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Abstract

This paper presents a quantitative assessment of the importance of adaptation to the learning

environment as a component of the learning curve in performance data from a computer-based

tutor. In Experiment 1, verbal protocols are used to investigate the nature of changes in low-level

interactions that take place during learning with a computerized tutor called Stat Lady (Shute &

Gluck, 1994). The data show consistent behavioral changes in the distribution of attention, which

account for a substantial portion of the learning curve, independent of error rates. These changes

primarily are decreases in the verbalization of on-screen text, although the elimination of interface

confusion also contributes to the efficiency gain. Experiment 2 tests the generalizability of the

results in a larger population of learners. It is shown that adaptation to the learning environment

accounts for a comparable proportion of the learning curve in this new population. More than

half of the learning curve could be accounted for by these changes in low-level interactions. These

results suggest that more accurate learning models should include a representation of increasing

knowledge of the instructional environment as the model interacts with that environment. An

ACT-R (Anderson & Lebiere, 1998) model is provided that reproduces the qualitative and

quantitative data from the verbal protocol participants. The model reproduces these behaviors via

(1) the acquisition of declarative knowledge for the structure of the problem scenarios, and (2)

subsymbolic procedural tuning for more efficient goal completion.
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The curriculum and the learning environment: A componential analysis of the learning curve

Card, Moran, and Newell (1983) made the point that the study of the use of computers is

an especially important applied research topic, due to the proliferation of computers in every

aspect of contemporary society. A special case of computer use, which is becoming increasingly

prevalent in education and training settings, is the interaction of students with a computer-based

tutoring system. The primary research concern for those who design and deploy these systems is

typically to maximize the degree to which students acquire the curriculum the tutor is intended to

teach. There is, however, another sort of learning that is going on simultaneously - the learning of

the learning environment in which the curriculum is presented.

Conventional wisdom tells us that people learn something about the computer interfaces1

they use and, with experience, become more facile at navigating through them. There is little that

is new in such a claim. However, systematic data that document the development of such

interface knowledge and the impact it has on performance are considerably less prevalent than

this assumption. That is the contribution offered here. This paper describes two empirical

investigations dedicated to producing a quantitative assessment of interface learning in a

particular computer-based tutoring system.

Why Use a Computer Tutor?

There are a number of different types of computer-based software applications that we

could have chosen to study. Text editors, spreadsheets, programming languages, and even games

are all valid contenders for the study of interface learning. Why pick a tutoring system, where one

also has issues of curriculum learning to worry about? First and foremost is that, as cognitive

psychologists and instructional designers,we are interested in issues of curriculum learning, and a

desire to better understand the processes and products of learning runs deep.
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Second, computers are often (and increasingly) used as instructional tools, intended to

enhance the learning of the curriculum objectives (Lajoie & Derry, 1993). In some cases, these

computerized learning environments lead to improved performance, suggesting that students have

learned something from the experience (e.g., Anderson, Corbett, Koedinger, & Pelletier, 1995;

Lesgold, Eggan, Katz, & Rao, 1992; Shute, 1995). Two measures are used to assess learning in

these studies. The most universal is learning gain, generally measured as pretest-to-posttest

improvement, although there are other variants. To the extent that there is evidence for

improvement on the posttest, there is evidence for acquisition of the curriculum.

Sometimes researchers include another dependent measure, as well, which is problem

solving time. The claim is that, as knowledge of the curriculum grows stronger, problem solving

time will decrease (e.g., Anderson, 1993; Anderson, Conrad, & Corbett, 1989). This habit

originates from the tradition in cognitive psychology of using time as an indicator of degree of

learning, and plotting this change over time. The resulting graph is best described as a power law

learning curve (Newell & Rosenbloom, 1981). However, in the context of problem solving with a

computer-based tutor, the questions of how much students are “learning the curriculum” versus

“learning the environment,” and what effect this has on interpretations of the learning curve,

often go unasked. In the absence of attention to these questions, decreases in solution times are

generally assumed to result from the former. This assumption is almost entirely untested. The

research described here provides an example of how careful analysis of verbal protocols and

performance data can reveal components of the learning curve in addition to that part which is

attributable to the development of cognitive skill.

A Growing Need

Almost a decade ago, a paper was published which foreshadowed the need to more
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deeply explore the composition of the learning curve in the context of learning from computer

tutors. In their paper on student learning with the Lisp Tutor, Anderson, Conrad, and Corbett

(1989) left open the possibility that some portion of the improvement they saw in coding time

actually reflected mastery of the interface. They found that two important variables predicted

students’ solution times. One was related to the amount of prior practice. Anderson et al.

represented the acquisition of skill in Lisp coding as the acquisition of production rules for that

skill, and their analysis showed that the number of prior production firings (amount of prior

practice) was a good predictor of future problem solving time.

A second variable that predicted problem solving time was how far a student had

progressed through the curriculum (measured by lesson number). They made the following

statement regarding this latter result:

The effect of lesson number … may just reflect an increased familiarity

with the tutor interface. The fact that the same variable shows up for old

productions as for new productions suggests that at least part of the

phenomenon is a matter of general interface learning. It is also the case that

lesson number is not significantly related to error rate. This is further

evidence that the effect may be an interface effect and not reflect any real

proficiency in coding. (p. 484)

This acknowledgement of the role of “interface learning” suggests that focusing on curriculum

learning alone does not portray the complete picture of student learning in computer

environments.

In this paper, we will examine the performance improvements of students working in a

computerized learning environment called Stat Lady, which teaches introductory descriptive
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statistics (Shute & Gluck, 1994). There is a good deal of evidence from previous assessment

studies involving the Stat Lady tutor that people using the system develop improved skill on the

curriculum objectives (Shute, 1995; Shute, Gawlick, & Gluck, 1998). However, is the learning of

curriculum objectives the only learning that is taking place?

Our goal in this paper is to take the analysis of learning from the Stat Lady tutor well

beyond a cursory glance at learning gain and broad measures of problem solving time. We will

provide a description of how students interact with this computerized learning environment and

how the interactions change as students learn. In two experiments, the careful decomposition of

student behavior will show quantitatively that interface learning can account for a significant

portion of the learning curve.

As will be seen, consistent trends in verbalizations over practice opportunities suggest

that learners quickly fine-tune their low-level interactions with the tutor in a manner that allows

for more efficient problem solving. These adaptations at the level of interactions with the tutor

account for a substantial portion of the change in problem solving time across practice

opportunities. This paper describes those results, provides an interpretation in terms of the

acquisition of declarative knowledge of the interface and the structure of the problem scenarios,

and concludes with a discussion of the implications of these results for tutor design and student

modeling.

Experiment 1

The goal of Experiment 1 was to collect data that would provide a rich picture of

students' learning - both of the curriculum and of the interface - as they interacted with the Stat

Lady tutor. In particular, we were interested in how students' attention to different parts of the

interface changed as they gained experience with the tutor. One source of such data is verbal
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protocols.

Verbal protocols have played a significant role in contemporary studies of learning in

many different domains (Ericsson & Simon, 1993; Newell & Simon, 1972). One of the

fundamental assumptions that underlies the use of verbal protocol data is that the verbalizations

reflect some subset of what is currently held, or was very recently held, in working memory

(Ericsson & Simon, 1993)2. It seems reasonable to propose that the particular subset of working

memory contents that gets verbalized would be that portion that is, or was very recently, the

focus of attention. Thus, the verbal protocols provide information on the distribution of attention

across the Stat Lady interface, and we use this methodology in Experiment 1.

Method

Participants

A significant challenge in any verbal protocol analysis project is that it is an inherently

time-consuming methodology. This reality, exacerbated by the length of the tutor, motivated us

to limit the sample to four participants. These participants were explicitly chosen on the basis of

different degrees of domain-relevant prior knowledge and divergent educational backgrounds, in

order to increase the generalizability of our conclusions. Two of the participants, one male and

one female, were graduate students in the Psychology Department at Carnegie Mellon, and had

advanced mathematics, statistics, and computer science classes at the college and graduate level.

The other two, both female, were staff people on the CMU campus, and were relative novices in

this domain, as they reported no formal education beyond high school in math, statistics, or

computer science.

Materials

Equipment. The tutor was administered on an H&D 486/100 personal computer with a
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17" color monitor, extended keyboard, and a standard mouse. An audio recorder sat next to the

keyboard. Additionally, an S-VHS camcorder, which was mounted on a tripod directly behind the

participant, videotaped everything they did on the computer screen. Participants wore lapel

microphones for the audio pickup to the camcorder.

Software. The tutoring system used in this study is the Stat Lady Descriptive Statistics

Tutor: Data Organization and Plotting Module (Shute & Gluck, 1994) developed at Armstrong

Laboratory's TRAIN Lab. The purpose of the tutor is to teach the skills of organizing a dataset

and representing it in both tabular and graphical formats. There are a total of 77 declarative and

procedural instructional objectives, which together comprise the tutor's curriculum. The

curriculum was divided into five sections, each containing a subset of the 77 objectives. Each

section involves about 15 minutes of instruction, followed by a series of five problem scenarios

which test the student's skill on the curriculum objectives from that section. Figure 1 provides an

overview of the structure of the Stat Lady tutor that may be useful in understanding the

relationships among sections, scenarios, and curriculum objectives. The curriculum objectives are

tested in the portion of the scenarios labeled "Problem Activities/Q's." The terms "Context" and

"Number Factory" deserve further explanation, since they both occur in the scenarios, and it is in

the scenarios where we will be looking for changes over practice opportunities.

The first thing that happens when the student picks a scenario is that text appears which

establishes a problem-solving context. It offers a rationale for collecting some data. Here is an

example of the context statement from one of the scenarios:

Let's say you were recently promoted to Chief of Operations at a
huge amusement park. You're concerned about the park's liability, because
of a new rollercoaster named Screaming Death Rocket.

In order to determine whether the new ride is too dangerous for
continued use, you choose to make up a frequency distribution of the
number of injury complaints that are related to the Death Rocket every
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day for two weeks (14 days).
Go to the Number Factory and get data with the following

parameters:
N = 14 days
Min = 0 injuries
Max = 9 injuries

Immediately after reading the context, the student goes to the Number Factory. The

Number Factory is intended to represent the data collection process. It is necessary (as suggested

in the example above) to enter the sample size and range of the data. The Number Factory then

generates data for use in later problem-solving activities. For a better understanding of the tutor's

interface, see Figure 2, which displays a screenshot of the Number Factory. Having acquired the

requisite data, it is then "shipped" back to the problem-solving area, where work is done on the

declarative and procedural curriculum objectives in that section (e.g., complete the worksheet,

answer questions). This pattern holds across all scenarios. In this study, participants were

required to complete four of the problem scenarios in each section, but within a section they

could do them in any order they wished.

In addition to the tutor, participants completed a comprehensive pretest and posttest.

Both tests were designed to assess every curriculum objective in the tutor twice, across different

response formats, in order to provide a valid assessment of current knowledge and skill.

Design and Procedure

Participants were briefed on the procedure of the experiment and the rationale for verbal

protocol collection. It was explained that verbal protocols are often used to determine what it is

students are paying attention to and thinking about, and that for the duration of the study, if

there was something they were paying attention to and/or thinking about, they should verbalize

it. It was emphasized that this included reading text on the screen. They were told to read only

what seemed natural for them to read, but if they were reading it, they should be verbalizing it.
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Participants practiced giving verbal protocols using the standard warm-up exercises suggested in

the Appendix of the Ericsson and Simon (1993) text on protocol analysis, namely the "Windows

in the House" exercise and mental addition of two-digit numbers. It was made very clear during

these practice opportunities that we wanted participants to verbalize exactly what they were

thinking, so that they established the habit of doing so before starting the tutor.

The next activity was the pretest. All participants were required to complete the pretest

during their first session. After that, they had to do at least one section of the tutor each day until

done. On the final day, the posttest immediately followed completion of the last section of the

tutor. Each participant provided concurrent talk-aloud protocols during the entire pretest, tutor,

and posttest, and these were recorded on video and audio tape. An experimenter sat behind the

participant and prompted him or her to “Please keep talking” whenever verbalization stopped for

more than a few seconds. Participants required an average of about 8 hours to complete the

study, spread out over 2 to 5 days.

Verbalization Analysis

Given the length of each participant's participation, as well as the density of verbal

protocol data, it was necessary first to pare down the protocols into a manageable subset from

which to begin the analysis. We decided to focus our efforts on sections 1 and 3. Section 1 is a

fairly obvious choice, as it allows us to study changes in learner behaviors at their earliest point

in exposure to the tutor. Section 3 was chosen based on the fact that pretest data indicate this

section is one of the most difficult, and our participants showed more evidence of curriculum

learning in this section than any of the others. Since we were interested in how student

interaction with the tutor changed during the learning process, Section 3 was a good candidate for

inclusion in the protocol analysis.
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As this was the first protocol study involving this particular tutor, there was no a priori

set of procedures in place for segmenting the protocols and no established rules for coding those

segments. We used Participant 1's protocols from Section 1 as the testbed for creating

segmentation rules and developing a coding scheme.

Segmenting. For the purposes of this study, a segment is defined as a verbalization that

indicates a new focus of attention. Thus, each segment represented a verbalized change in

cognitive process or a switch in the portion of the visual field (on-screen) to which the

participant is attending. The latter is identifiable, for instance, as a change in the location of on-

screen text that the learner is reading.

Coding. The coding categories were designed primarily for distinguishing the different

kinds of activities students might engage in while working with Stat Lady. This helped us

identify where their attention was while they used the tutor. In all, 54 mutually exclusive

categories were developed and used in the coding, but they are not all relevant to the results

presented in this paper. For current purposes, the critical coding categories are those related to

attention to different parts of the screen. Examples of these are presented in Table 1.

To facilitate consistency and objectivity in the coding, and also to establish whether the

general scheme was reliable, we hired a research assistant to code a subset of the protocols. After

a training period, he coded 60% of the Section 1 and Section 3 protocols. We had inter-coder

agreement on 90% of the 3,266 segments. Such high inter-coder reliability suggests that our

coding procedure was robust and we can be confident that the segments were coded accurately.

Results

We will first examine the verbal protocol participants’ results using coarse measures like

pre-to-posttest improvements, as well as changes in scenario completion times and error rates
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with practice. Then we will move on to show how attending in more detail to the way people use

the tutor allows for insight into other kinds of learning taking place. Specifically, we will provide

evidence for adaptive changes in participants’ low-level interactions with the tutor and the

substantial role this learning plays in improvement with practice.

Coarse-Grained Analyses

Pretest-to-Posttest Improvements. At the broadest level of analysis, we would be

interested in whether our four protocol participants show any evidence of having learned the

curriculum objectives. Test data show that overall they improved from a score of 76.9% on the

pretest to 94.6% on the posttest - a gain of 17.7 percentage points. Thus, they did indeed acquire

curriculum-related knowledge and skill while using this tutor.

As mentioned above, however, the verbal protocol data were analyzed strictly from

sections 1 and 3.  How much did they learn in these sections? The average pretest score for

curriculum objectives relevant to just these two sections was 79.2%, and the average posttest

score was 95.8% - a 16.6 percentage point gain that is quite comparable to the overall mean for

the tutor.

Scenario Completion Times. One would expect that, since there is evidence of curriculum

learning taking place, there should be some speed up in performance over practice opportunities.

Table 2 contains mean scenario completion times averaged over sections 1 and 3. As expected,

the verbal protocol subjects show substantial decreases in the time needed to complete the

scenarios. These data are also graphed as the "Total Time" curve in Figure 3.

Error Rates. One possible explanation for this decrease in time is that participants are

making fewer errors with practice, which would reduce the amount of time spent on each
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subsequent scenario. Error frequency data are available in Table 2. Interpreting these error rates is

challenging, of course, without some sense for the total number of possible errors a learner could

make. If we assume, due to the design of the feedback in the tutor,3 that the highest number of

errors a person could make on any given test item is three, then the maximum number of errors in

each scenario (averaged across sections 1 and 3) is 60. As is evident in Table 2, despite the fact

that the average error rates from our protocol participants are low, their errors do decrease across

scenarios. Thus, the slight but gradual improvement in accuracy across scenarios could account

for some of the speedup observed in scenario completion times.

Error state time. It is one thing to note a correlation between error rates and overall

completion time, but the issue of how much of the improvement in completion time across

scenarios is directly attributable to decreasing error time is another question altogether.

Fortunately, we had the videotapes at our disposal. Using the videotapes, we constructed error

time profiles, which represent the amount of time participants spent in an error state during each

scenario. Error state is defined as the period of time (a) starting when the participant first makes

a comment that indicates confusion and starts down a path leading to an incorrect solution and

(b) ending when the participant verbalizes a realization of the correct solution or starts down a

path leading to the correct solution. Mean Error Time for the four protocol participants, averaged

over sections 1 and 3, was 70 s, 61 s, 35 s, and 58 s for scenarios 1-4, respectively. If we then

subtract Error Time from Total Time, we are left with time data on the error-free completion of

scenarios, as shown in the second curve from the top in Figure 3. There still is a substantial

decrease across scenarios (109 s), suggesting that even when improvements in accuracy of

performance are accounted for, something else is being learned.

Peripheral activity time. To further decompose what explains the speedup across
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scenarios, we can subtract from the scenario completion times those activities which really are

“peripheral” to the curriculum objectives. Activities like reading the Context at the beginning of

the scenario and going to the Number Factory might be considered peripheral.4 Mean Peripheral

Activity Times were 68 s, 59 s, 73 s,  and 64 s for scenarios 1-4. Note that peripheral activity

times do not show a consistent decrease. This is because our protocol participants almost always

read the Context portion of each scenario thoroughly, and the time they spent in the Number

Factory remained fairly constant. Time data with peripheral activities removed are displayed as

the third curve in Figure 3, labeled "Curriculum Objective Time: Coarse." There is still a 105 s

change in completion time from the 1st to the 4th scenario.

Fine-Grained Analyses

By subtracting out error time and peripheral activity time, we have slowly chipped away

at the activities that are components of the learning curve, but there still remains substantial

improvement (105 s) from the first to the last scenario. What additional changes in student

performance, aside from increasing skill at performing the curriculum objectives, could explain

this speedup?

“Lost in the Interface” Time. It turns out there are a handful of critical junctions in the

completion of these scenarios where students are more likely to get “lost” in the interface and are

not sure how to proceed. Often this occurs when a critical interface component, like a button,

appears suddenly on the screen and the learner does not see it.

An example of this, from Section 1, comes after the learner fills in the frequency column

of the distribution. The tutor requires that students fill in five cells of the frequency column

correctly, then a Fill Frequency Column button appears below the table, which will complete the

job when it is clicked. The complication is that students do not know beforehand that they only



The Curriculum and the Interface     15

are required to fill five cells themselves. When the button appears, the tutor locks the frequency

column so that it is no longer possible to fill in any more cells. If the student does not see the

new button, which happens with some regularity, confusion ensues and the student is not sure

how to proceed. The student is “lost” in the interface, looking for a way to make progress, but

often not seeing the right path immediately.5 Other times, everything the student needs in order

to proceed with a certain goal is available on the screen right from the start, but the student is not

sure how to carry out the task set by the tutor, and the result is hesitation and inactivity. In such

a case, the student is having difficulty interpreting, the first time through, how to implement the

instructions in the tutor’s interface.

We tracked these instances of being “lost” and unsure how to proceed in both Section 1

and Section 3. Two dependent measures bear on this issue. The first one has to do with the

verbalization of procedural confusion. Generally, the only thing learners did do when they were

“lost” was to ask a question regarding how to proceed. When this happened, the questions were

typically considered to be rhetorical, or at least the experimenter made an effort not to respond,

in order to avoid interfering with the normal course of tutor use. We coded segments that

indicated procedural confusions and tallied them up for each participant in each scenario. Our

protocol participants averaged 2.6, 1.5, .9, and .5 procedural questions in scenarios 1- 4. Note the

decreasing trend.

Our second measure relevant to this issue is the amount of time spent inactive, or lost.

This was measured by watching the video for instances where our protocol participants stopped

doing things with the tutor and essentially "froze" in place. Averaged across participants, these

data are: 14.8s, .6s, .25s, and .25s for scenarios 1-4. There is a decrease of more than 14s in time

spent lost, and virtually all of that time savings comes from the first to the second scenario.



The Curriculum and the Interface     16

Verbalization Trends

The process of completing a scenario can be roughly broken down into: (a) things that

you do (e.g., make a table, respond to a question), and (b) things that you read (e.g., instructional

text, feedback). There is an interesting dichotomy here. The things that one does in order to

complete a scenario are mandatory. They have to be done. You can not complete the scenario

without sorting the data, filling in the column headings, filling in the frequency column, and so on.

For the most part, however, it is not mandatory to read the text on the screen. All of the

scenarios in a given section have the same structure, and generally speaking, the same text

appears over and over again, in the same location, for every scenario in each section. As we will

see, this characteristic of the tutor allows for adaptation away from reading text, either learning to

ignore it because it is not useful, or because it is possible to retrieve from memory a declarative

chunk for the semantic content of the text, rather than invest the time necessary to re-read it.

Table 1 indicates that we coded the protocols in such a way as to represent verbalization

of (a) question text, (b) instruction text, (c) instructional text that appears with positive feedback,

and (d) positive feedback text. A description of all four of these text types follows. Figure 4,

which is a skeletal representation of the Stat Lady interface, will help illustrate the locations of

particular text types.

Questions. In the 2nd half of each scenario, having already made a frequency distribution

with their data, participants were instructed to answer a series of general definition questions and

questions about the distribution. Examples of such questions would be: “What is the symbol for

sample size?” and “How many days did you have 11 complaints?” Each question tests a

declarative or procedural curriculum objective. Within a given section, these questions recur in

exactly the same order in each scenario, and they appear in the area labeled “Activity Window” in
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Figure 4. Adding the number of words of this type that participants verbalized in each scenario

results in a raw frequency count of the verbalization of question text, and dividing this by the

total number of possible question word verbalizations results in a "proportion of words

verbalized" measure for each scenario. Figure 5 shows the verbalization rates for these questions.

The most obvious difference between this measure and the others (still to be described) is that

students verbalized a considerably higher proportion of the Question text. This is not surprising,

since at least some portion of each question must be read in order to know what it is that you are

answering. Another striking thing about these data is that the verbalization rate for the questions

is more than 1.0 during the first scenario. This is due to occasional confusion regarding the intent

of the question, which results in re-reading. By reading portions of some of the questions more

than once, the protocol participants managed to push the verbalization rates for this measure

over 1.0 in the first scenario. In subsequent scenarios, they read about 25% less text in the

questions.

Instructions. Instructional text sentences are those which tell the learner what to do and

how to do it, or reiterate a point relevant to a curriculum objective. Sometimes it is the case that

instructional text appears in the Activity Window, as well, but the majority of it occurs in the

Instructional Window. An example of instruction text can be seen in Figure 4, where it begins

"Step 1: Click on the ..." During the protocol coding, we identified every instance of verbalization

of instructional text in these two windows. Figure 5 presents the proportions of instruction text

verbalized across scenarios, as the 2nd curve from the top. There is a very clear trend of

decreasing verbalization of instructional text with practice. It is important to emphasize that

these instructions repeat verbatim from one scenario to the next within a section. The same

instructional text appears in the same locations in all four scenarios in Section 1.
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Instructions in positive feedback. It is often the case that, following a successful action on

the part of the student, some text appears along with the positive feedback which either restates

a piece of declarative knowledge or tells the learner what to do next. Given the nature and location

of this text, we coded it as instructional text that appears in the positive feedback window. This

text type is basically indistinguishable from the instructions in the Instructional Window, aside

from its location. An example would be, "Click on the next red ? and enter the correct

symbol/formula."

We used the same procedure described above to compute a "proportion verbalized" for

this variable, which resulted in the data shown as the third line in Figure 5. The same trend in the

verbalizations is evident, but with a much shallower slope, largely due to the floor effect from

two of the participants. Note that the initial verbalization rate for this variable was very low,

indicating that learners seem not to attend to this text type very much regardless of practice.

Since it does carry some information value, this may seem surprising, but there are two possible

explanations. First, it is often the case that the instructional text that appears in the positive

feedback is redundant with instructional text available elsewhere on the screen, so the student can

go elsewhere for the same information. Second, instruction text in this location is at a bit of a

visuo-spatial disadvantage, since it occurs in the same block of text as the positive feedback,

which, as we shall see next, garners a small amount of attention.

Positive feedback.6 The primary location for positive feedback throughout the tutor, as

suggested in Figure 4, is the Feedback Window. It is the case, however, that positive feedback

does sometimes occur in the Instructional and Activity Windows, as well. We coded positive

feedback without respect to its location. It is distinctive and easily coded, regardless of location,

due to the fact that we restricted our Positive Feedback code to be applicable only to that text
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which carries confirmatory information and does not contain elaborative curriculum-relevant

information (like that found in instructional text). For example, the two segments:

"Congratulations!" and "You are correct." would both be coded as positive feedback.

Figure 5 also shows "proportion verbalized" results for positive feedback text. There is a

now-familiar decreasing trend in the verbalizations of positive feedback. As noted previously,

one striking characteristic in these data are that they indicate a generally low level of overall

attention paid to the positive feedback.

There are a couple of contributing factors which may account for this. First, the positive

feedback is simply that. In other words, it merely indicates that the student was correct and

generally does not include additional information that is of very high utility (e.g., useful, relevant

declarative knowledge that could add to the learner’s knowledge base for the domain). This

lowers the expected utility of attending to that text, since the payoff is not large. Nevertheless,

one might argue, it is useful for the learner to know whether the response was correct, and one

should therefore be likely to seek out that information. This is true, but it turns out that, in all

but a handful of exceptions, the student has this information before the positive feedback even

appears on the screen. One of the features of the tutor is that it provides auditory feedback on

performance, in addition to the text-based feedback. Due to a design constraint, this auditory

feedback always appears before the text feedback, so the student actually hears whether the

answer was correct, and can subsequently afford to ignore the text.

Summary of Text Verbalization Results

What we have found is that there are a number of changes in reading behaviors taking

place which, in sum, explain a good deal about how students might increase their efficiency in a

learning environment. Our interpretation of the result involving Question Text and Instruction
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Text is that during the first scenario learners deliberately read through the instruction and

question text in order to correctly perform the desired activities. As a by-product of this, they

develop a representation for information regarding (1) the order in which to do the tasks required

by the scenario and (2) how to do them. Those two categories subsume the semantic contents of

both the questions and the instructional text. Upon starting the 2nd scenario, it is immediately

apparent to students that they are dealing with the same curriculum-objective structure (i.e.,

order in which the objectives occur) and interface design as the previous scenario, and so can rely

on these declarative chunks to guide them through the process of completing the scenario.

Retrieving these chunks from memory is almost certainly more efficient than attending to and

reading text, and can therefore be considered an adaptive behavior, from the standpoint of learning

efficiency.

In addition to the verbalization trend data, there are also some specific student comments,

offered spontaneously as they worked on the tutor, which support this conclusion. For example:

"I've now abstracted over all these problems." - Participant 2, Section 1

“I sense a sequence.” - Participant 2, Section 3

"I didn't read all that . . . you know what it says." - Participant 3, Section 1

Thus, we also have evidence that these participants eventually became aware themselves that

they had developed the sort of declarative chunks that we posit here.

A similar cost/benefit "adaptation" interpretation seems appropriate for the results

involving verbalization of positive feedback. The positive feedback text in this particular tutor

has very low informational value because of the auditory feedback messages that come first.

There is very little reason to attend to on-screen feedback text, because the student already

knows the answer is correct by the time the text appears. Learners are sensitive to these kinds of
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utilities, as suggested by the fact that reading rates for text that appears in the feedback window

are low after just one instructional section.

That is not to conclude, however, that positive feedback more generally has no utility.

The feedback sound files, both positive and negative, that are used in the Stat Lady tutor tend to

be witty and sometimes humorous. Perhaps better than any other feature of the tutor, they

capture the "personality" of Stat Lady, which might best be described as sassy. There are many

examples in the protocols in which students actually responded verbally to the auditory

feedback, as if they were talking to a person. They seemed to enjoy the feedback, especially early

on. Later in the tutor, however, after they had heard the entire pool of positive feedback sounds

many times over, students sometimes got impatient waiting for the feedback sound to finish

playing so they could get on with the business of doing the tutor. Thus, what our data really have

to say about the positive feedback is that students seem to enjoy the auditory feedback,

especially early in the tutor, but come to ignore the redundant positive text feedback.

Reading Time

Given that participants tended to show decreases in the proportions of total text they

read as they had more exposure to the tutor, we speculated that reading time could account for a

substantial portion of the remaining learning curve. Reading time was computed by estimating a

reading rate for each participant. In order to do this, we needed some text they were consistently

reading and for which we could obtain reliable time data. The Context portion of each scenario

served this purpose well, since our verbalization data showed that it was consistently read, and

also because each Context section is long enough (usually 3 or 4 sentences) to allow participants

to establish a reading pace. We divided the time spent reading Context by the number of Context

words actually read to arrive at a reading rate figure for each learner in each scenario, then
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averaged across scenarios to get all four participants’ individual reading rates. These were 250 ms,

300 ms, 391 ms, and 437 ms per word for the four participants.

By multiplying those reading rates by the number of words of each type of text

verbalized, we were able to estimate how much time each learner spent verbalizing on-screen text

during every scenario. These data, averaged across participants, are 94.5 s, 70.7 s, 54.6 s, and

49.7 s for the four scenarios, and they show that there is approximately a 45 s decrease in the

amount of time learners are reading text from the first to the last scenario. Looking back at the

data in Figure 3 marked in the legend as “Curr.Obj. Time: Coarse,” we see a 105 s decrease in

completion time from the 1st to the 4th Scenario. Thus, it turns out that the trend towards

decreasing text reading over scenarios is responsible for about 44% of the total improvement in

time required to complete the curriculum objectives.

The coarse measure of curriculum objective time in Figure 3 indicates a 105 s decrease in

completion time from the first to the fourth scenario. That improvement across scenarios is

reduced to 46 s in the bottom curve (Curr.Obj. Time: Fine), which has "lost in the interface" time

and reading time subtracted out. This means that 59 s (56 % of the change in the coarse-grained

learning curve) can be attributed to a combination of learning the interface (14 s), which is

reflected in changes in "lost" time, and adaptive changes in reading behaviors (45 s). By

subtraction, then, only 44% of that coarser measure is attributable to actual improvement in the

execution of the curriculum objectives.

Experiment 1 Discussion

The empirical work completed for Experiment 1 provides evidence for the dramatic

impact that the acquisition of knowledge of the learning environment and the pattern of activities

in the tutor can have on a performance measure like scenario completion time. Verbal protocol
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data showed that more than half of what would normally be considered a curriculum objective

learning curve was actually due to interface learning and adaptation. That is a striking result for

anyone, including ourselves, who would have been satisfied with the assumption that the learning

curve results almost entirely from the strengthening of curriculum objective skills.

One limitation in our results from Experiment 1 is that the reading time data rely on the

critical assumption that a lack of verbalization means a lack of reading. It is, of course, possible

that our subjects sometimes were reading the on-screen text to themselves and not verbalizing it.

This only has negative ramifications on the interpretation of our results, however, if the

proportion of read-but-not-verbalized text increases over the scenarios. If this were the case, the

actual proportion of the learning curve attributable to changes in reading behaviors would be

reduced. Although (in the absence of eye movement data) we can not rule out this possibility

definitively, we feel this account is unlikely, given the verbalization instructions to the

participants and the presence of the experimenter in the room.

Another limitation involves the verbal protocol participants themselves. Despite

confidence that our interpretation of the data is a fair one, it must be acknowledged that these

conclusions may not necessarily generalize to a different population of learners. The protocol

subjects had relatively high prior knowledge and learned what they did not already know so well

that we have to admit their "special" status as good learners. Would we actually see the same

dramatic impact of interface learning in a different population, or is this just an artifact of the

verbal protocol participants' skill level? It could be that less-skilled learners would have to

commit so much of their attention to learning the curriculum objectives that they would not have

the time or resources for also adapting to the interface. Another possibility is that providing the

concurrent verbal protocols changed the nature of their learning in such a way as to exaggerate the
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interface learning effect. Perhaps the impact of interface learning would be reduced in students

who did not have the additional burden imposed by the talk-aloud protocols. Concerns about the

generality of the results motivated a replication experiment, which we describe next.

Experiment 2

Experiment 2 is different from the first experiment in three complementary respects.

First, the students come from a more average population of learners who have considerably less

prior knowledge, more in keeping with the sort of population one would typically expect to be

using a tutor to learn about a new domain. Second, this is a larger sample, thus allowing for

greater confidence in the results. Third, participants in this experiment do not give verbal

protocols, so there is no chance of this requirement influencing their learning of either the

curriculum or the interface.

With no verbal protocols in Experiment 2, we were required to rely on the tutor log files

of student actions. Stat Lady was not originally designed to record data at the level of detail

necessary for our decomposition analysis, however. For this reason, it was necessary to modify

the data-recording code. This alteration to the tutor code is completely invisible to the user. It

does not affect the performance of the tutor in any perceptible way, but does allow for a detailed

investigation of changes in student behaviors. For example, the new computer log files provide

time stamps for the appearance of text on the screen, which allows for more accurate assessments

of the time students are attending to that text before they initiate problem solving. Therefore, we

can separate out text reading time from curriculum objective time.

The verbal protocol study described in Experiment 1 did more than teach us about the

impact of interface learning on performance. That study also led us to consider the implications

of our results for redesigning the tutor to make it a more efficient teaching system. We generated
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some hypotheses regarding just that issue and decided to test them out in a 2x2 factorial design -

resulting in four conditions with different versions of the tutor in each condition. This is not the

place for a full description of all of those conditions, as they are not critical for the purpose of

this paper.7 The important thing for our purposes here is that one of the conditions was a

Baseline condition, which was the original form of the tutor, the same as that used in Experiment

1. The data for Experiment 2 come strictly from students in that Baseline condition.

Method

Participants

The replication data come from a sample of 31 participants, all of whom participated in

this study at the Air Force Research Laboratory's TRAIN Lab at Lackland AFB, Texas.

Participants were hired through local temporary employment agencies and were paid $6 per hour.

They ranged in age from 17 to 37 years old, with an average age of 23. The sample was 35%

female and 65% male. All participants had earned at least a high school degree or an equivalency

degree (GED), and 7 of them had earned a college degree.

Materials

Equipment. All participants used a Gateway 2000 Pentium 100 computer with a 15"

color monitor, an extended keyboard, and a standard mouse. The TRAIN Lab is a data collection

facility with 30 computers arranged next to each other around the perimeter of the room. Each

machine occupies its own desk and is separated from the others by dividers. No audio or video

data were collected.

Software. Time constraints necessitated a change in the length of the curriculum. We

wanted to limit the time necessary to complete the study to one full 8-hour workday.

Completing as much of the tutor as our verbal protocol participants did, along with the pretest
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and posttest, in-processing time, breaks, lunch, and so forth, requires considerably more time

than that. One way to bring down completion time is to decrease the number of scenarios

required in each section. Another way is to decrease the number of sections. We would not want

to get too carried away with this latter proposal, however, since many of the results from

Experiment 1 involve sections 1 and 3, and those are the data we wish to replicate. Thus, it was

necessary to leave intact at least the first three sections of the tutor. In the end, the tutor was

modified so that all participants would complete three scenarios in each of the first three

sections, and then stop. The fourth and fifth sections were simply removed.

With the last two sections of the tutor gone, it would have been a waste of time to pretest

and posttest on the full curriculum, so we removed all test items specific to the last two sections.

In all other respects, the pretest and posttest were identical to the versions given to participants

in Experiment 1.

Procedure

Upon arrival at the laboratory, participants were randomly assigned to one of the four

tutor variant conditions mentioned earlier. Again, all of the data under analysis here are from

those people assigned to the Baseline tutor condition. Participants completed a demographic

survey, then the pretest, the tutor, the posttest, and a subjective experience survey. All work

was done individually.

Results

There are two questions to be addressed. The first regards how similar the new sample is

to the verbal protocol sample. Recall that it was our goal to find a different population, so as to

test the generalizability of the results from Experiment 1. The second question is whether we get

a replication of the decomposition results.
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Population Differences

Our first global performance measures for assessing population differences are pretest and

posttest scores. Participants in Experiment 2 had pretest scores averaging 52% (SD = 12.5) and

posttest scores of 84% (SD = 9.7). The pretest scores show that participants in Experiment 2

possessed considerably less prior knowledge than did those in the first experiment. With gain

scores averaging 32 percentage points, they also learned quite a bit, but their posttest scores

remain well below those of the verbal protocol participants.

Two other global measures of performance are average scenario completion times and

error rates. Both variables will be presented as averages over sections 1 and 3. Recall that Section

2 was not included in our analyses of the verbal protocol data, so we exclude it in these analyses

as well, for accuracy in the comparison. Summary statistics for these data are displayed in Table

5. The new participants made more errors, and thus were slower, than the verbal protocol

participants. Clearly, the new population is sufficiently different from the verbal protocol

participants to make replicating the interface adaptation results a worthwhile exercise. Will it be

the case that changes in low-level interactions with this tutor also account for a high percentage of

the learning curve in this new population?

Learning Curve Decomposition

To answer this question, we will provide the same style of decomposition that was

offered for the data from Experiment 1. The primary difference between the two sets of data,

aside from their being from different populations, is that the method for measuring time is

different in some cases. This is because data analysis in the previous experiment relied largely on

the use of videotapes, whereas in this experiment, we are working strictly from computer traces

of the participants' behaviors. The measurement methods for each variable will be explained in
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turn, as we complete another componential analysis of the learning curve.

Scenario Completion Time

These data include all scenario activities except for filling in the values for the variable and

frequency columns of the worksheet and a number sorting task at the beginning of the section 1

scenarios. These activities are omitted due to technical complications in extracting accurate error

time data. This amounts to the removal of only 5 of the 28 curriculum objective activities in

sections 1 and 3, so the vast majority of the curriculum is included in all subsequent analyses.

However, it happens that these five are fairly time consuming activities. As a result, the total

completion times are deflated. The only implication of this is that it will appear that participants

at the TRAIN Lab were finishing the scenarios somewhat faster than they actually were. This is

not significant with respect to the decomposition analysis, because it is the proportion of the

learning curve that is attributable to different time variables that is important, and not the

absolute values of those variables. Scenario completion time averages with those activities

omitted are 497 s (154 s), 339 s (86 s), and 280 s (72 s) for scenarios 1, 2, and 3, respectively.

These values provide us with starting points for the decomposition, which are plotted at the top

of Figure 6.

Error State Time

In this experiment, we have to rely exclusively on patterns of incorrect and correct

answers to determine the length of error states. This process is really very simple. The beginning

of an error state is signaled by the first mouse click that initiates a response which is incorrect.

The end of that error state is signaled by the next mouse click that initiates a response which

proves to be a correct answer. The mean time spent in error states by participants in Experiment

2 was 143 s (93 s), 55 s (43 s), and 27 s (33 s), across scenarios 1, 2, and 3, respectively.
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Subtracting this from Total Time, we arrive at Error-Free Time in Figure 6.

Peripheral Activity Time

To review, the peripheral activities, which did not involve curriculum objectives, included

reading the context at the beginning of the scenario and retrieving data from the Number Factory.

Mean peripheral activity times for these participants were 79 s (31 s), 60 s (15 s), and 53 s (14

s) for scenarios 1-3. That is a change of 26 s in peripheral activity time over the course of the

three scenarios. It turns out that this population of learners shows a substantial decrease in the

time spent on the context page at the beginning of each scenario. This suggests that some people

stopped reading the contexts, or at least stopped reading them as carefully. These data also show

a slight decrease in the time spent in the Number Factory, which may be indicative of some initial

confusion regarding the use of the Number Factory in the first scenario. Despite the trends in

these data, it remains important to remove peripheral activity time from the total time, in order to

arrive again at the coarse measure for Curriculum Objective Time, plotted in Figure 6. There is a

change of 76 s from the 1st to the 3rd scenario. How much of this change is attributable to

interface learning, rather than curriculum learning?

Reading Time

In the absence of verbalizations, our procedure for computing reading time is considerably

different in this experiment. The general flow of activity in the tutor, which is repeated for every

curriculum objective tested, is that some instruction text appears on the screen telling the student

what problem to work on next, the student does that activity until a correct answer is entered,

then some feedback and more instruction text appear - again suggesting a next course of action to

the student. At every step along the scenario, it is possible to assess text reading time as the time

from the appearance of text on the screen until the next mouse click signaling the initiation of
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problem solving.

Unfortunately, it is not feasible to do the text-type analysis that we performed in

Experiment 1. This is because it is very often the case that more than one text type appears on

the screen at any given point in time. For instance, after a correct response, it always is true that

positive feedback and instruction text appear simultaneously. Therefore, it is impossible to

determine whether the time between the appearance of that text and the next mouse click should

be assigned to the feedback or to the instructions. This is not really a significant loss, however,

since the trend in Experiment 1 was towards decreasing reading in almost every case, and we

ended up collapsing across them all in the end, anyway.

It also is important to note that "lost" time, as defined for the previous experiment, is

subsumed in this measure. In the verbal protocol data, every single example of being lost in the

interface occurred just after the appearance of some instruction text and before the subsequent

mouse click. Because participants in Experiment 2 are using the same interface, the same is likely

to be true. Thus, our "reading time" for this experiment is really a conjunction of reading time and

lost time from Experiment 1.

The Reading Time data, which actually measure the development of interface knowledge

and adaptation, are 130 s (40 s), 96 s (31 s), and 81 s (28 s), for scenarios 1-3. This is a 49 s

drop. There is indeed quite a bit of interface learning going on in this population.

The really important question, of course, is how much of the speedup in this coarse-

grained measure of curriculum objective problem solving is actually attributable to changes in

low-level interactions with the tutoring environment? Looking back at the coarse measure of

curriculum objective performance, we see that there was a 76 s change. Apparently, 49 s of this

is attributable to interface learning. Note that the bottom curve in Figure 6, which has interface
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learning subtracted out and is labeled "Curr.Obj. Time: Fine," has a considerably more shallow

slope. We conclude, therefore, that interface learning accounts for fully 64% of the change in the

more coarse-grained assessment of curriculum objective completion time. The impact of interface

learning is even more dramatic in this second population of learners.

A Model of Learning about the Learning Environment

The learning processes that we believe provide a reasonable account for the data from

both studies are: (1) the acquisition of knowledge regarding the sequence of activities in the

scenarios - which allows for less reading of instruction text and more recall from memory, and (2)

adaptive changes in reading behaviors, such that redundant and uninformative text comes to be

ignored more often. This interpretation would be bolstered if we could demonstrate that (a) a

detailed implementation of these processes actually does produce these kinds of qualitative and

quantitative changes in behaviors, and that (b) these processes do not require any special-

purpose learning mechanisms. Such a demonstration requires a running computational model that

can reproduce the data and that is built within a computational architecture that posits a basic set

of general learning mechanisms. An increasingly common means of creating such models is

through the use of cognitive architectures.

Gray, Young, and Kirschenbaum (1997) recently commented on the growing foothold

such architectures have in bringing cognitive theory to bear on HCI issues. In their special issue

on the topic of "Cognitive Architectures and Human-Computer Interaction" there are articles on

four running architectures: ACT-R, EPIC, LICAI, and Soar. We have used one of these, ACT-R

(Anderson & Lebiere, 1998), to develop a production system model that not only matches the

verbal protocol and latency data from Experiment 1, but does so using the processes postulated

above. We describe this model below. It serves as a proof-of-concept for these interface learning
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processes, and also as a demonstration of the applicability of the ACT-R architecture for

increasing understanding of phenomena occurring at the interface of the human and the computer.

The ACT-R Model8

For our purposes, it would be impractical to model the process of completing the entire

Stat Lady tutor. Instead, we select a representative activity and model the learning of this

activity, as a proof-of-concept. The activity chosen to be modeled is the first step in the process

of completing a frequency distribution - filling in the column headings. This particular portion of

the tutor was chosen for two reasons. First, it is a fundamental skill taught at the beginning of the

Stat Lady tutor. Later sections build on this knowledge in teaching the construction of more

complicated distributions. Second, this activity can be characterized generally as part of a

"spreadsheet" procedure, and is similar to the sort of actions required of students in the PUMP

Algebra Tutor (Koedinger, Anderson, Hadley, & Mark, 1995). Thus, a working model of this

activity in Stat Lady may be directly relevant to explaining students' changing behavior in other

learning environments.

Students working with Stat Lady proceed through a series of steps in order to accomplish

the goal of completing the frequency distribution. A broad characterization of the process, as it is

done in Section 1 of the tutor, is that it consists of two main steps: (1) Filling the Column

Headings and (2) Filling the Frequency Column.9  Table 3 contains a synopsis of the procedure

for Filling the Column Headings (see Figure 4 for a representation similar to what is on the screen

when students begin this activity). In all, there are 17 separate pieces of text that appear during

this activity, accompanied by 8 overt actions involving the mouse. The entire "column headings"

activity is mouse-driven.

Data to be Fit. The goal is for the model to approximate the data from the verbal protocol
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participants in Experiment 1. Generally speaking, we would want the model to (a) capture the

sort of verbalization trends we see at the scenario level (i.e., decreasing attention to most of the

text with practice, and generally low attention to text in the feedback window), and also (b) to

decrease its performance times in a way comparable to that of our protocol participants. Table 4

contains the verbalization counts and latencies the model is intended to replicate for the activity

of filling in the column headings. The verbalizations are frequency counts of verbal protocol

segments coded as the reading of on-screen text during this activity, and latencies are in seconds.

Note that the same trends hold at the level of this single tutor activity as at the more gross

scenario level of analysis: both verbalizations of text and solution times decrease with practice.

Model Overview. The model actually consists of two parts. First, there are the

productions and declarative knowledge chunks which constitute the cognitive skill of performing

this task. In ACT-R, productions and chunks are the atomic components of cognition (Anderson

& Lebiere, 1998). A production is an IF-THEN condition-action statement which serves as the

procedural basis of cognitive skill. Productions produce action. A chunk is a proposition

containing factual knowledge, such as the fact that Pittsburgh is in Pennsylvania.

The second part of the model is a computer simulation of the Stat Lady tutor that

provides information to the cognitive model (text to read, buttons to click, etc.) just as the real

Stat Lady tutor provides information for students to process. The Stat Lady simulation is

written in Lisp as a list of chunks representing text, buttons, windows … everything available on

the tutor interface. This presents information in a simplified format that the cognitive model can

attend to and parse. When the model attends to something in the simulation, it is akin to a

student attending to some on-screen information. The information is then taken to be represented

internally as a declarative chunk by the model.
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Knowledge Representation. The model makes the assumption that, at each step along the

way, learners have to either retrieve the next action from declarative memory or read on-screen

text to find out what to do next. The following production notes that the model does not know

what to do next and then sets a subgoal to find out what that step should be:

Figure Out What To Do Next
IF the goal is to complete the tutor,

and the previous action is known
and the appropriate current action is not known,

THEN push a subgoal to get the current action that follows the previous action

With that subgoal set, the model then chooses among productions for (a) scanning a region of the

screen for informative text or (b) retrieving the next step from declarative memory. There are two

screen scanning productions, one for the instruction window and one for the feedback window.

These are the two locations where most of the text occurs. The production for scanning the

instruction window looks like this:

Scan Instruction Window
IF the goal is to get the next action
    and the previous action is known
    and the appropriate next action is not known,
    and I am not currently attending to information on the screen,
THEN push a subgoal to scan the
          instruction window

The alternative to reading the next step off the screen is to retrieve it from memory.  Here is the

retrieval production:

Retrieve Next Action
IF the goal is to get the current action
    and the previous action is known
    and the appropriate current action is not known,
    and I am not currently attending to information on the screen,
    and there is a chunk in memory for the
          appropriate current action,
THEN pass that memory to the current goal
          as the appropriate current action
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The first time through a scenario, the model does not have any chunks in memory for the

appropriate next actions, just as a person who had never completed the tutor before would have

no knowledge of the sequence of activities. The model is required, therefore, to read a good deal

of on-screen text during the first scenario.10 Reading instruction text achieves the subgoal of

finding the next action to be performed, and this subsequently results in the setting of a new

subgoal to perform that action. After the action is completed and that subgoal is popped, ACT-R

automatically creates a chunk in declarative memory that pairs the current action with the

previous action, because they were both present in the goal chunk of the subgoal that was

popped. This is how the model acquires knowledge of the sequence of activities involved in

completing a scenario. To get an idea of what the representation for these "episodic" memories is

like, here are a couple of examples:

click-red-?
   isa action
   previous sort-descending
   current click-red-?

enter-x
   isa action
   previous click-red-?
   current enter-x

Once the first scenario is completed, this knowledge is then available for retrieval on subsequent

scenarios, which allows for decreases in reading behavior. The next action to be taken can be

retrieved from memory instead of deduced from instruction text.

While all of this declarative knowledge acquisition is taking place at the symbolic level,

there are also some sub-symbolic changes going on. Specifically, this is the tuning of parameters
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which control the selection of productions. In ACT-R, choice is determined by comparing the

expected gain of all productions that match the current goal and selecting the one with the highest

expected gain. The expected gain of a production is determined by a number of factors. The most

important ones in this model are the prior history of success and the prior history of failure when

that production has fired in the past. Success and failure are assigned with respect to whether the

current subgoal has been successfully achieved. Any productions that fire during the successful

completion of a subgoal acquire “success” and those that fire during unsuccessful subgoal

completion acquire “failure.” As the ratio of a production’s successes to its failures increases

(more successes), the expected gain of that production increases. Similarly, as that ratio decreases

(more failures), the expected gain decreases.

There are a number of different productions for reading different types of text on the

screen: descriptive instruction text, directive instruction text, feedback text, and so on. The

decision to use different productions for reading each type of text is based on the observation

that the relative locations of these different text types is very consistent throughout the tutor.

For instance, descriptive instruction text (e.g., “You finished the first column.”) precedes the

directive text (e.g., “Now click on the red question mark in the second column and enter the

correct column heading.”).  Although we have no direct evidence for this, it is consistent with the

pattern of results to assume that students are sensitive to the general location of text that is

typically useful and also to the general location of text that is typically not useful. By using this

particular representation, it is possible to capitalize on ACT-R’s expected gain computation as a

mechanism for directing visual attention. Only directive instruction text contains directions for

the next step, so productions for reading text of this type are marked as “success” productions.

This is how the model knows the subgoal of getting the next action off the screen has been
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achieved successfully. Productions for reading other types of text are considered “failures” of the

subgoal to find out what to do next. These successes and failures in attempting to read

information about what to do next are automatically taken into account each time ACT-R makes

a decision about which production to fire next. It is in this manner that the model quickly

develops a bias against reading anything but instruction text, much as the participants did.

The model does not include an explicit representation for eye movements or motor

movements. The time required for such actions is built into the effort parameter in the

productions. This design is consistent with the fact that this is intended primarily as a cognitive

model, and not as a model of perceptual or motor processes.

Model's Performance. Having established the basic structure of the model, the critical

question now becomes whether it behaves as the human participants behaved. In order to allow

for changes in performance with practice, we ran the model through the same scenario

representation four times. Note that this is not exactly identical to the situation the human

learners were in, since they did a different scenario each time, but the scenarios are all similar

enough that this serves as a fine approximation. Looping through the scenario four times provides

an equal amount of data as would be provided by one of our protocol participants. To allow for

some stochasticity, noise is added into the model’s production selection procedure. Therefore, in

order to get a fair sense for the central tendency of the model’s behavior, we simulated 100

subjects and averaged over their results to get the model’s data.

The model's verbalization and latency data are presented in Table 4, and the latencies are

graphed in Figure 7. As is evident there, it performs in a manner similar to what we see in the

verbal protocol participants. As a first comparison between the model and the data, note that the

model does produce the desired verbalization trend with regard to text reading. For all three text
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types there is less reading across scenarios. The model produces this behavior, a decreasing

overall reading trend, through the acquisition of declarative knowledge for the order of events in

the scenarios, which allows it to attend less to on-screen text over time.

As a second comparison between the model data and the human data in Table 4, note that

the relative text reading rates produced by the model are comparable to those seen in the protocol

data (e.g., less reading of feedback text than instruction text). The model produces this second

result, the relative reading rates of different text types, through sub-symbolic tuning of the

parameters which control conflict resolution.11

A final comparison between the model’s behavior and the data focuses on the latency data

in Figure 7. Note that the latencies produced by the model are similar to those produced by the

protocol participants. This learning curve falls naturally out of the two learning processes just

described.12

Both qualitatively and quantitatively, the match of the ACT-R model’s behavior to the

human data is quite satisfying. The model demonstrates explicitly that the hypothesized interface

learning mechanisms can account for the data in Experiment 1. The model uses standard ACT-R

learning and selection mechanisms to store information on the sequence of activities as declarative

knowledge, then adapt its reading preferences once that declarative knowledge is available to

direct action. These are not special-case mechanisms designed to achieve a match just to these

data. They are very general learning processes that were already assumed to exist in the ACT-R

cognitive architecture, and they produce the same quantitative and qualitative changes in behavior

we saw in the verbal protocol participants.  The characteristic that distinguishes this model of

learning to interact with a computer-based tutor from most other production-system-based

accounts is the important role of declarative knowledge acquisition and the effect that has on
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problem solving time.

Summary and Conclusions

Newell and Simon (1972) wrote:

Just as a scissors cannot cut paper without two blades, a theory of

thinking and problem solving cannot predict behavior unless it

encompasses both an analysis of the structure of task

environments and an analysis of the limits of rational adaptation to

task requirements. (p. 55)

We think this admonition applies to the understanding of learning from computer tutors.

To really understand what is happening, we need to attend carefully to the structure of the tutor

interface, and the way learner behaviors change in that interface, and not just content ourselves

with measures of posttest gain on curriculum objectives and improvements in global completion

times. We have found that many of the subtleties in the learning that is taking place are not

reflected in these coarse measures.

Any learning experience must take place in some learning environment. The student's

facility in navigating through that environment is going to determine the amount of overhead they

encounter in achieving curriculum objectives. So even if we place no value on learning the

environment per se it behooves us to understand the nature of how students learn about that

environment. We have been looking at a particular computer interface, and have shown that our

results generalize across different populations of students.

In the two experiments, 56% (Experiment 1) and 64% (Experiment 2) of students' error-

free speed-up in problem solving was attributable to interface learning, rather than curriculum

learning. Two processes appear to be responsible for this interface learning: the acquisition of
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knowledge of the sequence of actions, which makes reading the instructions unnecessary, and

adaptation to more useful portions of the tutor interface so redundant information can be ignored.

Generalizability and Interpreting Improvement

We have not yet addressed the issue of whether our results are specific to the Stat Lady

tutor. Although it is a fine tutor in its own right, other instructional designers are likely to be

interested in the extent to which our results have implications for interpreting performance

improvements in their own learning environments. We believe that it is not the case that the

conclusions we have reached here are relevant only to learning from Stat Lady. There is evidence

that significant interface learning is going on in other tutors, as well. Earlier we cited the data from

Anderson et al. (1989), where a similar conclusion was reached regarding learning from the LISP

Tutor, and Bishay (1996) provided evidence that interface learning impacts performance in the

PAT Algebra tutor (Koedinger et al., 1995). Others have reported changes in reading behaviors

that, as we conclude here, result from increased familiarity with the domain and with the demands

of the learning environment (Harvey & Anderson, 1996; Kieras & Bovair, 1986).

The extent to which interface learning, as a component of the overall learning curve,

should be important to any given instructional designer depends entirely on the overhead that the

interface imposes on anyone trying to carry out the curriculum objectives. It should be the case

that the less burden the interface imposes, and the more transparent it is in the problem solving,

the less critical it is to take into consideration when interpreting improvements in performance

time.

A related issue is how one goes about distinguishing the interface from the curriculum.

One way to think about this is in terms of transfer. Designers of instructional technology are

generally interested in whether students will transfer what they have learned in their particular



The Curriculum and the Interface     41

computer-based tutor to some alternative environment, like a job site, for instance. The

knowledge and skill those students are supposed to apply in the new environment is the

curriculum. Everything else is interface. For instance, in the Stat Lady tutor, one piece of

curricular knowledge that is useful for constructing a frequency distribution table is that the

symbol 'X' is a standard symbol for the variable column. We would want a student who has

completed the Stat Lady tutor to know that and be able to use it in a different environment, like

making a frequency distribution with paper and pencil. Knowledge of the location of the Fill

Column button, which is interface knowledge, is irrelevant in the paper and pencil environment.

Implications for Those Interested in Curriculum Learning

Primarily implicitly, but sometimes explicitly, we have made a distinction between those

researchers interested in issues surrounding curriculum learning and those researchers who are

more interested in studying interface learning. Obviously, these interests are not mutually

exclusive. It occurs to us that the results presented here have implications for scientists with

either or both of those interests. This section discusses issues relevant to curriculum learning, and

the next section discusses issues relevant to interface learning.

The critical component which distinguishes intelligent tutoring systems (ITS) from other

computer-based instructional systems is the presence of a student model  (Greer & McCalla,

1994). Student models are a special case of user models, in that they are specifically developed

for monitoring knowledge and skill development in instructional domains. They are used for

making real-time decisions regarding promotion through the curriculum, problem selection, hint

generation, and feedback generation. There are many different approaches to student modeling.

One specific approach, which has proven successful in a number of ITS, is to create the student

model from a production system cognitive model of the task similar to the one we developed
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earlier in this paper. These are process models that run in real time along with the student, and

which make it possible to match the step-by-step actions of the student with production firings

in the model - a process called model tracing.

This research has implications for the use of student protocols in model tracing to infer

what students know. It shows that student performance can be speeding up because of interface

learning and this may or may not mean that they are gaining further mastery of the curriculum

objectives. To separate out interface learning from curriculum learning requires that we do more

fine-grained analysis than simply measuring total time and total errors for each curriculum

objective activity.

This addresses an issue mentioned by VanLehn (1988), regarding the appropriate grain

size for student models:

There is a tacit assumption that tutoring based on fine-grained student models will

be more effective than tutoring based on coarse-grained models. No one has

attempted to check this assumption. (p. 75)

Our results clearly suggest that a fine-grained student model, say one that distinguishes between

curriculum objective activities and interface activities, would be a more accurate student model.

Such a fine-grained student model could use latency information (chronometric data) to estimate

learning rate. VanLehn goes on to comment on the use of chronometric data:

The amount of time between the student's actions is one type of information that

is available for free but that so far has been ignored by every ITS I know of.

Chronometric data has been used in psychology for years as a basis for deciding

between potential models of human cognition. It would be interesting to see

whether chronometric data would favor fine-grained student modeling. (p. 75)
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We would like to suggest that a fine-grained student model, which used chronometric data and

that could distinguish between curriculum and interface learning, would be a more accurate model

of student learning of the curriculum.

The difference between fine- and coarse-grained models has implications for predictions

of retention and transfer. In two experiments we found that a substantial portion of the speedup

in performance was due to interface learning. Coarse-grained measures of performance, which

conflate this interface learning with curriculum learning, show a faster learning rate (steep curve).

Fine-grained measures, which more accurately separate these two kinds of learning, show a

slower learning rate for the curriculum objectives (shallow curve). A faster learning rate suggests

students have learned the material better and that they will exhibit better retention and more

likely transfer to a new situation. Since a large part of this speedup is not due to curriculum

objectives, a coarse-grained analysis could lead to over-prediction of student knowledge and skill.

The slower learning rate of the fine-grained analysis, however, suggests relatively less retention

and transfer. This learning rate is based on a more accurate analysis of actual curriculum objective

learning; hence, is not exaggerated by additional interface learning. This highlights, once again, the

likely advantage of finer-grained modeling - more accurate predictions of future performance.

Implications for Those Interested in Adaptation to the Learning Environment

The focus of this special issue is on using cognitive models to improve HCI. The focus of

our project has been on describing the relative contributions to the learning curve of  learning

about the learning environment and learning the curriculum, and also on accounting for the data

with an ACT-R model. For those interested in improving HCI, and for those interested in

interface learning per se, or even in conjunction with curriculum learning, the results presented in

this paper are potentially interesting in at least three ways. First, the fact that a substantial
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portion of the learning curve was attributable to increasing familiarity with the interface affirms

the importance of the human-computer interface as a research platform. The field needs to

continue to expand the understanding of how people use, learn about, and adapt to computer

learning environments.

Second, we have provided a set of measurable behaviors which serve as indicators that

something is being learned about the learning environment. These behaviors include the following:

•  A reduction in the reading of instructional text for what to do next.

•  A reduction in the reading of redundant/uninformative text.

•  A reduction in uncertainty regarding how to implement the next action in the interface.

We have interpreted these behaviors as stemming from a corresponding set of learning processes

that can be easily captured by the ACT-R cognitive architecture:

•  Acquisition of declarative knowledge for a required sequence of actions.

•  Adaptive production tuning to facilitate efficient goal completion.

•  Acquisition of declarative knowledge for tools available in the interface.

At an abstract level, these learning mechanisms are applicable in any learning context.

That is, the adaptive nature of human cognition makes it a certainty that one or more of these

types of learning will take place whatever the environment, whatever the interface.

Finally, these results and the accompanying ACT-R model should be of interest to those

who stand for the possibility of using executable simulations as surrogate users for design

evaluation. In the context of tutoring system design, a clear implication of these results is that

surrogate user simulations should be able not only to learn the curriculum, but also to learn about

the learning environment.
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Footnotes

1 We will use the terms “interface” and “learning environment” interchangeably

throughout this paper. In both cases, we are referring to the material that is visible on the

computer screen.

2Ericsson and Simon actually refer to short-term memory, rather than working memory.

3 The tutor provides the correct answer after the third error.

4A caveat to this statement is that the Number Factory is meant as an analogue to the

process of collecting data - which, of course, generally precedes statistical analysis.

5Pilot assessments with an earlier version of the tutor showed that subjects often did not

note the appearance of a button when they were immersed in the column filling activity described

in this example. To facilitate their attending to it, the button was designed to flash in alternating

red and gray when it first appears. It’s striking that subjects often still do not see it immediately.

6 We do not include a separate measure of negative feedback because the verbal protocol

participants committed so few errors that it is impossible to pick up any trends in their attention

to the negative feedback text.

7 A complete description of the tutor variants and the results is available in Gluck, Shute,

Anderson, and Lovett (1998).

8 The reader may supplement the following description by examining, modifying, and/or

running this model directly: http://act.psy.cmu.edu/ACT/ftp/models/freq-dist/freq-dist.html

9Filling the variable column is accomplished with the click of a button, and so we don’t

include it as a primary subgoal in the process of completing the frequency distribution, at least

not in this section of the tutor. In other sections, it is a more critical part of the process.
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10This model does not do natural language parsing or comprehension. It “reads” text in an

abstracted sense. Each piece of text is represented as a chunk with a slot for its semantic content.

The model reads by extracting this slot value (the semantic content) from the text chunk.

11 Conflict resolution is ACT-R's mechanism for selecting one production to fire when

multiple productions match the current goal.

12 Increasing chunk activations and production strengths are also typically assumed to

contribute to decreasing latency curves. Although these could easily be added, the model does not

bother with these learning mechanisms, on the basis that they are not necessary (in this case) to

achieve the desired behaviors and would simply complicate the model.
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Table 1

Coding Categories Used in the Verbal Protocol Analysis of On-Screen Attention

Text Type Verbalization Description Example

Instruction in

Instr. Window

Read First-pass read of Stat Lady

instructional text

“Now follow the directions

at the top of the exercise.”

Re-Read Subsequent reads of

previously-read instr. text

“... follow the directions

...”

Paraphrase Reads some smaller segment

of instruction

“… follow directions at the

top ...”

Instruction in

Fdbk Window

Read Reading instructions in the

feedback window

"Click on the Fill Column

button."

Re-Read Subsequent reading of

instructions in fdbk. window

Paraphrase Reading a reduced portion of

instructions in fdbk. window

Question Read Reading the entire question for

the first time

“What age did Dr. Young

not see?”

Re-Read Subsequent reads of

previously read question

Paraphrase Reads a reduced section of the

question

Feedback Read Reading feedback “Isn’t that special?”; "You

are correct!"

Re-Read Subsequent reads of

previously read feedback

Paraphrase Reads a reduced portion of the

positive fdbk.
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Table 2

Performance Data from Verbal Protocol Participants- Averaged over Sections 1 and 3.

Scenario

1 2 3 4

Dependent Measure M (SD) M (SD) M (SD) M (SD)

Completion Time 543 (202) 435 (166) 416 (170) 422 (170)

# Errors 2.4 (3.5) 1.8 (2.9) 1.1 (2.8) 1.3 (1.6)

Note: Values in parentheses are standard deviations. Completion time is measured in seconds.
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Table 3

Synopsis of the Procedure for Filling the Column Headings

(Three instruction sentences appear in the instruction window. Simultaneously, data and an empty

frequency distribution appear on the right of the screen, in the activity window. There is a red

question mark in the header for the variable column, and a gray one in the header for the

frequency column.)

1. Participant clicks on the cell containing the red ?, which brings up a Symbol Pad.

2. Participant uses the Symbol Pad to enter an X.

3. Participant uses the Symbol Pad to click Done.

(After auditory positive feedback, text feedback appears, accompanied by instructions to click on

the Fill Column button. Simultaneous with the appearance of the feedback, instructions come up in

the instruction window to click on the Fill Column button. Note that there are redundant

instructions on the screen at this point.)

4. Participant clicks on the Fill Column button.

(No positive feedback appears, but redundant text appears in both the instruction window and the

feedback location, telling the participant to click on the red ? (now in the frequency column) and

enter the correct symbol.)

5. Participant clicks on the red ?, which brings up the same Symbol Pad again.

6. Participant uses the Symbol Pad to enter an f.

7. Participant uses the Symbol Pad to click Done.

(Feedback appears, accompanied by two instruction sentences. One says that is the correct

symbol for the frequency column, and the other says to fill the table by clicking on each cell and

enter the answer. Simultaneously, redundant text appears in the instruction window. The text says

to click on each cell and enter the answer.)

8. Participant clicks on a cell in the frequency column to start entering values.

(This is the point at which we have a time-stamp from the tutor indicating that the column

headings are complete. It is also at this point that the model forces goal popping to end its run.)
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Table 4

ACT-R Model (in parentheses) Match to Participant Data for Filling in the Column Headings

Scenario

1 2 3 4

VP's (Model) VP's (Model) VP's (Model) VP's (Model)

Verbalizations

Instruction 4.00 (4.88) 2.00 (2.11) 2.00 (1.55) 1.75 (1.37)

Inst_Pos 1.75 (1.36) 1.00 (  .69) .25 (  .53) .50 (  .48)

Posfeed 1.50 ( 1.12) .75 (  ..36) .25 (  ..35) .25 (  ..28)

Latencies 53 (58) 38 (35) 36 (31) 30 (30)

Note. "VP's" - verbal protocol participant data. "Model" = model performance data.

"Instruction" = instruction text in either the Instructional Window or Activity Window.

"Inst_Pos" = instruction text in the Feedback Window. "Posfeed" = positive feedback text

anywhere on the screen. Latencies are in seconds.
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Table 5

Performance Data from Experiment 2- Averaged over Sections 1 and 3.

Scenario

Dependent Measure 1 2 3

Completion Time 754 (248) 537 (146) 439 (122)

# Errors 7.9 (5.1) 4.9 (3.6) 3.0 (2.7)

Note: Values in parentheses are standard deviations. Completion time is measured in seconds.
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Figure Captions

Figure 1. Structural representation of the Stat Lady Descriptive Statistics Tutor: Data

Organization and Plotting Module (Shute & Gluck, 1994).

Figure 2. Screenshot of the Number Factory.

Figure 3. Scenario completion time data from verbal protocol participants. Data are averaged over

Sections 1 and 3. The graph is a cumulative subtraction of dependent measures as one moves

from top to bottom. “Total Time” = Total scenario completion time; “Error-Free Time” =

completion time computed after Error Time is subtracted from Total Time; “Curr.Obj. Time-

Coarse” = completion time computed after time in peripheral tutor activities (Context and

Number Factory) is subtracted from Error-Free Time; “Curr.Obj. Time-Coarse” = completion

time after Lost Time and Reading Time are subtracted from "Coarse" time.

Figure 4. Skeletal representation of the Stat Lady interface and sample text.

Figure 5. Verbalization rates for all four text types. Data are averaged over Sections 1 and 3.

Figure 6. Scenario completion time data from TRAIN participants. Data are averaged over

Sections 1 and 3. The graph is a cumulative subtraction of dependent measures as one moves

from top to bottom. “Total Time” = Total scenario completion time; “Error-Free Time” =

completion time computed after Error Time is subtracted from Total Time; “Curr.Obj. Time-

Coarse” = completion time computed after time in peripheral tutor activities (Context and

Number Factory) is subtracted from Error-Free Time; “Curr.Obj. Time-Coarse” = completion

time after Lost Time and Reading Time are subtracted from "Coarse" time.

Figure 7. Comparison of model latencies with verbal protocol participant latencies.
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Tutor

Section 1    Section 2    Section 3    Section 4    Section 5

Instruction      Scenario 1      Scenario 2     Scenario 3     Scenario 4      Scenario 5 

Context     Number Factory     Problem Activities/Q’s

Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 6.
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Figure 7.
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