
(e) If this simple model fails, construct further
models which might involve one or more of the
following possibilities:

(i) Relax assumptions of full information, probably
following recognized procedure in game theory.

(ii) Relax the assumption of self-interest, introdu-
cing richer utility}preference functions (e.g., altruism,
malice, indifference, envy, etc.).

(iii) Relax the assumption of objectively calculated
resources introducing subjective beliefs about re-
sources.

(iv) Relax the assumption of a set of feasible
actions, calculated objectively, introducing subjective
beliefs about what is feasible.

(v) Re-compute the structure of interdependencies.
When either (i), (ii), (iii), or (iv) are seen to hold, this

will inevitably prompt a further question as to why it
should be so. Answers to these questions might also be
couched in terms of some of theRCT precepts outlined
above (e.g., strategic limitations of information). It is
only if this very general framework fails to provide the
answers we seek that we should then reach for an
alternative theoretical framework.

See also: Action, Theories of Social; Altruism and
Self-interest; Bounded Rationality; Coleman, James
Samuel (1926–95); Game Theory; Interests, Socio-
logical Analysis of; Macrosociology–Microsociology;
Methodological Individualism in Sociology; Rational
Choice Explanation: Philosophical Aspects; Rational
Choice in Politics; Rational Choice Theory: Cultural
Concerns; Sociology: Overview; Theory: Sociological;
Traditions in Sociology
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P. Abell

Rational Theory of Cognition in

Psychology

1. People Appear Irrational in Cogniti�e
Experiments

Michael Watkins has said that a cognitive theory ‘is a
bit like someone else’s toothbrush—it is fine for that

individual’s use, but for the rest of us … well, we
would just rather not, thank you’ (Watkins 1984,
p. 86). To say whether people are behaving rationally
requires a definition of what it means to behave
rationally, and like a toothbrush everyone has their
own. For the purposes of this article, rational behavior
will be defined as follows: to behave rationally in some
context is to display behavior that corresponds to a
normative standard of behavior for that context. The
choice of the normative standard determines what
constitutes rational behavior. For the economist,
behaving rationally involves maximizing utility; for
the logician it is following the deductive rules of logic;
and for the (Bayesian) statistician it is acting according
to Bayes’s rule. One need not look far to find that
people do not reason rationally with respect to a
variety of normative standards. There are entire
literatures on how and why people violate the rules of
deductive logic and statistical inference. In the Wason
(1968) card task, central to one such literature, people
are given a rule of the form ‘if p, then q,’ such as ‘if
there is a vowel printed on one side of a card, then an
even number is printed on the other.’ The participants
are next presented with a set of cards, such as A, K, 2,
7. Their task is to choose only those cards that need to
be flipped to check whether the rule holds. In this
example, only the A-card (p) and the 7-card (Cq)
need to be checked. An odd number on the opposite
side of the A-card would clearly violate the rule as
would a vowel on the other side of the 7-card (Cq).
The rule says nothing about what is on the opposite
side of a consonant, so flipping the K-card (Cp) does
not test the rule. Also, flipping the 2-card (q) cannot
disconfirm the rule, because the rule does not restrict
what is on the opposite side of an even-numbered card.
In general people perform terribly on this task, or at
least their performance does not appear to be rational
with respect to the rules of deduction. Oaksford and
Chater (1998) surveyed 13 studies, covering a variety
of Wason tasks. The proportions of people who flip
the p(A), Cp(K), q(2), Cq(7) cards were 89, 16, 62,
and 25 percent respectively. That is, people rarely flip
the Cq card, which they should flip, and frequently
flip the q card, which they need not do.

People are similarly deficient in drawing inferences
from statistical information. Consider the following
example that requires people to interpret the results of
a positive colon cancer test (Gigerenzer 1998). Suppose
that 0.3 percent of people have colon cancer, there is a
50 percent chance that a colon cancer test will detect a
cancer (a hit), and a 3 percent chance that it will
indicate that there is cancer when there is none (a false
positive). What is the probability that a person with a
positive test has cancer? When Gigerenzer posed this
problem to physicians their median estimate was 47
percent. The normative answer is more like 4.8 percent
(see Table 1). This answer is obtained by applying
Bayes’s rule to the statistics given. Bayes’s rule shows
the correct way to make statistical inferences. Bayes’s
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Table 1
Bayes’s rule applied to Gigerenzer’s (1998) cancer example

This shows the probability of some hypothesis, H
j
being true given some data, D. Bayes’s rule takes the following

form:
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where p(H
j
) is the belief that the hypothesis H

j
is true prior to observing the data, D, and p(DrH

j
) is the probability

of observing the data, given the hypothesis is true. The denominator is the probability of observing the data. It
assumes that there are i different hypotheses, one of which is true. We can apply Bayes’s rule to Gigerenzer’s (1998)
cancer example. The two hypotheses are that the patient has cancer, or that he or she does not (Ccancer). The base
rate, or prior, probability of having colon cancer is 0.3 percent. The hit rate of the test is 50 percent, and the false
alarm rate is 3 percent. Applying Bayes’s rule to this example yields an estimate of having cancer to be 4.8 percent,
a much more reassuring estimate than given by the doctors.
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p (cancer)np (testrcancer)

p (cancer)np (testrcancer)p (Ccancer)np (testrCcancer)
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.003n.5

.003n.5.997n.03
¯ .0477

rule implies that given the rarity of cancer, a positive
test is more likely to follow a false positive than the
actual detection of cancer. As with the Wason (1968)
task, subjects’ performance on statistical tasks like this
clearly shows that they are behaving irrationally. The
standard explanation for this is that people tend to
ignore base rates; in this example they fail to take into
account that cancer is uncommon. That is, only 0.3
percent of people have cancer.

2. People Employ Ecologically Valid Strategies in
the Laboratory

Performance on Wason (1968) card tasks,
Gigerenzer’s (1998) statistical tasks, and other experi-
ments demonstrate that people are, in fact, irrational,
when measured against accepted standard inferential
rules. There has been a number of proposals to
describe what people are doing (e.g., Tversky and
Kahneman 1974). The idea behind these approaches is
that people are applying heuristics, rules of thumb that
tend to be successful in their daily lives, to these
laboratory situations where they do not apply.
Anderson (1990) has taken this idea one step further,
arguing that people are not just bringing real-world
heuristics into the laboratory, but rather are employ-
ing optimal solutions to certain problems faced in their
natural environments. However, behavior that is
rational in natural environments may not necessarily
be rational in the peculiar environments that experi-
mental psychologists concoct. Some of the roots of
this idea are discussed next.

3. Da�id Marr’s Le�els of Explanation

Anderson’s motivations closely follow the arguments
that David Marr laid out in his influential book Vision.

Marr (1982) argues that fully understanding an in-
formation processing system requires considering the
system from multiple levels. Marr was interested in the
visual system, which he argues evolved to ‘tell(s) us
about shape and space and spatial arrangement’ (Marr
1982, p. 36). The distinction that Marr makes among
the levels of explanation can be more readily under-
stood by referring to a far simpler information
processing system than vision—a clock. What does a
clock do? It indexes time. How does it do it? It achieves
this goal by measuring the passage of time by
incrementing counters at fixed intervals. Marr says
that descriptions like this are at the computational
level.

The next level down, called the representation and
algorithm level, describes how the goals should be
achieved. In the case of a clock it would map the cycles
of an oscillator into seconds, minutes, and hours.
Descriptions at this level of analysis require a specifi-
cation of the representations and the algorithms that
operate on them to achieve the goals specified at the
computational level. Many combinations of represen-
tation and algorithms can achieve these goals; a 12 or
24 hour clock can index time. The choice of rep-
resentation does constrain the choice of algorithm,
such as how seconds are rolled over into minutes, and
minutes into hours (e.g., what happens at 12:59).
Further, not all representation and algorithms are
equivalent; some computations may be simpler with
one representation than another. Calculating the
duration of a trip is simpler when the train leaves at
10:00 and arrives at 14:00 than when it leaves at 10:00
a.m. and arrives at 2:00 p.m.

The lowest level of description in Marr’s hierarchy,
the hardware implementation level, is concerned with
describing the physical entities that carry out the
computations of the representation and algorithm
level. Here, the current time could be represented by
the configuration of hands on a clock face, the
coordination of seconds and minutes handled by brass
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wheels, the oscillator could be realized as a pendulum.
Marr’s point is that if you stumbled onto a morass of
gears, you would be better able to make sense of these
gears if you knew that they were part of a clock as
opposed to a cash register, or a sewing machine.
Similarly, one is going to be better able to understand
people as information processing systems, if one
understands what those systems are trying to ac-
complish. As Marr puts it, ‘trying to understand
perception by studying only neurons is like trying to
understand bird flight by studying only feathers: it just
cannot be done. In order to understand bird flight, we
have to understand aerodynamics; only then do the
structures of feathers and the different shapes of birds’
wings make sense’ (Marr 1982, p. 27).

4. John Anderson’s Principle of Rationality

Marr (1982) demonstrated the utility of approaching
the problem of vision from multiple levels, and
particularly from the computational level. Based on
Marr’s success with vision, Anderson (1990) hypothe-
sized that the approach might work well for higher-
level cognitive processes. Anderson argued that most
theorizing in cognitive psychology concerns represen-
tations and the processes that act on them, cor-
responding to Marr’s representation and algorithm
level. Cognitive neuroscience and neuroscience focus
on the hardware implementation level. Relatively
little theorizing, he points out, occurs at Marr’s
computational level. Anderson (1990) explored
whether it would be useful to think about higher level
cognition, such as categorization (Anderson and
Matessa 1992) and memory (Anderson and Milson
1989, Anderson and Schooler 2000) at the rational
level, analogous to Marr’s computational level. His
principle of rationality is that ‘the cognitive system
operates at all times to optimize the adaptation of the
behavior of the organism’ (Anderson 1990, p. 28).
Anderson renamed Marr’s computational level the
rational level, because the computational level sounds
like it should be describing the algorithm and rep-
resentation level. His choice of the term rational also
serves as an allusion to economic theorizing that often
takes place at Marr’s computational level. Economists
focus more on the decisions agents make, rather than
on the processes involved in coming to those decisions.
In the economic realm, it is easy to appreciate that it is
rational for firms to maximize profits (or, as in the case
of Ben and Jerry’s, the famous American premium
ice-cream maker, to maximize a combination of
profits and social good). For the cognitive system, the
currency is less clear. Thus, the critical step in what
Anderson calls a ‘rational analysis’ is to figure out
what quantity the cognitive system might be optimiz-
ing, and to make predictions based on this about how
people will behave in particular experimental tasks.

5. Oaksford and Chater’s Rational Analysis of
the Wason Card Task

There would seem to be a weak case for the rationality
of the cognitive system in light of people’s irrational
behavior on the Wason (1968) card task and
Gigerenzer’s (1998) cancer problem. However, Oaks-
ford and Chater’s (1996) rational analysis of the
Wason card task shows that typical performance on
the Wason, while violating traditional notions of
rationality, is indeed quite rational when seen in a
broader context of how people seek information in the
world.

Consider the following situations that parents may
face. In one situation, hearing an utterance from the
baby he was caring for, a young father might ask ‘was
that just babbling?’ or if the baby says ‘baba,’ then the
baby wants a bottle. If the mother found her husband
giving the baby a bottle, and if she wanted to know
whether ‘baba’ was serving as the baby’s signal it
wanted a bottle, would it be rational for the mother to
ask whether the baby had said ‘baba’ before the
feeding? Now imagine 16 years have passed, and the
mother is teaching her son to drive. She wonders
whether he knows that when the oil light is on, he
should stop the car. Would it be rational for the
mother to ask whether the oil light is on? It would seem
quite natural for the young mother to ask about what
the baby had said, and for the middle-aged mother to
remain silent. Asking in the first case would be like
flipping the 2-card, irrational with respect to deductive
inference. Asking cannot disconfirm the hypothesis
that the baby knows how to use the word, since
logically many circumstances (e.g., fussing) can sug-
gest an infant is hungry. In contrast, asking about the
oil light would be like flipping the 7-card, rational with
respect to the rules of logical inference. If the mother
found that the oil light was on, this would be a
violation of the rule. Our intuitions are at odds with
logic.

Perhaps our intuitions are correct that the young
mother is rational to ask about what the baby said,
and the older mother is rational in remaining silent.
The essential difference between the two situations is
the amount of information the answer to the question
is likely to yield. Though asking whether the baby said
‘baba’ could not provide a definitive answer, knowing
what the baby said tells something about whether the
baby knows the word. In contrast, asking about the oil
light, though potentially highly informative in the
unlikely event that the oil light is on, will tell nothing
in the more likely event that the oil light is off.

Oaksford and Chater’s (1996) analysis of the Wason
task formalizes these intuitions. They assume that
people apply experimental, information-seeking strat-
egies to deductive tasks like the Wason. Though the
details of their mathematical analysis are beyond the
scope of this article, the flavor of it can be given here.
As is true for nearly all rational analyses, they assume
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that people are behaving as if they are following
Bayes’s rule. They suggest that people are not treating
the task as a test of logic, but rather are attempting to
gauge the causal relation between two events. More
specifically, they assume what people are really trying
to do in deductive tasks is decide between two
hypotheses: when p occurs (e.g., baby says ‘baba’), q
must follow (e.g., baby wants a bottle), or the
alternative hypothesis that event p is independent of
event q. Sometimes the baby says ‘baba,’ and some-
times the baby is hungry, and it is only by chance that
the baby says ‘baba’ when it is hungry. In the case of
the Wason task described earlier, the competing
hypotheses are that an even number depends on a
vowel or the alternative that evens and vowels are
independent of each other. The question, then, is
which card will provide the most evidence in terms of
discriminating between these two rival hypotheses.
Since people do not know in advance how an ex-
periment (i.e., flipping a card) is going to turn out, they
make their decisions based on how much information
they expect to gain.

A critical difference between the parenting examples
and the Wason (1968) task is that people have
experience with how children learn words, but rela-
tively little experience with numbered and lettered
cards. Lacking any relevant experience about the
cards, Oaksford and Chater (1996) assume that people
treat them as if they are typical of causal relations they
have seen in the past. When their model of informa-
tion-seeking is combined with the assumption that
causally related events are relatively rare, it predicts
the observed subject preferences for flipping cards,
namely p (e.g., A-card) is chosen more than q (e.g., 2-
card), q more than Cp (e.g., K-card), and Cp more
than Cq (e.g., 7-card). So in the Wason task we have
a situation where the behavior is irrational with respect
to the laws of deduction, but can be understood to be
rational in the context of how people seek information.

6. People are Rational When Ecologically Valid
Strategies are Appropriate

Gigerenzer’s (1998) colon cancer experiment demon-
strated that people are irrational with respect to proper
Bayesian inference. This result seems to be at odds
with Anderson’s rational hypothesis, as Bayesian
analyses underlie nearly all rational analyses. Since the
problem was laid out perfectly for Bayesian inference,
we would expect people to perform well. Gigerenzer
argues that people perform poorly, because the prob-
lem format is all wrong. People did not evolve, he
argues, to process probabilities, but rather to draw
inferences based on their direct experience. His pre-
diction is that people should do well on statistical tasks
when the data are presented more naturally in terms of
raw frequencies. Consider again the colon cancer
problem, but this time in raw frequencies. Thirty out

of every 10,000 people have colon cancer. Of these 30,
15 will test positive. Of the remaining 9,970 people
without cancer, 300 will still test positive. What
proportion of people who test positive will actually
have cancer? Now it is clear that only 15 of the 315 (or
4.45 percent) of those who test positive will have
cancer. When the problem was presented this way to
another group of doctors, 67 percent answered cor-
rectly, as compared to 4 percent when the data were
presented in terms of probabilities. When the problem
presentation is consistent with how we experience
events in the world, people’s behavior corresponds to
the prescriptions of a normative standard, a Bayesian
inference. As with the Wason task, people appear to
be behaving irrationally, when the experimental task
and conditions conflict with the natural environment.

7. In Practice, Rational Analyses are Bounded

The discussions of the Wason (1968) task and
Gigerenzer’s (1998) task were couched strictly at the
rational (or computational) level. In practice, a
rational analysis cannot focus strictly on the rational
level, but must also consider the algorithm and
representation level. The reason for this is that
sometimes the rational solution requires calculations
that would be physically impossible for any system to
perform. In such circumstances a mapping needs to be
made from the results of the rational level into
algorithms and representations that approximate the
computations called for by the rational analysis. It is
at the algorithm and representation level that com-
promises have to be made. In particular, assumptions
have to be made about processing limitations. This ties
in with Simon’s (1956) notion of bounded rationality.
That is, people are rational within the constraints of
their ability to process information. For example,
Simon (1990) pointed out that ignoring processing
limitations suggests that knowledge of the rules of
chess should lead to perfect play. If a person or
machine had an infinite amount of time to contemplate
a chess move, and the potential countermoves of the
opponent to that move, and the countermoves to all
the opponent’s potential countermoves, ad infinitum,
then the person could select an initial move that would
inevitably lead them to check mate. The problem is
thatmore board positions would have to be considered
than there are molecules in the universe (Simon 1990).
Instead, people and chess programs use heuristics to
mimic the behavior of this rational strategy. Similarly,
because of processing limitations, most rational analy-
ses are approximations to the optimal solution.

There are some games, however, for which it is
possible to know the game completely. For example,
many adults know the moves and countermoves in tic-
tac-toe to guarantee that they will at least not lose.
Like tic-tac-toe, the Wason (1968) task is atypical.
Thus the number of potential hypotheses and experi-
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ments raised by Oaksford and Chater’s (1996) analysis
of the task is relatively small compared to the number
raised by problems people often face in their daily and
work lives. For example, consider again the problem
of interpreting what the baby means when it says
‘baba.’ The potential number of hypotheses for what
‘baba’ means certainly exceeds the number of confi-
gurations of a chessboard. If Oaksford and Chater’s
information-seeking strategy were applied to the
problem of vocabulary acquisition, where large num-
bers of hypotheses and experiments are potentially
relevant, they would need to employ heuristics and
build processing bounds into their system as well.

8. Whether People are Rational Depends on Your
Perspecti�e

This article demonstrated that there is no definitive
answer to the question of whether people behave
rationally. For example, the Wason (1968) task clearly
demonstrates that people behave irrationally with
respect to logic, while Oaksford and Chater’s (1996)
analysis shows that the behavior is rational when the
context is broadened to encompass a person’s ‘‘‘nor-
mal’’ life conditions’ (Brunswick 1943, p. 259). In
short, people can be seen to behave rationally with
respect to the environment, but appear to be operating
irrationally with respect to a particular task, especially
when the task that subjects are performing differs from
the one intended by the experimenter.

See also: Functionalism, History of
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Rationalism

When philosophy consisted of set piece battles be-
tween grand schools of thought (such as realism,
scepticism, or monism), ‘rationalism’ referred to the
belief that human beings disposed of a faculty called
‘reason’ which gave them access to the structure of
reality. Man, wrote Aristotle (384–322 BC), is a
rational animal, but Aristotle recognized that reason
had to be trained. In most human beings, the under-
standing was distorted by passion. Aristotle’s teacher
Plato (427–347 BC) had argued in The Republic and
other dialogues that the world we experience was a
confused copy of a world of forms or ideas which
could be discovered by philosophical inquiry. His
parable of the cave (Republic, Book VII) is the
founding image of rationalism. In its classical Greek
version, rationalism assumed that we might under-
stand the structure of the universe by the power of
reason, an assumption connected with the fact that
rationalism began its philosophical career as a gener-
alization of the procedures of mathematics. In his
dialogue the Meno. Plato had argued that knowledge
is accessible to rational inquiry independently of
experience. Later, the Stoics argued that moral knowl-
edge of the laws of nature is available to any rational
creature who looks into himself.

Medieval philosophy revived Greek ideas and cross-
fertilized them with Christian doctrine. St. Thomas
Aquinas (1225–1274 AD) combined reason and rev-
elation by taking his account of nature from Aristotle,
and his account of higher things (or ‘supernature’)
from Christian revelation. This synthesis, however,
soon began to fall apart, and in modern times
rationalism has commonly been taken to refer to
rejection of Christian revelation because of rational
criticism.

1. Modern Rationalism

This was not, however, the view taken by the great
rationalist philosophers of the seventeenth century,
for whom science was the model of understanding.
Descartes invoked God’s veracity as a foundation of
his system, while Spinoza was a monist who argued
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