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Abstract

The question of whether human behavior could be better
explained by assuming that people are capable of
extracting from their experience some general principles
(rules) or by supposing that they store in memory
concrete, individual exemplars (instances) of the
situations they deal with was examined in 2 experiments,
adopting the Sugar Factory dynamic system control task,
that contrasted the predictions of the computational
model by Dienes and Fahey (1995) with those deriving
from the ACT-R based model developed by Dieter
Wallach and coworkers  (Lebiere, Wallach, & Taatgen,
1998; Taatgen & Wallach, 2002). The first experiment
produced findings that could not be explained by the
Dienes & Fahey’s model while being consistent with the
model of Wallach. The second experiment, however,
obtained results that were at odds with the predictions of
the latter. A new model is presented that is able to
account for the results of both experiments by assuming
that participants improve their performance in the Sugar
Factory task by choosing, among a pool of very simple
solution strategies, those that are judged increasingly
more promising by the ACT-R procedural learning
mechanism.

Introduction
One of the dichotomies cognitive scientists struggle
with concerns the role played by abstract vs. specific
knowledge in a variety of tasks ranging from
classification (Nosofsky, Palmeri & McKinley, 1994) to
the development of automatic actions (Logan, 1988).
The question is whether the behavior in these tasks
could be better explained by assuming that people are
capable of extracting from their experience some
general principles (rules), or by supposing that they
store in memory concrete, individual exemplars
(instances) of the situations they deal with.  While
nobody denies humans the capacity to abstract the
regularities inherent in richly structured domains, the
debate concentrates on whether cognition could be
realized as abstract rules or, on the contrary, rule-like
behavior could originate from the way specific
instances are stored and retrieved from memory.

In the paper we examine the instances vs. rules issue
in the context of a dynamic system control task.  The
following section introduces Sugar Factory (SF), the
experimental paradigm used in this work.  We present
then two computational models, developed within the
instance-based framework, that have been proposed to
explain the behavior of participants in the SF task.  The
first model, developed by Dienes & Fahey (1995)
(henceforth the D&F model) is based on the instance
theory of Logan (1988). The second (henceforth the W
model) has been developed by Dieter Wallach and
coworkers (Lebiere, Wallach, & Taatgen, 1998;
Taatgen & Wallach, 2002) within the ACT-R
(Anderson & Lebiere, 1998) cognitive architecture.
While based on different assumptions, the models are
similarly successful in explaining experimental data,
and seem therefore comparable only on other, more
lenient criteria, such as parsimony of assumptions,
elegance of formulation, or generality of approach. In
the paper we show, however, that it is possible to draw
different predictions from the models, and we present
two experiments carried out to test them.

The first experiment produced findings that could not
be explained by the D&F model while being consistent
with the W model. The second experiment, however,
obtained results that were at odds with the predictions
of the W model. We therefore present a new model, also
based on the ACT-R cognitive architecture, that is able
to account for the results of both experiments by
assuming that participants improve their performance in
the SF task by choosing, among a pool of very simple
solution strategies, those that are judged increasingly
more promising by the ACT-R procedural learning
mechanism.

The Sugar Factory Task
In the SF task (Berry & Broadbent, 1984) people are
requested to keep the production P of a simulated sugar
factory to a given target value by allocating an
appropriate number of workers W to the job.  Both P
and W range between 1 and 12, and can assume only
discrete (i.e., integer) values. The simulation is based on



discrete events, too.  At every simulation step,
participants provide a number representing the size of
the workforce, and the system computes the quantity of
sugar that has been produced.  Over a series of trials,
they attempt to achieve the target by repeatedly
specifying a new input and observing the resulting
production. Unbeknown to participants, the system
dynamics is controlled by the relation:

Pt = 2Wt − Pt −1 + ε
i.e., the production at the simulation cycle t is computed
by doubling the number of workers given in input and
subtracting from it the production of the previous cycle.
Because the resulting production Pt depends, in addition
to the input Wt, on the previous production Pt-1,
participants must learn to condition any new action to
the result of the previous simulation cycle. Keeping the
number of workers constant is not sufficient to reach
steady-state production in SF; on the contrary, constant
input makes the system oscillate.

The task of controlling the sugar production is made
difficult by the existence of random noise ε, uniformly
distributed with values {-1, 0, +1}.  The noise hinders a
complete control of the system.  For this reason,
participants are considered to be successful in reaching
the target whenever the production falls within an
interval of ±1 from it.

For a more realistic interpretation, W is multiplied by
100 (hundreds of workers), and P by 1,000 (tons of
sugar). Resulting values of P less than 1,000 are simply
set to 1,000, and values exceeding 12,000 are set to
12,000. It is important to note that in almost all the
experiments that have adopted the SF paradigm
participants are given the goal to produce the target
value of 9,000 tons of sugar.

A typical phenomenon that has been obtained in
studies using SF is the dissociation between task
performance and verbalizable knowledge.  While
participants progressively improve their capacity to
control the system, they remain unable to describe
verbally how the system works or how to reach the
target value (Berry and Broadbent, 1984).  There is
evidence that participants do not have a working model
of how the system behaves; in fact they remain unable
to predict what effect a given change in the number of
workers will have on sugar production (Buchner,
Funke, & Berry, 1995).  Moreover, they are unable to
generate useful heuristics for the task (McGeorge &
Burton, 1989). Initially taken as a case for the existence
of a separate implicit learning system, these results are
now generally explained by assuming that people rely
on memorized records, or instances, of their interactions
with the system.  It is within this instance-based
framework that the D&F and the W models have been
developed.

Dienes & Fahey’s model
The D&F model is loosely based on the instance theory
of Logan (1988).  According to the theory, each time a
stimulus is processed, a separate trace is stored in
memory. Distinct memory traces accumulate with
experience, and permit rapid retrieval of relevant
information upon encountering the appropriate
stimulus.  In absence of practice, responding to a
stimulus requires the usage of general solution
strategies. After prolonged practice, the correct response
is stored in memory, and can be accessed very quickly.

While the instance theory states that every encounter
with a stimulus is stored, the D&F model makes the
critical assumption that only successful instances are
memorized; interaction episodes not resulting in a
loosely (i.e., off at most by one) correct result are not
taken into account.  Whenever, starting from situation
<Wt-1, Pt-1>, an action Wt leads to a production Pt that is
loosely correct, both the action and the situation are
stored in memory.  More particularly, two records
(instances) are created: (a) the first storing the
association between the current production and the
action that led to it: <Pt-1,Wt>, (b) the second
memorizing the link between the previous workforce
and the action: <Wt-1, Wt>.

On any given trial, a random selection between the
instances that match the current situation is performed,
and the associated action is executed. Let us suppose
that Wt-1 = 600 and Pt-1 = 8000. Among all the instances
matching the patterns <600, Wt> and <8000, Wt> one is
randomly picked out, and the Wt associated with the
selected instance is chosen as the workforce for the trial.

Dienes and Fahey (1995) noted that 86% of the first
ten input values produced by their participants could be
explained by assuming the following strategy: First, if
Pt-1 is above/below the target, then set Wt to a value that
is different from the previous one by {0, ±100, ±200}.
Second, if Pt-1 is on the target, then set Wt to a value that
is different from the previous one by {-100, 0, +100}.
Finally, for the very first trial, choose a W in the range
[700..900].

To replicate this behavior, Dienes and Fahey had to
stuff into the model a number n of instances covering
each of the three cases.  At the beginning, the model
tries to control the system by following the described
strategy; however, as specific episodes are stored in
memory, the answers are increasingly controlled by
previous experience.  The parameter n is critical to have
the model produce a good fit. For high parameter values
(n > 15), the explicit strategy was applied on virtually
all trials, and the model’s learning resulted smaller than
the learning achieved by participants.  For very low
values (n < 5), the consistency of responses (for
situations that were previously successful) shown by the
model was considerably higher than that of the human
participants.



Wallach’s model
The W model exploits the computational mechanisms
provided by the ACT-R (Anderson & Lebiere, 1998)
cognitive architecture.  ACT-R distinguishes between
declarative and procedural knowledge. Declarative
knowledge is represented through chunks, frame-like
structures composed of labeled slots with associated
filler values.  Chunks are used in the W model to
encode the interaction episodes experienced by
participants. While the D&F model stores only
successfully instances, i.e. instances in which an action
(loosely) led to target, the W model stores every
interaction episode, irrespective of the result.
Moreover, while the D&F model allows the same
situation to be coded as multiple identical instances, the
W model, following the general policy of ACT-R, does
not duplicate identical chunks.

Procedural knowledge is represented in ACT-R
through production rules, or productions. The condition
of a rule specifies some chunks that must be present and
active in declarative memory for the production to
apply; the action specifies some actions be taken.
Productions are used to retrieve and transform
declarative knowledge.

The participants’ performance is explained by
assuming a match between the present situation and the
encoding of past instances. On each trial, a memory
search is initiated based on the current situation and the
target production value in order to retrieve an instance
that, in a similar situation, led to success. In case a
match is found, the number of workers retrieved from
the instance is used as the new input value.

ACT-R allows a partial match between the pattern
that drives memory search and the retrieved chunk.
Instances that only partially match the retrieval pattern
are penalized by lowering their activation proportionally
to the degree of mismatch.  In case of partial match, the
penalty is computed according to the formula:

penalty = MP (1− sim(required
s∑ s

− actuals ))

where: MP is a mismatch penalty parameter, and s
represents each slot in the matched chunk.

To calculate the similarity between two numbers a
and b representing the sugar production in the retrieval
pattern and in the retrieved instance chunk, respectively,
the following function (Lebiere, 1998) is used:

sim(a,b) =
min(a,b)

max(a,b,1)
The model exploits further procedural knowledge for
implementing the solution strategy described in the
preceding section.  Similarly to the D&F model, also
the behavior of the W model increasingly changes from
an algorithmic, strategy-based approach to memory-
based processing as more and more instances of
previous interactions are available to the system.

Discriminating between the models
The two models are similarly successful in their fit with
the data reported by Dienes & Fahey (1995). In
synthesizing the results of the comparison, Lebiere et al
(1998) wrote “[The W model] slightly overpredicts the
performance found in the first phase, while the D&F
model slightly underpredicts the performance of the
subjects in the second phase.  Since both models seem
to explain the data equally well, we cannot favour one
over the other” (p.186).  Apparently, an identification
problem has arisen due to the fact that the empirical
data are not sufficient to discriminate between the
proposed models.  In such a case other criteria (e.g.,
parsimony, generality, or even elegance) are generally
proposed for the evaluation.  From this point of view,
the W model, because it requires fewer ad hoc
assumptions and it relies on a general unified theory of
cognition, seems to be preferred.

In fact, there is a way to discriminate between the
predictions of the models.  As it has been previously
mentioned, almost all the experiments carried out within
the SF paradigm adopted the same value as the
production target: 9,000 tons of sugar. It is interesting to
wonder what would happen if such a value is varied by
assuming, for instance, that the participants should
reach and maintain a production of 3,000 tons.

According to the D&F model, no difference between
the two conditions should be obtained. The relation that
controls the system dynamics makes in fact every
production level comprised between 2,000 and 11,000
tons equally probable. Any particular target value is
used by the model as a filter to establish whether an
instance should be taken or not into account.  Only
successful instances, i.e. instances that led to a
production identical (plus/minus noise) to the target are
memorized, but the target value by itself does not
appears in the stored instances nor does it play any
functional role in determining which instance is used to
control the system behavior.

Things are, however, different in the case of the W
model due to the ACT-R-based partial matching
mechanism it relies upon. Among the chunks that match
the retrieval pattern, ACT-R chooses the most active
one. When the match is only partial, however, the
activation value of the chunk is lowered proportionally
to the degree of mismatch computed according to
Lebiere’s similarity function.

The function returns different results for the same
absolute difference between the retrieved and the
expected values, depending on the values that are taken
into account.  For instance, a mismatch of 1,000 tons in
the value of the current production Pt is evaluated
differently for a target value of 3,000 vs. 9,000 tons. In
the first case, a retrieved value of 2,000 tons leads to
sim(2,3) = 0.67 while in the second case a retrieved
value of 8,000 tons leads to sim(8,9) = 0.89.  Because



the activation mismatch penalty is higher for the less
similar values (i.e. for the 3,000 tons in comparison
with the 9,000 tons condition), the consequence is that
more mismatched chunks would be retrieved in the
latter case.  As a result, the 3,000 tons condition, being
characterized by better precision, takes advantage from
the retrieval of more successful instances, and is
therefore facilitated in comparison of the 9,000 tons
condition.

In summary, while the D&F model predicts no
difference in trying to control the SF system with the
target of maintaining a production of 3,000 vs. 9,000
tons, the W model predicts that the first condition
would be easier than the second one. A series of 2,000
runs with the W model confirmed the analysis reported
above.

Experiment 1
To test the predictions deriving from the D&F vs. the W
model a first experiment has been carried out.

Method
Participants
The participants were 88 undergraduates (33 males and
55 females) aged 19 to 33 (median = 23), enrolled in a
General Psychology course. The data of one participant
were missed due to a computer failure.

Design and Procedure
The main independent variable manipulated in the
experiment was the target value of the sugar production
that participants were trying to reach, i.e. 3,000 vs.
9,000 tons. Participants were tested individually in
single sessions.  Each session was divided in two blocks
of 40 trials each.  The main dependent variable recorded
in the experiment was the number of hits obtained in
each phase, i.e. the number of times participants were
able to reach the target value according to the loose
scoring criterion described above.  The participants
were not informed about the scoring criterion. The
experiment adopted a mixed design with Target value as
between subjects and session Phase as within subjects
factors.

The participants interacted with the system through
an interface that displayed the current values of the
production and of the workforce.  The number of
workers was set initially to 600, and the sugar
production to 6,000 tons.  The participant set the new
workforce by pressing one of the F1-F12 function keys
and, after a small interval, the system displayed the
resulting value of the production.

Results
The main results of the experiment and the predictions
of the W model are reported in Table 1.

Table 1: Experiment 1 results and W model predictions

First Phase Second Phase
Particip. W model Particip. W model

3000-3000 10.57 10.09 13.18 12.06
9000-9000 7.26 8.79 9.26 11.10

The ANOVA computed on the participants’ data
showed as significant the main effects of the Target
(F(1,85)=17.69, MSE=569.71, p<.0001)  and of  the
Phase (F(1,85)=14.86,  MSE=232.19, p=.0002), but not
their interaction.  As predicted by the W model, the
participants in the 3,000 condition gave a better
performance in comparison with the 9,000 tons
condition, while participants of both groups improved
their capacity to control the SF system from the first to
the second phase. While the W model overestimated
somewhat the participants’ performance in the 9,000
tons condition, it was however capable of predicting the
general qualitative structure of the results, a feat that
apparently goes beyond the capabilities of the D&F
model.

Experiment 2
Both the D&F model and the W model assume that the
performance in the SF task is controlled (with the
exception of the very few interaction episodes) by the
retrieval of previous instances from memory. An
interesting prediction that can be derived from both
models is that a change in the target value between the
first and the second phase of the experiment should be
detrimental for performance.  In fact, a change in the
target value between the two phases destroys the
possibility to take advantage, in trying to control the
system in the second phase, from previous experience
because all the instances that have been stored refer to
interaction episodes that are almost useless in the new
condition.   As a consequence, no positive transfer
between the two phases should be obtained. To test this
prediction, a second experiment has been carried out.

Method
Participants
The participants were 88 undergraduates (39 males and
49 females) aged 19 to 32 (median = 25), chosen from
the same population utilized in the first experiment.

Design and Procedure
The design and the procedure of the experiment were
identical to those adopted in the previous one.  Only the
production values used in the different Target
conditions were varied: One group switched from a
target value of 3,000 tons in the first phase to a value of
9,000 in the second. The other group experienced the
same target levels but in the reversed order.



Results
Table 2 shows the results and the W model predictions
(obtained after 2,000 runs) for the experiment.

Table 2: Experiment 2 results and W model predictions

First Phase Second Phase
Particip. W model Particip. W model

3000-9000 9.39 9.77   8.70 9.11
9000-3000 6,86 8.67 12.84 8.19

From the ANOVA, a significant (F(1,86)=25.59,
MSE=487.78, p<.0001) interaction Target x Phase was
obtained together with a significant (F(1,86)=16.18,
MSE=308.46, p=.0001) main effect of the Phase. While
the participants in the 3,000-9,000 condition gave an
essentially similar performance in the two phases, the
participants in the 9,000-3,000 condition doubled their
performance in the second phase. This result comes
completely unexpected and is at odds with the
predictions of the W model that completely misses the
interaction, and is therefore unable to explain the
pattern of behavior found in the experiment.

A New Model
If we take the results of both experiments jointly into
account, we are puzzled by a striking finding:
independently of the situation experienced in the first
session phase, those participants that in the second
phase shared the same target value gave essentially
similar performances. The mean number of second
phase hits in the 3,000 condition was, in fact, 13.18 for
the first experiment, and 12.84 for the second. In the
9,000 condition the hits were 9.26 and 8.70 for the first
and second experiment, respectively.  This finding
suggests the idea that some situational factor could be
more relevant than the memory of past instances in
determining the participants behavior in the SF task.
Grounded upon this idea, we developed a new ACT-R
model (named the P, or procedural, model) that tries to
explain the data obtained in our experiments.

The P model is based on the assumption that
participants can exploit a set of very simple strategies in
choosing the workforce value for the SF task. By
combing the SF literature, and by looking at the
participants’ interaction traces, we can identify some of
these strategies.  The model we developed comprises
the following ones:

Choose-random. Choose randomly a value between 1
and 12.

Repeat-choice: Repeat the value of W chosen in the
previous interaction episode.

Stay-on-hit: Whenever the previous W choice resulted
in a success, repeat it.  This strategy can be considered
as a more selective variant of the previous one.

Pivot-around-target: Choose for W the value of the
target, plus/minus noise.

Jump-up/down: If the resulting P is lower than the
target, increase the value of W; if it is higher, diminishes
it. There exist several possible variants of this strategy.
The one employed in the model was the Jump-on-
Middle, i.e., choose as the new W a quantity that lies
midway between the previous value and the
upper/lower limit of the distribution (i.e., 1 when
decreasing, and 12 when increasing).

All these strategies have been implemented through
ACT-R productions that are let compete for execution.
ACT-R selects the productions on the basis of their
expected utility. The expected utility depends, among
other things, from the success probability of the
production.  Whenever the subsymbolic ACT-R
production parameter learning mechanism is activated,
successful applications of a production increase its
expected utility, and therefore augment the chance that
the production will be chosen for execution in a next
occasion.

Table 3 reports the results obtained by running the P
model for 2,500 runs in each condition of both
experiments, and compares them with the actual
participants’ data.

Table 3: Experimental results and P model predictions

First Phase Second Phase
Particip. P model Particip. P model

3000-3000 10.57 9.35 13.18 12.30
9000-9000 7.26 7.02 9.26 8.83
3000-9000 9.39 9.32 8.70 9.04
9000-3000 6.86 6.96 12.84 12.12

The P model makes predictions similar to the W model
in the first experiment, and is able to capture in the
second experiment the interaction originated from the
anomalous result obtained in the 9000-3000 condition.

Even more important than a good fit is the capability
of the model to provide an insight for the data, and  to
be able to suggest an explanation for them.  In our case,
the most puzzling results obtained in the experiments
are: (a) the fact that the behavior in the second phase
seems to be a function of only the target value sought
for in that phase, independently of what the participants
have done in the first phase, and (b) the interaction
arising from the exceptionally good performance shown
by the participants in the 9,000-3,000 condition of the
second experiment.
These results suggest that situational factors play an

essential role in determining the quality of the
performance in the experimental conditions.  In other
words, some conditions are inherently easier than
others, due to the dynamics of the SF system and to the
way  it deals with out-of-range values.



Figure 1: The model predictions without (left) and with (right) the learning mechanism activated.

The success probability of a production is in fact
different in different conditions: for instance, the
Repeat-Choice rule has an averaged (between phases)
success probability of 15.18% in the 3,000 tons
condition vs. 11.32% in the 9,000 one. Analogously,
the Jump-on-Middle (up and down) rule has success
probabilities of 2.44% vs. 1.22 in the 3,000 and 9,000
tons conditions, respectively. This simple fact is
sufficient to explain the Target main effect in the first
experiment.

Not only the success probability for the same
production is different in different conditions, but
also the success probability of different production in
the same condition are unequal.  In other words, some
productions, in the SF domain, are inherently better
than others: so, for example, the productions Repeat-
Choice or Stay-on-Hit are always better than Choose-
Random or Jump-on-Middle.

At the beginning, the model considers all
productions as having the same expected utility.
When the ACT-R production learning mechanism is
activated, however, it increasingly tends to prefer the
most successful productions, and this results in the
improvement that is generally obtained from the first
to the second experimental phase.

The puzzling results obtained in the second
experiment derive from the combined influence of
situational (Target) and learning (Phase) factors.
Figure 1 illustrates the idea. Without learning, only
situational factors are involved.  In this case the
model predicts a symmetrical situation for the two
conditions.  When learning is activated, it interacts
with situational factors originating the results
obtained in the second experiment.

It is worth to emphasize that we do not claim that
participants are unable to store any memory of their
interactions with the system or that instances are
useless to explain human cognition. The model
simply states that instance-based learning does not
play a significant functional role in controlling a
simple, but not trivial, dynamic system like SF, at
least for the time scale covered by the experiments.
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