
relational structures. For instance, an acceptable structure is one Tike X opens

Y by using Z which underlies John Opened the door with a key. However, X opens

Y while eating Z would lead to sentences like John opened the door with an

jce-cream cone. Such a sentence seems that it might be unacceptable in any

natural language. It seems that all the arguments of a relational term must
be causally interconnected.

In any case, the fact that relational structure is not universally fixed
means that the relational structure of language must be learned before the
Graph Deformation Condition can be utilized to assign a surface structure to
the sentence. In part, the graph deformation condition might be used to infer
the relational structure. That is, an induction heuristic could be constructed
which asked what the relatibna1 grouping of elements would have to be to derive
a surface structure for the sentence consistent with the graph deformation
condition.

There, is another complication posed by the relational structure of language.

The same underlying semantic referent can have more than one relational structure.
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Thus, we can equivalently say John, who turned the key, opened the door or John

opened the door with a key. This means that really three levels of representation
are needed in the mapping from semantic referent to sentence. Intermediate
between the sentence and the semantic referent there is a relational structure
which has incorporated the relational structure of the sentence but which is
otherwise unchanged from the semantic referent. Figure 5 shows what I intend
(with the HAM memory structure as the semantic referent). Depending on the
relations in the surface sentence one of two relational structures are derived.
Then the graph deformation condition is applied to the derived relational

structures to determine the surface structure.

In this system, the HAM structure corresponds to something 1ike the abyssal
structure of generative semantics and the relational structure to a deep structure.
I generally refer to the relational structure as the prototype structure. Unlike
Klein and Siklassy's programs which use a prototype structure, my LAS system goes
from the semantic referent. The prototype structure is never really computed,

but is implicit in the induction process.

11. Generalization About Relational Structures

Relational structures and noun phrases each permit rather different sorts
of generalizations. I will review first the principles of generalization
suggested by Klein and Siklossy for relational structures. These generalizations
are made on the basis of similarity of order of constituents in two relational
structures. For instance, rule $6 and S1 are highly similar
Sil->82 wa S o 'S4
SOraSZ ga S8 o -S4



SEMANTIC

REFERENT
JOHN TURN KEY CAUSE DOOR  OPEN
PROTOTYPE
(RELATIONAL)
STRUCTURES
_ JOHN TURN KEY OPEN DOOR JOHN KEY DOOR OPEN
SURFACE JJ, lJ,
STRUCTURES :
£ T
=

2\

JOHN WHO TURNED THE KEY OPENED THE DOOR JOHN OPENED THE DOOR WITH A KEY

Fig. 5. Two surface structures are generated from the same semantic structure
via two prototype structures.
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Therefore, an attempt is made to replace reference to S6 in S5 by S1.
Rule S5 now becomes:
S5>S2 wa SI| to S4
The problem is that $1-has wa whereas S6 has ga. Therefore, the T superscript
is added to S1 in the context of S5. This indicates the need for the following

obligatory transformation:
Si': (8 Wa S3 o SB) > (S2.gn S o ).

This is one role of transformations in Klein's system - namely, to edit
out overgeneralizations. Thus, while the phrase structure rules Tike S1 and S5
evolve to create ever-more inclusive grammars (that is, permitting more sentences),
the transformational rules are designed to make the grammar more restrictive.
In this example, the transformation served to prevent what would have even-
tually become free wa-ga variation.

Exactly how one would 1ike to formulate the matter can be debated, but it
~seems that generalizations of relational structure from one context to another

are among the safest of generalizations. The fact that such generalizations

are permissable is a significant fact about natural language.

12. Generalization About Noun Phrases

Noun phrases permit two sorts of generalization. First, with respect to
a noun phrase occurring at a particular point in the grammar, one can generalize
from the acceptability of some sequences for that noun-phrase unit to the

acceptability of other sequences. For instance, having seen the red square

and the green circle as sentence subjects, it might seem reasonable to

generalize to the acceptability of the green square and the red circle as

subjects. The second sort of generalization involves the merging of rules
for a noun phrase occurring at one point in the grammar with rules for a noun

phrase occurring at another point.
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One has to be careful about forming generalizations within noun phrases.
Klein's generalization on the basis of serial position will not do. Consider
the following sequence of noun phrases:

The foam pillow

The Targe pillow

The red foam pillow

The comfortable large pillow

On the basis of the first two and the principle of minimal contrast, Klein

would put foam and large into one word class. On the basis of the next two

red and comfortable would be put in a second word class and this would be made
an optional predecessor of the first. Then the program would accept The red

large pillow which is not acceptable. The question of the ordering of adjectives

in English has been studied extensively by Zendler (1968). He concludes that
there is a relatively strict and complex ordering involving 19 classes of
adjectives. Adjectives in a higher class must precede adjectives in a lower

(The red large pillow ) :
class if they both occur in a noun phrase. A phrase like “can be acceptable,

but only in special circumstances where it can be interpreted as the Fed- one

of thelarge pillows.

These adjective classes are not arbitrary but are correlated with semantic
features. It seems that the more noun-like the adjective class is, the closer
it can occur to the noun. So, for instance, adjectives that refer to substance
Tike foam follow adjectives which refer to absolute properties like white,
which follow adjectives 1ike big which refer to relative properties, which
follow adjectives l1ike comfortable which refer to features of the object's use.

The problem with Klein's attack on this problem is that he is looking
for grammatical principles of absolute position, whereas what is needed are

principles of relative order. The way to deal with the problem of adjective
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ordering is to build into the induction routine the bias to look for semantically-

defined word classes and to learn the principles of ordering of these word

classes. The noun-ness principle of ordering uncovered by Zendler for English

may also be universal. If so, it could be built into induction routines.
Another interesting fact about noun phrases is that there is one class of

words, nouns, which is obligatory whereas the adjective word‘c]asses are optional.

The existence of such a noun class seems to be universal. There is no necessary

reasonrwhy this should be so, but it does serve to create problems. Consider

the following noun phrases:

The square
The square box
The red = - bsx

After seeing these Klein's principle of left generalization, would accept
The red.

One might protest that red is an adjective and square a noun and the
generalization could have been prevented on this basis. However, there seems
no semantic basis for deciding that one is an adjective and the other a noun.
There is nothing more inherently noun-like in the concept red than in the
concept square.

Thus, the conclusion seems to be that the generalization within noun
phrases should not be concerned with absolute position; rather they should
be concerned with relative position. An induction program should emerge with
a set of semantically-identified word classes, some of which are obligatory
and some of which are optional. LAS should Tearn what is the ordering that
the Tanguage places on these word classes.

Noun-phrases that occur at different points in the grammar have a lot
in common. This is clearly the case in English where there is essentially

just one grammar for noun phrases in all contexts. For languages inflected
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for case, however, there can be inflectional differences between noun phrases

depending on whether the phrase is subject, or object or instrument, etc.

But even for these there is much in common between the different noun phrases.
As far as I know there are no differences in any natural language with

respect to noun phrase word order dependent on position of that noun phrase

within the sentence. In this regard, noun phrase structure seems as promising

a place for generalization as relational structure.

General Conclusions

I make no pretense that these principles for language learning are ex-
haustive. They are just the ones I have found so far working on the problem
and reviewing the work of others. However, the fact that these many exist is
significant. It clearly reinforces the notion that natural languages are in
no way a random selection from the set of all possible languages. This idea
is not new. It was advanced by Chomsky (1965) to account for why children seem
to have the success they do in language acquisition. However, Chomsky seems
to have thought that there were purely syntactic constraints on the forms of
natural language. The only possible role he saw for semantics was one of
motivating the learner. As he wrote in 1962: ". . . it might be maintained,
not without plausibility, that semantic information of some sort is essential
even if the formalized grammar that is the output of the device does not
contain statements of direct semantic nature. Here, care is necessary. It
may well be that a child given only the inpdt of nonsense elements would not
come to learn the principles of sentence formation. This is not necessarily a
relevant observation, however, even if true. It may only indicate that
meaningfulness and semantic function provide the motivation for language learning,
while playing no necessary part in its mechanism, which 15 what concerns

us here."
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It is now c]eaf, however, that many of the constraints on language, and
many of the potential generalizations are only possible when we make use of
the language's semantics. It seems hard to specify any strong properties that
directly constrain the syntactic form of a natural language. It seems these
constraints only come indirectly by making reference to semantic information.

However, I suspect none of these principles are iron-clad. That is,
there probably exist in some natural language exceptions to each. I have been
able to point out exceptions in English for all but the last two. Certainly
artificial languages could be Tearned that had slight exceptions to these two.
How can Tanguage be learned, then, if there are no principles that an induc-
tion algorithm can count on with 100% confidence? The answer is that the
exceptions to these principles must be few. If they were not language could
not be learned. However, a successful induction algorithm will have to tolerate

exceptions to the generalizations it is forming.

5. Data About Language Learning

This section should first begin with a disclaimer. There is no attempt
here to provide a review on the literature concerning language acquisition.
There already exist some very good sources for that purpose (Brown, 1973;
Clark, 1975; McNeill, 1970; Slobin, 1973). What I have attempted to do is
to select from that large and rapidly-growing literature that which is relevant
to the task at hand. It will become quickly apparent that what is being modelled
here is an abstraction and idealization of any real-life languagellearning
situation. Therefore, I have taken enormous liberties in deciding what is

relevant and what is not.

The principal source of data concerns child language learning. As we will

shortly see, this is really not the most appropriate testing ground for studying
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language acquisition of the sort I am interested in. My concern is with the
learning of the connection between strings of words and their meanings. This
assumes a number of things on the part of the learner. First, he has already
isolated those acoustic objects that are words. Second, he has already a

richly developed meaning system. fhird, he understands what language is about -
that it is a map from symbols to meaning. Fourth, he wants to acquire that
language. None of these conditions are initially met by a child learning his
first language. Many of the complexities we see in the development of child
language reflects the gradual evolution of these pre-conditions for Tanguage
acquisition.

Consider the matter of phonological development. There is considerable
evidence that a child can early perceive and produce the phonetic distinctions
required in natural language (Eimas, Siqueland, Jusczyk, & Vigorito, 1971;
Grégoire, 1949; Jakobson, 1941; Moffitt, 1968, 1971). However, the child's
task is to learn which distinctions in his language convey information.

For example, a chi]d.learning English need not pay attention to aspiration
with voiceless stops because the contrast, aspiration or nonaspiration, does
not have a communicative function. However, the child cannot know this until
he is well into language learning. The matter of word segmentation is another
serious phonological problem. As anyone knows who has looked at a speech
spectogram the speech signal does not naturally break itself up into morphemes.
The child must first figure how to segment the signal before he can address
himself to questions of the grammatical structure of the signal.

For analytical purposes it would be nice if the child would first complete
all of his phonological learning and then get on with the task of grammar

induction. However, well on into the third and fourth year, when the child
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is understanding and producing relatively complex grammatical constructions,
he is still picking up phonological distinctions.

On the semantic side of things, one would want the child to have evolved
the necessary conceptual distinctions before he embarks upon grammar induction.
However, we as scientists, are again not to be so fortunate. Indeed as many
have now begun to argue (Clark, 1975; Nelson, 1974; Slobin, 1973) what seems
to underlie the timing of the acquisition of many grammatical structures is the
acquisition of the requisite conceptual knowledge. That is, most linguistic
structures signal conceptual distinctions and the child does not develop
these conceptual distinctions until he is well into the language learning
process. For instance, Slobin (1973) argues that the reason plurality or
past tense do not appear earlier in child language is that the child does not
have these concepts. As soon as the child develops the concept some manifes-
tation of it will appear in the language. For instance, a child may
initially mark plurality by more - e.g., more shoe. Shortly thereafter he
will acquire the adult grammatical mechanism - i.e., the suffix s. Slobin
proposes that the gap between the appearance of the conceptual distinction
and the use of the adult marking for that distinction is the true indicator
of tHe grammatical complexity involved in making that distinction in that
language.

It seems also clear that children initially do not really understand
the purpose of language. Initially they use it largely to make simple requests
of their enviornment. Early child speech and adult speech to young children
is marked by a high frequency of questions and imperatives, Declarative
sentences are low in frequency and negatives almost nonexistent. Children

are notorious for not hearing sentences that do not deal with their immediate
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sphere of needs and concerns. It seems clear that the child is slowly seduced
by his environment into being a language user. Initially he is attracted by
the immediate gains it brings him, but slowly he comes to appreciate its more
abstract purposes.

Thus one cannot observe in children the unhindered course of grammatical
induction. It is always being held back by the slow development of these
pqurequisites. However, one would be wrong to totally characterize the
process as one of just dependency of the grammar on the phonological, conceptual,
and sociolinguistic development of the child. A1l these processes are also
obviously aided by grammatical development. A new phonological distinction
is easier to detect when embedded in an otherwise comprehensible sentence.
Many concepts evolve from hearing language used in context. Certainly,
different grammatical structures must be one cue to the child of the different
communicative functions of language. Thus, the whole course of language
development is very interactive with different processes influencing each
other. In my opinion, it tends to make child language acquisition a rather
intractible scientific puzzle.

| If one is going to be able to make any sense at all out of child Tanguage
acquisition, he is going to have to deal with the data ét a level of abstrac-
tion that is a cut above trying to account for the day-to-day changes in
the child's language. This is what I have attempted to do in the next
chapter. There will be deﬁe1oped a grammar induction model which assumes
that these prerequisites are satisfied. It makes predictions about trends
in the course of lamuage acquisition. Qur task will be to look for these
trends in among the noise created by these other factors.

One might hope to also find a source of data in the second-1anguage

acquisition of adults. Here is a situation where the prerequisites to grammar
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induction are much more closely satisfied. This would be particularly true
if the second language had a similar phonological and conceptual structure as
the first. However, there are two serious problems. First, second language
learners have a natural tendency to use. their first language as a crutch in
the language learning situation. Thus, rather than learning to map between
sentence and semantic referent, they learn to map between the sentenceé of one
language and another. The second, related problem is that there is a critical
initial pveriod during which language can be learned much more successfully
than in later years (see Lenneberg , 1967). Thus, one might wonder whether
the same processes are being studied with older subjects as in the younger
child. Whether this is really a critical problem depends on whether one is
particularly interested in child language acquisition. I personally am not,
but find very disturbing the possibility that there might be a basic change
in the mechanisms of induction with age.

However, I do not think that conclusion is required by the existing data.
The existing data is of two sorts. First, relearning that part of a langquage
lost after brain damage is never complete after puberty whereas it is before.
Second, another language can be learned easily and without accent before
puberty but not after. Both of these facts are cast in terms that suggests
that there is an all-or-none shift in cognitive functioning. However, there
is no evidence whatsoever to indicate that this is really not a gradual shift
in cognitive functioning. I think what is happening is that as one gets older
it becomes impossible to acquire a language without making reference to
existing linguistic mechanisms. It is probably not optimal to try to build
a new language on the control structure set up for an old or damaged language.
In aphasia cases some linguistic facility usually remains which the adult probably

tries to build on. In second language learning, the problem arises because the
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second language is built on the first. Adults probably cannot help this be-
cause their old language processes have become so automatized. Young children
probably have more ability to inhibit the application of their language
processes.

So, in conclusion, I think second language learning could prove a valuable
source of data. However, one must deal with the fact that the second language
is being developed in the background of a set of deeply-intrenched mechanisms
for first language : ¢+ These mechanisms inevitably influence and, it
seems, hinder the course of second language development. Unfortunately, this
potentially rich area for data has not been carefully researched. Therefore,
the remainder of this section will largely consider first language acquisition

in children, despite its interpretative problems.

Speech to Children

For a good period of time it was commonly held that children performed a
truly remarkable feat. They heard from the adult community speech full of
false starts, hesitations, slips of tongue, and generally made up of ungrammatical
utterances (e.g., Chomsky, 1967; Bever, Fodor & Weksel, 1965). Despite this,
the child managed to induce the correct grammar of the language. Certainly,
none of the heuristics reviewed in the past section would be able to retrieve
the correct grammar given such degenerate input. Given this belief about the
input to children, one can hardly be surprised to find theories of language
acquisition that bordered on mysticism.

However, the adult's speech to children is remarkably good. It is cer-
tainly much better than to other adults. Less than 2% is ungrammatical
(Labov, 1970). It is much simpler with far fewer embeddings (Sachs, Brown, &

Salerno, 1972; Drach, 1968). It is spoken much more slowly (Farwell, 1973;
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Broen, 1972; Sachs, Brown, & Salerno ). A smaller vocabulary is used
(Farwell) and there is a greater tendency to stop at sentence boundaries (Broen).
Thus, early speech is not only grammatical, it is very simple. Simplicity

in early speech is not terribly critical for any of the induction heuristics

we discussed. However, it does become critical when one realizes a child is

not a modern computer and is subject to very severe information-processing
limitations.

It has also been noted (e.g., Shipley, Smith, & Gleitman, 1969; Snow, 1972)
that the speech of adults to children tends to be geared to the child's
grammatical level and that the adult will adjust his speech as the child
develops. Adults seem to be always at the next stage up from the child in
complexity of grammar. Gelman and Shatz (1972) found that children even as
young as four years of age modified their speech when talking to two year olds.
Moreover, they simplified their speech more in the case of two year olds
than three year olds.

One is naturally Ted to the hypothesis that the child is being paced by
the adult. However, there are a number of sources that indicate that direct
attempts to increase the complexity of the child's speech does not help him
(Cazden, 1965). Cazden had adults expand the speech of children. For
instance, the child might say Baby chair and the adult would restate, in
proper English, what he thinks the child is saying Yes, the baby's sitting

in the chair. This was not found more beneficial than other types of

linguistic interaction. So, it is apparently not important that a child

get feedback on the particular grammatical structures he is using. Rather,
what he needs is just an enriching environment of linguistic input. This
would seem to indicate that induction heuristics are not psychologically valid

if they make use of feedback on productions.
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Lexicalization

Lexicalization does not occur in child language the way it does in programs
like Klein's. That is to say,children do not learn the meanings of words by
hearing them in eemptex sentences paired with semantic referents. Rather much
of the early lexicalization in child language occurs by hearing single words
paired with referents. Or if the words occur in sentences they occur in frames
Tike "There is a cat" which just have one content word (Ferguson, Peizer, &
Weeks, 1973). Similarly, this is the way vocabulary is taught in school.

Each word in the fgreign language is paired with a definition in the mother
language.

Of course, it does not follow from the fact that this is the training
procédure that it is the only one or even the best. Let us consider a simple
algorithm for word learning and see what it implies about Tearning words in
isolation vs. sentence context. Suppose a learner receives a sentence with
m words paired with a meaning representation that contained m meaning elements.
Suppose further he has no idea of what the meaning might be of any of the words.
Suppose he took a guess as to the meaning of each word, selecting at random
from each of the m memory elements. Then he would have probability of 1/m
of being correct on any particular word. With m elements he expects to learn
m X 1/% =1 element on the trial. Thus, given this algorithm there is no
effect of m, number of content elements, on expected learning when the subject
does not know the meanings of any of the words.

Now consider the situation where he knows N, of the N words in the
vocabulary. Assume further, that on any trial,—;é is pre;;ﬁted in a sentence
with a random selection m of the total n, words. Suppose n, > m. What is the

probability that he will know the meaning of all the words in a particular

| -m)! : i
sentence? It can be shown to be "2° ("1 m)! . This probability decreases
n] .I ( nz_mj .I
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with increases in m. A trial, in which the subject knows the meaning of all
the words, is completely non-informative. Thus, as m increases we increase the
probability of an informative trial. On information trials the subject expects
to learn one item, independent of the number of unknown words on that trial.
So, this algorithm expects learning to be more rapid the largetm once the
meanings 6f some words in the vocabulary are acquired. Thus, learning a word
in isolation (m = 1) is the worst situation.

0f course, the problem with this algorithm is that it is not taking into
account the information-processing cost of dealing with larger m. A series of
experiments by Anderson and Paulson (in preparation) are relevant in this
respect. We had subjects study objects which had three attributes 1ike size,

shape, and color. A subject might be shown a small red circle and a small blue

circle and he asked to indicate which was the DAX. After making his decision
he was given feedback as to the correct decision. Thus, he might be told that

the DAX referred to the small red circle. Because the pair of objects only

differed on a sing]e‘attribute, the subject would know DAX meant red. So this
would constitute one trial on the pairing DAX = red. This is a case where

m=1.

We looked at two distinct cases where m = 3. In one case, he would see the

same two pair of referent objects as in the m = 1 case but he asked to indicate
which was the DAX JIB GUR. Because the referent pair contrasted on only color,
he could make a correct choice only if he knew that DAX, or JIB, or GUR meant
red (whichever did--the words were randomly ordered). However, he got via feed-
back information that allowed him to know DAX, JIB, and JIR should be paired in
some way with small, red, and ¢ircle. The other m = 3 case, involved a pair of

referents that contrasted in all three dimensions. Thus, he might be asked to in-

dicate whether DAX JIB GUR was a small red circle or a large green triangle. Thus,
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this choice was easier than the other m = 3 case because the subject could make

it on the basis of knowing DAX or JIB or GUR. However, the feedback gave him

identical information as to the possible meanings of DAX, JIB, and GUR. We

will call these three cases m =1, m = 3, hard, and m = 3, easy.

The subjects were given 50 trials on this task, paced at a 40 second rate.
The criterion test was number of words learned out of 9 after the experiment.

Averaging over two slightly different experiments the lexicalization scores were:

m=1 7.71 words
= 3, hard 6.13 words
= 3, easy 7.75 words

So subjects clearly cannot take advantage of the extra information in the
m = 3 case. It is particularly interesting how bad they were in the m = % hard
case. The difference between this and the m = 3, easy case is significant
(t66 = 2.20; p < .05). This is despite the fact that the two training sequences
g;;;-identica1 information as to the meaning of the words. However, subjects
had a harder decision to make in selecting the correct object referent for
the de§cr1ption. This extra information-processing load apparently "seeped"

into the lexicalization learning.

Telegraphic Speech

The clearest discrepancy between the behavior of a child and any induction
program has to do with the telegraphic speech that the child produces. That is,
children initially speak in two and three word utterances. To condense messages
into such short utterances it appears that children have omitted most function
words and subordinate constructions. Thus, they speak somewhat 1ike one might

write a telegraph - bye-bye Mummy, put gas in, no sit here, etc. There has been

some question as to whether these samples are properly characterized as telegraphic
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(see Brown, 1973) but there is no doubt that they are grossly ungrammatical in
a way that would not be produced by the existing induction heuristics. These
heuristics can generate ungrammatical sentences as a consequence of over-
generalization, but over-generalization is clearly not the origin of the
telegraphic quality of early child speech.

It is the case that students learning a language in a classroom do not
display any marked tendency to telegraphic speech. However, observing myself
in more free-learning situations I can report that at least one adult will
revert to this speech style. These are situations where one is trying to
communicate in a foreign language and cannot wait to determine the niceties
of that language. One picks up a few words, some principles of orderings,
throws the words together as best he can, and hopes the native speaker will
figure out what is intended.

It may be that the child in his telegraphic speech is not even attempting
to observe the grammar of the language. If so, we should see one of two things:
Either word order would be completely random. Or, if not random, it would
not bear any systematic relationship to word order in the particular language.
Word order in early child speech might reflect the existence of a primitive
ordering in pre-linguistic thought (see McNeill, 1975). In fact, there is
some evidence that early child speech has a word order independent of language.
Evidence for a universal simple pivot grammar, along the lines proposed by
Braine (1963), has been found by a number of researchers (Brown & Bellugi, 1964;
Brown & Fraser, 1963; McNeill, 1966, 1970; Miller & Ervin, 1964; Slobin, 1966).
However, more recent work has challenged the apparent universality of pivot
grammars (Blount, 1969; Bowerman, 1973; Kernan, 1969). Also, there is ample

evidence that in later child speech the utterances maintain’their telegraphic
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quality but do begin to incorporate principals of the adult word order

(Slobin, 1971).

Telegraphic Perception Hypothesis

The joint facts of telegraphic speech and the apparent partial incorpora-
tion of adult grammar cause real difficulties for the kinds of induction
heuristics considered. Therefore, I have proposed what I have called the

telegraphic perception hypothesis. Suppose the induction heuristics did not

receive as input complete sentences but rather telegraphic sentences. Then
naturally they would induce a telegraphic grammar. It seems quite reasonable
to suppose that a child cannot hold in immediate memory the total sentence he
has heard but rather a depleted version of that sentence. If so, then his
induction algorithms would be receiving telegraphic sentences as their basic
data.

Evidence for this hypothesis comes from studies of child imitation of adult
speech. It is found that these imitations, while longer than the child's own
productions, are also telegraphic in nature (e.g., Brown & Fraser, 1964).
Blaisdell and Jensen (1970) found that children tend to repeat those words
which are stressed and those words which occur in terminal positions. The
semantically important words tend to be stressed in adult speech. Schols
(1969, 1970) found that subjects tended to omit words that had unclear semantic
roles or unknown meanings. What I find striking is that these are just the
variables which control what I can repeat back after hearing a French sentence -
a language I know quite imperfectly. Of course, the variables of serial
position, perceptual isolation, and meaningfulness all have well established

effects in verbal learning experiments on immediate memory.
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One could reasonably propose, that as the grammar developed, it could be
used to permit the child to encade and remember more of sentences. In this way,
sentence perception and grammar induction could interact each feeding on
developments in the other. Inducing a grammar from degenerate sentences poses
an interesting problemﬁ How is the system ever to abandon its old rules as it
develops new rules built on more adequate input (i.e., less degenerate sentences)?
Merely because new grammatical constructions have appeared it does not follow
that old ones were wrong. Some mechanism is required for eliminating the old
rules. The gradual disappearance of telegraphic constructions from the child's
speech would seem to suggest that the new rules are gradually strengthened
relative to the old rules.

This telegraphic perception hypothesis brings us face-to-face with two
facts that are not often acknowledged in the discussion of heuristics for
lanquage acquisition. First, humans must process sentences in a left-to-right
fashion. They have only one chance to look at any portion of the sentence.
Unlike current language learning programs they do not have the luxury of
being able to scan back and forth over the sentence looking for relevant infor-
mation. The second, and related fact, is that humans are subject to severe
constraints of memory. They can only hold a rather small amount of information
in memory at a time. They also have virtually no memory for the exact sen-
tences they have seen. Any information about the past sentences has been

compressed into the current grammar.

A11-or-None vs. Continuous Modification of the Grammar

An interesting question is whether humans acquire, modify, and delete rules

in the all-or-none manner suggested by the induction heuristics in the preceeding
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section. Brown (1973) documents the acquisition of various morphemic rules.
Rules such as for forming past tense do not appear in an all-or-none fashion.
Rather correct applications of the rule for a single child gradually increases
in probability over a period of months. However, this does not entirely decide
the issue in favor of continuous growth. There is nothing to prevent a grammar
developing with multiple rules for past tense occurring in different contexts.
That is, the rule might occur separately for the main clause, a clause
modifying the subject, a clause modifying the object, etc. Also there might

be multiple rules to derive the main clause. The apparent continuous growth

in use of the past tense rule may reflect the fact that it is acquired at
different times for these different linguistic contexts. Put this way, of
course, it is difficult to empirically discriminate between all-or-none vs.
continuous learning. I think the decision as to which description to use

will turn out to depend on which is conceptually more tractable. At first
blush, it would appear simpler to account for an apparently continuous change

in behavior by a continuous process.

Over-Reqularization and Over-Generalization

Section 4 noted that almost any reasonable induction heuristic would make
generalizations for which there were some exceptions in some natural languages.
Therefore, it is interesting to note that children's speech runs rampant with
overgeneralization. This is particularly true in the case of morphemic rules.
Consider Ervin's (1964) case history of foot. The child initially may use
feet for both singular and plural. However, when he identifies -s plural

morpheme, he will use feets or foots. Later he may learn of the special

pluralization that occurs with pairs like box-boxes and house-houses and use

footses. It is significant that the strongest cases of overgeneralization
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should occur in morphemic development. What is distinctive about morphemic
rules such as those for pluralization is that there are a number of alternate
rules that signal the same semantic distinction. This is just the circumstances

under which induction heuristics that observe the Principle of Semantics-Induced

Equivalence of Syntax (PSIES) (see Section 4) will overgeneralize.

Evidence for the Importance of Semantics

I have argued that principles of generalization are only possible when
reference is made to the syntactic referent of a sentence. There is very striking
evidence for this claim in a pair of experiments reported by Moesser and
Bregman (1972, 1973) on the learning of artificial languages. These were
discussed in Section 3. Moesser and Bregman showed that adult subjects could
not learn even relatively simple languages without the aid of a sémantic
referent.

It is assumed that a child learns language in a context where the meaning
of sentences spoken to him is obvious. Clearly, this assumption is not always
satisfied. However, there is evidence that children just "turn-off" if it
is not possible to understand the meaning of the sentence. For instance,
hearing children of deaf parents do not learn Tanguage by listening to radio
or television. The speech spoken by a child and spoken to a child is largely
concerned with the here and now. So it seems that it is not unreasonable
to propose that the child does have access to the semantic interpretations
of the sentences he attends to. Sections 8 and 9 will be modeling situations
where this is most obviously true. These are situations where the Tearner is

presented with a picture and a sentence describing it.
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Evidence for the Graph-Deformation Condition

Recall that we proposed that there was a correspondence between the structure
of the semantic referent and the surface structure of the sentence. This was

called the Graph Deformation Condition (GDC). The claim was that connections

among elements in the semantic prototype had to be preserved in the surface
structure of the sentence, although they could be spatially rearranged. This
claim imposed rather severe restrictions on the structure of the sentence.
The GDC was important becausé it determined the structure of the grammar rules
and hence influenced the course of future generalizations. In particular, it
largely determined the formation of recursive rules. Identification of
recursion has always been a difficult matter in grammar induction.

To test the psychological reality of the GDC I performed an experiment on
artificial language learning. It utilized the following grammar:

S -~ NP PRED
NP + Shape (Size) (Pattern) (CLAUSE)
CLAUSE - te PRED
PRED -+ ADJ
+ NP Rel
Shape - square, circle, diamond, triangle
Size » large, small
Pattern » triped, dotted
Adj - red, broken
Rel -~ above, below, right-of, left-of

An example of a sentence in this language is Square striped te triange large .-

te broken above circle dotted small right-of. The experiment compares four

conditions of learning for this language:

1. No reference. Here subjects simply study strings of the language trying

to infer their grammatical structure.
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2. Bad semantics. Here a-picture of the sentence's referent is presented

along with the sentences. However, the relationship between the sentence's
semantic referent and the surface structure violates the GDC. The adjective
preceeding with the ith shape will modify the (n + 1 - i)th shape in the
sentence (where n is the number of noun phrases). For example, the adjective
associated with the first noun phrase (striped) modifies the last shape (circle).
Similarly, the ith relation describes the relation between the (m + 1 - i)th
pair of shapes (where m is the number of relations). So for instance the
second relation right-of describes the relationship between the first pair of

shapes square and triangle. The appropriate picture for the example sentence

is given in Figure 6a.

3. Good semantics. Here the adjective in each noun phrase modifies the

noun in that phrase. Relations relate the appropriate nouns in the surface
structure. The appropriate picture for the example sentence in this case is
given in Figure 6b.

4. Good semantics plus highlighting. The picture in this condition is

the same as in (3) but the shapes in the main proposition are highlighted.
The LAS program, to be presented in the Section 8 ., predicts better learning
when the main proposition is indicated. The picture for this condition is
given in Figure 6c.

In some ways this experiment is 1ike Moeser and Bregman's (1973). How-
ever, here English words are used so that the subjects do not need to induce
the language's lexicalization as well as its grammar. This corresponds to

the situation faced by LAS.1 (an early version of the LAS program).
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Fig. 6. Picture (a) was presented as a semantic referent in the bad semantics
condition; (b) in the good semantics condition; and (c) in the good
semantics plus highlighting condition.
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Moeser and Bregman's language also differed from this language in that it only
consisted of finitely many sentences. Essentially they contrasted (1) and (3)
and found Condition (1) much worse. They did not have a condition like (2)
where there was a semantics as elaborate as Condition (3), but where the relation
between referent and sentence violated the graph-deformation condition. The
GDC would predict no difference between Conditions (1) and (2) and predict
that both would be much worse than (3).

The basic procedure in the experiment involved having all subjects pass
through eight blocks of study-test. In each block the subject studied six
sentences with the semantics appropriate to his condition (if any). The sen-
tences were presentéd to the subjects on cards with pictures given below,
depicting the appropriate semantic information. Subjects in the no-semantics
condition had just the sentence printed on the card. Subjects were given 30
seconds to study each sentence. After studying the six sentences the subjects
were given a test booklet which contained on separate pages six pairs of sen-
tences without any picture referents. The subject's task was to indicate
which sentence of each pair was grammatically well-formed for the language
studied. Subjects were given 30 seconds to make their decision for each
sentence pair. Subjects in all conditions studied and were tested with the
same set of sentences. The only variation between conditions was the infor-
mation that accompanied the sentences on the study trials. The study and test
sentences were randomly generéted within the constraint that they mention at
least two objects and no more than four subjects.

The test pairs were of two sorts. There were pairs that tested for

some minimal syntactic contrast. So a subject might have to choose between:
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A. Square striped large triangle te red above
B. Square large striped triangle te red above

The second sort of test presented a correct sentence with some unrelated sentence
that had a gross semantic defect. So a subject might see:

C. Circle large te triangle small below above
D. Square striped large triangle te red above

o

In this example C is wrong semantically because above requires two noun phrase
arguments and only one is given (triangle is an argument for below). Subjects
found the two types of tests to be of approximately eqﬁal difficulty. Therefore,
I will present data pooled over the two test types.

Figure 7 provides a summary of the main results of the experiment. It is
based on data collected from 12 subjects in each condition. In Figure 7 the
data are classified by whether they came from the first or second half of the
experiment, and by the condition. Plotted is percent correct choice on the test
pairs. In-all conditions subjects were able to pick up on some regularities
and perform better than chance (50%). However, subjects were much worse in the
bad semantics and no semantics conditions than in the two good semantics con-
ditions. Also subjects in the bad and no semantics conditions showed Tittle

h
improvement from the first to second half of the experiment wereas subjects

in the good semantics conditions showed considerable improvement.

Subjects with good semantics plus highlighting of main propositions are
non-significantly worse than subjects without highlighting. The difference is

completely due to the two subjects in the highlighting condition who performed
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very poorly. It seems that these two subjects did not understand the intention
of the highlighting information.

I think when the GDC is tested in the context of this experiment its truth
is obvious. However, it is far from a trivial condition. As we will see in

the next chapter it can make for very rapid acquisition of a language.

Comprehension vs. Production

An interesting question concerns the relation between the acquisition of
the grammatical cohpetence underlying production of sentences and the acquisition
of the competence underlying their comprehension. In Section 7 I will propose
that acquisition of a single grammar underlies both - that when we learn to
understand a grammatical construction we simultaneously learn to produce it.
This seems to conflict with the generally accepted wisdom that comprehension
precedes production. However, there may be reasons why child production does
not mirror comprehension other than that different grammatical competences
underlie the two. The child may not yet have acquired the physical mastery
to produce certain words. This clearly is the case, for instance, with
Lenneberg's (1962) anarthric child who understood but was not able to speak.
Also the child may have the potential to use a certain grammatical c0nstruction,
but instead uses other preferred modes of production. The final possibility
is that the child may be resorting to non-linguistic strategies in language
understanding. Bever (1970) has presented evidence that young children do
not understand passives, but can still act out passives when they are not
reversible. It seems that the child can take advantage of the conceptual
constraints between subject, verb, and object. The child's grammatical deficit
only appears when asked to act out reversible passives. Similarly, Clark (1974)

has shown that young children understand relational terms 1ike in, on, and
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under by resorting to heuristic strategies. It is clear that we also have the
ability to understand speech without knowing the syntax. For instance, when

Tarzan utters food boy eat, we know what he must mean. This is because we can

take advantage of conceptual constraints among the words.

The study of Fraser, Bellugi and Brown (1963) is often cited as showing
comprehension precedes production. They found children had a higher probability
of understanding a sentence (as manifested by pointing to an appropriate
picture) than of producing the sentence. However, there were difficulties
of equating the measures of production and comprehension. Fernald (1970),
using different scoring procedures, found no difference. Interestingly, Fraser
et al. did find a strong correlation between which sentence forms could be
understood and which cbuld be produced. That is, sentence forms which were
relatively easy to understand were relatively easy to produce. It is hard
to understand this correlation except in terms of a common base for comprehension

and production.

General Conclusions

I think the data reviewed in this section is largely consistent with the
heuristics reviewed in Section 4 - with one notable exception. It does not seem
that negative information is sed to abandon or modify incorrect rules. Rather,
it seems more adequate rules slowly replace the less adequate rules by some
mechanisms of gradually strengthening. There is good reason for this. While
the speech of adults to children is remarkably good relafive to their speech to
adults, it still contains ungrammatical sentences. The problem with the
all-or-none induction heuristics reviewed earlier is that they would be com-

pletely turned off course by the occasional piece of mis-information.
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Braine reports an interesting pair of studies in this regard. In both
experiments subjects were trying to learn the grammar of an artificial language
from syntactic information only. In the one experiment (Braine, 1971) they
only saw what were purported to be positive instances of sentences. One group
of subjects saw a small 7% ungrammatical sentences and a second group saw none.
There was no difference in the learning of these two groups. In the other
experiment Braine (1963) gave a group of subjects information as to what was
a sentence of the language as well as to what was not. They did more poorly
than a group of subjects given positive information only. Thus it seems clear
that while the human unduction system can make 1ittle use of negative information,

it can deal with the occasional mis-information.

6. The HAM Memory System

The remaining sections of this chapter are concerned with describing my
work on computer simulation of language acquisition. This program for 1anguage_
acquisition is called LAS. LAS involves the integration of a memory
network representation with a network parsing formalism 1ike that of Woods
(1970). This section describes the memory system. The next section will
describe the parsing networks and the programs UNDERSTAND and SPEAK which
vs€ those networks for language understanding and generation, respectively.

The remaining part of the program is LEARNMORE which induces the network grammars.
There are two versions of the LEARNMORE program. The first one is part of
the program LAS.1 and the second part of the program LAS.2. These two
induction programs are described in Sections 8 and 9.

LAS uses a version of the HAM memory system (see Anderson & Bower, 1973)
called HAM.2 HAM.2 provides LAS with two essential features. First, it

provides a representational formalism. This is used for representing the
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semantic interpretations output by the understanding program, the semantic
intentions that are the input to the language generation program, and semantic
and syntactic information in long-term memory that are used to guide a parse.
Second, HAM.2 also contains a memory searching algorithm MATCH1 which is used
to evaluate various parsing conditions. For instance, the understanding program
requires that certain features be true of a word for a parsing rule to apply.
These are checked by the MATCH1 process. The same MATCH1 process is used by
the generation program to determine whether the action associated with a
parsing rule creates part of the to-be-spoken structure. This MATCH1 process
is a variant of the one described in Anderson and Bower (19735 €h. 9 & 12) and
its details will not be discussed here.

However, it would be useful to describe here the representational formalisms
used by HAM.2. Figure 8 illustrates how the information in the sentence

A red square is above the circle would be represented with the HAM.Z network

formalisms. There are four distinct propositions predicated about the two

nodes X and Y: X is red, X is a square, X is above Y, and Y is a circle.

Each proposition is répresented by a distinct tree structure. Each tree
structure consists of a root proposition node connected by a S 1link to a subject
node and by a P 1ink to a predicate node. The predicate nodes can be decomposed
into a R link pointing to a relation node and into a 0 link pointing to an
object node. The semantics of these representations are to be interpreted

in terms of simple set theoretic notions. The subject is a subset of the
predicate. Thus, the individual X is a subset of the red things, the square
things, and the things above Y. The individual Y is a subset of the circular

things.



RED SQUARE ABOVE BELOW CIRCLE

Fig. 8. An example of a propositional network representation in HAM.2.
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One other point needs emphasizing about this representation. There is a
distinction made between words and the concepts which they reference. The
words are connected to their corresponding ideas by T1inks labelled W. Note
also that the same idea is referenced by the two relation words above and
below. As will be discussed in Section 8, such relation words are treated in
LAS as having identical meaning, but simply differing in the order of their
noun-phrase arguments.

Figure 8 illustrates all the network notation needed in the current
implementation of LAS. There are a number of respects in which this repre-
sentation is simpler than the old HAM representation. There are not the means
for representing the situation (time + place) in which such a fact is true or
for embedding one proposition with another. Thus, we cannot express in HAM.2

such sentences as Yesterday in my bedroom a red square above the circle or

John believes that a red square is above the circle. Representations for

such statements are not needed in the current LAS project because we are
only concerned with representing information that can be conveyed by ostension
(i.e., by pointing to physical situations). In ostension, the assumed time
and place are here and now. Concepts Tike belief which require embedded
propositions are too abstract for ostension. Should we Tater choose to
extend LAS beyond its original ostensive referent domain, then complications
will be required in the HAM.2 representations. But when starting out on a
project it is preferrable to keep things as simple as possible.

There are a number of motivations for the associative network representation.
Anderson and Bower (1973) have combined this representation with a number of
assumptions about the psychological processes that use them. Predictions

derived from the Anderson and Bower model turn out to be generally true of
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human cognitive performances. (However, many of the specific details of HAM's
representation have never been empirically tested.) The principal feature

that recommends associative network representations as a computer formalism

has to do with the facility with which they can be searched. Another advantage
of this representation is particularly relevant to the LAS project. This has
to do with the modularity of the representation. Each proposition is coded

as a network structure that can be accessed and used, independent of other

structures.

So far, I have shown how the HAM.2 representation encodes the episodic
information that is input to SPEAK and the output of UNDERSTAND. It can also
be used to encode the semantic and syntactic information required by the
parsing system. Figure 9 illustrates how HAM.2 would encode the fact that
circle and square are both shapes, red and blue are both colors, circle and

red belong to the word class *CA but square and blue belong to the word class

*CB. Note the word class information is predicated of the wordg while the
categorical information is predicqted of the concepts attached to these words.
The categorical iﬁformation would be used if some syntactic rule only applied
to shapes or only to colors. The word class information might be evoked if a
language arbitrarily applied one syntactic rule to one word class and another
rule to a different word class. Inflections are a common example of syntactic

rules which apply to arbitrarily defined word classes.

HAM.2 has a small innate language of commands which cause various memory

links to be built. The following four are all that are currently used:



CIRCLE *CA

Fig. 9. An example of a HAM structure encoding both categorical and
word-class information.
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1. (Ideate X Y) - create a W link from word X to idea Y.

2. (Out-of X Y) - create a proposition node Z. From this root node
create a S link to X and a P link to Y.

3. (Relatify X Y) - create an R Tink from X to Y.
4. (Objectify X Y) - create an 0 link from X to Y.

These commands will appear in LAS's parsing networks to create memory
structures required in the conditions and actions. Often rather than memory
nodes, variables (denoted X1, X2, etc.) will appear in these commands. If the

_variable has as its value a memory node, that node is used in the structure
building. If the variable has no value, a memory node is created and assigned
to it and that node is used in the memory operation.

To illustrate the use of these commands, the following is a listing of
the commands that would create the structure in Figure g.

(Ideate red 1)
(Ideate square 2)
(Ideate above 3)
(Ideate circle 4)
(Out-of X 1)
(Out-of X 2)
(Out-of X 8)
(Objectify 8 3)
(Relatify 8 Y)
(Out-of Y 4)

There are, of course, a lot of details about the HAM memory system not
discussed. This is sufficient, however, to understand the use of HAM in the

language system which is the concern of the remainder of this chapter.

7. The LAS Language System

The LAS language system is not very interesting as a serious attempt to
model the complexities of language comprehension and production. It is clearly
dwarfed by the very impressive programs of workers in artificial intelligence

such as Winograd (1972) or Schank (1972). Its principle significance is that
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it provides a coherent, if simplified, framework in which to conceptualize
the language acquisition program.

The LAS program is written in Michigan LISP (Hafner & Wilcox, 1974).
The program accepts as input Tists of words, which it treats as sentences,
and scene descriptions encoded in a variant of the HAM propositional Tanguage.
It obeys commands to Speak, understand, and learn. The logical structure of
LAS is illustrated in Figure 10. Central to LAS is an augmented transition

network grammar similar to that of Woods (1970). In response to the command,

Listen, LAS evokes the program UNDERSTAND. The input to UNDERSTAND is a sentence.
LAS uses the information in the network grammar to parse the sentence and

obtain a representation of the sentence's meaning. In response to the

command, Speak, LAS evokes the pfogram SPEAK. SPEAK receives a picture

encoding and uses the information in the network grammar to generate a sen-

tence to describe the encoding. Note that LAS is using the same network
formalism both to speak and understand. The third part of the program is
LEARNMORE which induces these network grammars. Two versions of this

program will be described in the next two sections. The purpose of this

section is to describe the operation of SPEAK and UNDERSTAND.

The picture encodings mentioned above are expressed in the HAM network
formalisms. Also encoded in the HAM memory formalism is long-term information
about word classes, concepts, etc. The grammar LAS uses is also encoded in a network,
but these networks are not to be confused with the HAM memory networks.

They are entirely independent information formalisms.
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Fig. 10. A schematic representation giving the input and output of the
major components of LAS--LEARNMORE, SPEAK, and UNDERSTAND.
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Network Grammars

The basic idea behind a network grammar 1ike Woods' is to have networks
correspond to the phrases that would be identified in an immediate constituent

analysis. So for instance, given the sentence The man who robbed the bank had

a bloody nose one would analyze it into two noun phrases The man who robbed the

bank and a bloody nose. The first noun phrase would be analyzed as having an

embedded relative clause who robbed the bank. That embedded relative clause

contains an embedded noun phrase. There would be different networks set up

to analyze each of these different types of phrases - sentences, noun phrases,
and relative clauses. Suppose the network analyzing a sentence encounters a
noun phrase. Then it will call upon the noun phrase network to process the
embedded noun phrase. In fact, one network can call itself, giving the network
grammar the power of a context-free grammar. The call to one network by an-
other is known as a push - a term I will use extensively. In Woods' formalism
there was the power to perform arbitrary computations in analyzing a sentence.
As we will see, this is not the case in the LAS system. To permit the LAS
system such powers would be unrealistic psychologically.

To illustrate LAS's network formalisms I will present the grammar for a
test language that has been used in the LAS project. It is defined by the
rewrite rules in Table 1. This grammar describes a two-dimensional world
of geometric shapes that differ in color and size and spatial relation among

each other. This has served as the domain for the language induction attempts.

Figure 11 illustrates the parsing networks for this grammar. There are

a few conventions that need to be known in reading these networks. When a
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TABLE 1

A Test Grammar

GRAMMAR?2

w
¥

NP is ADJ
- NP is RA NP
NP -+ (the, a) NP* (CLAUSE)
NP* -~ SHAPE
-~ ADJ NP*
CLAUSE - that is ADJ
-+ that is RA NP
SHAPE - square, circle, etc.
ADJ + red, big, blue, etc.
RA -+ above, right-of

Example

The red square which is small is below
the circle which is right-of the triangle
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label 1ike NP is on an arc it indicates that a successful push is required to
that network. When the label is prefixed by an e (e.g., € RA), this indicates
that the next word must be in the word class referred to by the label (i.e.,
RA). If a NIL Tabels the arc, this means that the arc can be traversed without

anything being processed about the sentence.

Table 2 provides a formal specification of the information stored in LAS's
network grammars. A node either has a number of arcs proceeding out of it
(1a) or it is a stop node (1b). In speaking and understanding LAS will try
to find some path through the network ending with a stop node. Each arc con-
sists of some condition that must be true of the sentence fof that arc to be

used in parsing (understanding) the sentence. The second element is an action

to be taken if the condition is met. This action will create a piece of HAM
conceptual structure to correspond to the meaning conveyed by the sentence at
that point. Finally, an arc includes specification of the next node to which
control should transfer after performing the action. An action consists of
zero or more HAM memory commands (rule 3). It will consist of zero actions
when no meaning corresponds to the word parsed by that arc (e.g., the). A
condition can also consist of zero or more memory commands (rule 4a). These
specify properties that must be true of the incoming word. Alternatively, a
condition may involve a push to an embedded network (rule 4b). For instance,

suppose the structure in Figure 8 were to be spoken using GRAMMART. The START



NP coP €ADJ
S —ige o B o B g

ERA
NP
S3 — STOP
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Fig. 11. The augmented transition networks encoding the grammar defined
in Table 1.
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Footnote:

TABLE 2

Formal Specification of the Network Grammar

NODE

ARC
ACTION
CONDITION

COMMAND
ARG

FUNCTION

VAR

~+ node ARC* (1a)
-+ stop . (1b)
-~ (CONDITION ACTION NODE) (2)
-~ (COMMAND*) (3)
~ (COMMAND*) (4a)
+ (push VAR T NODE) (4b)
-+ (FUNCTION ARG ARG) (5)
> memory node (6a)
+ word (6b)
~ VAR (6c)
+ out-of, objectify, (7)

relatify, ideate
Wil X2, X3, X4, X5

The superscript (*) indicates the possibility of multiple
occurrences of this symbol. Parentheses indicate the element

is optional.

118



Anderson 74

network would be called to realize the X is above Y proposition. The embedded

NP network would be called to realize X is red and X is square propositions.

In pushing to a network two things must be spec1f1ed——NODE which is the first
node in the embedded transition network and VAR, which is the memory node at which the

main and embedded propositions intersect. In the example the memory node is %

The three rules 6a, 6b, and 6c specify three types of arguments that memory

commands can have. They can either directly refer to memory nodes, or refer

to the current word in the sentence, or refer to variables which are bound to

memory nodes in the course of parsing. Table 3 provides the LISP encoding of

the network in Figure 11. It would be useful to examine one of the arcs in

Table 3 and see how it is generated by the grammar in Table 2. Consider the

first arc leading out of START which is encoded as ((PUSH X1 T NP) ((OUT-OF

X1 X2)) S1). It is encoded, according to rule 2, as a condition, (PUSH X1

T NP); an action, ((OUT-OF X1 X2)):; and a next network nodesS1. The condition

is a push and so obeys rule 4b. The symbol T in the push is a place-holder

for control information that will be used by the UNDERSTAND program. The

action obeys rule 3 and consists of a 1ist of one memory command (OUT-OF X1

X2)f That memory command obeys the syntax of rule 5.

Relation Between Grammar Networks and Propositional Networks

Note that there tends to be a 1-1 correspondence between HAM propositions
and LAS networks. That is, each network expresses just one proposition and
calls one embedded network to express any other propositions. This corres-
pondence is not quite perfect in Figure 11 , but the grammars induced

by LEARNMORE have necessarily a perfect correspondence.
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TABLE 3

LISP Commands Creating Figure 11

START PATH
(C(RUSH X1 T NP) ((QUT-OF X1 %2)) 52)))
ST PATH
((((OUT-OF WORD COP)) NIL $3)))
S2 PATH :

((((OUT-OF WORD ADJ) (IDEATE WORD X2)) NIL STOP)
(((OUT-OF WORD RA) (IDEATE WORD X3)) ((RELATIFY X2 XS SE

53 PAGH
(CC(PUSH X4 T NP)) ((OBJECTIFY X2 X4)) STOP)))

NP PATH
((((OUT-OF - WORD DET)) NIL N1)))

N1 PATH
(((PUSH X1 T NP1)) NIL STOP)))

NP1 PATH
((((OUT-OF WORD ADJ) (IDEATE WORD X2)) ((OUT-OF X1 X2)) Al)
(((OUT-OF WORD SHAPE) (IDEATE WORD X2)) ((OUT-OF X1 X2)) A2)))

A1 PATH
CE(PUSH X1 T NP1) NIL STOP)))

A2 PATH
((BUSHE X1 T CLAUSE)) NIL STOP)
@l NTL NIL STOP)))

CLAUSE PATH

((((OUT-OF WORD REL)) NIL EHE

C1 PATH
((((OUT-OF WORD COP)) NIL c2)))

C2 PATH
((((OUT-OF WORD ADJ) (IDEATE WORD X2)) ((OUT-OF X1 X2)) STOP)
(((OUT-OF WORD RA) (IDEATE WORD X3)) ((OUT-OF X1 X2) (RELATIFY
X2 NS Gen))

G3  PAEH
(((PUSH X4 T NP) ((OBJECTIFY X2 X4)) STOP}))
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These grammar networks have a number of features tb commend them. SPEAK
and UNDERSTAND use the same network for sentence comprehension and generation.
In this way, LAS has only to induce one set of grammatical rules to do both
tasks. Such networks are modular in two senses. First, they are relatively
independent of each other. Second, they are independent of the SPEAK and
UNDERSTAND prog;ams that use them. This modularity greatly simplifies LAS's
task of induction. LAS only induces the network grammars; the interpretative
SPEAK and UNDERSTAND programs represent innate Tinguistic competences for
interpreting the networks. Finally, the networks themselves are very simple
with Timited conditions and actions. Thus, LAS need consider only a small
range of possibilities in inducing a network. The network formalism gains
its expressive power by the embedding of networks. Because of network
modularity, the induction task does not increase with the complexity of

embedding.

The SPEAK Program

The SPEAK program is simpler than the UNDERSTAND program because it does
not require as elaborate a control mechanism for back-up. A flow-chart giving
a gross and approximate diagram of its information control is given in
Figure 12. SPEAK starts with a HAM network of propositions tagged as to-be-
spoken and a topic of the sentence. The topic of the sentence will correspond
to the first meaning-bearing element in the START network. SPEAK searches
through its START network looking for some path that will express a to-be-
spoken proposition attached to the topic and which expreéses the topic as the

first element. It determines whether a path accomplishes this by evaluating



SPEAK(NETWORK,TOPIC)

PATH = FIRST PATH IN
NETWORK THAT EXPRESSES
A TARGET PROPOSITION
WITH TOPIC AS THE NEW

ELEMENT
- > EXIT
ARC = CAR(PATH)
PATH = CDR(PATH)
SPEAK (NEW CONDITION (ARC
NETWORK, = PUSH
NEW TOPIC) ?
no
Y
FINDWORD

CONDITION (ARC)

Fig. 12. A flowchart illustrating the high-level control structure of the
SPEAK program.
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the actions associated with a path and determining if they created a structure
that appropriately matches the to-be-spoken structure. When it finds such a
path it uses it for generation.

Generation is accomplished by evaluating the conditions along the path.
If a condition involves a push to an embedded network, SPEAK is recursively
called to speak some sub-phrase expressing a proposition attached to the main
proposition. The argument for a recursive call of SPEAK are the embedded
network and the node that connects the main proposition and the embedded
proposition. This connecting node is what is common between the memory
structure described by the embedded and embedding proposition . It is also
the topic of the embedded network. In effect, the embedded network is
elaborating on the semantic referent of that node.

If the condition does not involve a push it will contain a set of memory
commands specifying that some features be true of a word. It will use these
features to determine what the word is. The word so determined will be spoken. .
The subprogram FINDWORD is the one that uses a condition to retrieve a word.

As an example, consider how SPEAK would generate a sentence corresponding
to the HAM structure in Figure 13 using the English-Tlike grammar in Figure 11.
Figure 13 contains a set of propositions about three objects denoted by the
nodes G246, G195, and G182. Of node G246 it is asserted that it is a triangle,
and that G195 is right of it. Of G195 it is also asserted that it is a square
and that it is above G182. Of G182 it is also asserted that it is square,
small, and red. Figure 14 outlines the control structure of the generation

of this sentence. LAS enters the START network intent on producing some
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utterance about G195. The first path through the network involves predicating
an adjective of G195, but there is nothing in the adjective class predicated
of G195. The second path thrbugh the START network corresponds to something
LAS can say about G195--it is above G182. Therefore, LAS plans to say this as
its main proposition. First, it must find some noun phrase to express G195.
The substructure under G195 in Figure 14 reflects the construction of this
phrase. The NP network is called with its connecting node G195. It prints
out the and calls NP1 which retrieves square and calls CLAUSE which prints
that, is, and right-of and recursively calls NP to print ;ﬁg_éfgy:ﬁ@ to express

G246. Similarly, recursive calls are made on the NP1 network to express G182

as the small red square. A nounghrase is concluded once all the to-be-expressed
information about the réferent of the noun phfase has been expressed.

The actual sentence generated is dependent on choice of topic for the
START network. Given the same to-be-spoken HAM network, but the topic G246,

SPEAK generated A triangle is left-of a square that is above a small red square.

Given the topic G182 it generated A red square that is below a square that is

right-of a triangle is small. Note how the choice of the relation words

left-of versus right-of and of above versus below is dependent on choice
of topic.

It is interesting to inquire what is the linguistic power of LAS as a
speaker. Clearly it can generate any context-free language since its transition
networks correspond, in structure, to a context-free grammar. However, it
turns out that LAS has certain context-sensitive aspects because its productions
are constrained by the requirement that they express some well-formed HAM
conceptual structure. Consider two problems thaf Chomsky (1957) regarded as

not handled well by context-free grammars: The first is agreement of number
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between a subject NP and verb. This is hard to arrange in a context-free
grammaf because thg NP is already built by the time the choice of verb number
must be made. The solution is trivial in LAS--when both the NP and verb are
spoken, their number is determined by inspection of whatever concept in the
to-be-spoken structure underlies the subject. The other Chomsky example in-
volves the identity of selectional restrictions for active and passive sen-
tences. This is also achieved automatically in LAS, since the restrictions

in both cases are regarded simply as reflections of restrictions on the semantic
structure from which both sentences are spoken.

While LAS can handle those features of natural language suggestive of
context-sensitive rules, it cannot handle examples 1ike languages of the form
a™"c" which require context-sensitive grammars. It is interesting, however,
that it is hard to find natural language sentences of this structure. The

best I can come up with are respectively-type sentences, e.g., John and Bill

hit and kissed Jane and Mary, respectively. This sentence is of questionable

acceptability.

There are some Tinguistic constructions 1ike number and active-passive
which are more easily described by context-sensitive rules, but which can
be generated by context-free rules. Languages which contain such constructions
are still called context-free. However, there are true context-sensitive
languages like the ap"c" example which, in principle, cannot be generated
by a context-free grammar..

LAS could generate a language of the form a""c" if its HAM semantic
structure contained to-be-spoken expressions of this form. The LAS networks
really are transducers. That is, they translate one information representation,

the HAM network, into another representation, the sentence. Thus, questions
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about the context-sensitive features of the language generated by LAS can
depend on context-sensitive features of the memory structure. Unfortunately,
the context-sensitive features of the HAM representation are not well defined.
There is another way that LAS could gain context-sensitive powers from
its memory structure. Suppose in speaking a sentence it could write nofes to
itself in the memory structure and later read these. Given this general
read-write capacity it could behave as a Turing machine. However, in speaking
LAS can only read from its to-be-spoken memory structure. Its "writing" consists of out-
puting a sentence and it is prevented from reading that sentence. These res-
trictions on reading and writing are probably too severe but it would be
unrealistic psychologically to give LAS general read-write capabilities.
Actually, LAS does have a certain very limited writing capability within
its memory structure. - It can tag memory structures as already spoken. This

is to prevent it from generating expressions 1ike The blue blue square which

is blue is blue in which the same proposition is expressed over and over again.

This does give the grammar context-sensitive powers of the sort that cannot

be obtained in a context-free grammar.

The UNDERSTAND Program

The search in SPEAK for a grammatical realization of the conceptual struc-
ture was limited to search through a single network at a time. Search terminated
when a path was found which would express part of the to-be-spoken HAM structure.
Because search is limited to a single parsing network, the control structure
was simply required to execute a depth-first search through a finite network.

In the UNDERSTAND program it is necessary, when one path through a network
fails, to consider the possibility that the failure may be in a parsing of a

sub-network called on that path. Therefore, it is possible to have to back into
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a. network a second time to attempt a different parsing. For this reason the
control structure of the UNDERSTAND program is more complicated.
Perhaps an English example would be useful to motivate the need for a

complex control structure. Compare the two sentences The Democratic party hopes

to win in '76 with The Democratic party hopes are high for '76. A main parsing

network would call a noun phrase network to identify the first noun phrase.

Suppose UNDERSTAND identified The Democratic party. Later elements in the
second sentence would indicate that this choice was wrong. Therefore, the
main network would have to re-enter the noun phrase network and attempt a

different parsing to retrieve The Democratic party hopes. When UNDERSTAND

re-entered the noun-phrase network to retrieve this parsing, it must remember
which parsings it tried the first time so that it does not retrieve the same
old parsing.

Figure 15 provides the flowcharts of the control in three functions which
approximately characterize UNDERSTAND. These flowcharts are sufficiently
rich in LISP notation that I would warn the non-LISPer to expect less than
full comprehension. They are included to make available some of the technical
details to the LISPer. The top level function is called PUSH (Part a). The
function PUSH simply calls ANALYZE to find a path through the network. It
takes the actions collected along the path and performs them to create a
temporary memory structure. This structure represents part of the understanding
of the sentence. The arguments to PUSH are: STRING, the remaining part of
the to-be-understood sentence; TOPIC, the topic for that network; CONTROL,
a history of the paths taken in any previous entries into that network; and

NODE, the start-node in the network being entered. It returns sufficient
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information so that it can be re-entered. The information includes the nodes
in the temporary structure. If that network has to be re-entered, these tem-
porary nodes will have to be erased. Secondly, it returns as control a list
of the remaining possible paths (if any) through the network.

The function ANALYZE (Part b) is called with arqguments STRING, CONTROL, and
NODE, the next node in the parsing network. If the node has not been used in
a previous entry into the network, CONTROL is T. Otherwise, it is a listing
the remaining paths from NODE which have not yet been tried. ANALYZE evaluates
the conditions on the paths possible from NODE to see if any are satisfied
by the part of the sentence contained in STRING. If the condition involves
matching to long-term memory, MATCHTEST is called. MATCHTEST checks a memory
condition. Its logic is similar but simpler than that of PUSHTEST which is
illustrated in Figure 15.

The function in Part (c), PUSHTEST, evaluates an arc whose condition in-
volves a push to an embedded network. PUSHTEST calls PUSH to see whether the
embedded network will analyze part of the string. If successful, PUSH returns
the structure XVAL. This contains information about the memory structure
created (on the CAR of XVAL) and about possible alternate paths through the
embedded network (on the CDR of XVAL). ANALYZE is then called to evaluate
the paths subsequent to the current arc. If these fail, a function UNDO is
called to erase any temporary structure created in the embedded push. If
there are any further paths thrbugh the embedded network ((CDR XVAL) # NIL),
PUSH is called again but with a new control structure. The functions described
here do not correspond to the ones implemented. Some complexities have been
omitted for expository sake. A documented listing of the actual program can

be obtained by writing to me.
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These programs serve to find some path through the network that results
in a complete parsing of the sentence. In parsing a sentence it invokes the
same hierarchy of networks that it would in generating a sentence. Thus, for

instance, given the sentence, The square that is right-of the triangle is above

the small red square, LAS would parse it following the control structure of

Figure 14, retrieving the HAM structure in Figure 13. This is an example of
a reversible augmented transition network. Simmons (1973) has a similar idea
but uses two different networks, one for generation and one for analysis.

In exchange for this complexity, he gains the savings in only having to write
one interpretative process both for understanding and generation.

It is also of interest to consider the power of LAS as an acceptor of
languages. It is clear that LAS, as presently constituted, can accept exactly
the context-free languages. This is because, unlike Woods' (1970) system,
actions on arcs cannot influence the results of conditions on arcs, and there-
fore, play no role in determining whether a string is accepted or not. However,
what is interesting is that LAS's behavior as a language understander is
relatively 1ittle affected by its Timitations on grammatical powers. Con-
sider the following example of where it might seem that LAS would need a
context-sensitive grammar. In English noun phrases, it seems we can have almost
arbitrary numbers of adjectives. This led to the rule in Figure 11 where NPI
could recursively call itself each time accepting another adjective. There is

nothing in this rule to prevent it from accepting phrases 1ike the small big

square or other unacceptable constructions. However, in practice this does not
lead LAS into any difficulties because it would never be presented with such a

sentence due to the constraints on what a speaker may properly say to LAS.
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It is useful to compare generation versus analysis in the LAS networks.
The flow of control is somewhat different in the two circumstances. In sen-
tence production LAS first finds a path through the START network to correspond
to the main proposition that it wants to assert. Then it will proceed to
generate the first phrase in the sentence. Thus with respect to the control
structure of Figure 14, SPEAK completely generates one level before it expands
the left-most substructure. In contrast, in UNDERSTAND, the control struc-
ture is generated as the words come in. This means that before any further
control structure is evoked at a particular level, the Teft-most substructure
will be completely generated. Nefwork grammars are rather ideal in that
they permit with equal facility the breadth eXpansion required by SPEAK to
plan the production and the depth expansion required by UNDERSTAND to follow

the spoken sentence.

. The Program LAS.]

Having now reviewed how LAS understands and produces sentences, I will
turn to describing the induction program, LEARNMORE, There were two versions
of this program. The first is part of a general system called LAS.1 and the
second part of a general system called LAS.2. This section will describe
the LEARNMORE system in LAS.1. It consists of three principle programs:
BRACKET, SPEAKTEST, and GENERALIZE. Before describing this system, it is
wise to briefly review the conditions under which LAS learns a language.

It is assumed that LAS already has concepts attached to the words of the
language. That is, lexicalization is complete. The task of LAS is to learn
the grammar of the language--that is, how to go from a string of words to

a representation of their combined meaning. Later projected versions of

LAS will deal with learning word meanings.
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The philosophy behind the LEARNMORE program is to provide LAS with the
same information that a child has when he is learning a language through osten-
sion. It is assumed that in this learning mode the adult can direct the
child's attention to that aspect of the situation which is being described.
Thus, LEARNMORE is provided with a sentence, a HAM description of the scene
and an indication of the main proposition in the sentence. It is to produce
as output the network grammar that will be used by SPEAK and UNDERSTAND. It
is possible that the picture description provides more information than is in
the sentence. This provides no obstacle to LAS's heuristics. With the infor-
mation of sentence, semantic referent, and main proposition BRACKET will
assign a surface structure to the sentence. SPEAKTEST will determine whether
the sentence is handled by the current grammar. If not, additions are made to
handle the sentence. These additions generalize to other cases so that LAS
can understand many more sentences than the ones it was explicitly trained
with.

The LAS.1 and LAS.2 programs were evolved to describe a particularly simple
two-dimensional world. This world consisted of various geometrical shapes of
different sizes and colors. The shapes could bear a number of spatial rela-
tions to one another (above, below, left-of, right-of). The ambition of
these programs was to learn languages (natural or artificial) adequate to
describe this semantic domain. Despite the simplicity of the semantic domain,
a lot was learned about language induction.

It is important to have a specified semantic domain in a language learning
enterprise. It provides a very explicit criterion for suceess. [t i
impossible to take as one's task the learning of an entire natural language.
However, one can set as a goal the learning of a subset of a natural language

adequate to completely describe a circumscribed semantic domain. The problem



Anderson 85

with some of the other language learning efforts, (e.g., Klein, Sik1assy) is
that they have take on the learning of ill-defined chunks of the language.
They present a history of the program learning a sequence of sentences, making
some generalizations and then the program quits. It is very difficult on the
basis of such histories to assess what aspects of the language the program can:

handle, let alone what aspects it cannot.

BRACKET - The Graph-Deformation Condition

The BRACKET program is an algorithm for taking a sentence and a HAM con-
ceptual structure and producing a bracketing of the sentence which indicates
its surface structure. This program makes use of the Graph-Deformation
Condition (GDC) discussed in Sections 4 and 5. The GDC applies to a prototype
structure which must be derived from the underlying HAM semantic structure.
Recall that the prototype structure differs from the semantic structure
because it has in it those relational terms used in the sentence. The
relational terms used in LAS.1 are very simple so that it is not difficult
to calculate the prototype structure.

I will go through one example of the derivation of a surface structure
from the HAM conceptual structure via the prototype structure. It should be
emphasized, however, that the prototype structure is not actually calculated
in the BRACKET program. It is implicit in the logic of the program. I make
the prototype structure explicit for prposes of exposition. If the reader
is interested in the programming details he should write to me for a copy
of the March, 1974 BRACKET program.

Figure 16a illustrates ‘the HAM structure that might underlie the English

sentence The red square which is right-of the triangle is below the small circle.




(a)
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TRIANGLE LEFT-0F RIGHT-0OF RED SQUARE BELOW ABOVE CIRCLE SMALL
RED SQUARE BELOW CIRCLE SMALL

(c) / (d) F\
\ :
™
K I E/ / C
/\ /\ | P
F E A B
CIRCLE SMALL SQUARE RED BELOW CIRCLE SMALL SQUARE RED BELOW

Fig. 16. The prototype structure in (b) is derived from the HAM structure in
(a). From this prototype structure two surface structures, (c) and
(d), can be imposed on the same string of words.
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We will use it to derive the prototype structure in Figure 16b for the sen-

tence Circle small square red below which is a sentence in an artificial

language that LAS will be learning. (This is also the prototype structure for

the English sentence The small circle is below the red square.) The prototype

structure is derived by deleting from the HAM structure all nodes except pro-
position nodes (A, B, C, E, and F), the individual nodes (I and K) and the
words (red, square, below, circle, small). Note that, although above is part
of the HAM structure, it is deleted in the prototype structure. Rather,
below is the relation term used in the sentence. 1In additioh, the structure

encoding the proposition I is right-of the triangle is deleted from the pro-

totype. This was not mentioﬁed in the to-be-bracketed sentence.

Having the prototype structure, LAS attempts to find some graph-deformation
of it that will provide a tree structure connecting the content words of the
sentence. Part (c) indicates one such graph-deformation of the prototype
sentence. Note that all the Tinks in (b) are maintained but have been
spatially rearranged to provide a tree structure for the sentence. Note that
the prototype structure is not specific with respect to which Tinks are above
which others and which are right of which others. Although the prototype
strﬁcture in (b) is set forth in a special spatial array the choice is
arbitrary. In contrast, the surface structure in (c) does specify the
spatial relations of links. From (c) we may derive a bracketing of the
sentence indicating its surface structure--((circle small) (square red) below).

It is important to note what has happened to the relational term below
in this derivation. Note that both it and above were attached to the same
idea node J. In learning the meanings of such complementary words, the
learner would see them applied to the same situation. Therefore, he would

naturally come to regard them as synonymous. The difference would be
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syntactic from the point of view of the learner. Below is heard with the
logical object first and above with the logical subject first. Thus, it seems
that the natural course for language acquisition would be to evolve a parsing
system on the model of Schank's (1972) in which synonymous structure§are
mapped into the same semantic structure . In the application of the graph
deformation condition, LAS can reorganize the semantic structure around what-
ever relation term appears in the sentence to derive a surface structure.
I claimed (Anderson, 1975) that:
"It seems reasonable that all natural languages have as their
semantics the same order-free prototype network. They differ
from one another in (a) the spatial ordering their surface
structure assigns to the network, and (b) the insertion of
non-meaning-bearing morphemes into the sentence.®
Clearly, that claim will have to be modified because of the fact that the
prototype structure.can vary from language to language. Still the GDC
imposes strong constraints on the form of possible Tanguages. This is because
there are strong constraints on the prototype structure that may be derived
from a semantic structure and the semantic structure is still held to be
language-universal. As discussed in Section 4 it seems that there are serious
constraints on the set of possible relational structures. It seems to me that
there is also an iron-clad constraint with respect to individual nodes Tike

I and K in the semantic structure. Their connections may be deleted in the

prototype structure (as was the connection from I to right-of the triangle)

but they may not be moved to other nodes. Thus, the connection from I to red
cannot be moved to K nor can the connection from K to small be moved to I.

This means that a sentence 1ike The small square is above the red circle could

not be used to express the HAM structure in (a) by any natural language.
The experiment reported in Section 5 demonstrated how difficult it fis to

learn such a language.
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Main Proposition

BRACKET needs to know more than just the prototype structure to infer the
surface structure of the sentence. As parts (c) and (d) of Figure 16 show,
the same string of words can have the same prototype structure deformed into
more than a single surface structure. The difference between (c) and (d)
is the choice of which proposition is principal and which is subordinate.

The structure in (d) might be translated into English as Circular is the small

thing that is below the red square. Therefore, BRACKET also needs information

as to what the main proposition is to be able to unambiguously retrieve the
surface structure of the sentence. The assumption that BRACKET is given the
main proposition amounts, psychologically, to the claim that the teacher can
direct the Tearner's attention to what is being asserted in the sentence.
Thus, in panel (c), the teacher would direct the learner to the picture of

a red triangle above a small circle. He would both have to assume that the
learner properly conceptualized the picture and also that the learner realized

that the aboveness're1ation was what was being asserted of the picture.

The Details of BRACKET's OQutput

So far, for purposes of exposition I have simplified the specification of
BRACKET's output. Also the example in Figure 16 was particularly simple be-
cause there were no non-meaning-bearing words to consider. Consider, how

BRACKET would handle the sentence A triangle is left-of a square that is above

a small red square, given the HAM structure in Figure 13. [t is Tefit &5 an

exercise for the reader to derive the sentence's prototype structure which is
an intermediate and implicit step in BRACKET's computation. BRACKET returned
a complex expression of the form (G257 (G246 G247 a triangle) is left-of
(G195 G196 a square (G195 G225 that is above (G182 G183 a small (G182 G185
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red (G182 G184 square)))))). The embedding of parentheses reflects the levels
of the surface structure. The main proposition is §g§z_which is given as the
first term in the bracketing. The first bracketed sub-expression describes the '
subject noun phrase. The first element in the sub-expression G246 is the node
that links the embedded proposition G247 to the main proposition G257. The
first two words of the sentence A triangle are placed in this bracketed sub-
expression. The next two words is left-of are in main bracketing. There are
no embedded propositions corresponding to these two. The remainder of the
output of BRACKET corresponds to a description of the element G195. The
first embedded proposition G196 asserts this object is a square and the second
proposition, G225, asserts that G195 is above G182. Note that the G225
proposition is embedded as a sub-expression within the G196 proposition.
The last element in the G225 proposition is (G182 G183 a small (G182 G185 red
(G182 G184 square))). This expression has in it three propositions G183,
G185, G184 about G182.

The above example illustrates the output of BRACKET. Abstractly, the
output of BRACKET may be specified by the following five rewrite rules:

1. S - proposition element*
2. element > morpheme

3. element » CLAUSE

4. CLAUSE -+ (topic S)

5. CLAUSE - (topic S CLAUSE)

That is, each bracketed output is a proposition node followed by a sequence of
elements (rule 1). These elements consist of the relation, its arguments, and
non-meaning-bearing morphemes. These elements are either rewritten as words
(rule 2) or a bracketed clause (rule 3). A bracketed clause begins with a

topic node which indicates the connection between the embedded and embedding
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propositions (rule 4). The elements within a clause are expanded according to
rule 1. That is, they will be morphemes or bracketed clauses. When a number
of embedded propositions are attached to the same node (e.g., G182), they are
embedded within one another in a right-branching manner (rule 5). ‘Note that
BRACKET induces a correspondence between a level of bracketing and a single
proposition. Each level of bracketing will also correspond to a new network
in LAS's grammar. Because of the modularity of HAM propositions, a modularity
is achieved for the grammatical networks.

The insertion of non-function words into the bracketing is a troublesome
problem because there are no semantic features to indicate where they belong.
Consider the first word a in the example sentence above. It could have been
placed in the top level of bracketing or in the sub-expression containing
triangle. Currently, all the function words to the right of a content word
are placed at the same level as the content word. The bracketing is closed
immediately after this content word. Therefore, is is not placed in the noun-
phrase bracketing. This heuristic seems to work more often than not. However,
there clearly are cases where it will not work. -Consider the sentence The

boy who Jane spoke to was deaf. The current BRACKET program would return

this'as ((The boy (who Jane spoke)) to was deaf). That is, it would not
identify to as in the relative clause. Similarly, non-meaning-bearing
suffixes Tike gender would not be retrieved as part of the noun by this
heuristic. However, there may be a clue to make bracketing appropriate in
these cases. There tends to be a pause after morphemes 1ike to. Perhaps
such pause structures could be called upon to help the BRACKET program decide

how to insert the non-meaning-bearing morphemes into the bracketing.
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Non-meaning-bearing morphemes pose further problems besides bracketing.
Consider a sequence of such morphemes in a noun phrase. That sequence could
have its own grammar that, in principle, might constitute an arbitrary recur-
sive language. The sentence's semantic referent could provide no clues at all
as to the structure of that language. Therefore, we would be back to the same
impossible syntactic induction task that we characterized in Section 3. Hence,
it is comforting to observe that the structure of these strings of non-meaning-
bearing morphemes tends to be very simple. There are not many examples of
these strings being longer than two words. For example, in the phrase which

the boy ate the words which and the would be regarded as a string of two

non-meaning-bearing morphemes. Thus, it seems that the languages constituted
by these non-meaning-bearing strings are nothing more than very simple

finite cardinality languages which pose, in themselves, no serious induction
problems. The various stretches of non-meaning-bearing morphemes in a sentence
could also have complex interdependencies thereby posing serious induction
problems. For example, gender inflection of a subject noun might depend on
gender inflection of an object noun. However, it does not seem to be the

case that these dependencies exist. So it seems that the structure of

natural language is simple just at those points where it would have to be

for a semantics-based approach to work.

SPEAKTEST

The function of SPEAKTEST is to test whether its grammar is capable of
generating a sentence and, if it is not, to modify appropriately the grammar so
that it can. SPEAKTEST is called after BRACKET is complete. It receives from
BRACKET a HAM conceptual structure, a bracketed sentence, the main proposition,

and the topic of the sentence. As in the SPEAK program SPEAKTEST attempis to
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find some path through its network which will express a proposition attached
to the topic. If it succeeds, no modifications are made in the network. If it

cannot, a new path is built through the network to incorporate the sentence.

An Example of Grammar Induction

The best way to understand the operation of SPEAKTEST is to watch it go
through one example. The target language it was given to learn is given in
Table 4. This is a very simple artificial language. In Table 4 are also given
the 14 sentences that LAS studied in learning the language. The reason for

choosing this language is that it is of just sufficient complexity to illus-

trate LAS's acquisition mechanisms.

Figure 17 illustrates LAS's handling of the first two sentences that come

in. The first sentence is Square triangle above. This sentence is returned

by BRACKET as (G174 (G115 G116 square) (G148 G149 triangle) above). G174
refers to the main proposition given as an argument to LEARNMORE. Since this

is LAS's first sentence of the language the START network will, of course,
cohplete]y fail to parse the sentence. It has no grammar yet. Therefore, it
induces the top-level START network in Figure 17a. Since the first two elements
after G174 in the bracketed sentence are themselves bracketed, the first two
arcs in the netwofk will be pushes to sub-networks. The third arc contains

a condition on the word above. The condition made is that it be a member of

the word class RA. This class was created for this sentence and only contains
the word above at this point. Having now constructed a path through the START

network, SPEAKTEST checks the sub-networks on that path to see whether they

Insert Figure 17 about here
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TABLE 4

Test Language to be Learned

Grammar

S - NP NP RA
= NP NP RB
NP ~ SHAPE (COLOR) (SIZE)
SHAPE - square, triangle
COLOR - blue, red
SIZE - large, small
RA -+ above, right-of
RB -+ below, left-of

Sentences Studied

SQUARE TRIANGLE ABOVE

TRIANGLE SQUARE RIGHT-OF

SQUARE TRIANGLE BELOW

TRIANGLE SQUARE LEFT-OF

SQUARE RED TRIANGLE BLUE ABOVE

TRIANGLE LARGE SQUARE SMALL RIGHT-OF
TRIANGLE RED TRIANGLE RED ABOVE

SQUARE SMALL TRIANGLE LARGE RIGHT-OF
SQUARE BLUE TRIANGLE LARGE RIGHT-OF
SQUARE BLUE SMALL TRIANGLE RIGHT-OF
TRIANGLE RED SQUARE BLUE LEFT-OF
TRIANGLE SMALL SQUARE RED SMALL BELOW
SQUARE BLUE TRIANGLE BLUE LARGE LEFT-OF
SQUARE RED LARGE TRIANGLE RED LARGE BELOW



(a) G174

|

G116 G175 G149

s T\

SQUARE G115 - ABOVE G148 TRIANGLE

(G174 (G115 G116 SQUARE) (G148 G149 TRIANGLE) ABOVE)

START —1 SX1 —Nfg-r-sxz -E-:R-ﬂ-)STOP
NP1 —-ﬂ—hSTOP
NP2 —E—ﬂ?—»smp
RA = ABOVE
N1 = SQUARE
N2 = TRIANGLE
(b) : G315
G247 G316 G284

Pl

TRIANGLE G246 RIGHT-OF G283 SQUARE

(G315 (G246 G247 TRIANGLE) (G283 G284 SQUARE) RIGHT-OF)

RA = ABOVE,RIGHT-OF
N1 = SQUARE,TRIANGLE
N2 = TRIANGLE ,SQUARE

Fig. 17. Treatment of LAS.1 of the first two sentences in the induction
sequence.
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can handle the bracketed sub-expressions in the sentence. This is accomplished
by a recursive call to SPEAKTEST. For the first phrase, SPEAKTEST is called,
taking as arguments the network NP1, the phrase (G116 square) and the topic
G115. In network NP1 the word class N1 is created to contain square, and in
network NP2 the word class N2 contains triangle.

Note in this example that I am using semi-mnemonic labels for nodes and
word classes like NP1, NP2, N1, RA. In point of fact these were not the
labels generated by the program. However, I have taken the liberty df replacing
the program's nonsensé labels with these. I hope this will facilitate the
still difficult task 6f following these examples.

Note in this example how the information provided by BRACKET completely
specified the embedding of networks. The sentence provided by BRACKET was
(6174 (G115 G116 square) (G148 G149 triangle) above). The first element
G174 was the main proposition. The second element (G115 G116 square) was a
bracketed sub-expression indicating a sub-network should be created. Similarly,
the third expression indicated a sub-network. The last element above was a
single word and so could be handled by a memory condition in the main network.

The second sentence is triangle square right-of. This is transformed

by BRACKET to (G315 (G246 G247 triangle) (G283 G284 square) right-of). Be-
cause of the narrow one-member word classes this sentence cannot be handled

by the current grammar. However, SPEAKTEST does not add new network arcs

to handle the sentence. Rather, it expands word class RA to include right-of,
word class N1 to include triangle, and word class N2 to include square.

The grammar is now at such a stage that LAS could speak or understand the

sentences triangle square above or square square right-of and other sentences

which it had not studied. Thus, already the first generalizations have been

made. LAS can produce and understand novel sentences.
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This illustrates the type of generalizations that are made within the
SPEAKTEST program. For instance, consider the generalization that arose when
SPEAKTEST decided to use the existing network structure to incorporate triangle,
the first word of the second sentence. This involved (a) using the same sub-
network NP1 that had been created for square and (b) expanding the word class
N1 to include triangle. Both decisions rested on semantic criteria. The
network NP1 was created to analyze a description of a node attached to the
main proposition by the relation S. Triangle was a description of the node
G246 which is related by S to the main proposition. On the basis of this
identity of semahtic function, LAS assigns the parsing of triangle to the
network NP1. Within the NP1 network the word class N1 contains words which
are predicates of the subject node. Triangle has this semantic function
and is therefore added to the word class.

This is an example of the principle of semantics-induced equivalence of

syntax (PSIES) at work (see Section4). That is, because triangle, square

and right-of serve similar semantic functions in the second sentence as did

square, triangle, and above in the first sentence, it is assumed that they

are generated by the same syntactic rules.

. LAS's grammar after the first nine sentences is given in Figure 18.
Sentences 3 and 4 cause another path to be created through the START network
to handle sentences with relations Tike below and left-of which take the object
noun phrase first. Sentences 5-9 are the program's first encounters with two
word noun phrases. A1l five sentences involve the relations right-of and
above and therefore result in the elaboration of the NP1 and NP2 sub-networks.

Consider the first sentence with a two word noun phrase, square red triangle

blue above,which is transformed by BRACKET to (C329 (C270 C271 square (C270 C272
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18.

sx3 —P4_ 5 sxa

NP RB
START STOP
NP1 SX1 —2 3 5x2 i
NP1 —EN oy —ADIT o srop
EN3
Bl NP3 2 STOP
EN2 ADJ2 NP4 -—-—>€N4 STOP
NP2 3 N2 ——————=STOP
IL
a STOP
Apg1 —EAL_msTop ADJ2 —222 g s70p
RA = ABOVE,RIGHT-OF
N1 = SQUARE,TRIANGLE
N2 = SQUARE,TRIANGLE
RB = BELOW,LEFT-OF
N3 = SQUARE,TRIANGLE
N4 = SQUARE ,TRIANGLE
Al = SMALL,BLUE,LARGE,RED
A2 = SMALL,BLUE,LARGE,RED

LAS's network grammar after studying the first 9 months in

Table 4.
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red)) (C303 C304 triangle (C303 C305 blue) above) C270). Consider the parsing
of the first noun phrase. Note that the adjective (C270 €272 red) is embedded
within the larger noun phrase. This is an example of the right embedding
which BRACKET always imposes ona sentence. This will cause SPEAKTEST to
create a push to an embedded network within its NP1 sub-network. As can be
seen in Figure 18, the existing arc containing the N1 word class is kept to
handle square. Two alternative arcs are added--one with a push to the ADJ1
network and the other with a NIL transition. Within the ADJ1 network the
word class Al is set up which initially contains the word red.

This i]]ustrétes the principle of left generalization in LAS.1: Suppose

a network contains a sequence of arcs A,, A

10 Aos eees Am' Suppose further a

phrase assigned to the network requires arcs X1, R, Xm, Sy Xﬁ to be

successfully parsed. If arcs A], AZ’ s Am have the same semantic functions

as required of arcs X], X2’ ...s X_, then the parsing of the first m elements

m’
in the phrase is assigned to the existing arcs A1, S Am.
alternate paths are built. A NIL arc is added to permit the phrases that

After arc Am two -

used to be parsed by A1, ity Am‘ Also arcs X i Xn are added to handle

M=
the new phrase. LAS is making the generalization that any sequence of con-
stituents parsable by A1, o ey Am can be p1aced in front of any sequence of
1 e Xn'

Figure 19 shows a more conservative way that LAS might have made this

elements parsable by X

generalization. Instead of network (a), it might have set up network (b).
In network (b) a new work class X has been set up to record just those words
which can be followed by an adjective. Networks (c) and (d) illustrate how
left generalization can and does lead to overgeneralization in natural

language. Suppose a child hears phrases 1ike The boy, A dog, The foot, etc.




(a)  npy—EM ADIT o srop
ULy srop

(b) NP2 —EN__msTop

EX . J
= 0 L »= STOP

(e) P ——edih i O rop

(d) NP —THE o) ENOUN S 3ST0P
| , ML osToP

Fig. 19. Part (a) illustrates a structure created by left generalization;
Part (b) illustrates a more conservative construction; Parts (c)
and (d) illustrate a overgeneralization induced by left generalization.
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He would set up a network that would accept any article followed by any noun.
Suppose he then hears The boys. This would be represented in LAS as The +
boy +

illustrated in (d). In this network LAS has incorporated the generalization

S. Because of left generalization LAS would construct the network

that foots is the pluralization of foot. This sort of morphemic overgeneralization
is, of course, quite frequent in child language (e.g., Ervin, 1964). What is
distinctive about such morphemic rules is that there are a number of alter-

natives and no semantic basis to choose between them. Because of left
generalization, LAS will overgeneralize in those situations.

LAS's handling of the Tast 5 sentences in the sequence is rather uneventful,
just resulting in more generalizations of the same kind. The language it is
trying to learn has a finite number of sentences in it--1296. After the 14th
sentence it has expanded its grammar to the point where it will handle 616 of
these. Actually the grammar has produced some overgeneralizations--it will
accept a total of 750 sentences. LAS has encountered phrases like square,

square small, square red, and square red small. From this experience, LAS

has generalized to the conclusion that the sentences of the language consist
of a shape, followed optionally by either a size or color, followed optionally

by a size. Thus the induced grammar includes phrases like square small small

because size words were found to be acceptable in both second and third
positions. Interestingly, this mistake will not cause LAS any problems.

It will never speak a phrase like square small small because it will never

have a to-be-spoken HAM structure with two small's modifying an object.
It will never hear such a phrase and thus UNDERSTAND can not make any mistakes.
This is a nice example of how an over-general grammar can be successfully

constrained by consideration of semantic acceptability.
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GENERALIZE

After taking in 14 sentences LAS has built up a partial network grammar
that serves to generate many more sentences than those it originally encountered.
However, note that LAS has constructed four copies of noun phrase grammar.
One would 1ike it to recognize that those grammars are the same. The failure
to do so with respect to this simple artificial language only amounts to an
inelegance. However, the identification of identical networks is critical to
inducing languages with recursive rules.

A 1ist is kept of all the networks created by SPEAKTEST. Once the struc-
ture of these networks becomes stable, GENERALIZE is called. It compares
pairs of networks looking for those which are identical. The criterion for
identification of two networks is that they have the same arc paths. Two
arcs are considered identical if they have the same syntactic conditions and
semantic actions. Consider what LAS would do if it had the following embedding
of networks:

NP -+ the NOUN

1

+~ the ADJ NP

1 1

NP] -+ NOUN2

~ ADJ, NP

2

NP2 - NOUN3

> ADJ3 NP

2

3
NP., - NOUN

3 4
That is, there are four networks, NP, NP1, NP2, and NP3 whose structure are
indicated by the above rewrite rules. (That is, the symbols in the right-hand
portion of the rule indicates the sequence of word classes and pushes on arcs

in different paths through the network.) It is assumed that LAS has only

experienced three consecutive adjectives and therefore SPEAKTEST has only three
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embeddings. The critical inductive step for LAS is to recognize NP] = NP2.

This requires recognizing the identity of the word classes NOUN2 and NOUN3

and the word classes ADJ2 and ADJ3. This will be done on the criterion of
the amount of overlap of words in the two classes. It also requires recognition
that network NP2 = NP3. Thus, to identify two networks may require that two
other networks be identified. The network NP3 is only a sub-network of NPZ.
So in the recursive identification of networks, GENERALIZE will have to accept
a sub-network relation between one network 1ike NP2 which contains another
like NP3. The aésumption is that with sufficient experience the embedded
network would become filled out to be the same as the embedding network.
After NP1 has been identified with NPZ’ HAM will have a new network structure
given below where NP* represents the amalgamation of NP], NPZ, and NP3:
NP - the NOUN
-+ the ADJ NP*
NP* - NOUN*
-+~ ADJ* NP*

Note that a new word class NOUN* has been created as the union of the word
classes NOUNZ, NOUN3, NOUN4, and the word class ADJ is the union of the
classes ADJZ, ADJ3.

GENERALIZE was called to ruminate over the networks generated after the
first fourteen sentences. GENERALIZE succeeded in identifying NP1 with NP2.
As a consequence, network NP1 replaced network NP2 at the position where it
occurred in the START network (see figure 18). Similarly, NP4 was identified
with and replaced network NP3. Finally, NP4 was identified with and replaced
NP3 throughout the START network. The final effective grammar is illustrated

in Figure 20. It now handles all the sentences of the grammar. It handles



NP4

- sx3—t4 3 sx4 -
START STOP
e U (RO o
Npg —EN g kg —ADE o o10p
NIL STOP
ADJ4 —EA% o axa SIZES o grop
NIL . sTop
S17E4 —S34  smsTOP
RA = BELOW,LEFT-OF
RB = ABOVE,RIGHT-OF
NG = SQUARE,TRIANGLE
A4 = BLUE,RED,LARGE,SMALL
S4 = LARGE,SMALL

Fig. 20. The final network for Table 4 after generalization of the noun phrase
- grammars.
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more sentences than the grammar that was constructed after the fourteenth
sentence. This is because the noun-phrase network NP4 has been expanded to
incorporate all possible noun phrases. Before the generalizations, nane of

the networks--NP1, NPZ, NP3, or NP4 were complete. The network NP4 became

complete through merging with NP3 and NP1.

This concludes the discussion of the algorithms LAS.1 uses for language
induction. In retrospect, LAS.1 had a lot of problems but it did serve to
indicate that the heuristics I had in mind could serve to Tearn natural-like
languages. In addition, I think there were three other significant develop-
ments. First the transition network formalism was interfaced with a set of
simple and psychologically realistic memory operations. Second, a single
grammatical formalism was created for generation and understanding. Thus,
LAS.1 needed only to induce one set of grammatical rules. Third, two impor-
tant ways were identified in which semantics helped grammar induction.

These were stated as the GDC and the PSIES.

The PSIES as used here really included a number of generalization prin-
ciples discussed in Section 4--Principle of Minimal Contrast, the PSIES
principle as stated there, left-generalization and some aspects of noun-
phrase generalization. As we will see, the ideas about noun phrase generali-
zation in LAS.1 were not adequate. In addition to this problem, there was
no attempt to generalize by category merging or by combining relational
structures. Also there was no provision for lexicalization or for error

recovery.

9. The Program LAS.2

The program LAS.2 had almost the same generation and understanding pro-

grams as LAS.1. In fact, except for a slight technical change in UNDERSTAND
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(forced by a change in the induced networks), this part of the program is
unchanged. However, major changes were made in the induction heuristics.
These involved the treatment of noun-phrases and the between-network generali-

zations that were made by GENERALIZE in LAS.1.

Noun Phrases

Recall that BRACKET produced noun phrases parenthesized in a right-
branching manner. lThus, the noun-phrase derived in Figure 20 had the
following form:

NP4 > N4
-+ N4 ADJ4
ADJ4 -+ A4
+~ A4 SIZE4
SIZE4 - S4
N4 - square, triangle
A4 - blue, red, large, small
S4 > large, small
It quickly became apparent when trying to learn English that right-
branching would not always do. Consider the following two phrases:
The red square
The square
LAS.1 would parenthesize these as (The red (square)) and (The square). This

leads to the following grammar:

NP = DET %
ADERE N K2
X2 X3

X1 » red, square

X3 + square
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With this grammar, LAS.1 proceeded to produce The red. LAS's problem was

that it did not recognize that there was an obligatory noun class with optional
modifiers. This knowledge had to be built into LAS.2. In particular, LAS.2
was told that, for the current semantic domain, shapes had the privileged
status of being obligatory and all else could be regarded as an optional
modifier. As discussed in Section 4, the exact concepts which constitute

a noun class is not fixed, but depends on the pragmatics of the situation

in which Tanguage is used. It is this pragmatic knowledge which is being

given to LAS.2. This information was incorporated into BRACKET. In general,
BRACKET tries to impose the following structure on noun phrases:

NP -+ morphemes (MOD) noun (MOD)
MOD - prop (MOD)
-+ prop

That is, a noun-phrase consists of a possibly null string of morphemes, a
bracketed pre-position modifier, an obligatory noun, and a bracketed post-
position modifier. The pre- and post-position modifiers are sets of propo-
sitions about the object with which the noun-phrase is concerned. There can
be from zero to arbitrarily-many such modifying propositions. As the rewrite
rule for MOD shows, these modifying propositions are parenthesized within

one another in a right-branching manner. As an example The tall blond man

with one black shoe would be returned by BRACKET as (The (tall (blond)) man

(with (one (black)) shoe () )).

Network Generalization--MERGE

In LAS.1 redundant networks were merged only after fairly stable networks
had been built up. This was done by a process of rumination over the existing
networks. This process did not seem particularly realistic as a psychological

model. The human is a stimulus-driven device and cognitive processing does
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not occur without some stimulus. Indeed, GENERALIZE was not really automatically
initiated. It was invoked upon my command.

In LAS.2 it is assumed that all networks are simultaneously ready and able
to process an incoming phrase. Thus, if there are two networks that can redun-
dantly handle the same phrase, LAS should be able to quickly detect this.

Thus, the stimulus for network merging in LAS is when it finds that two net-
works can handle the same phrase. It then attempts to construct a single
network out of the two in the same manner as did GENERALIZE in LAS.1. The
program that serves this function in LAS.2 is called MERGE. As was the case
with GENERALIZE, in attempting to merge two networks, MERGE may be called
upon to merge two other networks, two word classes, or to induce a recursive
rule.

The remainder of this section will try to illustrate the consequences of
the induction mechanisms incorporated into LAS.2. We will look at the induc-
tion of the natural languages to describe the same semantic referent as LAS.1--
that is the world of shapes, colors, and sizes. One Tanguége will be English
and the other French. After learning these two languages, we will observe

LAS.2 translate between the two using the induced grammars.

The English Example

Table 5 gives the grammar that defines the language to be learned. It
also shows the 11 sentences that were given to LAS in the learning sequence.
One thing should be noted about the materials given to LAS. The terms

right-of and left-of are hyphenated to create a single lexical item. If they

were not, BRACKET would assign of as the first of the non-meaning-bearing
morphemes in the noun-phrase. This is one example of the problem of phrase

segmentation which is not well solved in LAS.2.
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TABLE 5

The English Subset to be Learned

Grammar
S + NP PRED
NP -+ DET (ADJP) Shape (CLAUSE)
ADJP + (Size) (Color)
PRED -+ is ADJ

+ 1s Relation NP
CLAUSE - which PRED

ADJ + Size
-+ Color
DET + a, the
Shape + square, circle
Relation - above, below, left-of, r{ght-of
Size +~ large, small
Color -+ red, blue

Sentences Studied

The red square is above the red circle

The square is below the circle

A Targe blue square is left-of the small red square

A small square is right-of a large square

The square which is above the red circle is red

The circle which is red is small

The circle which is right-of the circle is blue

The circle which is blue is large

The square is above the circle which is left-of the blue circle
The blue square is right-of the square which is below the circle
The circle which is small is right-of the circle which is large
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After studying these 11 sentences, LAS.2 induced the grammar which is
given in Figure 21. That grammar is divided into a transition network and
categorical component where the latter gives the words in the categories
found on network arcs. In attempting to indicate the course of growth of the
grammar, I have put a number on parentheses with each arc in the network.

This indicates after which sentence the arc was formed.

The first two sentences create paths in the START network for parsing
sentences with relations like above and for sentences with relations Tike below.
The nbun phrase NP is set up after the first sentence to parse its subject.

A different subject noun phrase was set up for the second sentehce, bist it
was merged with NP. Note that NP involves a PUSH to an embedded network
ADJP to analyze the pre-positional modifiers of the noun. This PUSH is

optional and the simple noun phrase The square can be parsed by NP as well

as The red square. Note also that in NP an optional push to CLAUSE has been
created for post-positional modifiers. This has been created in anticipation
of post-positional modifiers yet to be encountered. Thus, the structure of
the noun phrase grammar is being strongly determined by information about noun
phrases that LAS.2 has prior to any experience with this Tanguage.

Sentence (3) causes some important changes in the noun phrase grammar.
Up until then, another noun-phrase network had been set up to parse the second
noun in the sentence. The third sentence has a second noun phrase which is
bracketed (the (small (red)) square n1'1).1 MERGE detects that this can be
analyzed by the network NP because in NP word class DET contains the;

the push to ADJP will parse (small (red)); NOUN contains square; and the



START —2PA5) o o7 ECOP3(5) o o EADII(S) , s70p
NP(2) ., ECOP2(2) =55 ERBL(2) 5 g6 NP(2) o srop
WY oy BRORUG) o cp ERANIDY. o o5 MRLRY  crno

- i-:DET(UI N1 ADJP (1) N2 ENOUN(1) N3 SRAUSE (1) o s70p

ADJP ESIZE(3 ADJP(B) =STOP

NI L(4)
ECOLOR(1) ==onap
STOP

cLAuSE EREL3(9) o o ECOPE(9) . ., ERB2(9) _ o NP(9)

EREL2(6) ., _ECOP5(6) (5 EADI2(E) o srop
ERELT(5) o1 -SCOPA(S) o o ERA(E) 53 NP(B) o crop

—3=STOP

COP1,COP2,COP3,C0P4,COP5,C0P6 =
ADJ1,ADJ2 = SMALL,LARGE,RED,BLUE
RA1,RA2 = ABOVE,RIGHT-OF
RB1,RB2 = BELOW,LEFT-OF

DET = A,THE

NOUN = SQUARE,CIRCLE

'SIZE = LARGE,SMALL

COLOR = RED,BLUE

REL1,REL2,REL3 = WHICH

Fig. 21. The network induced by LAS.2 after studying the 11 English
: sentences in Table 5.
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: the
push to CLAUSE will parse NIL. "On this.basis MERGE combines other nounpphease

grammar with NP.

Sentence (3) contains a two-word adjective phrase. The first adjective
phrase is (large (blue)). This causes the adjective-phrase network ADJP to
become elaborated to involve a push to a sub-network to parse (blue). However,
MERGE collapses this sub-network into ADJP because ADJP will parse red.
Therefore ADJP is made to call itself. A recursive definition of adjective
phrase has been constructed. Therefore, the language produced by the grammar
has become infinite. Of course, many of the adjective phrases generated by
this recursive rule would not be very interesting or even terribly grammatical.

They would be of the form large large small large small blue where each

recursive call of ADJP created another size except for the Tast call which
created a color. However, as discussed with respect to LAS.1, this over-
generality in the noun-phrase grammar is not a problem. Such phrases would
be edited out by considerations of semantic acceptability.

Sentence (4) introduces the possibility of an adjective phrase which con-
sists only of a size. This is encoded in adjective-phrase network ADJP by a
NIL transition from Al. Sentence (5) introduces the first post-positional
phrase; (which is above (the (red) circle nil)), which initiates the elabor-
ation of the post-positional network CLAUSE. The path created for this
sentence is the one that progresses from CLAUSE to C1 to C2 to C3 to STOP.
MERGE recognizes the phrase (the (red) circle nil) as parsable by the existing
noun-phrase network NP. Therefore, a push to NP is encoded on the path.

Note another point of recursion has been created with NP calling CLAUSE
which calls NP. This will permit unlimited right-embedding of relative clauses.

Sentence (5) also causes the path from START to S7 to S8 to STOP.to be built to
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accomodate the new main clause which involves an adjective in the predicate.
The reader is invited to inspect for himself the effect of sentences
(6) - (11) on the network grammar in Figure 21. They serve to fill in the
remaining options for grammatical constructions and to flesh out the word
classes to their full size.
The final network grammar in Figure 21 lacks a number of generalizations.
It is useful to understand why these were not made. Note the redundancy within
the START and CLAUSE networks. For instance in the START network all the
sentences begin in the form NP_is. Therefore it would seem more efficient
'if the different branches in the START network were merged to obtain a net-

work of the form:

G B o B o = A ofp
e RBI sy M2 - Gopp
e RAI NP

§$§ ———— SHOP

One of the reasons this generalization did not occur is that the first noun-
phrase either identifies logical object or subject in the underlying construc-
tion dependent on the subsequent relation word. LAS currently assigns a
semantic interpretation corresponding to a noun-phrase as soon as it parses
it. Therefore, different branches are required so that the noun phrase may
be assigned the different subject and object interpretation. A structure like
the above would only be possible if semantic interpretation were delayed
until the relational word.

Another point of potential generalization is that the network START for
the main clause and the network CLAUSE for the relative clause have marked
similarities which are not being capitalized upon. LAS will not merge two

networks unless one is completely a subset of another. START begins with an
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NP while CLAUSE has an initial element which. To detect such partial overlap,
MERGE would have to note the similarity in the networks after the first element.
In general, every time LAS tried to parse an element by one arc, it would have
to consider whether other arcs could also parse the element.

Another potential generalization has to do with the fact that the same
words that are occurring as predicate adjectives are occurring as prenominal
adjectives. Yet different word classes have been set up for the words occurring
in the two positions. There is also reduplication of the COP word class,
the RA word class, and the RB word class. Merging of word classes would be
an example of categorical merging discussed in Section 4. Both detection of
common word classes and partial network overlap are projected goals for

later versions of the LAS program.

Paraphrase Test

As a test of the grammar induced in Figure 21 I wrote a simple program
PARAPHRASE. It received a sentence and passed it to UNDERSTAND to build up
a conceptualization of it. Then it selected a different topic for the para-
phrase sentence. SPEAK was then called with this new topic. A couple of
examples of the paraphrases generated are given below:

Original: The square is left-of the circle
Paraphrase: A circle is right-of a square

Original: The large square which is above the small circle is red
Paraphrase: A circle which is below a large red square is small

The French Example

The second Tanguage LAS.2 learned was the French subset defined in Table

6. I cannot personally vouch for the correctness of the grammar in Table 6.

- = —— = ———— = —————— -

e e e e P S ——
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ocowoo~NO TP WM —

Le
Le
Le
Un
Le
Le
Le
Le
Le
Le

122

TABLE 6

The French Subset to be Learned

Grammar
S - DETS NP est Relation DETO NP
> DETS NP est ADJ
NP ~ (Size) Shape (Color) (CLAUSE)

,CLAUSE > qui est ADJ

-+ Relation DETO NP

ADJ + Size

=+ Galor
DETS = ke, U
DET -+ du, d'un

o
Relation - au-dessus, au-dessous, a-gauche, a-droit

Size -+ grand, petit
Color -+ bleu, rouge

Shape - square, circle

Sentences Studied

carre rouge est au-dessus du cercle rouge

grand carre est au-dessous du petit cercle qui est rouge
petit carre est a-droit du grand carre qui est bleu

cercle qui est grand est a-gauche d'un cercle rouge

carre est au-dessous d'un cercle qui est petit

carre rouge est au-dessous d'un cercle rouge qui est petit
cercle rouge a-gauche du cercle bleu est grand

carre a-droit du carre est bleu

cercle au-dessous du carre rouge est rouge

cercle au-dessus du carre est petit
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My French informant asﬁured me that they were grammatical, but she giggled a
lot at the sentences. The final grammar induced is given in Fiqure 22. It
follows the same conventions used in Figure 21 where the parenthesized digit
indicated the sentence which caused the formation of that rule. The induction
history has little to reveal that was not already observed with respect to

the English example. Therefore, I will not discuss it in detail.

Insert Figure 23 about here

e — e

Note that separate noun-phrase grammars are induced for subject, NPS,
and for object NPO. These are not merged because they begin with different
morphemes. The subject houn-phrases begin with le and un while the object
noun-phrases begin with du and d'un. Actually, these object
morphemes are contractions of the subject morphemes with the French de.
However, LAS does not have the facility to detect these morphemic contractions.

Nonetheless, an adequate, if less efficient grammar, is induced.

The Translation Test

LAS, having now learned the two languages is in a position to be able to
transiate between the two. Translation is possible because synonymous words
in the two languages are connected to the same idea node. So, in the program
TRANSLATE the French grammar might be used with the UNDERSTAND program to
analyze a French sentence. UNDERSTAND creates a representation of the sentence
in the HAM memory network. Then SPEAK is called with the English grammar to
generate an English equivalent. Examples of translations from French to

English and English to French are given below.



NPS (7
SR (7) e £COP3(7) = EADI(7) S

NPS(2) . ., ECOP2(2) _ .. ERBI(2) , . NPO(2) _ <rop
NPS(1)  q ECOPI(1) _ ., ERAI(1) .o NPO(T)

> STOP

Nps-EDETS(1) o nq PRE(3) . no ENOUNT(1), ng _POST(1) o s7op

irg SEETY o BREUTY o e ENOUNBIN. e . POSTIA).

posT-ERA2(8) o ps_ NPO(8) _ orop
= ) SR O ) S
| COLOR2(6) 5 . POST(6) _ o,
\_NIL(7) _ sTop

REL (2) P ECOP4(2) > P? EADJz(z)—'—-STOP
COLOR1(1)

= STOP

cOP1,COP2,COP3,C0P4 = EST
ADJ1,ADJ2 = ROUGE,BLEU,GRAND,PETIT
RB1,RB2 = A-GAUCHE ,AU-DESSOUS
RA1,RA2 = A-DROIT,AU-DESSUS

DETS = LE,UN

DETO = DU,D'UN

NOUN1,NOUN2 = CARRE ,CERCLE

SIZE = PETIT,GRAND
COLOR1,COLOR2 = BLEU,ROUGE

REL = QUI

Eiig. 22 Tihe network induced by LAS.2 after studying the 10 French
sentences in Table 6.
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1. Original: The red square is below the blue circle
Translation: Un carre au-dessous d'un cercle bley est rouge

2. Original: Le cercle rouge a-gauche du petit carre bleu est grand
Translation: A red circle which is left-of a small b]ue square is large

3. . Urtginal : A square which is above a large blue square is below a
small blue square
Translation: Un carre au-dessus d'un grand carre bleu est au-dessous
d'un petit carre bleu

Note that the translations are rather liberal. For instances, red is
a modifier in (1) whereas rouge is a predicate. This is because SPEAK is
only given the topic of the to-be-translated memory structure. It is not
told which proposition is the main assertion and which propositions are
subordinate.

One would hardly want to claim that these examples indicate that LAS
has any immediate promise for language translation. The real problem§in
language translation arise when one must deal with much richer semantic
domains. Nonetheless, I think LAS.2 does provide a very scaled-down model

of how the learning approach might eventually be applicable to language

translation.
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