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Abstract

An experiment was performed to investigate the effects of practice and spacing on retention of Japa-
nese–English vocabulary paired associates. The relative benefit of spacing increased with increased
practice and with longer retention intervals. Data were fitted with an activation-based memory model,
which proposes that each time an item is practiced it receives an increment of strength but that these in-
crements decay as a power function of time. The rate of decay for each presentation depended on the ac-
tivation at the time of the presentation. This mechanism limits long-term benefits from further practice
at higher levels of activation and produces the spacing effect and its observed interactions with practice
and retention interval. The model was compared with another model of the spacing effect (Raaijmakers,
2003) and was fit to some results from the literature on spacing and memory.

Keywords: Spacing effect; Distributed practice; Memory; Forgetting; Practice; Mathematical
modeling

1. Introduction

Although practice and forgetting have been researched extensively by psychologists for
more than 100 years (Ebbinghaus, 1885), there is still no consensus on the mechanisms re-
sponsible for these effects. Central to finding this consensus is the need for explanations of
how repetition improves recall, how increased temporal spacing of repetition improves recall,
and how an increasing retention interval results in more forgetting.

Several theories exist. One major branch of theoretical explanation (Estes, 1955; Glenberg,
1979; Raaijmakers, 2003) explains the effects of practice and forgetting largely as due to con-
textual fluctuation. In this theory, each opportunity for practice results in an encoding of the
stimulus and its context. However, the context of encoding fluctuates with the passage of time.
Because of this fluctuation, as the spacing between repetitions increases, the overlap (redun-
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dancy) of encoded contextual information decreases. This results in better memory perfor-
mance as spacing becomes wider, because cue contextual information has a greater probability
of matching the less redundant encoded information. Forgetting is also explained by contex-
tual fluctuation theory because as retention intervals become longer the contextual information
present in a retrieval cue has fluctuated to become more dissimilar to the encoding context,
thus decreasing recall ability. Recently, Raaijmakers developed an effective mathematical
model that realizes this type of theory. This article will take advantage of his work to compare
the contextual fluctuation approach to the theory we will develop here.

Although versions of the contextual fluctuation theory are consistent with much of the data
in the literature, other theoretical accounts are possible. Specifically, another school of thought
(Cuddy & Jacoby, 1982; Schmidt & Bjork, 1992; Whitten & Bjork, 1977) says that the
long-term memory strength contribution of a presentation depends on the accessibility of the
memory at the time of the presentation. In this theory any repeated presentation that is more
difficult (e.g., due to an impoverished stimulus or long spacing interval) results in a greater im-
provement in later recall ability due to this difficulty. Theories in this camp might loosely be re-
ferred to as accessibility theories because the accessibility of a presentation controls the
long-run strength of the memory. One problem with these theories is that, in part because they
have not been presented as fully specified formal models, it is unclear exactly how they would
address all the effects in the literature.

As one instance of their lack of complete specification, accessibility theories have not made
clear the details of how they would explain the crossover interaction between retention interval
and spacing interval demonstrated by Bahrick (1979). Bahrick showed that when practice is
spaced closely, it appears that forgetting occurs more quickly than when practice is spaced
widely. He had subjects practice Spanish–English paired associates for six practice sessions
separated by 1, 7, or 30 days and looked at retention 30 days after the final session. He found
that final recall was significantly better as spacing between practice sessions was increased,
even though the performance during practice was significantly worse with wider spacing.

Contextual fluctuation theories and models can capture these crossover effects using the in-
teraction of contextual fluctuation and the redundancy of encoded traces. If the retention inter-
val is short, closely spaced practices will be remembered better than widely spaced practices
because the testing context will be similar to all the contexts of the closely spaced practices, but
it will be similar to only the contexts of the most recent widely spaced practices. In contrast, if
the retention interval is long, closely spaced practices will result in poorer recall because the
test context will have fluctuated away from the overlapping encoding contexts, whereas widely
spaced practices will result in better recall because the more diverse contextual information en-
coded will be more likely to match the test context.

We became interested in the issue of the exact nature of the accumulation of recall strength
with spaced practice because we noticed in some pilot work that the Adaptive Character of
Thought–Rational (ACT–R) 5.0 declarative memory equations were not fitting the data well.
Specifically, in an experiment in which we intermixed different spacings of practice we were
finding that we could not fit the data without supposing widely varying decay parameters for
each condition. Because this pilot experiment was not designed to adjudicate these issues, we
decided to design an experiment to address the issues of practice, forgetting, and spacing. Al-
though verbal theories have provided interesting hypotheses of how these effects might occur,
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we hoped to use the data from this experiment to make a formal model of these effects because
we felt modeling was necessary to address the complexity of the issues involved.

The formal model we were seeking needed to specify both a practice function and a reten-
tion function. Therefore, it is worthwhile reviewing the guidelines provided by Wickens
(1999) for the necessary parts of a forgetting function, which can be generalized to practice
functions. According to Wickens, these parts must include a representation for the initial learn-
ing, a description of asymptotic performance, and a way to characterize changes in the rate of
forgetting.

First, the initial learning represents the strength of a memory item at the beginning of a re-
tention interval. This quantity reflects the impact of study in the period preceding the interval
represented in the forgetting function. From this initial level, memory strength decreases with
time as forgetting occurs. Second, the forgetting function needs to explain performance after
long retention intervals as it approaches an asymptote. According to Wickens (1999), asymp-
totic performance must be accounted for to explain results such as Bahrick (1984), which sug-
gested that after about 3 years forgetting no longer occurs. Third, to characterize changes in the
rate of forgetting, Wickens suggested calculating a “hazard function,” which describes the rate
of decrease of a memory at a particular time. He noted that the hazard function should agree
with Jost’s second law, which is essentially a statement that the rate of forgetting decreases
with time: “If two associations are now of equal strength but of different ages, the older one
will lose strength more slowly with the further passage of time” (Woodworth, 1938).

Although Wickens (1999) limited his analysis to forgetting functions, these aspects of for-
getting functions match to similar aspects of practice functions. Practice functions also need an
initial level, an asymptote, and a learning rate. However, unlike forgetting functions, which
propose that forgetting is a continuous process, the learning rate in practice functions assumes
some discrete increment for each added presentation. Therefore, our application of the learn-
ing rate must be framed as a combination rule that adds up the effects of separate presentations.

Our model will capture these effects with a strength function that has built into it both the
power law of learning (a function of the number of practices) and the power law of forgetting (a
function of the retention interval). There has been much debate over whether power functions
are satisfactory for these purposes. Although some have argued that a power function charac-
terizes practice data (e.g., Logan, 1992; Newell & Rosenbloom, 1981) and forgetting data
(Wixted & Ebbesen, 1997), others have questioned whether a power function is satisfactory
and have suggested that exponential functions are more suitable for practice data (Heathcote,
Brown, & Mewhort, 2000). It has also been proposed that practice functions may be a mixture
of multiple power functions (Delaney, Reder, Staszewski, & Ritter, 1998; Rickard, 1997). Still
others have argued for the superiority of an exponential-power function in forgetting (Rubin &
Wenzel, 1996; Wickelgren, 1974) and practice (Heathcote et al., 2000).

Our choice of a power function was based on analyses of how need probabilities for memo-
ries fluctuate in the environment (J. R. Anderson & Schooler, 1991), yet it remains unclear
why need probabilities for memories should follow power functions. Because it has been
shown that a mixture of exponential processes can produce power-law-like functions (R. B.
Anderson & Tweney, 1997), one might speculate that a mixture of exponential decays in need
probability in the environment is the cause. Regardless, because biological processes often fol-
low exponential decay functions, it is not difficult to suppose that forgetting matches power
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functions in the environment because of a mixture of exponential processes in the brain. Essen-
tially, the functional form we propose was chosen because it summarizes all the major effects
of relevance with a tolerable degree of error.

Our explanation of the integration of practice and forgetting began with this ACT–R mem-
ory model (J. R. Anderson & Lebiere, 1998). This model specified how the exact pattern of
practice and retention mapped to memory performance. However, it did not explain how these
factors might interact with the spacing of practice. The model assumed that each presentation
results in an increment to memory, that these increments decay according to a power function,
and that these decaying increments sum to yield an overall strength of the memory trace. Using
this model, J. R. Anderson, Fincham, and Douglass (1999) reported success in fitting various
latency data, but for this article, we modeled correctness of recall to facilitate comparisons
with other work.

To study practice and forgetting, we chose a paired-associate memory task in which partici-
pants memorized the English translations of Japanese words. Foreign language vocabulary
learning involves a basic memory task, but it still has external validity, and thus it seemed to be
an ideal paradigm. Japanese was chosen to minimize the prior learning participants could bring
to the task.

2. Experiment

2.1. Participants and design

Forty participants were recruited for this study from the Pittsburgh, Pennsylvania, commu-
nity. They were mostly college students responding to an online advertisement. All partici-
pants completed the experiment. Twenty participants each were assigned to the 1- and 7-day
retention conditions. Sessions lasted between 60 and 90 min. Only participants who professed
no knowledge of Japanese were recruited.

In this experiment, participants learned the Japanese–English paired associates during a
first session (S1), and then 1 or 7 days later returned for a second session (S2) to assess their re-
tention. During S1, participants learned the English responses for the Japanese cues over the
course of 12 blocks of 40 presentations each. A presentation consisted of either a study trial or
a test trial with feedback. The first 26 presentations of the first block were buffers and were not
analyzed. Following these buffers, the word pairs for each condition were introduced with
study trials and then tested 1, 2, 4, or 8 times with 2, 14, or 98 intervening presentations. This
indicates a 3 × 4 design (not including the two levels for the between-subject long-term reten-
tion factor); however, because it would have made the experiment take too long, the 8 × 98 con-
dition was not included, resulting in 11 within-subjects conditions. Each condition used eight
word pairs. The introduction of pairs in each condition was distributed across the span of S1.
Buffer items were used to fill in presentation spaces in the blocks that were not needed for the
11 conditions.1

On S2, after a 1- or 7-day retention interval, the effects of these 11 conditions of training
were assessed with 11 blocks of 40 test trials. There were 27 buffer items to begin the first
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block of S2. Following these buffers, all word pairs were retested four times each at a spacing
of 98 presentations between retests.

2.2. Materials

The stimuli and buffers were 104 Japanese–English word pairs. English words were chosen
from the MRC Psycholinguistic database such that the words had familiarity ratings between
406 and 621, with a mean of 548, and had imagability ratings between 343 and 566, with a
mean of 464. These ratings were composed according to procedures described in the Medical
Research Council (MRC) Psycholinguistic Database manual (Coltheart, 1981). The overall
MRC database means for familiarity and imagability are 488 (SD 120) and 438 (SD 99) respec-
tively, so the words we chose had higher familiarity and imagability ratings than the database
averages. Japanese translations (from the possible Japanese synonyms) were chosen to avoid
similarity to common English words. Only four-letter English words were used, and four- to
seven-letter Japanese translations were used. Japanese words were presented using English
characters. Word assignment to conditions was randomized for each participant.

2.3. Procedure

Participants were instructed not to practice the word pairs during the time between sessions.
Participants were scored for motivational purposes, receiving 6 points for each correct re-
sponse and losing 12 points for each wrong response. Failing to provide a response, either by
time-out or by providing a blank response, resulted in a 0 score. Participants were paid $9 to
$15 per session depending on their score.

The stimuli were shown on a 19-in. monitor at a resolution of 1,024 × 768 in 48-point white
Tahoma font on a blue screen. The stimuli pairs were centered vertically, the Japanese words
appearing on the left and the English words on the right side of the screen. Participant prompts
appeared centered horizontally, slightly above the words. Participant prompts were in 37-point
Tahoma.

All trials were cued with the prompts “Study” or “Test” for 2 sec. Study opportunities al-
lowed participants to view the new pair for 5 sec. Tests involved presentation of the Japanese
word on the left side of the screen. Participants typed the English translation on the right. If no
response was made, the program timed out in 7 sec. Following response or failure to respond,
the program displayed “Correct” or “Incorrect” for 1 sec and showed the change of score. If the
response was correct, the next trial began. If incorrect, the word “Restudy” appeared for 2 sec,
and there was a 5-sec restudy opportunity, identical with the original study trial.2

Between the blocks of 40 items, participants continued by pressing the space bar when they
were ready. Few participants paused at these opportunities. S2 procedures were identical, with
restudy trials after incorrect responses, but no new words were introduced.

The “recall or restudy” procedure for presentation of the stimuli was chosen based on the as-
sumptions of the model we would be fitting to the data. According to this ACT–R memory
model, study presentations and successful test presentations benefit memory equally. There-
fore, our procedure results in one memory increment (according to the model) for each trial re-
gardless of whether the participant responded correctly.
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Although our model assumes each study or test counts equally, Carrier and Pashler (1992)
noted in their literature review that studies and tests are not exactly equal. The identical credit
we give to test and study trials is essentially a simplifying assumption to reduce model com-
plexity so the spacing effect model can be studied independently. Carrier and Pashler showed
the differences between studies and tests are not always large, so considering them equal is a
reasonable approximation for simplifying our model.

3. Results and discussion

By spacing the introduction of pairs across the session, S1 was designed to avoid confound-
ing the conditions with serial position effects. Because of this, it did not seem that there should
be significant differences between correctness on the first two trials for items that were to re-
ceive two practices, those that were to receive four, and those that were to receive eight, and in-
deed there was none. This was shown through two repeated measures ANOVAs that were com-
pleted to look for differences in the means of these first two trials across the different practice
conditions. To deal with the fact that the eight-repetition, 98-spacing condition was missing
from a complete factorial design, we performed two analyses of variance (ANOVAs) on sub-
sets of the design that were fully factorial. The first ANOVA was performed to compare the
mean percent correct on the first two presentations for two and four practice conditions (0.542
and 0.515, respectively), averaged over 2, 14, and 98 spacing conditions. The difference was
not significant, F(1, 39) = 3.1, p > .05. The second ANOVA was performed to look at the means
for two, four, and eight practices (0.662, 0.643, and 0.653, respectively) aggregated for 2 and
14 spacing. There were no significant differences, F(2, 38) = 0.60, p > .05. We also looked for
serial position effects within conditions. The eight items of each condition were introduced in
sequence across the experiment, so we looked at the first test trials of all items and found aver-
ages of correctness for these first trials by their order of introduction. This gave eight means
spread fairly evenly across the experiment. An ANOVA looking for differences in these means
found nothing significant, F(7, 273) = 1.925, p > .05.

Because of the similarity across practice conditions, S1 data were aggregated for display
(see Fig. 1). To confirm that performance improved across this first session and to look for ef-
fects of the spacing manipulation during S1, a repeated measures ANOVA (first four trials of
S1 aggregated by Practice condition × S1 spacing × S2 retention interval group) was com-
pleted. The results of this analysis confirmed that performance improved across the first four
trials of S1, F(3, 114) = 412, p < .001, and that there was significantly lower performance with
wider spacing, F(2, 76) = 240, p < .001. The lower performance on S1 with wider spacing was
likely due to the overall longer retention intervals for these trials. The difference in S1 learning
for the 1- and 7-day retention groups was not significant on S1, F(1, 38) = 1.13, p = .296.

Next we looked for a crossover spacing interaction over the retention interval by comparing
the means for the last trials on S1 with the means for the first trials on S2, using a repeated mea-
sures ANOVA (Trial × S1 spacing condition), excluding the eight repetition conditions. The
data can be seen in Fig. 2. The interaction of Trial × S1 spacing condition was strong, F(2, 76)
= 321, p < .001. This interaction suggested presentation sequences with wider spacing resulted
in less forgetting.
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Fig. 1. Experiment S1 aggregate data for humans and model for spacing conditions. 2 SE confidence intervals com-
puted from participant means.

Fig. 2. Spacing Crossover Interaction. S2 initial trial performance and S1 final trial performance as a function of
spacing. Values exclude the 8 test trial condition and aggregate all other repetition and retention conditions. 2 SE
confidence intervals computed from participant means.



We were then interested in showing the effects present in the S2 data. The mean correctness
for S2 was 0.64 for the 1-day retention interval and 0.52 for the 7-day retention interval. Be-
cause the patterns of data were similar between the two retention intervals on S2 (r = .959, p <
.001), we aggregated the two conditions for purposes of display (see Fig. 3). Some main effects
and interactions can be noted. A repeated measures ANOVA of S2 data (S1 repetitions × S1
spacing × S2 trial × Retention interval, excluding the eight repetition conditions due to the in-
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Fig. 3. Experiment 1 S2 aggregate data for humans and model for practice conditions by spacing intervals. Individ-
ual graphs for each repetition condition. 2 SE confidence intervals computed from participant means.



complete design) was completed. First, this analysis showed that people forgot more when the
retention interval went from 1 to 7 days, F(1, 38) = 4.26, p < .05. It also revealed a strong main
effect of spacing, F(2, 76) = 58.2, p < .001. More important, we found a significant S1 repeti-
tion × S1 spacing interaction, F(4, 152) = 4.38, p < .005, reflecting an increasing benefit to
spacing with more repetitions at a particular spacing. This is similar to interactions produced
by Underwood (1969). As can be seen from Fig. 3, there was a dramatic increase in the impor-
tance of spacing as S1 repetitions increased.

4. Discussion of model and theory

Our modeling of these data was motivated by the experiment and by results such as Bahrick
(1979). Notable in such results are strong crossover interactions. Crossover interactions such
as Bahrick’s and our interactions (see Fig. 2) suggest that the rate of forgetting is different de-
pending on the spacing of practice. Although statistical analysis of this sort of forgetting-rate
interaction are notoriously difficult due to scaling issues (Bogartz, 1990), the crossovers we
found would occur regardless of scaling and thus were good evidence that in our experiment
forgetting was slower after a series of spaced presentations in comparison to a more massed
series.

Another result of interest was the finding that the effects of spacing are greater the more
practice trials there are. Combined with the crossover interactions, it implied that the benefits
of spacing in slowing the forgetting rate become larger as the number of practice trials in-
creases.

To model these data we needed a formal system that (1) predicted the improvement in per-
formance that occurs with practice, (2) predicted the decrease in performance with delay, (3)
predicted the spacing effect, (4) predicted the interaction of spacing with retention (that spaced
practice shows greater advantage with greater delay), and (5) predicted the interaction of spac-
ing with practice (that spacing is more important when there are more practice trials). The stan-
dard ACT–R model seems well suited to handle the effects of practice and the effects of reten-
tion interval. It not only predicts the effects of practice but also the form of the practice and
retention functions—that they are both roughly power functions. We review how the theory
predicted these effects first, before going on to describe the elaboration that we produced to in-
clude the spacing effect and its interactions with practice and retention.

ACT–R’s activation equation represents the strength of a memory item as the sum of a num-
ber of individual memory strengthenings, each corresponding to a past practice event. It pro-
poses that each time an item is practiced the activation of the item receives an increment in
strength that decays away as a power function of time. These individual strengthenings3 re-
sulted in the following equation for strength of an item after n presentations:

In this function, m is the activation of the item as a function of the times (tis) since each of the
n prior presentations.4 Each ti is how long ago the ith practice of that item occurred, and these
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values are scaled to account for differences in interference (this scaling is detailed later). The
decay parameter (d) is a constant. Combined with the response functions in ACT–R, this acti-
vation equation produces the power laws of practice and forgetting. One can note regarding
Wickens (1999) that this equation provides a number of the required components of practice
and forgetting functions. It defines initial learning given prior practice, and it explains both the
progression of forgetting and the integration of the effect of each discrete practice event.

Because ACT–R is a complex system, for this article we model simply the effect of practice
and forgetting on a trace that encodes the two items in a paired associate. Further, our model
abstracts over issues of cuing and context. In the full ACT–R model, in addition to any effects
of practice and forgetting on the memory of the trace encoding the paired associate, spreading
activation from the number of cues or from the context affects the activation of a memory.
However, because the effect of number of cues and context is constant across trials in our ex-
perimental task (because there is only one cue and our context does not fluctuate with time),
the predictions we make are equivalent to those from the full activation equation. Given this ex-
periment, if we were to consider the spreading activation term, we would simply need to
reestimate τ (in the following equation) to compensate for the constant increase due to activa-
tion spread.

The response function of interest in this experiment concerned accuracy. In ACT–R, an item
will be retrieved if its activation is above a threshold. Because activation is noisy, an item with
activation m as given by Equation 1 has only a certain probability of recall. ACT–R assumes a
logistic distribution of activation noise, in which case the probability of recall is:

In this equation, τ is the threshold parameter and s is the measure of noise. An inspection of
the formula shows that, as m tends higher, the probability of recall (pr) approaches 1, whereas,
as τ tends higher, the probability decreases. In fact, wheν τ = m, the probability of recall is .5.
The s parameter controls the noise in activation, and it describes the sensitivity of recall to
changes in activation. If s is close to 0, the transition from near 0% recall to near 100% will be
abrupt, whereas when s is larger, the transition will be a slower sigmoidal curve. Because this
function results in diminishing marginal returns for practice and diminishing marginal losses
for forgetting, it address the need for explaining asymptotic performance described by
Wickens (1999).

Although the recall probability function explains one aspect of asymptotic forgetting, the
slowdown of forgetting over long delays between practice sessions, exemplified by our experi-
ment, is handled by a scaling of the ti values in Equation 1. J. R. Anderson et al. (1999) found
that although the activation equation could account for practice and forgetting effects within an
experiment, it was not able to fit retention data over long intervals between sessions (they
looked at retention intervals of up to 1 year). Therefore, they found it necessary to suppose that
between sessions there is less destructive interference from intervening memory events than
during an experimental session. They modeled the apparent slowing of decay by scaling the
passage of time outside the experiment. Forgetting is then dependent on this “psychological
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time” between presentations rather than the real time. This is implemented by multiplying the
portion of time that occurred between sessions by the h parameter.5

In this theory, then, interference interacts with the decay rate to control the true rate of for-
getting. For the models in this article, the scale factor to convert real time to psychological time
(a measure of intervening interfering events) is 1 within an experiment and 0.025 between ex-
periments. Therefore, in our memory equations, each ti represents the cumulative interference
a presentation has encountered. Because of this the rate of memory loss for any ti

–d at any time
(the hazard rate) is best thought of as being a function of the decay rate and the total amount of
interference encountered. Thus, we are supposing that Jost’s law applies to interference and
might be restated as follows: Given two memories, both of which are currently equal in recall
strength, the one that has already suffered the most from interference will be forgotten more
slowly.

This intuition from the model allows the theory to provide a bridge between understanding
forgetting in terms of time and understanding forgetting in terms of interference. Forgetting in
this theory is linked to time, but it also depends on the rate of interference for an interval. Be-
cause we have found that h (the interference rate) tends to be stable, we have used the same ra-
tio 1/40 (interference being 40 times greater within an experiment) across the two experiments
we fit that have between-session intervals. We would have been able to fit the data for these ex-
periments more tightly if we had estimated different h values for each experiment, or if we had
not assumed within-experiment h to be 1 (as we do for all our fits), but conceptually it would
have been more difficult to interpret differences in forgetting due to spacing. Because we are
focusing on spacing effects more than interference processes here, we decided to forgo investi-
gation of how h might vary for each experiment.

4.1. Decay rate as a function of activation

Even with the elaboration offered by J. R. Anderson et al. (1999), ACT–R (J. R. Anderson &
Lebiere, 1998) was incapable of predicting any crossover spacing effect. However, J. R. An-
derson and Schooler (1991) proposed a modification to the ACT–R strength equation that does
capture the spacing effect. This modification specified that each presentation had an individual
decay rate that depended on the spacing from the prior presentation. It was a formalization of a
mechanism suggested by Wickelgren (1973). J. R. Anderson and Schooler’s specific proposal
was that the ith presentation would have the decay rate:

di(ti, ti–1) = max[d, b(ti – ti–1)–d] (3)

InEquation3,d is theminimumdecayrate (whichapplies for the firstpresentationandforpre-
sentations at long enough lags.) At shorter lags the decay rate for a presentation is itself a power
function of the lag, ti – ti–1. Although J. R. Anderson and Schooler (1991) had some success with
this form of the equation they commented that “its exact form is a bit arbitrary” and that “there is
not evidence one way or the other for this precise” formulation (p. 407). We had at least three
other problems. First, it made the decay rate for a presentation just a function of the lag since the
last item,and thisdidnot seemtobeplausible.Second,ournewformulationprovidedmarginally
better fits across models. Third, we have found the new formulation has more parameter stability
across models. This final point suggests it may better describe the underlying processes.
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As an alternative to the J. R. Anderson and Schooler (1991) proposal, we developed an
equation in which decay for the ith presentation (considering the initial study as Presentation
1), di, is a function of the activation at the time it occurs instead of at the lag (see Equation 4.)
This implies that higher activation at the time of a trial will result in the gains from that trial de-
caying more quickly. On the other hand, if activation is low, decay will proceed more slowly.
Specifically, we propose Equation 4 to specify how the decay rate, di, is calculated for the ith
presentation of an item as a function of the activation mi–1 at the time the presentation occurred.
Equation 5 then shows how the activation mn after n presentations depends on the decay rates,
dis, for the past trials.

In Equation 4, c is the decay scale parameter, and a is the intercept of the decay function.6

For the first practice of any sequence, d1 = a because m0 is equal to negative infinity. Note that
when c = 0, Equation 4 is nullified, and Equation 5 collapses to the standard ACT–R Equation
1. These equations are recursive because to calculate any particular mn one must have previ-
ously calculated all prior mns to calculate the dis needed. The Appendix includes a detailed ex-
ample applying these equations for a sequence of five presentations. These equations result in a
steady decrease in the long-run retention benefit for additional presentations in a sequence of
closely spaced presentations. As spacing gets wider in such a sequence, activation has time to
decrease between presentations; decay is then lower for new presentations, and long-run ef-
fects do not decrease as much.

The original ACT–R model (Equation 1) does not produce the spacing effect because it has
no mechanism to reflect that time differences between practices should matter much. The
spacing effect in this model (Equations 4 and 5) occurs because when spacing between two
presentations is wider, the decay rate for the second presentation is lower. At long retention de-
lays, this more than compensates for the fact the first presentation suffers more forgetting due
to the increased retention interval from the wider spacing.

The new model shows that each practice contributes to a single unitary strength measure for
the represented chunk. However, the activation equation captures this overall strength as a
number of discrete contributions represented explicitly by the contribution from each t i

di� . A
neural analogy for this relation might suppose that each experience (ti) results in the creation of
new receptor sites at the synapses that correspond to the overall memory trace. Indeed, an addi-
tion of synapses with the induction of long-term potentiation (LTP) of neural connections has
been shown experimentally. For instance, Toni et al. (2001) and Geinisman (2000) showed that
LTP induction results in perforated areas on dendritic spines, which later develop into
multisynapse connections with presynaptic cells. Presynaptic cells undergo a similar activ-
ity-dependent remodeling that results in new axonal synapses (Nikonenko, Jourdain, & Mul-
ler, 2003).

The model then says that the stability of these new receptor sites (we can consider the –di

value as a measure of stability) is less when they are created when strength is already high. In
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general, this argument supposes that the faster forgetting following massed practice may re-
flect diminishing marginal returns in the initiation of the neural consolidation processes.7 In-
deed, one can see that decay and consolidation are analogous in the theory because the di pa-
rameter can characterize either depending on its sign. Like decay, consolidation can be
considered a continuous process that is initiated at encoding and involves memories becoming
more stable over time (in conformance with Jost’s law), but they are simultaneously degrading
due to forgetting processes.

We attempted to fit a model using Equations 2, 4, and 5 to the data from the experiment. All
fits for this article were performed by minimizing a χ2 statistic computed from the condition
means according to the formula

Where the summation is over the i data points, Ni is the number of observations for each data
point, predi is the predicted recall probability in condition i, and obsi is the observed probabil-
ity. We should note that this statistic does not satisfy the assumptions of the chi-square distribu-
tion because of nonindependence of observations. However, minimizing it is still a reasonable
way to estimate parameters, and its use allows comparison with Raaijmakers (2003), who used
this statistic in the same way. As an alternative to evaluate and compare fits we have also pro-
vided r2 and root mean square deviation (RMSD) statistics. In this article, the RMSD values
were adjusted for model complexity by subtracting the number of parameters from the divisor
when computing the mean, as described in Pitt, Myung, and Zhang (2002).

We applied this extended ACT–R model to the experiment to fix parameters, which we tried
to preserve in fitting other data sets. For this experiment, there were 162 aggregate correctness
averages (the obsis in the previously mentioned chi-squared summation) to be fitted and split
into 81 points for each between-subject retention interval, of which 37 points were for the S1
conditions, and 44 points were for the S2 conditions. Table 1 gives the parameters and good-
ness-of-fit measures for this model. As is apparent from Figs. 1 and 3, the model mirrored the
absolute and relative patterns in the data closely.

Applying the model to the experiment allowed us to fix default parameters for the model.
Using these defaults, we then adopted the policy of keeping as many parameters as constant as
possible between models. Because this policy limits the complexity of our model, we believe it
improves its explanatory utility.

4.2. ACT–R versus contextual fluctuation (SAM)

Raaijmakers (2003) extended the search of associative memory (SAM) model (Raaijmakers
& Shiffrin, 1981) to account for the spacing effect and successfully fit the model to some data
sets.Therefore,wedecided tocompareRaaijmakers’modelwithoursusing thedata fromourex-
periment and three experiments that Raaijmakers reported fits to. His model has two mecha-
nisms that cause spacing effects. First, it has a short-term store (STS) mechanism that contains
recently encoded information. If an item is still in this STS at the time of a later presentation, the
new presentation does not get a second encoding. This creates a spacing effect because at longer

P. I. Pavlik, J. R. Anderson/Cognitive Science 29 (2005) 571

2
2

2

( )
(6)i i i

i ii

N pred obs

pred pred
χ �

�
�

	



spacings an item is more likely to have left STS and to have been encoded. The second mecha-
nism involves contextual fluctuation such that the contextual elements available for incorpora-
tion intomemory traces fluctuateover time.Thiscreatesa spacingeffectbecausewhenpresenta-
tions are more widely spaced the resulting trace will be composed of a more varied sample of the
possible contextual elements. In the SAM model then the probability of recall is a function of the
overlap between this memory trace and current test context. Both of the mechanisms the model
uses, failure to reencode at short lags and contextual overlap at shorter spacings, have been ideas
that have been mentioned in a number of proposals about the spacing effect (e.g., Atkinson &
Shiffrin, 1968; Glenberg, 1979). Therefore, Raaijmakers’ model represents an attempt to for-
malize these ideas and offers us a measure of how well they can account for our results.

Ross and Landauer (1978) pointed out that the contextual fluctuation theory, because it pro-
poses samples of the environment that are independent, predicts that a spacing effect should
occur for the recall of either or both of two different items presented at a spacing, just as it does
for the same item presented twice at a spacing. They performed three experiments that con-
vincingly showed that this is not the case. Glenberg and Smith (1981) agreed that this was a
major problem for the contextual fluctuation theory. However, Raaijmakers’s (2003) model
introduced a crucial change to the theory of contextual fluctuation by supposing that
“study-phase retrieval” was necessary for the information from a new presentation to be added
to the trace for that item. This solves the problem of Ross and Landauer (1978) because the sec-
ond of two different items cannot trigger retrieval of the first; however, it might be noted that it
does so by introducing a dependency between presentations (because trace cumulation re-
quires recall) that makes the model seem somewhat different from the independent encoding
proposition Estes (1955) and Glenberg (1979) proposed.
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Table 1
Parameters and statistics for all data sets

Parameters and Model Statistics

Experiment
Experiment
Reduced Model

Bahrick (1979);
Bahrick and
Phelps (1987)

Rumelhart
(1967)

Young
(1971)

Glenberg
(1976)

Parameters
Decay intercept (a) 0.177 0.172 0.217 0.149 0.300 0.058
Decay scale (c) 0.217 0.250 0.143 0.495 0.419 0.283
Threshold (τ) –0.704 –0.704a –0.704a –0.704a –0.704a –0.704a

Noise (s) 0.255 0.255a 0.255a 0.255a 0.255a 0.255a

Inteference scalar (h) 0.025 0.025a 0.025a n/a n/a n/a
Encoding scalar (b) 1a 1a 3.79 1a 1a 0.352
Reduced encoding (br) n/a n/a n/a n/a n/a 0.274

Fit Statistics
r2 0.944 0.990 0.926 0.927 0.461 0.944
RMSD adjusted 0.046 0.031 0.060 0.021 0.026 0.026
χ2 328 43.3 258 41.5 8.70 31.9
χ2 df 157 28 27 38 16 20

Note. RMSD = root mean square deviation.
aFixed parameters.



To enable this model to handle long-term memory data from our experiment we added a
mechanism like the “psychological time” mechanism in our model. This allowed the model a
free parameter to find the best fitting number of trials to represent the forgetting over the time
between sessions. With this adjustment it was possible to take the model that Raaijmakers
(2003) developed for a model of Rumelhart’s (1967) data, adjust it to reflect the presentation
schedule in our experiment, estimate new parameters, and make predictions. However, we en-
countered a couple of difficulties in fitting the Raaijmakers model to our data.

The first issue was purely technical. Because of the combinatorial complexity of the
Raaijmakers model, it was impractical to model the eight-test trial condition. Therefore, we
excluded these data from our modeling effort. To further limit the combinatorial complexity,
we only looked at first trial performance on S2. The second issue was more complex. The basic
Raaijmakers model was simply unable to fit the S1 learning data in the 98-spacing condition.
This is largely because retrieval during practice is so poor with 98 spacing that the trace
cumulation mechanism fails to result in the memory gains observed. Because including this
condition in the Raaijmakers model seriously distorted the parameter estimation, and still re-
sulted in poor fits, we altered the model slightly at Raaijmakers suggestion (personal commu-
nication, March 8, 2004), so the study-phase retrieval mechanism occurred automatically. This
made it so that the repetitions were always recognized and trace cumulation could not fail.

With this modification the Raaijmakers (2003) model was able to cope with the 98-spacing
condition and produce a reasonable overall fit (χ2 = 166, df = 23). However, the ACT–R model
resulted in a better fit (χ2 = 43.3, df = 28) with the same restricted data set (see Tables 1 and 2).
Both models did fairly well in capturing the main effects and interactions in the data. The prob-
lem for the Raaijmakers model fit is still with the nature of the growth function. Fig. 4 tries to
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Fig. 4. Comparison of data and fits by Raaijmakers model and ACT–R model.



show what is behind the lack of fit of the Raaijmakers model. (The complete Raaijmakers
model fit is available at the Web site.1) In Fig. 4, we have averaged over the 1, 2, and 4 practice
conditions to look at the forms of the learning curves. One can note that the Raaijmaker’s
model has a problem with capturing sufficient Final Session 1 learning across all the condi-
tions. In part, particularly for the two-spacing condition, this may be caused by the STS mecha-
nism blocking encoding when an item remains in STS on repetition. Because of this mecha-
nism, closely spaced practices do not gain much contextual strength because of overlap and
because they are sometimes not encoded. It appears that the model cannot compensate for this
by adjusting the contextual overlap parameters, likely because this would upset the fit of the
98-spacing condition in which the STS mechanism plays no role. To check the possibility that
this problem was due to issues involving the fit to Session 2 tests, we also ran the model for
only Session 1 data; this did not greatly improve the fit to the learning curves (χ2 = 104,
df = 14).

Later in this article, we present comparisons of our model fits with the Raaijmakers (2003)
model fits for a set of three experiments in the literature. Our model fits these data sets compa-
rably well and with fewer parameters. It seems reasonable to infer that the Raaijmakers model
and the ideas on which it is based can predict many of the basic effects of spacing, as our model
can. However, the following experiments did not measure retrieval performance over as large a
range of correctness values as our experiment did, and therefore this issue with the learning
function was not noticed. Thus, our current experiment brought out a critical advantage of our
model in capturing the learning curves during spaced practice.

5. Other model fits

To test further the generalizability of our model, we fit it to four examples from the memory
literature. For each of these fits we varied as few parameters as possible, preferring instead to
use the defaults from the experiment. The first experiment involved long-term retention inter-
vals, whereas the following three experiments involved only a single session. These three sin-
gle-session experiments were also modeled by Raaijmakers (2003), and we briefly compare
our fits of these experiments with his fits.

5.1. Bahrick

Bahrick’s (Bahrick, 1979; Bahrick & Phelps, 1987) results on learning Spanish–English vo-
cabulary pairs are seminal in discussions of the spacing effect, and therefore we wanted to
show that our model could account for them. In Bahrick, participants memorized 50 Span-
ish–English vocabulary pairs. The training took place over three or six sessions. Each session
began with testing of all the words followed by a presentation sequence of any word pairs not
recalled. After presentation, these words were retested and the procedure repeated until all
words were correctly recalled once in each session. The experimental sessions were spaced ev-
ery 0, 1, or 30 days and were followed by a final test session at a 30-day retention interval. Ta-
ble 2 shows the performance during the initial testing sequence of each session. The first train-
ing session did not begin with testing, and thus it is not listed. We have also included the data
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from Bahrick and Phelps. These data involved recalling available participants from the 1979
study for retest on the same material.

Our basic task was similar to the Bahrick (1979) task, and we also had fairly long spacings
between sessions. However, the training was different. Bahrick used a successive dropout
strategy that resulted in a variable number of practices with each word pair for a particular ses-
sion. Further, participants had both visual and verbal presentations of words in the Bahrick
study. To account for this stronger encoding within each session, for our model we assumed a
single practice with each word for each session but estimated a strength multiplier of 3.79,
which accounted for the extra time for encoding and the possibility of multiple encodings
within a session. This multiplier (the b parameter) was used to scale the individual t i

di� s in the
activation function so each t i

di� contributed 3.79 times what it would normally. Further, for the
0 spacing between sessions condition we estimated that 40 min elapsed from the beginning of
one session until the beginning of the next. This was not a fitted parameter but was a reasonable
guess based on Bahrick’s methods. We fitted the decay parameters (a = 0.217 and c = 0.143)
and encoding strength parameter, b, by minimizing the χ2 statistic (χ2 = 258, df = 27).

Table 2 shows that the model’s results were similar to the participants’data. More important,
the crossover interaction across the final 30-day retention period was captured by the model.
The r2 was .926 with an adjusted RMSD of 0.060. One problem in fitting came during the final
30-day test, in the six-session data, where the model underestimated how well participants did
in the 30-day lag-retention condition. However, it can be noted that participants in this condi-
tion showed a jump in their recall in the final test (i.e., participants increased 3% from Session
5 to 6, and then jumped up 13% to the final 30-day test), suggesting that this data point may be
somewhat anomalous. It can also be noted that our model failed to predict well during the final
30-day test when there had been three sessions with zero lag. On the other hand, the good fit of
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Table 2
Bahrick (1979) and Bahrick and Phelps (1987) human data and model fits

Session

Spacing (days) 2 3 4 5 6 30 days 8 years

Human results
0 0.77 0.89 0.33
1 0.60 0.87 0.64

30 0.21 0.51 0.72
0 0.82 0.92 0.96 0.96 0.98 0.68 0.06
1 0.53 0.86 0.94 0.96 0.98 0.86 0.08

30 0.21 0.51 0.72 0.79 0.82 0.95 0.15
Model results

0 0.80 0.92 0.55
1 0.62 0.84 0.62

30 0.19 0.49 0.66
0 0.80 0.92 0.95 0.97 0.97 0.77 0.05
1 0.62 0.84 0.90 0.93 0.95 0.83 0.07

30 0.19 0.49 0.66 0.76 0.81 0.85 0.18



the 8-year retention data provided evidence that the long-term forgetting mechanism (using the
h parameter) behaves consistently even at very long intervals.

5.2. Rumelhart (Experiment 1)

Rumelhart (1967; Experiment 1) is an example of an experiment that tested both our combi-
nation rule for multiple practices and our mechanism for spacing. It is also a data set fit by
Raaijmakers (2003). In the experiment, participants performed a continuous paired-associate
recall task with 66 different items including fillers. Eight different sequences of spacing were
used, and each sequence was used six times across the experiment. The stimuli consisted of
consonant–vowel–consonant trigrams paired with a digit, either 3, 5, or 7. Each trial consisted
of a test with the stimulus, a 2-sec presentation of the stimulus–response pair, and a 3-sec
intertrial interval.

Fig. 5 presents the data Rumelhart (1967) collected and our model of the data. The partici-
pants’ results are similar to our experiment. For example, in the 10–10–10–10–10 condition
participants learned relatively slowly compared with the 1–1 – 1–1 – 10 condition. However, as
our model predicts, after four trials 1–1 – 1–1, the forgetting until the final test after 10 trials
was pronounced compared with the forgetting for the final test after 10 trials with
10–10–10–10 spacing. This is evidence that wider spacing resulted in more stable learning as
our model implies. First trials are not listed in Fig. 5 because these responses were at chance
levels because participants had no prior practice.

To model these data we assumed each trial was 10 sec long based on Rumelhart’s (1967)
methods assuming 5 sec per response. Because guessing had a one-third chance of success,
this was included in the model. We estimated the decay parameters (a = 0.149 and c = 0.495) to
minimize the χ2 (χ2 = 41.5, df = 38). These decay parameters indicated a relatively high forget-
ting rate. This was reasonable considering the stimuli were arguably unmemorable conso-
nant–vowel–consonant nonwords, and the responses were easily confusable.

This fit captured the important effects in Fig. 5 (adjusted RMSD = 0.021, r2 = .927). Because
our model had been developed with different stimuli over durations of days, we considered the
good fit to this data with only two free parameters estimated as evidence in support of our
model. These data have also been modeled by Raaijmakers (2003; See Table 3). The fit was
good (χ2 = 38, df = 34), but note that six parameters were varied. Given the degrees of freedom
difference in the models, this fit was roughly equivalent to the ACT–R fit.

5.3. Young (1971)

In all of our examples so far, wider spacing resulted in better performance later. Young
(1971) was one of the first to provide a demonstration that spacing does not always affect per-
formance monotonically. In a continuous paired-associate memory experiment, he paired con-
sonant trigrams with single digits. Each pair was presented twice for study, with a spacing in-
terval of 0 to 17 trials (study trials were 1 sec in duration with a 3-sec intertrial interval). The
retention interval was held constant at 10 trials (40 sec) from the second practice.

The data can be seen in Fig. 6 with a comparison to a fit by the model. This fit captured the
nonmonotonic nature of the spacing effect. This result makes sense, because if the spacing is
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too short, the second presentation will be forgotten rapidly, whereas if the spacing is too long,
the strength contribution of the first trial will have declined due to the longer retention interval.
This implies a specific ideal spacing interval given a particular retention interval. For the
Young (1971) data it appeared that the best retention occurred when the spacing was roughly
six trials. Given the best fitting parameters (a = 0.300 and c = 0.419), our model agreed with
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Fig. 5. Human and model data for Rumelhart (1967).



this figure (χ2 = 8.70, df = 16). These parameter values imply rapid forgetting, which is plausi-
ble for consonant trigrams. The RMSD was 0.026. The low r2 of .461 reflected the noise in
Young’s data relative to the basic curvilinear trend.

Raaijmakers (2003) was also successful in fitting this data (χ2 = 8.47, df = 12). However,
again, six parameters were varied.
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Table 3
Raaijmakers model parameters and fit statistics

Parameters and Model Statistics

Experiment
Reduced

Rumelhart
(1967)

Young
(1971)

Glenberg
(1976)

Parameters
Fluctuation parameter (a) 0.013 0.087 0.082 0.013
Fluctuation parameter (s) 0.047 0.288 0.150 0.260
Scaling constant for context association (a) 5a 5a 5a 5a

Probability that an item enters the STS buffer (w) .666 .766 1a 1a

Interitem information stored on a first study trial (b) 0.430 0.688 0.246 0.732
Interitem information stored on subsequent trials (b2) 0.570 0.688 0.246 0.732
Interference constant (Z) 3.0 3.0 2.0 10.0
Scaling parameter in recovery equation for a test trial (θ2) .5a .5a 0.3 0.215
Rate of decay from STS (λ) 0.128 0.310 0.746 0.800
Retrieval attempts (Lmax) 3a 3a 3a 3a

Trials estimated between sessions 240
Fit Statistics

χ2 166 38.0 8.47 41.9
χ2 df 23 34 12 18

Note. STS = short-term store.
aFixed parameters

Fig. 6. Young (1971) human data and model fit.



5.4. Glenberg (1976; Experiment 1)

Glenberg (1976; Experiment 1) has been modeled by many individuals interested in the
spacing effect (J. R. Anderson & Schooler, 1991; Raaijmakers, 2003; Reed, 1977). This recur-
rent interest is due to the interesting monotonic and nonmonotonic effects across the four re-
tention intervals and six levels of spacing examined. In the experiment, participants were pre-
sented with pairs of unrelated common nouns. Each pair was presented, without testing, twice
at lags of 0, 1, 4, 8, 20, and 40 trials. Following these two presentations, after a 2-, 8-, 32-, or
64-trial retention interval, there was a test trial during which participants were cued with the
first word of the pair and responded with the second. Presentations and tests were 3 sec long.
Accuracy on these tests across the conditions is plotted in Fig. 7.

Notable in the data is the reversal from a nonmonotonic result to a monotonic spacing effect
as the retention interval went from short to long. Thus, we have a single experiment showing
both the nonmonotonic and monotonic spacing effects reported in the literature. Similar to the
explanation in the Young (1971) section, we propose that this effect is caused by slowed forget-
ting of the second presentation at longer lags. This slowed forgetting does not have time to re-
sult in much of an effect at short retention intervals, so performance is best when the spacing is
narrower. On the other hand, at longer retention intervals, the differences in forgetting have an
increasing influence, and the ideal spacing appears to be at least 40 trials when the retention in-
terval is 64 trials. This defines an important effect of retention interval on optimal spacing, be-
cause the optimal spacing increases monotonically with the increase in retention interval.

P. I. Pavlik, J. R. Anderson/Cognitive Science 29 (2005) 579

Fig. 7. Glenberg (1976) human data and model fit.



Incapturing thisexperimentwithourmodel,weneeded todealwith two issues in thedesignof
Glenberg’s (1976) Experiment 1. Both of these issues involved the speed of presentation in the
experiment. First, in our experiment, which also used verbal stimuli, the presentation–test inter-
val (including intertrial time) was approximately 5 to 10 sec, whereas for this experiment it was 3
sec long. Because of these shorter presentations, we scaled the contribution of each presentation
by the b parameter, in a fashion identical to the Bahrick (1979) model. Second, we found that the
low performance at lags of 0 and 1 trials (see Fig. 7) was not fitted well by our model. We thought
this problem might have been caused by poor encoding of second presentations due to first pre-
sentations still being in working memory at these lags of only 0 or 3 sec. According to ACT–R,
this item leaves working memory (the goal buffer) automatically on the beginning of each new
trial at which point it is counted as an encoding. Further, our model normally assumes that each
encoding counts equally at its inception, and only decay causes differences in the long-run ef-
fects of presentations. Normally these assumptions cause no problems, given a reasonable lag.
However, at the very short lags in this experiment, given the relatively easy Glenberg (1976) ma-
terial (unlike Young’s experiment, which had short spacings but much more abstract material),
we needed to model the possibility that items did not drop from working memory as fast as we as-
sumed and thus blocked the full effect of the repetition encoding.

To model this possibility of poorer encoding at these very short lags, we used a reduced br

parameter to scale the contribution of these second presentations. This solution was similar to
the STS mechanism in Raaijmakers’s (2003) model and was necessary to get a quantitative
good fit. Although this mechanism for extremely short lags was ad hoc, we could have
parameterized it as an STS mechanism in a way similar to Raaijmakers. We choose not to do
this because we have no other firm evidence for this mechanism except at these very short lags
in Glenberg’s experiment. Indeed, as Raaijmakers notes, Van Winsum-Westra (1990) was un-
able to replicate these dips in performance at very short spacing.

Given these changes, the model fit the data well (χ2 = 31.9, df = 20). The RMSD was 0.026
and the r2 was .944. In comparison, the Raaijmakers (2003) model resulted in about the same
fit (χ2 = 41.9, df = 18); however, it should be noted that when Raaijmakers made an assumption
similar to ours (that 0 lag repetition results in no increase in memory strength) to deal with the
short spacing dips, his χ2 value went down to 28.77. Table 1 shows the parameter values, and
Fig. 7 shows the fit of our model to the data. Although the result shows some deviation, it is no-
table that our model captures the effect of retention interval on optimal spacing (and it captured
this effect before we made any of the changes in the preceding paragraph). Raaijmakers’
(2003) model did not capture this interaction. Further, his model used two more parameters.

6. General discussion

Our experiment produced data to test alternative models of practice, forgetting, and the
spacing effect. These data confirmed the standard spacing effect in various conditions and
showed that wide spacing of practice provides increasing benefit as practice accumulates. Fur-
ther, the strong crossover interactions produced provided evidence that people forget less when
presentations are widely spaced. The findings of this experiment were used to extend ACT–R’s
activation equation by introducing a variable decay-rate function. According to this mecha-
nism, the forgetting rate for each presentation of a memory chunk is a function of the activation
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of the chunk at the time of the presentation. Using this model, we fitted data from our experi-
ment and four experiments from the literature. These fits demonstrated the viability of our
mechanism and showed that with the other ACT–R equations it provides an accurate model in
a wide variety of conditions. To show that our model was at least as good as an alternative
model, we compared our fits for some experiments with fits of the Raaijmakers (2003) model.
We were able to produce comparable fits to existing experiments, a better fit to our own experi-
ment, and overall our models had less variation in fewer parameters.

The graphs that we showed for our own experiment aggregated over the two retention inter-
vals, so it may not be immediately clear that the crossover spacing by retention-interval inter-
action occurred rapidly after final test trials. Fig. 8 shows the predictions of our model for re-
call at various retention intervals for each spacing condition. These model values and the
observed recall at 1- and 7-day retention intervals show the performance we predicted or ob-
served on initial test trials for sessions begun at these retention intervals. This figure makes it
clear that the crossover interaction has occurred before the 1-day retention interval session be-
gins. The speed with which the crossovers occur makes sense, given our proposal that different
power-law decay values control each retention function. Because the loss rate of memory
slows down in power-law forgetting, the greatest changes in strength between the conditions
should occur soon after learning.

Given the properties of our model, it is interesting to speculate about what physiological
mechanisms might be producing these effects. There are some suggestions that neural plastic-
ity has the features of our model. For instance, in regard to our new decay mechanism, there is
work that shows that LTP of neurons declines less rapidly when there is spaced induction of
LTP rather than massed induction (Scharf et al., 2002). This result is similar to Wu, Deisseroth,
& Tsien (2001) in which spaced stimulation resulted in dendritic changes consistent with
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respective retention intervals. Values exclude the eight-test trial condition and aggregate repetition conditions. 1 SE
confidence intervals computed from participant means.



long-term memory formation, whereas massed stimulation did not have such an effect. Prop-
erties of LTP may also correspond to other aspects of our model. For instance, Beggs (2000)
presented a statistical model of LTP, proposing that the magnitude of the LTP induced by stim-
ulation is negatively related to this postsynaptic activation. This occurs because increases in
LTP in his model are controlled by the discrepancy between presynaptic input and pos-
tsynaptic activation. This discrepancy is reduced with LTP induction, and thus subsequent
changes in LTP are less. Our model captures this principle by taking the logarithm of the com-
bined trace, thus new encodings add less to activation if it is already high.

In fact, Landauer (1969) has proposed a neural consolidation theory of the spacing effect.
In this theory, presenting an item (P1) results in a “hyperexcitable” state in the nervous sys-
tem following the presentation. This decaying hyperexcitability, according to Landauer,
gradually promotes changes in the nervous system responsible for permanent representation
of the association. During this period of consolidation, a new presentation (P2) of the same
pairing will interrupt the consolidation of P1 due to systemic limits on hyperexcitability. Be-
cause of this, the less spacing of presentations, the less memory is strengthened. As
Hintzman (1974) pointed out, consolidation theory suffers from a lack of agreement with
data that show it is P2 learning that suffers rather than P1 when spacing is narrow. Our ver-
sion, by placing the effect at P2 rather than P1, no longer suffers from the problems that
Hintzman discussed.

Discussing a possible neural basis of the spacing effect suggests an involuntary process.
Hintzman (1974) took the broad generality of the spacing effect as evidence that it is not under
voluntary control. He proposed that habituation with a stimulus caused it to have less of an ef-
fect on increasing long-term memory. Because habituation decreases with time, spaced trials
incur a benefit. Although he suggested that massed practice would result in “a decrease in the
strength of any new trace that is formed” (Hintzman, 1974, p. 90), he also recognized that the
effect occurred for the storage of long-term memories. Thus, although he did not give a formal
model, his idea that habituation controls the long-term strength benefit of a spaced practice is
similar to our proposal that activation controls the forgetting rate.

The model we have described also agrees with cognitive theories of the spacing effect,
which say that the benefit of additional practice is mediated by the difficulty or accessibility of
that additional practice. This sort of accessibility theory has been advocated by various re-
searchers (Cuddy & Jacoby, 1982; Schmidt & Bjork, 1992; Whitten & Bjork, 1977). These re-
searchers have noted that manipulations that cause slower acquisition often result in better
long-term retention. This paradox occurs in many experimental situations. For instance,
Schneider, Healy, and Bourne (2002) conjectured that the greater difficulty participants had
learning foreign language responses (as opposed to English responses) in a paired-associate
experiment may have produced better long-term recollection. This result makes sense if we
suppose greater difficulty indicates lower activation. Thus, a manipulation that increases diffi-
culty might be modeled as a penalty to activation. This lower effective activation would result
in less forgetting and therefore better long-term retention.

Although this notion that less accessibility at practice results in better long-term recall is not
a new idea, we have presented here the first detailed computational model of how this might
occur. We feel this model serves to clarify the theoretical discussion about the effects of prac-
tice by allowing clear quantitative and qualitative comparisons to other theories of practice and
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forgetting such as those proposed by advocates of contextual fluctuation mechanisms. This
formal model of the relation between current memory accessibility and the stability of new
encodings, using an integrative retention function, provided good fits to a wide variety of re-
sults with estimation of only a minimal number of parameters. Further, the absolute and rela-
tive parameter stability of the model shows that the model’s behavior was consistent with dif-
ferent data sets. This parameter stability enhances the explanatory utility of the model for
addressing the broad theoretical issues underlying practice and forgetting.

Notes

1. Exact trial order for the experiment and working models for all experiments can be
found at http://act-r.psy.cmu.edu/models/.

2. This is different from the typical paired-associate procedure that usually also includes a
study after successful recall. In a recent study (Pavlik & Anderson, 2004), we compared
our procedure with the typical procedure and found long-term differences of less than
2% in recall after multiple practices. Because a study after a successful recall is at a very
short spacing, this result is consistent with our model.

3. In ACT–R individual strengthenings are considered to be discrete when the encoding
interval is reasonably long. This corresponds to data, such as Melton (1970), which
show that as the presentation interval increases, the length of the presentation interval
has less effect on final performance. Encoding appears to have quickly diminishing
marginal returns. We introduce a b parameter that scales the contribution of each t i

di� in
the fits for Glenberg (1976) and Bahrick (1979) later in this article to deal with specific
methods used in these experiments. This b value is equal to 1 in a standard ACT–R
model.

4. The logarithm of the sum is taken to yield observed retention functions and provides a
correspondence with log odds of items occurring in the environment as shown by J. R.
Anderson and Schooler, 1991. For an extensive review of the mathematical character-
ization of this system, the reader is referred to Chapter 3 of The Atomic Components of
Thought (J. R. Anderson & Lebiere, 1998, Appendix A).

5. It should be noted that the psychological time factor in this article takes a slightly differ-
ent form as compared to J. R. Anderson et al. (1999). In this conception, we take the h
factor to be a direct scaling parameter of the time between experimental sessions.

6. Note that because retrieval time in ACT–R is proportional to e–m, Equation 4 makes de-
cay an inverse function of retrieval time.

7. The idea that neural consolidation processes depend on spacing is supported by several
sources such as Scharf et al. (2002) and Wu et al. (2001).

Acknowledgments

This research was funded by National Science Foundation Grant BCS 997–5-220. Portions
of this work were presented at Fifth International Conference of Cognitive Modeling,
Bamberg, Germany.

P. I. Pavlik, J. R. Anderson/Cognitive Science 29 (2005) 583



References

Anderson, J. R., Fincham, J. M., & Douglass, S. (1999). Practice and retention: A unifying analysis. Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition, 25, 1120–1136.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum Associ-
ates, Inc.

Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, 2,
396–408.

Anderson, R. B., & Tweney, R. D. (1997). Artifactual power curves in forgetting. Memory and Cognition, 25,
724–730.

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W.
Spence & J. T. Spence (Eds.), The psychology of learning and motivation: II (pp. 89–195). Oxford, England: Ac-
ademic.

Bahrick, H. P. (1979). Maintenance of knowledge: Questions about memory we forgot to ask. Journal of Experi-
mental Psychology: General, 108, 296–308.

Bahrick, H. P. (1984). Semantic memory content in permastore: Fifty years of memory for Spanish learned in
school. Journal of Experimental Psychology: General, 113, 1–29.

Bahrick, H. P., & Phelps, E. (1987). Retention of Spanish vocabulary over 8 years. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 13, 344–349.

Beggs, J. M. (2000). A statistical theory of long-term potentiation and depression. Neural Computation, 13,
87–111.

Bogartz, R. S. (1990). Evaluating forgetting curves psychologically. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 16, 138–148.

Carrier, M., & Pashler, H. (1992). The influence of retrieval on retention. Memory and Cognition, 20, 633–642.
Coltheart, M. (1981). The MRC psycholinguistic database. Quarterly Journal of Experimental Psychology: Human

Experimental Psychology, 33, 497–505.
Cuddy, L. J., & Jacoby, L. L. (1982). When forgetting helps memory: An analysis of repetition effects. Journal of

Verbal Learning and Verbal Behavior, 21, 451–467.
Delaney, P. F., Reder, L. M., Staszewski, J. J., & Ritter, F. E. (1998). The strategy-specific nature of improvement:

The power law applies by strategy within task. Psychological Science, 9, 1–7.
Ebbinghaus, H. (1885). Über das Gedachtnis: Untersuchungen zur Experimentellen Psychologie. Leipzig, Ger-

many: Duncker & Humblot.
Estes, W. K. (1955). Statistical theory of distributional phenomena in learning. Psychological Review, 62, 369–377.
Geinisman, Y. (2000). Structural synaptic modifications associated with hippocampal LTP and behavioral learning.

Cerebral Cortex, 10, 952–962.
Glenberg, A. M. (1976). Monotonic and nonmonotonic lag effects in paired-associate and recognition memory par-

adigms. Journal of Verbal Learning and Verbal Behavior, 15, 1–16.
Glenberg, A. M. (1979). Component-levels theory of the effects of spacing of repetitions on recall and recognition.

Memory and Cognition, 7, 95–112.
Glenberg, A. M., & Smith, S. M. (1981). Spacing repetitions and solving problems are not the same. Journal of Ver-

bal Learning and Verbal Behavior, 20, 110–119.
Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of

practice. Psychonomic Bulletin and Review, 7, 185–207.
Hintzman, D. L. (1974). Theoretical implications of the spacing effect. In R. L. Solso (Ed.), Theories in cognitive

psychology: The Loyola Symposium (pp. 77–99). Oxford, England: Lawrence Erlbaum Associates, Inc.
Landauer, T. K. (1969). Reinforcement as consolidation. Psychological Review, 76, 82–96.
Logan, G. D. (1992). Shapes of reaction-time distributions and shapes of learning curves: A test of the instance the-

ory of automaticity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 883–914.
Melton, A. W. (1970). The situation with respect to the spacing of repetitions and memory. Journal of Verbal

Learning and Verbal Behavior, 9, 596–606.

584 P. I. Pavlik, J. R. Anderson/Cognitive Science 29 (2005)



Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson
(Ed.), Cognitive skills and their acquisition (pp. 1–55). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Nikonenko, I., Jourdain, P., & Muller, D. (2003). Presynaptic remodeling contributes to activity-dependent
synaptogenesis. Journal of Neuroscience, 23, 8498–8505.

Pavlik, P. I., Jr., & Anderson, J. R. (2004, August). The memory consequences of study after successful recall. Paper
presented at the twenty-sixth annual conference of the Cognitive Science Society, Chicago.

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among computational models of cogni-
tion. Psychological Review, 109, 472–491.

Raaijmakers, J. G., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88, 93–134.
Raaijmakers, J. G. W. (2003). Spacing and repetition effects in human memory: Application of the SAM model.

Cognitive Science, 27, 431–452.
Reed, A. V. (1977). Quantitative prediction of spacing effects in learning. Journal of Verbal Learning and Verbal

Behavior, 16, 693–698.
Rickard, T. C. (1997). Bending the power law: A CMPL theory of strategy shifts and the automatization of cognitive

skills. Journal of Experimental Psychology: General, 126, 288–311.
Ross, B. H., & Landauer, T. K. (1978). Memory for at least one of two items: Test and failure of several theories of

spacing effects. Journal of Verbal Learning and Verbal Behavior, 17, 669–680.
Rubin, D. C., & Wenzel, A. E. (1996). One hundred years of forgetting: A quantitative description of retention. Psy-

chological Review, 103, 734–760.
Rumelhart, D. E. (1967). The effects of interpresentation intervals on performance in a continuous paired-associate

task (Tech. Rep. No. 16). Stanford, CA: Stanford University, Institute for Mathematical Studies in Social Sci-
ences.

Scharf, M. T., Woo, N. H., Lattal, K. M., Young, J. Z., Nguyen, P. V., & Abel, T. (2002). Protein synthesis is required
for the enhancement of long-term potentiation and long-term memory by spaced training. Journal of
Neurophysiology, 87, 2770–2777.

Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms
suggest new concepts for training. Psychological Science, 3, 207–217.

Schneider, V. I., Healy, A. F., & Bourne, L. E. J. (2002). What is learned under difficult conditions is hard to forget:
Contextual interference effects in foreign vocabulary acquisition, retention, and transfer. Journal of Memory and
Language, 46, 419–440.

Toni, N., Buchs, P. A., Nikonenko, I., Povilaitite, P., Parisi, L., & Muller, D. (2001) Remodeling of synaptic mem-
branes following induction of long-term potentiation. Journal of Neuroscience, 21, 6245–6251.

Underwood, B. J. (1969). Some correlates of item repetition in free-recall learning. Journal of Verbal Learning and
Verbal Behavior, 8, 83–94.

VanWinsum-Westra, M. (1990). Spacing and repetition effects in human memory. Unpublished doctoral disserta-
tion, University of Nijmegen, The Netherlands.

Whitten, W. B., & Bjork, R. A. (1977). Learning from tests: Effects of spacing. Journal of Verbal Learning and Ver-
bal Behavior, 16, 465–478.

Wickelgren, W. A. (1973). The long and the short of memory. Psychological Bulletin, 80, 425–438.
Wickelgren, W. A. (1974). Single-trace fragility theory of memory dynamics. Memory and Cognition, 2, 775–780.
Wickens, T. D. (1999). Measuring the time course of retention. In C. Izawa (Ed.), On human memory: Evolution,

progress, and reflections on the 30th anniversary of the Atkinson-Shiffrin model (pp. 245–266). Mahwah, NJ:
Lawrence Erlbaum Associates, Inc.

Wixted, J. T., & Ebbesen, E. B. (1997). Genuine power curves in forgetting: A quantitative analysis of individual
subject forgetting functions. Memory and Cognition, 25, 731–739.

Woodworth, R. S. (1938). Experimental psychology. Oxford, England: Holt.
Wu, G., Deisseroth, K., & Tsien, R. W. (2001). Spaced stimuli stabilize MAPK pathway activation and its effects on

dendritic morphology. Nature Neuroscience, 4, 151–158.
Young, J. L. (1971). Reinforcement-test intervals in paired-associate learning. Journal of Mathematical Psychol-

ogy, 8, 58–81.

P. I. Pavlik, J. R. Anderson/Cognitive Science 29 (2005) 585



Appendix

Because the math underlying the computation is recursive and a bit complex, the following
is an example of the activation and decay computations involved for the session one 14-spacing
condition with two tests. This example also includes two tests on the second session. This is a
sequence of five presentations, the first being the introductory study and the remaining four be-
ing test trials. The long-term retention interval (1 day) is interposed between the third and
fourth tests.

The actual average times of this sequence of practice are approximately: 0; 126; 252;
83,855; and 84,888. This indicates that the first study occurs at time 0. The last two times in-
clude the 22.5 hr between the end of the first session and the beginning of the second, which is
81,000 sec. To account for the reduced forgetting over this interval we need to multiply the
81,000 sec by the h factor (.025), resulting in a scaled value of 2,025. This means that the times
after the long interval need to be reduced by 78,975 (the difference between the actual and psy-
chological times) to convert them to a measure of psychological time. This results in the se-
quence 0; 126; 252; 4,844; 5,877.

Now the activation at each test time can be computed. At Time 126 the first test occurs; ac-
cording to Equations 4 and 5, m1 = ln(126–0.177) = –0.86. Recall that the decay from the first
study (d1) is simply a.

To compute the activation of the second test, we need to use the activation at the time of the
first test to compute the decay for that presentation. Using Equation 4, d2 = ce m1 + a, which
equals 0.27. Since the age of the initial study is now 252, and the age of the first test is 126,
from Equation 5 we get m2 = ln(252–0.177 + 126–0.27) = –0.43.

To compute the activation of the third test we now need to compute d3, which is ce m2 + a =
0.32. The age of the first presentation is now 4,844, the age of the second presentation is 4,717,
and the age of the third presentation is 4,591. Therefore activation m3 is ln(4,844–0.177 +
4,717–0.27 + 4,591–0.32) = –0.93.

For the final test in this example sequence we need to compute the decay for the third test
(fourth presentation), d4 = ce m3 + a = 0.26. The sequence of ages is 5,877; 5,750; 5,624; and
1,033. Activation m4 is ln(5,877–0.177 + 5,750–0.27 + 5,624–0.32 + 1,033–0.26), which equals –0.62.
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