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Causal inferences as perceptual judgments
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We analyze how subjects make causal judgments based on contingency information in two para-
digms. In the discrete paradigm. subjects are given specific information about the frequency a, with
which a purported cause occurs with the effect; the frequency b, with which it occurs without the ef-
fect; the frequency ¢, with which the effect occurs when the cause is absent; and the frequency d, with
which both cause and effect are absent. Subjects respond to P, = a/(a+b) and P, = ¢/(c+d). Some
subjects’ ratings are just a function of P,, while others are a function of AP = P, — P,. Subjects’ post-
experiment reports are accurate reflections of which model they use. Combining these two types of
subjects results in data well fit by the weighted AP model (Allan, 1993). In the continuous paradigm,
subjects control the purported causes (by clicking a mouse) and observe whether an effect occurs.
Because causes and effects occur continuously in time, it is not possible to explicitly pair causes and
effects. Rather, subjects report that they are responding to the rate at which the effects occur when
they click versus when they do not click. Their ratings are.a function of rates and not probabilities.

In general, we argue that subjects’ causal ratings are judgments of the magnitude of perceptually

salient variables in the experiment.

There has been a long history of discussion about hu-
man causal inference. Philosophers (e.g.. Cohen, 1981;
Henle, 1962; Hume, 1740/1938; Mill, 1843 1974; Pop-
per, 1972; Suppes, 1970) have been concerned with when
we can be justified in inferring a causal relationship, and
psychologists (e.g., Jenkins & Ward, 1965: Kahneman &
Tversky, 1972; Lipe, 1982; Michotte, 1963: Nisbett &
Ross, 1980; Peterson & Beach, 1967; Shultz, 1982;
Smedslund, 1963; Tolman & Brunswik, 1935) have been
concerned with when people actually infer a causal rela-
tionship. The goal of this paper is to present some data on
causal inferences based on contingency information,
which is one domain where the rationality of causal in-
ference has been addressed. We will look at judgments
first in what we call the discrete paradigm and later in
what we call the continuous paradigm. A typical discrete
problem might be to determine the relationship between
Jogging and backache given data that can be understood
in terms of a 2 X 2 contingency table such as Table 1. The
subject is told of cases where the patient jogs and has a
backache (a), jogs and has no backache (b), does not jog
and has a backache (c), and neither jogs nor has a back-
ache (d).

In Table 1, the events are classified according to
whether the purported cause is present or absent and the
effect occurs or does not occur. The values a through d
are the frequencies in these cells. The subject’s task is to
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go from these frequencies to an inference about whether
there is a causal relationship or not. In most experi-
ments, including the one we will report, subjects do not
see such a table but, rather, experience the various event
combinations with the specified frequencies. One ques-
tion that has been asked is for what patterns of these four
numbers should subjects infer a causal relationship and
for what patterns of numbers do they, in fact, infer a re-
lationship. '

One can calculate the P, = a/(a+b), which is the pro-
portion of times the effect occurs in the presence of the
cause, and P, = c/(c+d), which is the proportion of
times the effect occurs in the absence of the cause. Allan
(1980, 1993; Allan & Jenkins, 1983) has suggested that
the appropriate measure of dependency is

AP=P1"'P2.

This same statistic has been used by Wasserman
(1990), and a variant of it, called focal-set AP has been
advocated as a model of human causal inference by
Cheng and Novick (1992).

One problem with the AP rule is that subjects are not
equally sensitive to all cells, as this rule would imply.
Therefore, more successful fits to the data are reported
using the weighted AP rule:

W0+W1P] ~'W2P].

These fits are often very good in absolute terms, and
it is typically found that w, < w,.

The goodness of fit of a weighted AP rule is subject
to multiple interpretations. The straightforward one is
that subjects are calculating the probabilities of the ef-
fect in the presence and absence of the cause and then
weighting them to come up with their causal judgment.
This has struck some researchers as implausible, and
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Table 1
A Typical 2 X 2 Contingency Table for Causal Estimation
Effect Present Effect Absent
(¢.g., back pain) (e.g., no back pain)
Cause present a b
(e.g., jogging)
Cause absent ¢ d

(e.g., no jogging)

subjects often fail to report engaging in such conscious
calculations. It could be that the weighted AP reflects
some implicit strength that builds up between the cause
and the effect. Chapman and Robbins (1990) and Wasser-
man, Elek, Chatlosh, and Baker (1993) have shown that,
under certain assumptions, the Rescorla—Wagner (Res-
corla & Wagner, 1972) rule leads to associative strength
proportional to a weighted AP. Shanks (1987) has shown
that the growth of causal ratings with exposure corre-
sponds to the predictions of the Rescorla—Wagner the-
ory. Allan (1993) has reviewed a number of correspon-
dences between effects in the conditioning literature and
the AP rule.

The AP rule, under any of these interpretations, has
problems as a normative model of human causal infer-
ence. One problem is that it shows no sensitivity to sam-
ple size, and any normative model would hold that the
strength of belief in a causal relationship should increase
as sample size increases. In the limit, as sample size in-
creases, a normative model should assign a certainity to
the existence of a causal relationship for any positive
AP. Allan (1980) has suggested that, normatively, the
significance of AP should be assessed by a chi-square
test, but there is no evidence subjects are doing this. The
Rescorla—Wagner interpretation, because of the learning
process, shows some sensitivity to sample size because
it takes a number of trials for conditioning to asymptote
to AP. However, beyond enough data to estimate AP ac-
curately, the Rescorla-Wagner model is not sensitive to
sample size.

Besides its insensitivity to sample size, the weighted
AP rule might also seem nonnormative because of its
unequal weighting of the cells. The chi-square logic
would seem to imply that subjects should be equally sen-
sitive to all cells. Many researchers have noted that sub-
jects are most sensitive to variations in ¢ and least sen-
sitive to variations in d. In some experiments, subjects
appear totally insensitive to d, while in others, subjects
are just less sensitive to d (Arkes & Harkness, 1983,
Crocker, 1981; Shaklee & Tucker, 1980; Wasserman,
Dorner, & Kao, 1990). This insensitivity to the cell re-
flecting joint absence has led to the characterization of
humans as nonrational in their causal inference.

Schustack and Sternberg (1981) proposed a model
that was sensitive to sample size and that could reflect
the unequal cell weighting. They had a great deal of suc-
cess fitting their data sets using a simple linear model of
the form
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wo + wia + wyb + wic + wyd.

This linear model predicts that causal judgment is a
weighted function of the individual cell frequencies, and
so makes judgment sensitive to sample size and also can
accommodate differential sensitivity to frequencies in
different cells. Although the differential sensitivity to
cell frequency has been well documented in the discrete
paradigm, the issue of the overall influence of sample
size has not been carefully studied in the discrete para-
digm.' So, it is not clear whether the AP or the linear
weighting model would provide a better characterization
of the data.

The Simple Bayesian Model

Anderson (1990) proposed a Bayesian analysis for
what normative causal inferences should be. This analy-
sis proposed that subjects compared the data in a 2 X2
contingency table with a model of what a causal rela-
tionship was like. One model is that there should be a
certain probability, p¢, of an effect in the presence of a
cause and another probability, p,, of the effect in the ab-
sence of the cause. The overall likelihood of the data is
then the product of the probabilities of two independent
sequences of Bernoulli trials (i.e., the sequences sum-
marized by the first and second rows of Table 1). The
first one is the probability of a successes and b failures,
when the cause is present, given that the probability of
success is pc. The second one is the probability of ¢ suc-
cesses and d failures, when the cause is absent, given
that the probability of success is py. That is,

P(D|H) = p&( - pc)? pall = pa)*. 6y

This is the likelihood of the data (D) under the hypothe-
sis (H) of a causal relationship. This needs to be com-
pared with the likelihood of the data under the hypothe-
sis that no cause was identified (H). In this case, there
should be a base probability, py, governing the occur-
rence of the effect whether the purported cause is pre-
sent or not, and the two rows of Table 1 can be collapsed
to give a + ¢ successes and b + d failures. Thus, the like-
lihood of the data under no identifiable cause is

P(D|H) = p&e(t - po"*. )

Our inference about whether there is a causal rela-
tionship should be a function of the odds of a causal re-
lationship given the data:

P(H|D)

Odds(H|D) PID)

PUH) 0= p)" 0= )
PH) -0
where P(H) is the prior probability of a causal relation-

ship and P(H) = 1 — P(H). Anderson (1990) presents a
more complex version of this model which involves Bay-
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esian assumptions about prior distributions of probabil-
ities. This model, rather than assuming fixed priors for
Pcs Pas and py, assumes prior distributions of such prob-
abilities. A somewhat similar idea is described by Fales
and Wasserman (1992). However, we have found little
difference between the models with fixed priors and dis-
tributions of priors. Therefore, we will consider only the
simpler model with fixed priors.

Schustack and Sternberg Experiment

The data of Schustack and Sternberg (1981) provide
an example for applying these models. We will apply it
to the abstract condition of their third experiment.” They
presented their subjects with 60 test items of the form

S w N T - R
-Q N 4 S - -R
T w S Z - R
T -S -Q -N - -R
S —> R

The first four lines are abstract characterizations of
possible causal events. The first says when S, W, N, and
T were present R occurred, and the second says when Q
was absent and N, Z, and S were present R did not hap-
pen, and so forth. The last item is the one subjects are
asked to judge—in this case, to judge the likelihood that
S leads to the outcome of R on a rating scale from 0 to
100. (Subjects assigned an average value of 34.7 to the
example above.) Such problems can be described in
terms of the values of a, b, ¢, and d. In this example, a =
2,b=1,c = 0,and d = 1, where these reflect the co-oc-
currence pattern of S and R. The 60 problems used by
Schustack and Sternberg involved substantial variations
in the values of a through d and so allow us to put the
model to a serious test.

Schustack and Sternberg (1981) fit their linear model
to these data, which used six variables—the values of a
through d, a single measure of the strength of alternative
causes, and a regression constant. This model fit the
data quite well—with an R? of .90. Corresponding to
other findings (e.g., Smedslund, 1963), the regression
coefficients are largest for a and least for d. From this,
Schustack and Sternberg concluded that “subjects are
not optimally rational” (p. 119). In addition, they re-
ported that attempts to implement a Bayesian variable,
along with the variables of their proposed model, did not
produce encouraging results. Therefore, “subjects were
not using a Bayesian approach in their evaluation”
(p. 113). While Schustack and Sternberg’s linear model
appears to provide a good quantitative account of sub-
Jjects’ performance in the inference task, their conclu-
sion about the subjects’ rationality is not warranted. We
will show that the simple Bayesian model can fit their
data quite well.?

Fit of the Simple Bayesian Model
The subjects in the Schustack and Sternberg paradigm
gave responses on a 0-100 scale, which suggests that

they treated them as probabilities. Therefore, we used
the following response rule:

odds(H|D)

Response = 100 X ———>— |
1 + odds(H|D)

4)

where odds(H|D) is calculated according to Equation 3.
The resulting R? is .90. The four parameter values were
P(H) = .29, pc = .63, py = .41,and p, = .27. The cor-
relations between the predictions of this model and the
values of @, b, ¢, and d were .87, —.61, —.57,and .17, re-
spectively. Thus, just as subjects do, the rational model
can prescribe that the four variables should receive dif-
ferential weighting. It is easier to understand why the
simple Bayesian model produces the differential corre-
lation with a versus d if one examines the log of the
odds formula in Equation 3:

P(H|D) | _ o
]og[P(ﬁlD)) log [P(H) - P(H))

+a [log( pe) — IOg(PN)]
+b[logl - p) — log(l — 29
+c [log( Da) — 10g(PN)]

+d [log(l - py) ~ log(l = py)]. ~ (5)

Thus, there is a linear relationship between log odds and
the variables a through d. In fact, Equation 6 asserts that
the simple Bayesian model is equivalent to a linear re-
gression model on log odds. The four coefficients,
log(pc) — log(pn), log(1—pc) — log(1—py), log(p,) —
log(pn), and log(1—p,) — log(1—py), assigned to vari-
ables a through d depend only on the three parameters,
Pc» Pa, and py;, of the simple Bayesian model. To the ex-
tent that log(pc) — log(py) is large and log(1—p,) —
log(1—py) is small, subjects should weight a more than
d. Intuitively, p,, which is the probability of an effect
when the cause is absent, should not be very different
from py, which is the base probability. On the other
hand, there should be a large difference between pc,
which is probability when the effect is present, and py.
These intuitions imply that every joint occurrence of
cause and effect will provide more evidence for the
cause than every joint absence.

Thus, the prescription of rationality does not require
equal weighting of a and d. The subject is comparing the
causal model against the model of no known cause. It is
reasonable to assume that p¢ is high and py and p, are
low and relatively equal. Thus, the coefficient for a is
expected to be large and for d small. To the extent that
the base probability of an effect is the same as the prob-
ability with cause absent (py = p,), the variable d does
not provide discriminating data.

A symmetric treatment of a and d is required if we
take the chi-square view of trying to determine whether



there is a significant difference in frequencies in the
presence of a purported cause versus its absence. How-
ever, this is not what subjects were asked to do in Schus-
tack and Sternberg’s experiment. Rather, they were
asked whether the described information better sup-
ported a causal relationship. In that framework, varia-
tions in the variable d should be treated as less important
than variations in a. This is just what subjects did. Their
behavior can be predicted extremely well by a meaning-
ful set of parameters underlying a rational analysis of
how they should perform the task.

As a final comment, Equation 5 shows that rather so-
phisticated Bayesian inference can be achieved by a very
simple response rule. One might regard Equation 5 as
describing how strength of association (interpreted as
log odds) should change with the frequencies a, b, ¢, and
d. Basically, each such event would increase or decrease
the strength by an amount that depended on the param-
eters pc, pa, and py. While such a “rational” model is
computationally plausible, it does not necessarily de-
scribe what subjects do. This is the issue that we explored
in the following series of experiments.

EXPERIMENT 1

There is little empirical basis upon which to choose
between the Schustack and Sternberg linear model and
the simple Bayesian model in terms of their ability to fit
the data from the Schustack and Sternberg experiment.
Both predict these data with R2s of .90 although the sim-

(a)
Treatment Data
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ple Bayesian model has two fewer parameters. However,
they differ fundamentally in the relationship they predict
between the independent variables, a to d, and the de-
pendent judgment measures. The Schustack and Stern-
berg model predicts that the actual judgments should
bear a linear relationship to a through d while the sim-
ple Bayesian model predicts that the log-odds trans-
forms of the judgments should bear a linear relationship
to a through d, and hence the actual judgments should be
a negatively accelerated function of these variables. Un-
fortunately, the values of a through d in Schustack and
Sternberg were not manipulated over a sufficiently wide
range to allow these two possibilities to be distin-
guished. Also because of this restricted range, the ex-
periment did not allow a test of how sensitive subjects
are to sample size. Both the Bayesian model and the lin-
ear model differ from the AP model on this score. The
motivation of this experiment was to present subjects
with problems that allowed the Bayesian model to be
discriminated from both the linear model and the AP
model. The AP model could not be tested against the
Schustack and Sternberg data because P, and P, were
not always defined. We wanted to create a data set that
would also allow us to test the AP model.

Method

In this experiment, subjects were asked to evaluate the likeli-
hood of a drug’s causing side effects in the treatment of a fictitious
disease. Four types of information corresponding to the different
cells in a 2 X 2 contingency table were available: the joint presence
of the side effects and drug treatment, absence of the side effects

Patient ID:

Drug Name:

945-59-2831

zeronol

()
Treatment Data
Patient ID: 136-63-3615
Drug Name: zeronol

Treatment: Patient Status:

(d)

Treatment Date B—F————=

(c)

Treatment Data
Patient ID: 661-61-2805
Drug Name: zeronol
Treatment: Patient Status:

O @

Patient ID: 594-92-3886
Drug Name: zeronol
Treotment: Potient Stotus;

O ®

Figure 1. Examples of stimuli used in Experiment 1. (a) Cause present and effect present; (b) cause present and effect absent; (c) cause

absent and effect present; (d) cause absent and effect absent.
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given the drug treatment, presence of the side effects given no
drug treatment, and the joint absence of drug treatment and side
effects. The subjects were asked to judge a number of problems.
and cach problem involved a sequence of instances of these four
information types. The frequencies of each information type var-
ied from problem to problem. At the end of a problem, the subjects
were asked to enter a number from 0 to 100 that best reflected their
Judgment of the drug’s causing the side effects.

Subjects. Forty graduate and undergraduate students were re-
cruited through an ad on the Carnegie Mellon University computer
market bulletin board. They were each paid $7 for participating in
the 1-h experiment. One subject opted for and received, instead. a
credit for fulfilling a course requirement. There were 27 male and
13 female subjects, of whom 23 had taken statistics courses. Nei-
ther sex nor the prior statistics course interacted with the results.
so we collapsed the results for all subjects.

Apparatus. A Mac IIci computer was used to control the stim-
ulus display and collect data from the subjects. The display was a
5X3 in. window at the center of an Apple 21-in. monochrome
monitor.

Procedure. Subjects were presented with 2 warm-up problems
and then 80 experimental problems, which they were to judge for
causal efficacy. The information for each problem was presented
in pictorial format, as shown in Figure 1. A problem consisted of
the presentation of a drug name and a flashing fixation point, a se-
quence of patient outcomes, like those in Figure 1, and then a dis-
play to solicit response entry. A different drug name was chosen
for each problem and a different patient identification number was
selected in each information display. The order of problems and
the order of the information displayed within a problem were ran-
domized for each subject. Each display for each patient stayed on
the screen for 1 sec, and there was a 1/4-sec interval between pa-
tient displays. ‘

At the beginning of the experiment, the subjects were given the
following information to read:

A new family of drugs to treat Lafuma’s syndrome has been approved
for clinical trials. The drugs were assigned code names and distributed
to 80 hospitals nation-wide.

Two common side effects of the drugs are skin rash and the growth of
tongue moss. Unfortunately, these are also two of the symptoms that pa-
tients with Lafuma’s syndrome have. The pharmaceutical company is in-
terested in knowing what doctors think about the chance of each of the
different drugs causing the side effects. They collect results from each of

Table 2
Mean Rating of Drug Data over all Subjects

Value of Variable

a,b,c,d 1 3 5 9 15

vary a LI 39 62 68 66 77
3,33 29 42 50 61 70

5,55 19 38 40 51 66

1,35 38 61 62 77 81

vary b 1,_,1,1 41 31 18 14 9
3,..3,3 54 39 35 23 19

5,.,5,5 60 48 46 30 26

1,_,3,5 43 25 20 13 9

vary ¢ 1,1,_,1 43 36 29 26 20
3,3,.,3 47 41 37 35 28

5,5,_,5 50 44 43 35 32

53,1 53 48 39 33 37

vary d 11,1, 47 40 52 50 49
3,33, 43 37 43 49 49

5,5,5,_ 35 41 42 46 50

53,1, 62 60 57 59 62

—®— a(cause and effect)
—O— b (cause and no effect)
80 —0— c(no cause and effect)
—#®— d (no cause and no effect)
6 0 -
E ]
s
[
40
2 0 -
0 5 10 15

Number

Figure 2. The effect of variation in the variables a through d on
judged efficiency of the cause.

the hospitals and classify the outcome of each patient in one of the four
possible ways:

1. the drug was administered and the side effects were present.

2. the drug was administered and no side effects were observed.

3. the drug was not administered but the side effects were present.

4. the drug was not administered and the side effects were not ob-

served.

The doctor at the pharmaceutical company examined the outcome case
by case. After completing the results from one hospital, the doctor gave
arating from 0 to 100 to indicate how likely the drug used in that hospi-
tal is the cause of side effects in patients. Then data from another hospi-
tal is reviewed. Now, suppose you are the doctor working at the company.
What will your judgments be?

The 0-100 scale was used to replicate Schustack and Sternberg.

Design. The 80 problems are described in Table 2. The prob-
lems are divided into four sets. Each set was intended to evaluate
the effect of one of the four information types (a to d). Along each
row of a set, the values of three of the information types are held
constant while the value of the fourth varies over the values of 1,
3,5,9,and 15.

Results

Table 2 presents the mean ratings of subjects for each
of the 80 conditions. Figure 2 shows how judgments var-
ied as a function of a through d, each with the other
three variables held constant. Separate analyses of vari-
ances were performed on the submatrices in Table 2 for
the variables a—d using as factors the rows and columns.
There were significant effects of each column variable
[F(4,156) = 119.8,p<.001, for a, MS, = 337.2; F(4,156)
= 98.5,p<.001, for b, MS, = 292.4; F(4,156) = 33.7,p<
001, for ¢, MS, = 282.4; F(4,156) = 5.1, p <.001, for d,
MS, = 325.3].* As in other research, the largest effect is
for a and smallest is for d. The functions do appear to be



negatively accelerated as would be predicted by the simple
Bayesian model. As a test of whether the functions were
indeed negatively accelerated, we tested whether or not the
change from 1 to 5 was greater than the change from 9 to
15. The Bayesian model predicts a greater change, while
the linear regression model predicts a smaller change. The
increase from 1 to 5 was larger for each variable and sig-
nificantly larger for all variables except d[(156) = 4.95,
p <.001, for a; #(156) = 5.63, p < .001. for b: 1(156) =
3.11, p < .01, for c; ((156) = .17, for d].

Sample size neglect. While the evidence for a curvi-
linear effect of a through d supports the Bayesian model
over the Schustack and Sternberg model. there remains
the question of whether either is correct in its prediction
that subjects’ judgments should become more extreme
with sample size. The data include some conditions
which allow fairly direct assessments of this issue. For
instance, there are three cases in which the value of a is
three times as large as the values of b. c. andd—3, 1, 1,
1;9,3,3,3;and 15,5, 5, 5. Similar comparisons are pos-
sible for b, ¢, and d. Figure 3 plots these comparisons as
a function of sample size. As can be seen, there was only
a weak trend for subjects to become more extreme in
their opinions even though sample size was increasing
by a factor of 5. The effect for a is not significant
[F(2,78) = 1.61], that for b is significant [F(2,78) =
4.02, p <.05], that for ¢ is not [F(2,78) = 1.03], and that
for dis [F(2,78) = 4.41, p <.05]. Thus. it seems that the
data would be more consistent with something like the
AP model, which is insensitive to sample size. Accord-

—O— ad3times as large
80 —#— b 3 times as large
l —O— c 3times as large
—&— d3times as large
60 ° ©
g ./—_/Q
£
% 407
o D_\D-\_G
201

x 3
Repetitions

x 1 x5

Figure 3. Effect of number of repetitions of data on judgment—
predicted indicated by closed symbols and observed indicated by
open symbols.
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ing to Equation 5, the difference in log-odds between the
most extreme conditions in Figure 3 should increase by
a factor of 5. If we treat subjects’ judgments as proba-
bilities and convert these to log-odds, the difference in
the judgments for the a and b cases only increases from
1.20 to 1.67. Subject neglect of sample size in other
decision-making paradigms has also been noted by a
number of other researchers (e.g., Tversky & Kahneman,
1974).

Shanks (1985) reported an experiment in the discrete
paradigm in which subjects did show sensitivity to sam-
ple size. However, his data showed relatively little effect
beyond 5-10 observations, while only 20% of our cases
involved 10 or fewer observations. Also, he queried sub-
jects after every five trials as to what their estimates
were, whereas we asked only for the final estimate.
Thus, it is not clear that the weak effects we find are any
different from his. The larger effects that he found may
be due to the requirement for repeated evaluations which
might encourage subjects to become more extreme in
their reports.

Model fits. We fit four models to the data which con-
firm the impressions obtained in the preceding analyses.
The linear Schustack and Sternberg model (with param-
eters of wy = 40.8, w; = 3.4, w, = =2.5, w3 = —1.5,
and w, = .08) fit with an R? of .86. The Bayesian model
(with parameters of prior = .40, pc = .50, p5y = .42, ps
= .40) fit with an R? of .89. The weighted AP model
(with parameters of wy = 19, w; = 72, and w2 = 27) fit
with an R2 of .94. Finally, we fit the Busemeyer’s aver-
aging model to predict such data as suggested by Kao
and Wasserman (1993). In their development of it, they
predict subjects’ judgments as a linear function of the
proportions of p,, P, P, and p, of the observations. For
instance, p, = a/(a+b+c+d). Applied to our situation,
this model becomes

50 + wyp, — Wapp — W3Pe T WaDg

if we assume 50 as the indifference rating.® Fitting this
model to the data, we obtained an R? of .93, with pa-
rameters w; = 50, w, = 57, w3 = 35, and w, = 7. This
is somewhat worse than the weighted AP model despite
the fact that it involves estimating one extra parameter.
Its relatively good fit (compared with the Bayesian
model or the linear regression model) reflects the fact
that it, too, predicts subject behavior in terms of the rel-
ative proportion of events rather than the absolute num-
ber of events. This, again, is evidence for a nearly total
disregard of sample size.

We do not want to attach too much significance to
these relative R2s. All the R? values are relatively high
because they capture the general sensitivity of subjects
to the variables a, b, ¢, and d. The relative ordering of the
R2s across models just confirms what the qualitative
analyses of the data indicated. The qualitative analyses
indicated curvilinear effects of a through 4 and the dis-
regard of sample size. Both of these effects are predicted
by the AP model and by the averaging model.
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Subject reports. We asked subjects what variables
they were paying attention to. On the basis of their own
verbal and written reports, the ways by which the ratings
were generated can be grouped as follows: (a) the ma-
Jority of the subjects (26 out of 40) said they had tried to
take all four types of information into account. Six of
these reported actually doing what the AP rules pre-
scribe. That is, they tried to calculate and compare the
proportion of side effects when given drug treatment
and the proportion of side effects when given no drug
treatment. Others were less precise about what they had
done but said that they had paid attention to all four val-
ues, and many indicated sensitivity to ratios or propor-
tions; (b) 9 subjects reported that they had ignored the
cases in which the drug was not used and had attempted
to compare the occurrence of side effects versus no side
effects in the presence of drug treatment alone; (c) 5
subjects reported other strategies which we found hard
to interpret.

Figure 4 presents the data separately for subjects in
Groups a and b. As can be seen, true to their word, sub-
Jects in Group a were showing relatively large effects of
¢ and d while subjects in Group b showed relatively
weak effects. Mixing these two groups of subjects would
produce a weighted AP rule. It is true that even the sub-
jects in Group a were not giving as much weighting to ¢
and d as they were to a and b. Perhaps, on some trials,
they ignored the absence condition. Thus, the more gen-
eral proposal is that subjects’ data can be predicted as a
mixture of responding to AP and to just P, = a/(a+b).

These data contrast with the data reported by Wasser-
man et al. (1990). They asked subjects in advance about
what cells they thought they should pay attention to.
They found 32 subjects who said they should pay atten-
tion to all cells and 13 who said they should pay atten-
tion only to the presence cells. However, there was no
difference among these subjects in the effects of the four
cells. All subjects showed larger effects of the a and b
cells than of the ¢ and d cells. The most apparent differ-
ence between these two experiments is that the Wasser-
man et al. subjects gave their reports in advance of the
experiment, whereas our subjects gave their reports after
the experiment.

Discussion

Thus, it seems that the majority of the subjects are be-
having according to the AP rule of Allan and Jenkins ex-
cept that they weight the two proportions differentially
(or perhaps they sometimes neglect P, = c/(c—d)). This
model has recently been promoted by Wasserman (1990)
and Wasserman et al. (1993), who have interpreted it in
terms of the Rescorla—Wagner learning model (Rescorla
& Wagner, 1972). Chapman and Robbins (1990) showed
that the Rescorla—Wagner rule will produce an asymp-
totic level of association strength that corresponds to the
value of AP. Wasserman et al. show that by assuming
unequal learning rates in the various cells one can get a
weighted AP model. Shanks (1987) has also promoted
the interpretation of causal inference in terms of the
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Figure 4. (a) Data from 26 subjects who reported paying attention
to a through 4. (b) Data from 9 subjects who reported paying atten-
tion to only a and b.

Rescorla~Wagner model. He has also shown that the rate
at which subjects approach asymptotic value can be pre-
dicted from the learning assumptions of that model.
The confirmation of the weighted delta rule in this ex-
periment might seem to be evidence in favor of the in-
terpretation of such judgments in terms of the Rescorla—
Wagner model. However, subjects’ reports certainly
sounded very different from associative learning. They
often claimed to be consciously comparing the two



probabilities. The fact that the data so cleanly divide on
the basis of subject reports (Figure 4) should be taken as
evidence that their reports are to be believed.

Allan and Jenkins (1980), Shaklee and Tucker (1980),
and Wasserman et al. (1990) all have found that the
behavior of a subset of subjects can be characterized as
conforming to the AP rule. The subset of subjects
graphed in Figure 4A would be those judged to corre-
spond to the AP rule. One additional piece of informa-
tion that we have from the present study is that subjects
have conscious access to the rules that they are using and
some even report explicitly calculating the AP quantity.
Kao and Wasserman (in press) found that subjects were
more likely to conform to the AP rule when the infor-
mation was presented as summary numbers in a table
rather than as individual cases (as in our experiment and
most research). This would facilitate explicit calculations
of proportions. By presenting summary totals in a table,
the subject is relieved of having to count the four cells,
which is a prerequisite to calculating the proportions.

Wasserman et al. (1993) reject the idea that subjects
are explicitly calculating AP. They asked subjects to ex-
plicitly estimate the probability of an effect in the pres-
ence of the cause and, separately, the probability of the
effect in the absence of the cause. They looked at how
well these estimated conditional probabilities predicted
subjects’ causal ratings. They list two reasons for reject-
ing the AP model. First, the causal ratings correlated
better with the objective conditional probabilities (r =
.98) than they did with the subjects’ estimates of condi-
tional probabilities (» = .97). However, this is a very
small difference. More impressive is the high value of
the correlation with subjective probabilities. Perhaps
noise in the estimations made them a poorer predictor
than the objective probabilities. Their second reason for
rejecting the AP model is that these subjects were more
influenced by P, than by P,. However, in our view, this
difference in weighting is produced by subjects who al-
ways or sometimes fail to consider what happens in the
absence of the cause. The weighted AP rule reflects this
mixture of strategies. To address the Wasserman et al.
arguments, we thought we should look at a critical dif-
ference between their paradigm and our own. The next
three experiments will look at causal inference in the
paradigm they used.

THE CONTINUOUS PARADIGM

Much of the recent evidence in favor of the AP model
and its interpretation in terms of the Rescorla-Wagner
learning rule has come from a paradigm that is different
from the one we have considered so far. Rather than a
discrete paradigm in which subjects are presented with
explicitly paired causes and effects, the causes and ef-
fects occur continuously over time. This paradigm is
more like the conditioning paradigms that gave rise to
the Rescorla-Wagner model.

One can argue that the discrete paradigm represents a
rather unnatural situation in that subjects are explicitly
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informed when causes and effects might go together.
More normally, possible causes and effects do not ap-
pear in the environment so neatly paired. Rather, we en-
counter events continuously in time and we have to de-
cide whether they are causally related. So, for instance,
we might slam a door and observe a second later that a
book falls off a shelf. We can entertain the hypothesis
that the first event might have caused the second. The
time between these two events is relevant to assessing
whether or not there is a causal connection.

Wasserman (1990) reports typical research in a para-
digm with human subjects that is designed to be analo-
gous to the animal operant conditioning paradigms. Sub-
jects were asked to explore whether tapping caused a
light to come on. They were free to tap as often as they
liked. The experiment was divided up into 1-sec inter-
vals. Subjects chose to tap in about one-third of these in-
tervals. Wasserman defined different conditions in
terms of the probability that the light would be presented
at the end of a 1-sec interval in which the subject tapped
and the probability that the light would be presented at
the end of a 1-sec interval in which the subject did not
tap. In his Experiment 5, Wasserman created 25 condi-
tions by factorially combining probabilities of .00, .25,
.50, .75, and 1.00 of a light in a tap interval and a light
in a nontap interval. In the case of a tap, these probabil-
ities are referred to as P(O|R) (for probability of out-
come given response) and in absence of tap they are re-
ferred to as P(O|R). These are analogous to the P, and
P, that we defined for the discrete paradigm. Subjects
had 60 sec to experiment with the causal relationship.
They were asked to rate a causal relationship ona —100
to +100 scale, where —100 meant that the press pre-
vented the light from turning on and +100 meant that
the press caused the light to come on.

Wasserman (1990) noted in these data that P(O|R)
seemed to have a larger influence on subjects’ judg-
ments than did P(O|R). He was successful in fitting a
weighted AP rule to his data, just as we were with the
data in Experiment 1. As we noted, Wasserman et al.
(1993) argued that unequal weighting implied that sub-
jects were not explicitly calculating P(O|R) — P(O|R) as
the AP rule would have. This is part of their reason for
promoting the Rescorla—Wagner learning model with
unequal learning rates. However, we have argued that
these data could be interpreted as subjects’s sometimes
making their judgments on the basis of P(O|R) — P(O|R)
and sometimes on the basis of just P(O|R), which would
give an unequal weighting of the two proportions. We
thought it would be worthwhile to collect some data in
this continuous paradigm to see what subject reports
were like and whether or not we could similarly split the
subject population as we had in the discrete paradigm.

EXPERIMENT 2

The second experiment was an attempt to reproduce
the standard continuous paradigm. Three values were
used for P(O|R) and P(O|R)—.167,.500, and .833. All
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nine combinations of these probabilities were used. We
were also interested in looking at effects of time and
number of intervals: One condition involved thirty 750-
msec intervals, one condition involved thirty 1,500-msec
intervals, and one condition involved sixty 750-msec in-
tervals. Comparison of these conditions would give us
some sense of subject sensitivity to sample size. Com-
bining these three types of problems with the different
values of P(O|R) and P(O|R) yields 27 conditions. If a
subject made a response in one of these intervals, the ef-
fect occurred at the end of the interval with probability
P(O|R), and if the subject’s response did not occur in
that interval, the effect occurred with probability
P(O|R). Wasserman (1990) looked at variables such as
time of intervals and number of intervals and did not
find any substantial effects. Shanks (1987) found effects
of number of intervals when the number was very small.
Shanks interpreted these early changes as reflecting the
learning process by which the Rescorla—Wagner model
reaches asymptote. The insensitivity to number of inter-
vals beyond the first few might be seen as another case
of subject insensitivity to sample size.

Method

Depending on the condition, subjects had either 22.5 or 45 sec
in which to experiment with a flute. They were asked to judge
whether clicking the mouse of the computer caused a flute icon on
the monitor to play a tune. After experiencing one such problem,
they were asked to judge its causal efficacy and then to judge an-
other problem. Altogether, they judged 81 such problems in ran-
dom order. These involved three replications of each of the 27 con-
ditions. At the end of a problem, the subjects were asked to enter
a number from —100 to 100 that best reflected their judgments of
the causal relationship between the clicking and the icon. We used
this response scale to correspond to the one used by Wasserman
et al. (1993).

Subjects. Eighteen graduate and undergraduate students were
recruited through an ad on the Carnegie Mellon University com-
puter market bulletin board. They were each paid $8 for partici-
pating in the 1-h experiment. There were 10 male and 8 female
subjects, of whom 11 had taken statistics courses. Neither sex nor
the prior statistics course interacted with the results. Therefore, we
will average the results over all subjects.

Apparatus. A Mac Ilci computer was used to control the stim-
ulus display and collect data from the subjects. The display was a
5X3 in. window at the center of an Apple 21-in. monochrome
monitor.

Procedure and Instructions. Figure 5 shows the screen dis-
play. The subjects were given three practice trials at the beginning
of the experiment and a 5-min rest halfway through the experi-
ment. The following are the critical instructions:

In this experiment your task is to find out whether clicking the mouse
has any effect on whether or not the flute icon shown on the monitor
sounds a tune. At any time you may choose to click the mouse or not
click it. You can click it as often or as rarely as you like. However, to
make a good judgment, you must pay attention to whether the flute plays
the tune when you click the mouse and when you don’t click it. The flute
icon is highlighted when you click the mouse. Clicking the mouse has no
effect whatsoever when the icon is still highlighted. Otherwise, you may
click it at any time you like. Please release the mouse once a click is
made.

There will be 81 different problems, each lasting for either 22.5 or 45
seconds. In each problem the flute will sometimes sound when you click
the mouse, and will sometimes sound of its own accord. The relationship
between clicking the mouse and whether or not the flute sounds will be

Figure 5. Example of stimuli from Experiment 1.

constant within each problem, but may well differ from one problem to
the next. Your task is to choose an integer between —100 and 100 that
best reflects the degree to which you believe clicking the mouse has an
effect on sounding the flute icon. For example, choosing a negative num-
ber means you think clicking the mouse prevents the flute from playing
the tune: while choosing a positive number means you think clicking the
mouse causes the flute to produce sound. +100 indicates that clicking
the mouse always causes the flute to sound, and —100 indicates that
clicking the mouse always prevents the flute from sounding. Zero indi-
cates that clicking the mouse has no effect on whether or not the flute
sounds. Please type in the number at the prompt of the dialogue window.

Results

The results of the three observations per condition
were averaged for each subject and then subjected to a
three-way analysis of variance. The analysis of variance
reveals a significant effect of P(O[R) and P(O|R)
[F(2,34) = 158.1, MS, = 1,111.3; F(2,34) = 127.7,
MS, = 712.8, respectively] but no effect of the variable
of time and number of events [F(2,34) = .10, MS, =
546.2], substantially replicating Wasserman (1990).
Figure 6 displays the effects of P(O|R) and P(O|R).¢ The
weighted AP model was fit to the data and accounted for
97% of the variance. The regression equation is

Rating = —9 + 100P(O|R) — 72P(O|R).

Thus, the data nicely replicate past results and are con-
sistent, at this level of analysis, with what we obtained in
the discrete paradigm. This helps establish that our pro-
cedures and subjects are not unlike those used by other
researchers and so sets the context for other analyses.

When we interviewed the subjects, we found it quite
impossible to interpret their reports as indicating that
they had paid attention to a, b, c, and d events or some
subset of these events. Unlike in the case with the dis-
crete paradigm, they perceived no event boundaries.
Thus, subjects could not easily calculate the number of
a, b, c, and d events and no one reported trying to es-
timate either P(O|R) or P(O|R). Rather, they claimed to
be responding to the rate at which the flute sounded
when they were pressing and when they were not press-
ing the mouse. As one subject reported: “I clicked con-
tinuously for a few seconds, observed, then did not for a
while and saw what made a difference in the beeping.
The gaps between the beeps were most informative but
I looked at the frequency as well.” Another subject re-
ported: “I would listen to a pattern and then try to alter
it with the clicking. The more my clicking sped the pat-
tern up—the higher the positive number—and vice
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Figure 6. Results of Experiment 2. Effects of P(O|R)and P (OIR).

versa. Slowing the pattern down produced a negative
number.”

Thus, subjects claimed to be responding to the rate at
which the beeps were occurring or the frequency of
beeps in a self-defined click or no-click interval. They
were not counting events of no beeps (corresponding to
b and d). One implication of the reports is that subjects
tend to cluster their clicking by clicking for a number of
intervals and pausing for a number of intervals. This
would suggest that subjects are quite likely to click in the
current interval if they had clicked in the previous inter-
val but not to do so if they had not. Indeed, this is what
we observed with a .64 probability of clicking in the
current interval if they had clicked in the previous inter-
val, but only a .27 probability if they had not clicked in
the previous interval.” By contrast, if they had been
clicking uniformly throughout the experiment there
would not have been such a difference.

It might seem strange that the weighted AP model
does so well in predicting the data if subjects are re-
sponding to the rate of clicking and not to the probabil-
ity. However, the probability manipulation controls the
rate of clicking. It is true that we used two different event
intervals (750 and 1,500 msec) and found no effect of
this manipulation. However, the increase to 1,500-msec
intervals would slow the rate of beeping in both click
and no-click intervals and not affect the relative differ-
ences in rates. Thus, relative rate was totally confounded
with relative probability. Wasserman and Neunaber
(1986) and Shanks, Pearson, and Dickinson (1989) have
found effects of the delay between response and event on
causality judgments. In their experiments, they varied
the interval between response and event but held con-
stant the interval between events when subjects did not
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respond. Our third experiment was undertaken to see
what would happen when we decorrelated relative rate
and relative probability and had different delays in the
case of a response and in the case of no response.

EXPERIMENT 3

In Experiment 3, the method, materials, and instruc-
tions to subjects were the same as those in Experiment 2.
There were 15 conditions defined by the crossing of 5
contingency conditions with 3 time conditions. The con-
tingency conditions were designed to create differences
of P(O|R) — P(O|R) of —.67, —.33, 0, .33, and .67. To
create these differences, the following five pairs of val-
ues for P(O|R) and P(O|R) were used: .17 and .83, .17
and .5, .5 and .5, .83 and .5, .83 and .17. The time to the
flute sounding (if it did sound) was ¥+ T, where V' was
arandom exponentially distributed variable with a mean
of 150 msec and 7'took on different values depending on
the timing condition. In one condition, the T was
450 msec when subjects clicked and 1,050 msec when
they did not; in a second condition, T was 750 msec in
both intervals; and in a third condition, it was 1,050 msec
when the subjects clicked and 450 when they did not. If
the subject clicked, the program always waited until the
selected time before sounding the flute, irrespective of
whether the subject clicked again or not. After an inter-
val was up, the program would treat the next time as a
no-click interval unless the subject clicked before the
no-click time was up, in which case the program would
switch at that point to timing a click interval. Each trial
involved 48 intervals.

The purpose of this manipulation was to introduce a
decorrelation between probability and rate. Table 3 illus-
trates this for the 15 conditions of the experiment. There
we have the probabilities, P(O|R) and P(O|R), asso-
ciated with each condition, the mean times, 7(O|R) and
T(O|R), of the intervals, and the rates defined as R(O| R)
= P(O|R)/T(O|R) and R(O|R) = P(O|R)/T (O|R). As can
be seen, there are substantial variations in rates in con-
ditions of constant differences in probabilities.

Method

Except for the different timing arrangement, the procedure in
Experiment 3 was identical to that of Experiment 2. There were 60
problems which involved four replications of each of the 15 con-
ditions. At the end of a problem, the subjects were asked to enter
a number from — 100 to 100 that best reflected their judgment of
the causal relationship between the clicking and the icon.

Eighteen graduate and undergraduate students were recruited
through an ad on the Carnegie Mellon University computer mar-
ket bulletin board. They were each paid $8 for participating in the
1-h experiment. There were 12 male and 6 female subjects, of
whom 12 had taken statistics courses.

Results

A within-subjects analysis of variance revealed sig-
nificant effects of contingency condition [F(4,68) =
85.85, p < .001, MS, = 1,0717° and timing [F(2,34) =
34.44, p < .001, MS, = 656] and a significant inter-
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Table 3
Conditions of Experiment 3

Condition  P(O|R) P(O|R) T(O|R) T(O|R) R(O|R) R(OIR)

1 17 .83 .60 1.20 .28 .69
A7 .83 .90 90 19 93

3 A7 .83 1.20 .60 14 1.39
4 17 .50 .60 1.20 .28 42
5 A7 .50 .90 .90 19 .56
6 17 .50 1.20 .60 14 .83
7 .50 .50 .60 1.20 .83 42
8 .50 .50 .90 .90 .56 .56
9 .50 .50 1.20 .60 42 .83
10 .83 .50 .60 1.20 1.39 42
B .83 .50 .90 .90 .93 .56
12 .83 .50 1.20 .60 .69 .83
13 .83 17 .60 1.20 1.39 .14
14 .83 17 .90 .90 93 .19
15 .83 17 1.20 .60 .69 .28

action between the two [F(8,136) = 6.25, p < .001,
MS, = 284]. The results are displayed in Figure 7. As
can be seen, the subjects’ data increase both as the con-
tingency difference between click and no click increases
and when the click interval is short relative to the no-
click interval. The significant effect of timing means
that a model that uses only probabilities, as does the AP
model, is wrong. The effects of timing appear largest for
intermediate values of P(O|R) — P(O|R) where there
are no floor or ceiling effects.

We compared a number of models for predicting sub-
Jjectdata. One (the AP model) used the probabilities, and
the other used the mean rate at which the flute was ex-
pected to sound per unit of time. These two factors were
confounded in the previous experiment. Using probabil-
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Figure 7. Results of Experiment 3. Effects of contingency and tim-
ing. Timing is given in terms of the constant time (in milliseconds).
Another random time averaging 150 msec was added.

ities, a regression equation that accounted for 84% of the
variance was obtained:

Rating = —3 + 85P(O|R) — 78P(O|R).

Using rates, the following equation, which accounted
for 88% of the variance, was obtained:

Rating = —12 + 5IR(O|R) — 35 R(O|R),

where R(O|R) is rate of sound when clicking and R(O|R)
is rate when not clicking. Again, the difference in R? be-
tween the two models is not large because both capture
much of the major trends in the data. The real evidence
for the rate model is the significant effect of timing in
the analysis of variance.

If we take seriously subject reports that they were re-
sponding to perception of relative rates of beeping, this
suggests that we should be applying models from psy-
chophysics as to how people compare perceptual quan-
tities. One frequently used statistic is Weber’s contrast,
or the grating contrast (Barlow & Mollon, 1982), which
is the difference between two magnitudes over their sum.
In the context of our current situation, this quantity is

¢ - ROIR) - RO[R)

ROIR) + RO|R)

The grating contrast has the advantage of being the right
response scale for these experiments, varying from —1
to 1. To a good approximation, the grating contrast be-
haves like a logarithmic function of the ratio of rates.
Correlating this quantity with the data accounts for 93%
of the variance with one less parameter than either the
AP or the AR models above. The best fitting equation is

Rating = 4 + 77G.

The grating contrast provides a better fit to the data be-
cause it makes the difference in rates relative to the ab-
solute values of rates. One can imagine the subject de-
tecting changes in the pattern over the base rate defined
by the denominator of the grating contrast. A similar
equation was fit to Experiment 1, and it accounted for
90% of the variance. This is less than the AP model’s
97%, but the grating contrast model has one fewer pa-
rameter. The first experiment did not vary timing in a
way that would produce discriminating results.

In this experiment, as in the previous one, subject re-
ports were also quite explicit about the fact that they
were responding to rates. One subject reported: “Listen
first, try different patterns. Listen to intervals of silence
and the flute. Both were important. Found mostly the
time lags were important.” Another reported: “I would
wait 5 to 10 sec and listen to the rate of sounds when not
clicking. Then I would click for about 5 sec and listen to
the rate again. Then listen without clicking again.”

Thus, as subjects report, it would seem that they were
responding to the rates of sounds and that their judg-
ments are best thought of as psychophysical judgments
of the difference in the magnitudes of these rates.



EXPERIMENT 4

Method

Having now shown that the critical variable scemed to be rate
and not probability, we wanted to do a more parametric explo-
ration of subject sensitivity to the time dimension. This experi-
ment was like the third, except that P(O|R) and P(O|R) were 1—
that is, every time interval ended with a sound. However, we
manipulated the time orthogonally until the sound occurred in the
presence and in the absence of a click. The mean waiting times
when subjects did not click were 1,000, 2,000, and 4,000 msec,
and the mean waiting times when subjects did click were 250, 500,
1,000, 2,000, 4,000, and 8,000 msec. Since the probabilities
were 1, the rates in this experiment were simply 1 divided by the
times. These times were randomly distributed according to an ex-
ponential distribution with the given means. Crossing these two
variables resulted in 18 conditions. There were four replications of
each condition in the experiment, for a total of 72 problems. Each
trial lasted 40 sec and involved however many intervals would fit
into that time period under the constraints of the condition, the pat-
tern of clicking adopted by subject, and the random variability in
interval generation. Otherwise, the procedure was identical to that
of the previous experiments.

Eighteen graduate and undergraduate students were recruited
through an ad on the Carnegie Mellon University computer mar-
ket bulletin board. They were each paid $8 for participating in the
1-h experiment. There were 9 male and 9 female subjects, of whom
11 had taken statistics courses.

Results

Figure 8 shows the results of this experiment. There
are main effects of click interval [F(5,85) = 37.38, p <
.001, MS, = 1,688], of no click interval [F(2,34) =
18.79, p <.001, MS, = 1,001], and an interaction between
the two variables [F(10,170) = 2.93, p < .01, MS, =
269].° As the probabilities are held constant at 1 through-
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Figure 8. Results of Experiment 4. Effects of average times from
click to sound and average times to sound, given no click.
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Figure 9. Results of Experiment 4 plotted as a function of the grat-
ing contrast.

out the experiment, it is worth noting that a wide class of
models are totally incapable of handling these data—
including the Schustack and Sternberg (1981) linear
model, the Bayesian model, any variation of the AP
model (including the Rescorla—Wagner model), or Buse-
meyer’s (1991) averaging model. One can only account
for these data by a model that responds to rates of events.

We found the best fitting linear function to the rates to
be

Rating = — 1+ 20R(O|R) — 33R(O|R),

which accounted for 76% of the variance. Again, a sim-
ple linear function of the grating contrast accounts for a
great deal more variance (95%):

Rating = —3 + 63G.

This grating contrast model predicts a diminished ef-
fect of R(O|R), given larger values of R(O|R), which is
in part the interaction displayed in Figure 8—a smaller
effect of mean time if no click when there were larger
values of mean time if click. Figure 9 illustrates the re-
lationship between the grating contrast and subject rat-
ings. It shows that different conditions with similar grat-
ing contrasts do produce similar ratings. Subjects were
responding to the ratio of rates.

GENERAL DISCUSSION

The results of the first three experiments were rela-
tively well fit by the weighted AP model. However, sub-
ject reports suggested rather different interpretations of
these outcomes in the discrete and continuous para-
digms. In the discrete paradigms, subject reports indi-
cated that there was a mixture of responses on the basis
of pure AP and responses on the basis of just P;, with the
resulting combination looking like a weighted AP. An
analysis of the data sorted by subject report confirmed
this indication. Subject reports in the continuous para-
digm suggested that they were responding in terms of
rates which tended to be confounded with probabilities.
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This was confirmed in Experiment 3, which decorre-
lated rates and probabilities, and in Experiment 4, which
held probabilities constant and varied rates.

Our research has found the discrete paradigm to be
very different from the continuous paradigm, despite the
tendency in the literature to treat them as the same. In
the continuous paradigm, subjects do not respond to spe-
cific response-event combinations. Rather, they cut the
period up into intervals both when they are responding
and when they are not. Their judgments reflect the rate
of the critical event in the response intervals versus the
nonresponse intervals. This strategy reflects in part the
fact that they can exercise control by responding in the
continuous paradigm, which they cannot do in the dis-
crete paradigm. However, more importantly, it reflects
the fact that they cannot count pairings of responses and
outcomes in the continuous paradigm. They do not know
when the experimenter-defined intervals are up and
whether or not the effect has occurred. Rather, they per-
ceive a continuous stream of events. We have a classic
case here of the difference that can occur between a sub-
ject’s perception of an experiment and the experi-
menter’s characterization of it.

It seems that the consideration that unites the two par-
adigms is that subjects respond in terms of whatever
variables are perceptually salient and seem causally rel-
evant. Subjects behave according to the AP model in the
discrete paradigm because it is relatively easy to count
events, which must be done in order to respond in terms
of probabilities. As Kao and Wasserman (in press) have
shown, subject behavior corresponds more to the AP
model when the counts of events are provided for the
subjects in summary tables.

Subjects do not behave according to the AP model in the
continuous paradigm basically because it is not possible to
count the various kinds of events. Rather, what subjects
can do is to judge the perceptually salient feature, which is
the rate of the event when they are responding and when
they are not. It is significant that their judgments can be fit
so well by a simple grating contrast, which also works
well in similar psychophysical experiments. Gallistel
(1990) has proposed a similar rate model in the condition-
ing literature as an alternative to the Rescorla—Wagner
model which leads to a AP model prediction.

These results give us an interesting perspective both
on the issue of the mechanisms for causal judgment and
on the issue of the normative status of these mecha-
nisms. It appears that subjects look for quantities that are
both easy to compute and causally relevant, and that they
make their judgments with respect to these. The more
extreme such a quantity is in the direction expected by
a causal relationship, the more evidence it provides for
a causal relationship. However, subjects pay relatively
little attention to the sample size on which this quantity
is based. Thus, under a narrow definition, subjects can-
not be viewed as making causal judgments in a norma-
tive manner. However, there are broader perspectives
under which the issue is not so clear. For instance, Gal-
listel (personal communication, spring, 1994) has ar-

gued that it makes little sense, in foraging in a rapidly
changing real world. to respond to long-term statistics
and that organisms should respond to only their last few
experiences.

There are two perspectives that one might take on
these data. One is that subjects are engaging in causal in-
ference but in a nonnormative manner. The second is
that subjects are substituting a perceptual judgment for
a causal judgment (in the narrow normative sense). One
might seriously question whether subjects even know
what it means to assess the probability that one event
causes another. Certainly, psychologists and philoso-
phers have had a hard time agreeing.

The implications of these results are essentially neg-
ative for theories that attempt to interpret causal infer-
ence as some sort of associative learning such as with re-
cent uses of the Rescorla—Wagner model. In no real
sense are subjects learning associations. The only
“learning” involves estimating perceptual-like quanti-
ties, and often that involves explicit counting. These re-
sults are equally negative for such theories as Anderson’s
(1990) rational model or Cheng and Novick’s (1992)
focus-set AP model, which try to provide some rational
reconstruction of what subjects are doing. We have al-
ready discussed problems that the rational model has.
The focal-set AP model is very flexible and could deal
with the mixture in the discrete paradigm simply by as-
suming that subjects have different focal sets—either all
the events or just those where cause is present. However,
it has no way of dealing with subjects’ reliance on rates
rather than probabilities in the continuous paradigm.
Perhaps more fundamentally, these models cannot ac-
commodate the fundamental assumption unifying our
interpretation of discrete and continuous paradigms,
which is that subjects are choosing to estimate whatever
quantity is easy to calculate and also seems to have causal
relevance. Our subjects are not judging probability of a
causal relationship.

One could argue that the tasks that we asked our sub-
jects to perform are artificial and that they have no rela-
tionship to causal inference outside the laboratory. While
the requirement of assigning numbers on rather arbi-
trary scales adds an element of artificiality to the pro-
cess, there are reasons to suspect that these judgments
are related to judgments made outside the laboratory.
The fact that the judgments are as regular as they are
across conditions and as sensitive as they are to causally
relevant variables is one argument that supports the sug-
gestion that they are related to causal inference outside
the laboratory. A second argument lies in the similarity
of these results to research on conditioning and the sim-
ilarity of those data to more natural data on foraging
(Stephens & Krebs, 1986). Interestingly, research on for-
aging has also shown that animals seem to respond to
rather simple easy-to-compute statistics that are corre-
lated with optimal behavior (e.g., Kamil, Yoerg, &
Clements, 1988).

Other evidence that these causality judgments are not
epiphenomenal comes from the experiments of Chat-



losh, Neunaber, and Wasserman (1985) and Shanks and
Dickinson (1989) in the continuous paradigm. They var-
ied the delay of event and probability of the event and
compared subjects who were asked to estimate causal
force and subjects who were put in an instrumental sit-
uation and asked to maximize the number of events.
They found that rate of responding in the instrumental
condition mirrored the causal ratings given by subjects
in the judgment condition. However, Chatlosh et al. did
find that rate of responding increased as subjects had
more experience with a positive AP (240 events vs. 60)
while their ratings did not change. So, it is not entirely
clear that the mechanism which controls their causal
judgments is the same as the mechanism that controls
their responding.

Another way some have questioned the artificiality of
the task is to argue that such paradigms are basically de-
void of any role for prior knowledge and so are quite un-
like causal inference in most real-world tasks. While it
is hard to judge the issue of relative frequency, there are
cases in which people make causal inferences on the
basis of contingency information alone. Many hypothe-
ses in medicine start with simple correlations, and only
much later is work done on the possible causal mecha-
nisms grounded in prior biological knowledge. Much of
what people learn about modern devices is based on raw
contingency information—press this button and see
what happens. The conditioning literature has shown
that many organisms are capable of learning things on
the basis of raw contingency. This is not to deny that
prior knowledge, when it is available, can have a large
effect on causal inference. However, it is a mistake to
classify causal inference in the absence of prior knowl-
edge as “artificial”

REFERENCES

ALLAN, L. G. (1980). A note on measurement of contingency between
two binary variables in judgment tasks. Bulletin of the Psychonomic
Society, 15, 147-149.

ALLAN, L. G. (1993). Human contingency judgments: Rule based or
associative? Psychological Bulletin, 114, 435-448.

ALLAN, L. G., & JENKINS, H. M. (1980). The judgment of contingency
and the nature of the response alternatives. Canadian Journal of
Psychology, 34, 1-11.

ALLAN, L. G., & JENKINS, H. M. (1983). The effect of representations
of binary variables on judgment of influence. Learning & Motiva-
tion, 14, 381-405.

ANDERSON, J. R. (1990). The adaptive character of thought. Hillsdale,
NJ: Erlbaum.

ARKES, H. R., & HARKNESS, A. R. (1983). Estimates of contingency be-
tween two dichotomous variables. Journal of Experimental Psy-
chology: General, 112, 117-135.

BarLow, H. B., & MoLLoN, J. D. (Eds.) (1982). The senses. Cam-
bridge: Cambridge University Press.

BUSEMEYER, J. R. (1991). Intuitive statistical estimation. In N. H. An-
derson (Ed.), Contributions to information integration theory
(Vol. 1, pp. 187-215). Hillsdale, NJ: Erlbaum.

CHAPMAN, G. B., & ROBBINS, S. J. (1990). Cue interaction in human
contingency judgment. Memory & Cognition, 18, 537-545.

CHATLOSH, D. L., NEUNABER, D. J., & WASSERMAN, E. A. (1985).
Response-outcome contingency: Behavioral and judgmental effects
of appetitive and aversive outcomes with college students. Learning
& Motivation, 16, 1-34.

CAUSAL INFERENCE 523

CHENG, P. W.. & Novick, L. R. (1992). Covariation in natural causal
induction. Psychological Review, 99, 365-382.

CoHEN, L. J. (1981). Can human irrationality be experimentally
demonstrated? Behavioral & Brain Sciences, 4, 317-370.

CROCKER, J. (1981). Judgment of covariation by social perceivers. Psy-
chological Bulletin, 90, 272-292.

FALES, E.. & WassERMAN, E. A. (1992). Causal knowledge: What can
psychology teach philosophers? Journal of Mind & Behavior, 13,
1-28.

GALLISTEL, C. R. (1990). The organization of learning. Cambridge,
MA: MIT Press.

HENLE, M. (1962). On the relation between logic and thinking. Psy-
chological Review, 69, 366-378.

HuME, D. (1938). An abstract of a treatise of human nature. London:
Cambridge University Press. (Original work published 1740)

JENKINS, H. M.. & WaRD, W. C. (1965). Judgment of contingency be-
tween responses and outcomes. Psychological Monographs, 79(1,
Whole No. 594).

KAHNEMAN, D., & TVERSKY, A. (1972). Subjective probability: A
judgment of representativeness. Cognitive Psychology, 3, 430-454.

KaMIL, A. C., YOERG, S. I, & CLEMENTS, K. C. (1988). Rules to leave
by: Patch departure in foraging blue jays. Animal Behaviour, 36,
843-853.

KA0, S. F., & WassErMAN, E. A. (1993). Assessment of an information
integration account of contingency judgment with examination of
subjective cell importance and method of information presentation.
Journal of Experimental Psychology: Learning, Memory, & Cogni-
tion, 19, 1363-1386.

LIPE, M. G. (1982). A cross-study analysis of covariation judgments.
Unpublished manuscript, University of Chicago, Center for Deci-
sion Research, Graduate School of Business.

MICHOTTE, A. (1963). The perception of causality. London: Methuen.

MiLL, J. S. (1974). A system of logic ratiocinative and inductive.
Toronto: University of Toronto Press. (Original work published 1843)

NisBeTT, R. E., & Ross, L. (1980). Human inference: Strategies and
shortcomings of social judgment. Englewood Cliffs, NJ: Prentice-Hall.

PETERSON, C. R., & BEACH, L. R. (1967). Man as intuitive statistician.
Psychological Bulletin, 68, 29-46.

POPPER, K. R. (1972). Objective knowledge. Oxford: Oxford Univer-
sity Press, Clarendon Press.

RESCORLA, R. A., & WAGNER, A. R. (1972). A theory of Pavlovian con-
ditioning: Variations on the effectiveness of reinforcement and non-
reinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical
conditioning II: Current research and theory (pp. 64-99). New
York: Appleton-Century-Crofts.

SCHUSTACK, M. W., & STERNBERG, R. J. (1981). Evaluation of evidence
in causal inference. Journal of Experimental Psychology: General,
110, 101-120.

SHAKLEE, H., & TUCKER, D. (1980). A rule analysis of judgments of
covariation between events. Memory & Cognition, 8, 459-467.

Suanks, D. R. (1985). Continuous monitoring of human contingency
judgment across trials. Memory & Cognition, 13, 158-167.

SHANKS, D. R. (1987). Acquisition functions in contingency judgment.
Learning & Motivation, 18, 147-166.

SHANKS, D. R., & DICKINSON, A. (1991). Instrumental judgment and
performance under variations in action-outcome contingency and
contiguity. Memory & Cognition, 19, 353-361.

SHANKS, D. R., PEARSON, S. M., & DICKINSON, A. (1989). Temporal
contiguity and the judgment of causality. Quarterly Journal of Ex-
perimental Psychology, 41B, 139-159.

SuuLtz, T. R. (1982). Rules for causal attribution. Monographs of the
Society for Research in Child Development, 47(1, Serial No. 194).

SMEDSLUND, J. (1963). The concept of correlation in adults. Scandi-
navian Journal of Psychology, 4, 165-173.

STEPHENS, D. W., & KREeBs, J. R. (1986). Foraging theory. Princeton,
NJ: Princeton University Press.

SuppEs, P. (1970). A probabilistic theory of causality. Amsterdam:
North-Holland.

ToLMaN, E. C., & BRUNsWIK, E. (1935). The organism and the causal
texture of the environment. Psychological Review, 42, 43-77.

TVERSKY, A., & KAHNEMAN, D. (1974). Judgment under uncertainty:
Heuristics and biases. Science, 185, 1124-1131.



524 ANDERSON AND SHEU

WAasSERMAN, E. A. (1990). Detecting response-outcome relations: To-
ward an understanding of the causal texture of the environment. In
G. H. Bower (Ed.). The psychology of learning and motivation
(Vol. 26, pp. 27-82). San Diego: Academic Press.

WASSERMAN, E. A., DORNER, W. W., & Kao, S.-F. (1990). Contribu-
tions of specific cell information to judgments of interevent contin-
gency. Journal of Experimental Psychology: Learning, Memory, &
Cognition, 16, 509-521.

WASSERMAN, E. A, ELEK, S. M., CHATLOSH, D. C., & BAKER, A. G.
(1993). Rating causal relations: Role of probability in judgments of
response-outcome contingency. Journal of Experimental Psychol-
ogy: Learning, Memory, & Cognition, 19, 174-188.

WasserMAN, E. A., & NEUNABER, D. J. (1986). College students’ re-
sponding to and rating of contingency relations: The role of tempo-
ral contiguity. Journal of the Experimental Analysis of Behavior, 46,
15-35.

NOTES
1. The exception is Shanks (1985), who collected judgments

through the course of presentation. His research will be discussed after
Experiment 1.

2. Miriam Schustack has generously provided us with the raw data
from this expeirment.

3. The AP model cannot be fit to their data because sometimes there
were no observations to enable the calculation of P, or P,—that is, ei-
thera=b=0o0rc=d=0.

4. None of these eftects interacted with whether the subjects had had
a prior statistics course.

5. Because 3p; = 1, this model requires only four parameters, a, b,
c, and d, and we do not lose anything by constraining the intercept to
be 50.

6. As in Experiment |, these effects did not interact with whether the
subjects had had a prior statistics course.

7. On average, subjects clicked in 43% of the intervals, which is only
a little higher than the rate Wasserman reports.

8. Again, none of these effects interacted with whether subjects had
had a prior statistics course. ’

9. Again, there were no significant interactions with whether or not
the subjects had had a prior statistics course.
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