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Abstract 

Knowledge about operators, about the conditions of 
their applicability, and about their effects is 
essential for effective interaction with the physical 
world. By combining two defining dimensions of 
this knowledge – abstractness of content and 
directionality of access – we can distinguish four 
classes of representational units: rules, instances, 
episodes, and structures. We present a multinomial 
model that measures the characteristics of these 
units. This model was applied to an experiment on 
the acquisition and use of alphabet-arithmetic 
operators (Müller & Gehrke, 2002). The multino-
mial model could be fitted very well to the data and 
allows calculating the proportions of the different 
kinds of mental operators. To compare these 
findings with a simulation of the specific cognitive 
processes, we developed an ACT-R model. Sepa-
rating four cases of information processing in 
correspondence to the knowledge units in the 
multinomial model confirmed the estimates of the 
multinomial analysis. This finding demonstrates 
the usefulness of multinomial modeling as a 
statistical tool to investigate cognitive processes. 
Also, it provides converging evidence for the use of 
different kinds of knowledge, even in simple tasks. 

Units of Mental Operators 
Knowledge about causes and their effects is essential 
for our successful interaction with the physical world. 
More specifically, knowledge about operations, about 
the preconditions of their applicability and the resulting 
effects is crucial for successful planning. The term 
mental operator refers to this kind of knowledge 
throughout this paper. The content of a mental operator 
can be separated into three structurally different parts, 
namely the preconditions of applicability, the 
representation of the referred operation(s), and the 
effect or consequences of the application of the 
operator. Accordingly, three main types of knowledge 
use can be identified that require the specification of 
one of these parts if information about the other two 
parts is given: 1) Prognosis tasks, which require that the 

effect of operator application has to be predicted. An 
important instance of this kind of use is finding a way 
to solve a problem by forward chaining in problem 
space. 2) Retrognosis tasks, which require that the 
preconditions of operator application be identified. This 
kind of knowledge use is important if one tries to find a 
solution in problem space by backward chaining. 3) A 
third class of tasks requires the identification of an 
operation by comparing information about the initial 
state with information about the resulting effects. This 
kind of knowledge use is important if one has to select 
an appropriate action to achieve an intended effect. It is 
also involved in diagnosis tasks that require the 
identification of an operation as cause of an observed 
effect.  

In the literature on problem solving and skill 
acquisition, different formats are proposed as 
representational units of mental operators. Four main 
classes of mental operators can be distinguished: 
production rules (e.g. Anderson & Lebiere, 1998), 
instances (e.g. Logan, 1988), episodes (= chunks in 
SOAR, Newell, 1990), and conceptual structures (e.g. 
Müller, 1999). These representational units can be 
classified by crossing directionality of access and 
abstractness of content as two essential characteristics 
of mental operators (see Table 1).  

 
Table 1: Units of Mental Operators Ordered by 
Abstractness of Content and Directionality of Access. 
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Content Directional Non-directional 
Abstract, 
generalized 

Production Rule  
(Anderson, 1993) 

Structure 
(Müller, 1999) 

Elementary, Episode/ Chunk Instance 
Production rules in the ACT-R theory (Anderson & 
ebiere, 1998) are intended to represent classes of 
ituations. Thus, they are abstract in content. Access to 
hese units is directional because it is limited to cues of 
he acquisition context that correspond to the elements 
f the if-part of a rule. Chunks in SOAR (Newell, 1990) 
re examples for directionally accessible units whose 

specific (Newell, 1990) (Logan, 1988) 



 

 

content is elementary. According to Newell, chunks 
represent the specific aspects of the acquisition context; 
access to these units is limited to the flow of 
information within this context. Examples for non-
directional units of knowledge about operators are 
structures (Müller, 1999) and instances (for example, 
Logan, 1988). Müller proposed in his hypothesis of 
conceptual integration that structures represent the 
dependencies between initial and final state of an 
operation in an abstract way, access to these units is 
possible by cues that correspond to information stored 
in the structure. Halford, Bain, Mayberry, and Andrews 
(1998) have called this property omni-directional 
access. Instances differ from structures with respect to 
the abstractness dimension; they represent specific 
situations. 

In this paper, we try to validate the results of a 
multinomial model that allows an estimation of propor-
tions of the various knowledge types by comparing it 
with an ACT-R model of the same experiment. Since it 
is completely transparent what type of knowledge an 
ACT-R model uses for each problem, it is possible to 
compare the actual proportions of knowledge types 
used by the model with those estimated by the multi-
nomial model. 

An empirical study  
Müller and Gehrke (2002) investigated the influence of 
knowledge use in the acquisition phase on the usability 
of knowledge about alphabet-arithmetic operators in a 
subsequent test phase. Participants practiced either the 
prognosis, the diagnosis, or the retrognosis task. In the 
test phase, participants had to answer all three kinds of 
tasks for old and new pairs of letters. Half of the 
participants in each training condition were 
administered a forced-choice test, the other half a 
verification test. For the present paper, only the forced 
choice test is relevant and will be considered in the 
following. Directionality of access should result in an 
advantage for the practiced task and a corresponding 
disadvantage for both other tasks. If the content of 
representation refers to concrete elements, performance 
should be better if old rather than new letter-pairs were 
involved.  

Results showed that equal numbers of blocks were 
necessary for reaching the learning criterion. This 
finding suggests that the different uses of knowledge in 
the training tasks are equally difficult. However, 
response times were largest in the retrognosis task, 
suggesting difficulties to determine the initial state of an 
operation. The interaction of this effect with the day of 
practice indicated that participants can learn to apply 
operators in this way with equal efficiency. Relevant for 
the identification of the acquired representational units 
of knowledge, significant effects of use-specificity and 
familiarity were found. That means, (1) items of the 

practiced format were solved faster and more accurately 
than items of the non-practiced format, (2) old items 
were solved faster and more accurately than new items. 
On the basis of response times, these factors interacted. 
The effects were interpreted as evidence for significant 
proportions of directionally accessible as well as item-
specific units of knowledge, i.e. significant proportions 
of rules and episodes as well as instances. 

Measuring Units of Mental Operators 
Müller and Gehrke (2002) interpreted their findings as 
evidence that mental operators are represented by 
various representational units. The proportions of these 
units, however, could not be determined on the basis of 
the statistical tools applied by the authors. Multinomial 
modeling provides a statistical methodology that allows 
estimating the probability of cognitive states. According 
to Riefer and Batchelder (1988), the linkage between 
(unobservable) mental states and (observable) behavior 
can be represented by a stochastic process: The 
probability of behavior C, denoted by p(C), can be 
defined as a function of a finite set of mental states T1, 
T2, …, Tn. This function becomes  
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if one assumes that the n mental states are mutually 
exclusive and can cause the observable behavior C 
independently from each other.  

Development of the Model 
For the study of Müller and Gehrke (2002), a model is 
required that links states of mental operators and 
observable behavior for a two-alternative forced-choice 
test.  

Behavioral categories are correct and wrong respon-
ses concerning four item classes: 1) old, congruent 
items, 2) old, non-congruent items, 3) new, congruent 
items, and 4) new, non-congruent items. Old items are 
test items that have been processed in the training 
phase, regardless of task format (prognosis, retrognosis, 
or diagnosis; e.g. “? +2 = C” is classified as old when 
“A +2 = ?” has been studied). New items are items that 
have not been practiced during training. Items are 
classified as congruent when the have the same task 
format, regardless of the specific content; otherwise 
they are classified as non-congruent (e.g. “? +2 = C” as 
test item is old and non-congruent, when “A +2 =?” was 
studied). 

In a forced-choice test with two alternatives the 
realization of congruent and non-congruent items is 
straightforward. In a verification test, however, only 
parts of the information about the item must be 
presented for a short duration before the complete 
example is shown in order to distinguish congruent and 
non-congruent items. For congruent items, the part of 



 

 

information shown is the same as in the practiced items, 
for non-congruent items, different parts are shown. 

Four parameters are required to represent the relevant 
mental states for the performance in the knowledge test: 
k, d, e, and g. Parameter k represents all kinds of 
knowledge, d represents the part of knowledge that is 
only directionally accessible, e represents the part of 
knowledge that is elementary, and g represents the state 
that a correct response is luckily guessed. 

Figure 1: Multinomial Processing Tree Model for 
Responses in a Knowledge Test. 

Figure 1 shows a decision tree for each of the four 
item classes that specify the relevant mental states / 
processes and their contribution to the observable 
performance in the respective task. The figure has to be 
read as follows: If test items contain information that 
has to be processed in the same way as in the training 
phase (old and congruent items), then all kinds of 
knowledge (k) will lead to systematically correct 
responses. If an item requires processing of old 
information in a non-practiced way (old and non-
congruent items), then only the activation of non-
directional knowledge (1-d) leads to a systematically 
correct response. If the test item requires processing of 
new information in a practiced way (new and congruent 
items), then only the activation of abstract (= non-
elementary) knowledge (1-e) leads to systematically 
correct responses. If the test item requires processing of 
new information in a non-practiced way (new and non-
congruent items) then only non-elementary and non-
directional knowledge ((1-e) * (1-d)) will lead to 
systematically correct responses. In all other cases, 
responses will only randomly be correct.  

The decision trees in Figure 1 can be described by 
equations (1) to (8) that express the probabilities of 
correct and wrong responses in a forced-choice test as 
function of the model parameters. 

P(correct|Itemold, congruent) = k+(1-k)g (1) 

P(wrong|Itemold, congruent) = (1-k)(1-g) (2) 

P(correct|Itemold, non-congruent) = kdg+k(1-d)+(1-k)g (3) 

P(wrong|Itemold, non-congruent) = kd(1-g)+(1-k)(1-g) (4) 

P(correct|Itemnew, congruent) = keg+k(1-e)+(1-k)g (5) 

P(wrong|Itemnew, congruent) = ke(1-g)+(1-k)(1-g) (6) 

P(correct|Itemnew, non-congruent) =  
k(1-d)(1-e)+k(1-d)eg+kdr+(1-k)g (7) 

P(wrong|Itemnew, non-congruent) =  
k (1-d) e (1-g) + k d (1-g) + (1-k)(1-g) (8)  

The observable frequencies of the eight different re-
sponse classes have four degrees of freedom. Thus, the 
four-parameter model has no degree of freedom left. To 
get a testable model, the parameter of randomly correct 
responses r can be restricted to .5, assuming no bias 
towards any response class. Fit of the multinomial mo-
del can be tested by the log-likelihood ratio of expected 
and observed frequencies, the resulting divergence stat-
istic (G2) is asymptotically χ2-distributed. (for details of 
this calculation see Batchelder & Riefer, 1999).  

Application of the model  
Müller and Gehrke (2002) varied the presentation time 
of incomplete information within both test formats. The 
duration of this time was assumed to influence the 
importance of directionally accessible knowledge. If the 
acquired knowledge is only directionally accessible, 
then the time interval must be long enough for partici-
pants to compensate failed retrievals by additional pro-
cessing. In the multinomial model, this influence means 
that the estimates of d should follow a monotone de-
creasing function of the presentation time of incomplete 
information. This influence was estimated separately 
for old (do) and for new items (dn), because the training 
procedure should have led to high degrees of direction-
ally accessible knowledge about practiced examples.  

The model fits the data very well: G2(4) = 4.54 (p = 
.34). The proportion of knowledge-based responses k is 
estimated very high. Moreover, a significant proportion 
of elementary knowledge (e) could be identified. No 
evidence for directionally accessible knowledge involv-
ing new items could be observed. The corresponding 
parameter dn does not differ significantly from zero. As 
expected, the estimates for the corresponding parameter 
for old items (do) decreases with increasing time of 
presentation.  
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Given the assumptions underlying the multinomial 
model are valid, the proportion of the four kinds of 
knowledge units (see Table 1) can easily be calculated 
from the parameter estimates: The four kinds exhausti-
vely represent the knowledge that contributes to perfor-
mance in the test tasks; these units are mutually exclu-
sive combinations of the two independent characteris-
tics of mental operators. The proportion of production 
rules, for example, corresponds to the proportion of 
knowledge-based responses (k) where the knowledge is 
not elementary (1-e) and directionally accessible (d). 
Thus, the proportion of production rules is given by k * 
(1-e) * dn. The proportion of the other kinds of 
knowledge formats can be calculated in an analogue 
way. Table 2 shows the results of this calculation.  
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When confronted with retrognosis problems, the model 
recodes the problem into a prognosis problem and 
solves it accordingly (e.g. ? +2 = M is recoded to M –2 
= ?). With diagnosis problems the model makes an 
additional decision: One option is counting up from the 
first letter and checking if the second letter is within 
four steps up the first letter. If that’s the case the model 
concludes it must be a positive operator, if not, it starts 
counting from the second letter and concludes it must 
be a negative operator. The second option is figuring 
out which of the two letters comes first in the alphabet 
and starting to count from that letter. 

Unlike existing models of alphabet arithmetic (e.g. 
Johnson et al. 1998), which assume that retrieval is 
always tried first, our model instantiates more elaborate 
assumptions about the decision between strategies. 
First, the model makes use of the production parameter 
learning mechanism of ACT-R 5.0. Depending on the 
successes, failures and time for each strategy, ACT-R 
learns parameters for “probability of success”, p, and 
“cost to reach a goal”, c, and uses these parameters to 
calculate the “expected gain”, pg – c, for all production e.
Knowledge Unit Pres. 
Time* Structures Rules Instances Episodes
1000 61.11 0.01 23.47 10.55 
1500 61.11 0.01 26.08 7.95 
2000 61.11 0.01 27.94 6.08 
Note. * Presentation time of pre-information alon
able 2: Calculated Proportions of Knowledge Units in 
he Forced-Choice Test (%), grouped by Presentation 
ime of Incomplete Information 

Structures are calculated as the largest proportion 
f units. Note that these estimates do not necessarily 
epresent exclusively abstract and non-directional units 
f mental operators but may include pre-experimental 
nowledge (generalized procedures and perhaps item-
pecific associations).  

An ACT-R model of  
Müller & Gehrke (2002) 

e developed an ACT-R model to simulate the 
mpirical findings of Müller and Gehrke (2002). 
nspection of the knowledge that was used by the 
uccessful model should allow to validate the results of 
he multinomial model.  

The model simulates three basic strategies of solving 
lphabet arithmetic problems, counting forward, 
enerate and test, and retrieval of instances. As in other 
odels of mental arithmetic (e.g. Lebiere, 1998), these 

rocedures can be classified as calculation vs. retrieval 
trategies. In the early stages of learning, calculation 
trategies are more likely to produce correct results. For 
he three problem formats, retrieval strategies don’t 
iffer much, but there are format-specific versions of 
he calculation strategies. In prognosis problems with 
ositive operators, the model simply counts up the 
lphabet the given number of steps. For minus-
roblems, we implemented a generate and test strategy, 
.e. the model retrieves a letter some steps back, then 
ounts forward and applies corrections, if necessary. 

rules (c is measured in terms of time, and g can be 
viewed as a constant). When more than one production 
rule is matching the content of working memory, the 
rule with the largest expected gain is selected. In early 
phases of learning, the expected gain of productions 
initiating retrievals is assumed to be lower than the 
expected gain of productions for calculation. With 
growing experience, the p values of productions for 
retrieval get higher, and, more importantly, the cost 
parameters c of productions for retrieval get much 
lower than those of productions for calculation. This 
gradual shift in p and c parameters results in an 
increased use of fact retrieval during the learning phase.  

Since failed retrievals are very costly (one second 
with standard parameter setting) we introduced a “fami-
liarity check” mechanism, which tries to judge from the 
presented information if a retrieval is likely to succeed. 
Such a mechanism was postulated by Schunn, Reder, 
Nhouyvanisvong, Richards, and Stroffolino (1997), 
who also claimed that it would be very difficult to 
model in ACT-R. However, thanks to increased paral-
lelism in ACT-R 5.0 it is now possible to model 
initiating a retrieval, waiting for a certain amount of 
time, and starting calculation when nothing has been 
retrieved within the waiting time (in our simulations, 
we set the waiting time to 450 ms). 

A certain amount of speeding up calculation 
strategies with practice is produced by the production 
learning mechanism: from repeated retrievals of 
successor letters from declarative memory the model 
learns production rules that return the successor letter 
(and eventually even the successor number) directly. 

We ran simulated experiments with 24 subjects 
each. Most parameters were set to their default values 
(baselevel learning: .5, retrieval threshold: .3) and we 



 

 

didn’t engage in extensive parameter fitting. As shown 
in Figure 2, the model reproduces the qualitative pattern 
of the data reasonably well. For response times, the 
model fits the six empirical data points with r2 = .67, 
RMSD = 388. For errors, the fit is r2 = .80, RMSD = 
.04. 

The most striking difference is the underestimation 
of response times for retrognosis problems. The reason 
might be that recoding of problems into the prognosis 
format is more time consuming for human subjects than 
for the presented ACT-R model. The task-congruency 
effect (not represented in Figure 2) found in the data 
could not be reproduced with the model. We suppose 
this can be explained by the fact that the model starts 
with procedural knowledge of all possible strategies and 
only has to learn which one to use, whereas human 
subjects have to construct these strategies from general 
declarative knowledge (resulting in additional time for 
new problem formats in the test phase). Although 
considerable progress has been made in modelling the 
comprehension of instructions (Taatgen, 2001), 
modelling the formation of strategies from general 
knowledge is still a challenge for future developments 
that is worth being tackled.  

To compare the multinomial analysis and the ACT-
R model, it must be determined what kind of knowledge 
was used in the ACT-R model. Although only two types 
of knowledge are learned in the training phase – 
productions that automate counting through the 
alphabet and alphabet arithmetic facts – in the test 
phase we can distinguish four cases: (1) applying 
format specific facts (facts that were acquired in the 
context of the same problem format) – corresponding to 
episodes, (2) applying non format specific facts – 
corresponding to instances, (3) applying counting 
productions that were available before the experiment - 
corresponding to structures, and (4) applying counting 
productions that were acquired within the experiment – 
corresponding to rules. The proportions of these cases 
are determined and compared to the calculation of 

knowledge units based on the multinomial analysis. 
Table 3 shows the proportions of knowledge units 
determined by the inspection of the ACT-R model and 
those estimated by the multinomial analysis of the 
simulated data.  
Table 3: Proportions of Knowledge Types (%) used by 
the ACT-R Model and Proportions of Knowledge Units 
Estimated by the Multinomial Analysis of the 
Simulated Data (%). 
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Figure 2. Means of response times and proportion of errors for old and new items in three problem formats in the 
test phase of Müller & Gehrke (2002). 
 Knowledge Unit 
Model 

Pres. 
Time* Structures Rules Instances Episodes

ACT-R 1000 58.5 0.0 29.0  12.5 
 1500 59.9 0.0 28.6  11.5 
 2000 64.2 0.0 23.3  12.5 
MM 1000 48.6 0.0 37.3  3.8 
 1500 52.1 0.0 30.8  0.0 
 2000 63.9 3.4 27.7  2.9 
Note. * Presentation time of pre-information alone. 
 
The calculated proportions based on the multinomial 

analysis fit the reinterpreted proportions of knowledge 
used by the ACT-R model very well (r2 = .92). The 
difference between these estimates and those reported 
in Table 2 can be attributed to the non-perfect simu-
lation of the empirical data by the ACT-R model.  

Conclusions 
The multinomial model fitted the empirical data very 
well. In contrast to the statistical analysis of Müller and 
Gehrke (2002), the proportions of the four classes of 
knowledge units could be estimated. The ACT-R model 
fits the data to a reasonable degree. It was surprising 
that the model had difficulty reproducing the use-
specificity effect. The multinomial analysis of the 
simulated data indicated that no abstract rules and only 
very few episodes were acquired and used by the ACT-
R model. These calculations match the proportions of 
four different cases of information processing by the 



 

 

ACT-R model very well. This finding supports the 
proposal of Batchelder and Riefer (1999) that multi-
nomial modeling provides a promising way to combine 
the precision of very detailed process theories like 
ACT-R with the advantages of inferential statistics of 
rather general models like ANOVA.  

From the other point of view, the ACT-R model has 
helped specifying the knowledge types postulated in the 
multinomial model. Structures could be reinterpreted as 
the use of generally applicable prior knowledge about 
the domain that needs not necessarily be abstract. 

The distinction between abstractness of content and 
directionality of access as central aspects of mental 
operators differs from a recent suggestion of Pirolli and 
Wilson (1998) to use knowledge content and know-
ledge access as two characteristics to separate consider-
ations at a knowledge level from those at a symbol 
level. The multinomial model of the present paper shall 
serve as a tool to integrate findings regarding represent-
ational characteristics that are proposed within different 
process theories of cognition. This integration should 
help specifying a detailed theory of mental operators at 
a process level. This level corresponds to the symbol 
level in the terminology of Pirolli and Wilson.  

Future applications of the model can test the influ-
ence of important variables like instruction or types of 
practice on the characteristics of mental operators. Dif-
ferent theories can be tested by contrasting predictions 
concerning the change of parameters by these variables. 
Thus, the multinomial model shortens the chain of argu-
ments and allows testing the influence on theoretically 
relevant entities directly. 
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