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P roblem solving: Increased planning with practice

Action editor: Gregg Oden

*Glenn Gunzelmann , John R. Anderson
Department of Psychology, Baker Hall, 342-C, Carnegie Mellon University, Pittsburgh, PA 15213,USA

Received 26 March 2002; accepted 26 August 2002

Abstract

Two experiments using two isomorphs of the Tower of Hanoi show that participants increase the amount of planning they
do as they learn that it increases problem solving efficiency. In addition, competition among different approaches emerged as
participants gained more experience with the task, with an optimal strategy gradually replacing a less effective, though easier
one. It is hypothesized that the competition among approaches is mediated by the costs incurred in terms of the number of
moves needed to solve the problems. An ACT-R model of participant performance is used to validate this hypothesized
mechanism and to examine many of the details of participants’ performance. This model corresponds closely to the observed
data, from overall performance in terms of number of moves to details of participants’ strategy choices and variability in
strategy use among individuals.
   2003 Elsevier Science B.V. All rights reserved.
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1 . Introduction sequences of moves to solve novel problems. There
are two potential reasons for this initial lack of

Planning is a fundamental part of problem solving planning. Firstly, in many cases simply understand-
behavior. While it is true that reaching the goal can ing and representing the problem is challenging,
be as simple as choosing moves one at a time to meaning that working memory resources are not
bring the problem closer to a solution (i.e. hillclimb- available for doing planning. Secondly, individuals
ing), many problems can be solved optimally only by may fail to plan ahead because the actual utility of
planning longer sequences of moves. Despite the that extra effort is not clear. In this case, individuals
potential benefits of planning ahead, participants in will increase their degree of planning only to the
experiments generally do not begin by planning long extent that it has a notable benefit in terms of solving

the problem. If more planning is rewarded with
faster solutions or with solutions that require fewer
moves, then it is more likely that the degree of
planning will increase.*Corresponding author. Tel.:11-412-268-8115; fax:11-412-
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two things happens. Firstly, there may be a limit on 1 .1. Planning in the Tower of Hanoi
how much planning is useful in the problem. That is,
there may be a point where more planning does not The Tower of Hanoi has served as a useful task in
impact solution efficiency. In this case, the cycle will problem solving research for a number of years (e.g.
continue only until that optimal level of planning is Hayes & Simon, 1974; Kotovsky, Hayes, & Simon,
reached. Alternatively, they may reach the point 1985). The task itself consists of three pegs upon
where further planning would exceed the limit of which are placed any number of disks (three in these
working memory capacity. To overcome this internal experiments). The goal is to change the disk arrange-
limit on planning, task-specific strategies need to be ment from some given start state into some particular
formed to reduce the cognitive load of planning goal state. There are three rules that constrain
ahead. movement through the problem space of the Tower

By closely examining shifts in move sequences as of Hanoi. The first rule states that only one disk may
a participant gains experience with a task, inferences be moved at a time. The second rule indicates that if
can be made about how planning behavior is being more than one disk is on a particular peg, then only
extended and refined in order to optimize solutions. the smallest disk may be moved. The final rule is
These transitions may be fairly abrupt (e.g. Anzai & related to the second, and says that a larger disk may
Simon, 1979), or show a noisy shift to more efficient not be moved to a peg where there is a smaller disk.
strategies that produce gradual improvement over a Research on the Tower of Hanoi has identified the
number of trials. Individuals may solve one problem sophisticated perceptual strategy (disk subgoaling)
quite successfully, only to produce a less efficient described by Simon (1975), or some variant, as
solution to a subsequent problem (Lamaire & Reder, particularly common and successful. This strategy is
1999; Reder, 1982; Siegler, 1987; VanLehn, 1991). an instantiation of means–end analysis, and starts
This latter evidence suggests that participants may be with the largest disk out of place. In the event that
uncertain about how much planning to do in par- the largest disk cannot be moved directly to its goal
ticular situations. It is only through experience and peg, a subgoal is created to move the largest
practice that this uncertainty can be resolved. As it blocking disk out of the way. If this disk is blocked,
is, individuals will tend to plan more optimally based further subgoals are created until a disk can be
on the current problem situation, resulting in im- moved. Eventually, the original (largest) disk can be
proved performance on a variety of measures (solu- moved successfully and the next largest disk out of
tion time, number of moves, error rates, etc.). place becomes the focus of the subgoals and plan-

The uncertainty about how much planning to do is ning. This process is repeated until the smallest disk
resolved by evaluating the utility of the extra plan- is placed. Not only is this strategy effective for
ning (i.e. is it worth the effort to plan that much solving standard problems, but it nearly always
further ahead?). There are two primary criteria on results in an optimal solution path, even for non-
which this evaluation can be made. Firstly, the standard problems. This provides a good example of
evaluation can be made in terms of the success at a strategy that allows working memory limitations to
solving problems within the task (Lovett & Ander- be overcome. In the standard five-disk Tower of
son, 1996; Lovett & Schunn, 1999). On the other Hanoi problem used by Simon (1975), and Anzai
hand, planning more moves may not affect the and Simon (1979), 16 moves need to be planned in
eventual outcome, but rather lead to a better solution. order to correctly place the large disk. It is highly
In this case, the evaluation is in terms of the number unlikely that an individual would be able to plan so
of moves or solution time (Lamaire & Reder, 1999; many moves and maintain them in memory without
Siegler, 1987). In both cases, the utility of additional an overarching strategy to organize them. Thus, disk
planning is evaluated in terms of how much it subgoaling provides a global framework for organiz-
improves the efficiency of the solution. This process ing moves and problem solving behavior.
can continue for some time before the individual Kotovsky et al. (1985) studied Tower of Hanoi
develops a coherent approach that is sufficient for isomorphs where it appears that planning operates
solving the task optimally. more locally. In the problems they used, two moves



G. Gunzelmann, J.R. Anderson / Cognitive Systems Research 4 (2003) 57–76 59

were sufficient to place the largest disk. Still, their morphs of the three-disk Tower of Hanoi. The
isomorphs are more difficult than the standard Tower isomorphs are Paint Stripping and Monster Move
of Hanoi task and even this amount of planning (two (see Appendix A and Fig. 1). In the Paint Stripping
moves ahead) was difficult for participants in their isomorph, the disks are represented by layers of
study. They concluded that planning emerged as paint, and the pegs are represented by pieces of
participants developed a better understanding of the furniture. In the Monster Move isomorph, the globes
task. Because managing the representation of their are the disks and the monsters are the pegs. In the
task was challenging, working memory load was standard Tower of Hanoi, the hierarchical ordering
likely quite high as participants began. As this load of the disks is represented by size (see the rules
diminished through experience, participants could described above). In the Monster Move isomorph,
plan further in the problem to produce better solu- the ordering of the globes is also based on size, but
tions. the relationship is reversed (the large globe corre-

In the research presented here, problems similar to sponds to the small disk). In the Paint Stripping
those used by Kotovsky et al. (1985) were used. isomorph, this ordering is represented by the dark-
Thus, we assumed that we would see local planning ness of the paint, with darker shades corresponding
of the sort described by Kotovsky et al. (1985). to smaller disks (see Appendix A for the rules for
However, because we use a computerized graphic these isomorphs as they were presented to particip-
presentation, there should not be a very high working ants). Two different isomorphs were used to ensure
memory load, even at the start. We believe that this that the results were not due to some particular
creates a situation closer to the second alternative feature of the task presentation (Hayes & Simon,
discussed in the opening paragraph of this article.
Specifically, for our participants planning should
emerge as a function of its demonstrated ability to
improve problem solving, rather than as a function of
their ability to plan moves. As participants discover
the utility of planning more moves, they will be
increasingly likely to engage in that planning. Re-
search by Svendsen (1991) supports the assertion
that the emergence of planning in this task may be
related to its utility rather than working memory
demands. In his research, he had participants solve
graphically presented Tower of Hanoi problems
using either a mouse- or a command-driven inter-
face. In the command interface it took much longer
to execute a move than in the mouse interface,
meaning that incorrect moves were more costly in
that condition. Svendsen found that participants
using the command interface produced solutions in
fewer moves than those using the mouse interface. In
addition, when participants were switched from a
command interface to a mouse interface, their solu-
tions became less efficient. This indicates that peo-
ple’s tendency to plan in the task depends on how
much benefit planning has on the efficiency of the
solution. As errors become more costly, individuals
are more likely to plan further into the problem to
avoid them. Fig. 1. Mapping of isomorphs used in this study to the standard

The experiments presented here use two iso- Tower of Hanoi.
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1977), and three-disk problems were used because of pegs (flat states; Fig. 2). The problems used here
our interest in examining local planning. In these involve moving from one of these flat states to
problems, planning requirements for placing disks another. Flat states are natural terminal states in both
should be within the working memory limits of the painting stripping isomorph (since each piece of
participants (a maximum of four moves needs to be furniture is painted) and the monster move isomorph
planned to place a disk). (because each monster has a globe). In contrast, in

There were three primary reasons for using iso- other problems like the original Tower of Hanoi,
morphs of the Tower of Hanoi rather than the tower states (all disks on the same peg) are more
standard problem. Firstly, the three-disk version of naturally terminal states.
the standard Tower of Hanoi is quite easy (e.g. In the isomorphs, then, there are a total of six flat
Gunzelmann & Blessing, 2000), and participants states, and for each there are exactly two other flat
typically require very little practice with it before states that are five moves away (shortest path; ‘Start
recognizing what moves to make. Secondly, a high 1’ and ‘Start 2’ in Fig. 2). There is also one other flat
proportion of undergraduates at Carnegie Mellon state that is seven moves away (‘Start 3’ in Fig. 2).
University have been exposed to the original Tower The problems used here involved transforming one
of Hanoi task, and have learned algorithms for flat state into one of the others five or seven moves
solving it. These factors would likely have a large away. In addition to flat states being natural terminal
impact on performance in the experiment. Thirdly, states, they are interesting because they promote an
the isomorphs used actually provide more natural easier alternative to an optimal planning strategy.
cover stories for the particular problems used. In the Specifically, the emphasis on flat states should give
three-item (i.e. globes or layers of paint) version of rise to a planning approach based on transforming
these tasks there is a particular class of problem one flat state into another (each transformation taking
states in which there is one disk on each of the three three moves), until the ‘correct’ flat state has been

Fig. 2. Problem space representation for the Tower of Hanoi. Flat states are circled.
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reached. This strategy is generally successful at approach because it leads to the solution in fewer
producing solutions to the problems but is not moves. The presentation of many problems will
optimal. At best, planning in this manner will ensure that the full course of this transition can be
produce a six-move solution (two sequential flat-to- examined.
flat transformations) to the problems that can be Before discussing the experiments, there is one
solved optimally in five moves. For the seven-move additional concept that is critical to understanding
problems used in the transfer phase of experiment 2, the research presented here. It has been found that as
three flat-to-flat transformations (nine moves) are individuals solve novel problems, two phases are
needed to reach the solution using the flat-to-flat distinguishable in their solutions (Kotovsky et al.,
strategy. We hope to see some competition between 1985). Participants first exhibit an exploratory period
the optimal planning strategy and the flat-to-flat in which they make little progress towards the goal
planning strategy. While the latter is easier to imple- state, but then generally produce the solution fairly
ment in terms of cognitive effort, the former is more quickly in the second phase, the final path. These
efficient in terms of number of moves. two phases of problem solving are defined in terms

In order to observe whether local planning of the distance from the goal. The final path consists
emerges gradually, it is useful to follow students as of the moves made by the individual after being the
they solve a sequence of problems. In previous original distance from the goal for the last time
studies, participants often received only one or two before successfully solving the problem. In experi-
problems to solve (e.g. Kotovsky et al., 1985). In ment 1, participants begin five moves away from the
contrast, these experiments give 12 or 18 problems goal state. For these problems, the final path begins
to each participant. With only a couple of problems, the last time the participant is five moves away from
we cannot assess whether a change in solution the goal before the problem is solved. For the seven-
strategy on a particular trial reflects a permanent move problems used as transfer problems in experi-
change or is just a step along the path of gradual ment 2, the critical distance is seven. Since the
change. These experiments should provide evidence exploratory path results in no net progress toward the
to clarify this issue. goal, it is the final path that will be of most interest

In summary, the experiments presented here were in these experiments. It is on the final paths that clear
conducted to examine a number of issues relating to indications of successful planning can be found. As
planning behavior in problem solving. It is expected participants make their run to the goal, the moves
that the amount of planning done by participants will they make and the latencies for those moves will
increase as they gain familiarity with the task, with expose what they are planning to do and when they
solutions becoming more accurate as a result. Be- are doing that planning. These data can be used to
cause of the nature of the problems, it is expected distinguish among different strategies being used for
that this planning will arise in two forms that solving the task. In addition, since this behavior
compete with each other. Specifically, it is expected should emerge earlier in participants’ solutions as
that a flat-to-flat strategy will emerge in participants’ they learn the benefits of planning, the length of the
solutions because it generally requires less planning, exploratory path should progressively decrease with
and also because flat states are salient in the prob- experience.
lem. This saliency will make them attractive as states
where similarity to the goal state can be evaluated
and planning can be done. However, with ex- 2 . Experiment 1
perience, participants will realize the value of addi-
tional planning and focus on the more useful charac- The goal of experiment 1 was to investigate how
teristics of the task (i.e. where the globes or layers of the solutions produced by participants changed as
paint are) instead of less relevant qualities (i.e. they gained experience solving the five-move flat-to-
whether or not they are in a flat state). As a result, flat problems. Since these problems can be solved in
planning optimal sequences of moves to place globes multiple ways, it is important to determine how
(layers of paint) should emerge as the dominant experience with the problems affects performance.
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This experiment asks participants to solve 12 prob- The problems completed by participants were drawn
lems, making it possible to track the emergence of from the set of 12 possible flat-to-flat problems
fairly proficient performance on the task. Without requiring five moves to solve. Two groups of six
training, participants are free to develop any repre- problems were created from the 12 possible prob-
sentation of the task that they find useful. As lems based upon how many moves were needed to
described above, it is expected that a flat-to-flat place the large globe or layer of paint (two or four;
strategy will appear in solutions as participants see Section 4 for a more complete description).
recognize that flat states are important in the task. Participants completed all six problems from one of
With more experience, however, it is likely that the these groups for each problem set in random order.
formal structure of the task will lead participants to In the first problem set, each group of problems was
more effectively plan moves by focusing more given to half of the participants. In the second set,
clearly on placing globes (layers of paint) in their half of the participants switched to the group of
goal locations. problems they had not seen, while the other half

received the same set of problems again. The differ-
2 .1. Method ent groups of problems did not significantly effect

the number of moves needed to solve the problems,
2 .1.1. Participants F(1,46)51.23, p . 0.25, so the data below are

The participants were 24 undergraduate students aggregated over this factor. The differences between
(mean age 20.1 years) from Carnegie Mellon Uni- these problems will be considered in more detail in
versity. Participants received either course credit Section 4. Also, the data indicated that there were no
(n57) or $8 (n517) for their participation in the 1-h overall differences between the isomorphs,
experiment. There were 17 males and seven femalesF(1,22)50.01, p 50.91 for overall number of
included in the study. moves. In addition, there was no indication of an

interaction between the isomorphs as a function of
2 .1.2. Materials problem number for number of moves,F(11,242)5

Three sets of problems were presented to each 0.81,p 5 0.63. As a result, the data presented below
participant during the experiment, with six specific are collapsed across that factor.
problems within each set (18 problems total). The
first and third set of problems were either the 2 .1.3. Procedure
Monster Move or the Paint Stripping isomorph of the Participants completed the entire experiment on a
Tower of Hanoi (Fig. 1). Half of the participants computer. For each task participants were presented
were presented with the Monster Move isomorph, with a cover story, a set of rules, and an explanation
while the other half were given the Paint Stripping of the interface. They were able to move back and
isomorph. All participants worked with the same forth among these screens (using ‘continue’ and
isomorph for both sets. The descriptions and rules ‘back’ buttons) for as long as necessary before
for the isomorphs are presented in Appendix A. The actually beginning to work on the problems. How-
other task was not directly related to the Tower of ever, once they began working on the problems, they
Hanoi, but was used to break up the sequence of were unable to return to the description, rules, or
problems. This filler task was ‘Building Sticks’ interface screens. They were instructed to solve each
(Lovett & Anderson, 1996), an isomorph of Luchins’ problem for each task by reaching the goal state that
(1942) water jug task. All of the tasks, in addition to was presented on the screen.
all instructions for the experiment were presented on The isomorphs were presented in a graphical
Macintosh computers and were completed using only display, using the images shown in Fig. 1. The labels
a mouse. below each monster and piece of furniture are

There were three globes in the Monster Move buttons that were used to execute moves. A move
isomorph and three layers of paint in the Paint was made by first clicking on the button below the
Stripping isomorph (see Fig. 1 for the mapping of source monster (piece of furniture). This selected the
these isomorphs onto the standard Tower of Hanoi). largest globe (darkest layer of paint) in that location.
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This inherently enforced the first two rules for the path length wouldn’t decrease that much over the
tasks, since only a single item was selected and it course of the 12 problems. In fact, 74% of the final
was constrained to be the top item in the hierarchy. paths were of length five and 19% were of length six
The move was completed by clicking on the button (Fig. 4). If participants were choosing randomly,
below the destination monster (piece of furniture). If only 11.1% of the final paths would be optimal and
the move was legal, the selected globe (layer of only 3.7% would be six-moves long. Fig. 5 contrasts
paint) was moved to its new location. If the move the latency profiles for these two types of final paths.
was not legal, a message box appeared that restated The six-move final paths show long latencies at the
rule 3 and pointed out that the attempted move was first and fourth move where three-move flat-to-flat
illegal. This allowed participants to review the rule sequences are being planned. The five-move final
that had been violated. At that point, the globe (layer paths show an elevated latency for the first move
of paint) was deselected, and the participant was able where the bulk of the planning should be done, and a
to begin his or her move anew. After each problem, a smaller increase for the third move where planning
message box appeared indicating that they had sometimes needs to be done (depending on whether a
solved it correctly. The same procedure was fol- two-move or a four-move sequence was planned
lowed for each of the sets of problems. initially; this distinction is mentioned above and will

be discussed further in Section 4).
2 .2. Results and discussion

The problem state and move latency were col-
lected at each point in the solutions, allowing for a
careful examination of how participants solved the
problems. Following Kotovsky et al. (1985), we
partitioned the data into an exploratory portion and a
final path (Fig. 3). As can be seen, most of the
reduction in the total number of moves comes from a
reduction in the length of the exploratory path. For
the final paths, recall that if this final path was being
planned by the flat-to-flat strategy it should be six
moves long, while optimal planning would make it
five moves long. So, if these local strategies were
used most of the time, it should make sense that final Fig. 4. Proportion of participants that solved the problems with a

five-move or six-move final path in experiment 1.

Fig. 3. Number of moves needed to solve the problems in
experiment 1. Fig. 5. Move latencies for five-move and six-move find paths.
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Experience with the task should have resulted in as move latencies for other states (this excludes the
improvements in two aspects of participant solutions. latencies for the first move in each problem), sug-
Firstly, the length of the exploratory path should gesting that more planning was indeed occurring in
decrease, meaning that successful planning is being these states. In fact, for every participant, move
done earlier in the solution process. Indeed, an latencies were greater for flat states than for other
ANOVA shows that the length of the exploratory states. This suggests that flat states were indeed a
path did decrease significantly over the 12 problems, ‘home base’ of sorts where participants could check
F(11,253)52.69, p , 0.01. This effect is reflected on progress toward the goal and consider alter-
in a significant linear trend of decreasing exploratory natives.
path length,F(1,253)523.83, p , 0.001. Besides Collectively, the data from experiment 1 provide
the exploratory paths, it was also expected that evidence for two distinct local strategies. The combi-
experience with the task would result in an increase nation of the two proposed strategies account for a
in the number of five-move final paths with a large percentage of the problem solutions. Specifical-
corresponding decrease in the number of six-move ly, over 90% of the final paths produced by particip-
final paths. In line with these predictions, Fig. 4 plots ants in this experiment were either five or six moves
the proportion of problems incorporating a five-move long, with latency profiles matching those predicted
final path and the proportion with a six-move final by the flat-to-flat and optimal strategies. It is not the
path as a function of trial (averaged into quartiles). case that all of the problem solutions fit into these
The data provide evidence that final path length designations, and a certain amount of apparent
decreased as participants gained more experience randomness is present in the data as well. However,
with the task,F(1,253)523.35, p , 0.01 for a linear the fact that the data on the whole are so well-
trend. explained with only these two strategies provides

The final path data provide evidence that flat-to- support for the conclusion that they are being used a
flat planning was being done in the experiment. In great deal by participants in this experiment. In
addition, there are other data that support the conclu- Section 4 these strategies and the transitions among
sion that participants treated flat states as somehow them will be examined more closely.
special in the task. Firstly, if moves were made
entirely at random, it would be expected that par-
ticipants would arrive at flat states every 4.5 moves 3 . Experiment 2
(six of 27 states are flat states). However, the rate
was actually every 3.42 moves (3.41 to 3.43 with The findings from experiment 1 provide evidence
95% confidence) for participants (excluding moves that participants were using the two anticipated
made on optimal final paths), with the minimum strategies while solving the problems. We decided to
distance between flat states being three moves (Table do a second experiment to replicate the first experi-
1). So, when participants were not planning optimal- ment, but without a task intervening between the first
ly, they were executing move sequences that brought and second set of six problems. After completing 12
them to flat states more often than would be expected of the five-move problems (thereby replicating the
by chance. Secondly, throughout the experiment first experiment) we had students do six transfer
move latencies for flat states were over twice as long problems that were more difficult. These were the

seven-move problems mentioned in Section 1. While
Table 1 seven moves is an optimal solution, it would take
Average moves between flat states in both experiments (excludes nine moves to reach the solution using the flat-to-flat
moves on optimal final paths; values in parentheses are model strategy exclusively. Therefore, the emergence of
predictions)

nine-move final paths would be further evidence for
Experiment Average moves between flat states a flat-to-flat strategy. But in these problems the
Experiment 1 3.4 (3.7) flat-to-flat strategy is at a greater disadvantage to
Experiment 2 (training) 3.4 (3.7) optimal planning, now taking two extra moves.
Experiment 2 (transfer) 3.5 (3.8) Therefore, because of the greater cost of the flat-to-
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flat strategy, we expect to see participants abandon it for number of moves. Consequently, the data pre-
during the transfer phase of the experiment (the sented here are combined across those factors.
seven-move problems). That is, the savings in plan-
ning obtained by using the flat-to-flat approach will 3 .2. Results and discussion
be overcome by the extra time needed to actually
solve the problems, making it a less attractive option The data for the number of moves needed to solve
than planning a little further ahead. the problems in experiment 2 are presented in Fig. 6.

The data from the training portion of this experiment
3 .1. Method are very similar to the data from experiment 1,

providing additional support for the description of
3 .1.1. Participants the planning behavior exhibited by those particip-

The participants in this study were 60 CMU ants. Here, 74% of the training problems involved a
undergraduate students (mean age 19.8 years) en- five-move final path and 19% of the solutions had a
rolled in a psychology course. There were 42 males six-move final path that involved two sequential
and 18 females in the sample. All received course flat-to-flat transformations (Fig. 7). So, combining
credit for their participation.

3 .1.2. Materials
A program similar to the one used in experiment 1

was used to administer the experiment to particip-
ants. The entire experiment was conducted on the
computer and the program handled all data collec-
tion.

3 .1.3. Procedure
Participants were randomly divided into two

groups based upon cover story (Paint Stripping
versus Monster Move). The tasks were presented in
the same manner as in experiment 1, and each
participant solved 18 problems from either the Fig. 6. Number of moves needed to solve problems in experiment
Monster Move or Paint Stripping isomorph. The first 2.

12 problems were the five-move problems used in
experiment 1. The same groups of problems de-
scribed for experiment 1 were used in experiment 2.
In this experiment, however, all participants com-
pleted the same group of problems twice during the
12-problem training portion. Again, the order of
trials was random. The last six consisted of the
complete set of possible seven-move transfer prob-
lems, presented in random order. The transition
between the two types of problems was not indicated
explicitly to the participants. The two types of
problems did not produce a significant effect on
performance,F(1,58)5 1.48, p . 0.20. Also, the
pattern of data was identical for both isomorphs,
F(1,58)52.32, p 5 0.13 for a main effect on num- Fig. 7. Proportion of participants who solved the problems with a
ber of moves, andF(17,986)5 1.21, p 50.30 for an five-move or six-move final path in the training portion of
interaction between isomorph and problem number experiment 2.
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the evidence for the two hypothesized planning
approaches, it is possible to account for over 90% of
the final paths produced by participants in the
training portion of experiment 2. These data indicate
that problem solutions improved over the 12 prob-
lems both in terms of exploratory path length,
F(1,649)586.04, p , 0.001 for a linear trend (Fig.
6), as well as final path length,F(1,649)5 31.16,
p , 0.001 for a linear trend (Fig. 7). In addition, flat
states were visited more frequently than would be
expected by chance (Table 1), and move latencies
were again over twice as long for flat states than for
other states.

Fig. 8. Proportion of participants who solved the problems with aIt is possible to go on to analyze the transfer data
seven-move, eight-move, or nine-move final path in the transfer

in a similar manner to determine how participants portion of experiment 2.
solved those problems. In the transfer phase, par-
ticipants continued to spend longer deciding on
moves while in flat states and still entered flat states of the final paths can be explained for the transfer
more frequently than would be expected by chance phase of experiment 2 (final paths of seven, eight, or
(Table 1). In terms of final paths, these problems nine). These data are shown in Fig. 8, which also
require two additional moves to solve, meaning that shows that the final paths in the transfer problems
final paths of seven moves are optimal. Meanwhile, became shorter over the course of the six problems,
as described above, it takes nine moves to produce a though this trend was only marginally significant,
solution to these problems using the flat-to-flat F(1,295)53.35, p ,0.10 for a linear trend.
strategy. However, participants also produced some What follows is a description of a cognitive
eight-move final paths, which seem to involve a model, developed in ACT-R 4.0, which accounts for
combination of the two approaches. Specifically, a participants’ data, both in terms of overall perform-
flat-to-flat transformation can be used to get to a flat ance and strategy use. The model described here can
state where less planning is needed to place the small be accessed online at the ACT-R website (http: / /act-
globe or yellow layer of paint (two versus four r.psy.cmu.edu/).
moves away). Some solutions involved this trans-
formation followed by an optimal sequence of five
moves from that point. Others involved optimally 4 . ACT-R model
placing the small globe or yellow layer of paint (four
moves), moving to a flat state, and then reaching the The explanation of the findings in these two
solution with a flat-to-flat transformation. These two experiments seems straightforward. With experience,
types of eight-move final paths seem to reflect two participants gradually increased their tendency to
ways in which flat states were important in the task. plan longer sequences of moves, which led to
The first type seems to illustrate intentional use of decreases in the length of the exploratory path. In
flat-to-flat transformations as a means of simplifying addition, final path length improved as two local
the planning necessary to place globes (layers of planning strategies competed against each other over
paint). The second seems to more clearly reflect the the course of the problems, with participants gradual-
attractiveness of flat states in the experiment. In this ly switching to the more efficient strategy over the
case, it seems as though that the saliency of flat one that was easier to execute. However, it is
states caused participants to seize the opportunity to uncertain whether this explanation can account for
move into one if they were not sure of what to do all of the data from this experiment. If it can, it is
next. By using solutions that followed the predictions important to understand how these findings may fit
of the flat-to-flat strategy and optimal planning, 90% with others in the literature on strategy choice in

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
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problem solving. To clarify these issues, an ACT-R nisms relate to the activation of chunks and affect
model was created. By instantiating the explanation how accessible they are. Since all of the information
in a running model, clear predictions can be made for this task was always available on the display in
and their relation to the experimental data examined. these experiments, these activation mechanisms do
In addition, the model uses the same learning not play a role in the performance of the model
mechanism used by other researchers to explain presented here. There are two subsymbolic mecha-
strategy learning (e.g. Lovett, 1998; Matessa & nisms relating to two aspects of procedural knowl-
Anderson, 2000), and so the model and the explana- edge, both of which measure the expected usefulness
tion fit into the larger literature on strategy choice of each production. Firstly, ACT-R contains parame-
and learning. ters that allow the anticipated cost of using a

ACT-R is a theory of human cognition that has production to be estimated. The value of this quanti-
been instantiated as a running computer simulation ty essentially answers the question, how much time
(Anderson, 1993; Anderson & Lebiere, 1998). Fun- is likely to be spent achieving the goal from this
damental to the ACT-R theory is a distinction point if this production is used? The other set of
between declarative and procedural knowledge. De- parameters answer the question, how likely is it that
clarative knowledge holds specific facts and infor- the goal will eventually be achieved if this pro-
mation (chunks), such as ‘31457’ or ‘the small disk duction is used? In the context of the model pre-
is on the rightmost peg’. Procedural knowledge, on sented here, the mechanism relating to cost is
the other hand, is the storage for cognitive operators. critical. This aspect of ACT-R is discussed in more
This knowledge is represented as production rules, or detail below.
condition–action pairs that specify what action to
take when a particular condition is satisfied. So, there 4 .1. Model design and mechanisms
may be productions for retrieving a specific chunk
from declarative memory or for making a move in There are two important aspects of ACT-R for the
the Tower of Hanoi. model presented here. Firstly, the model’s perform-

At all times, ACT-R maintains a goal and the ance is based largely on the process of selecting a
behavior of the system is directed at working on that single production from among several applicable
goal. This is accomplished in ACT-R through a alternatives. In ACT-R, this choice is controlled by
series of cycles. In each cycle, the current state of the the calculation of a quantity called ‘expected gain’
goal is used to identify applicable productions in (E). This quantity is calculated for each production
memory, and a single production from this set is on each model cycle and is an estimate of how useful
chosen. This production is then executed or ‘fired’. that production is expected to be for achieving the
Two major types of changes may be made to the current goal. It is negatively associated to cost in this
goal on each cycle. Either its contents may be situation. The production with the highest value ofE
changed, or a new goal may become the focus. The (or lowest cost) is the one that is chosen on each
latter is achieved by (1) satisfying the current goal cycle and fired. The second aspect of ACT-R, utility
(popping on success), (2) giving up on the current learning, adjusts the values ofE as the model
goal (popping on failure), (3) creating a subgoal accumulates experience. Each time the goal is pop-
based upon the current goal (pushing), or (4) select- ped, the parameters are updated for each production
ing a new goal to focus on (essentially a pop that was used. As experience accumulates, values of
followed by a push). Through a series of such cycles, E will change according to the experience of the
ACT-R can produce behavior in many domains that model. This will affect the likelihood that each
is human-like in a number of important ways (see production will be used, and the model’s behavior
Anderson & Lebiere, 1998 for a review). will change accordingly. The details of these mecha-

To support the interaction of these symbolic nisms and their application in the current model are
aspects of ACT-R, there are a number of described below, but first we will describe the
subsymbolic mechanisms that allow it to learn from options from which the model was selecting.
experience. In declarative memory, these mecha- Based on the evidence gathered from participants,
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it seems clear that participants were using both the current state is a flat state, the model can choose
optimal planning and flat-to-flat planning. As a to execute a flat-to-flat transformation, producing a
result, the ACT-R model performs the task basically new flat state that is closer to the goal state. If the
by selecting from among these options and evaluat- model is not in a flat state and not in a tower state
ing how well they work. However, since there were a (all three globes or layers of paint in the same place),
number of moves that did not follow any identifiable it can choose to make the single move that will take
pattern, the model also can execute random moves as it to the nearest flat state. When the model finds itself
it works toward a solution. This is essentially making in a tower state, there are no flat-to-flat moves
moves without planning at all. It is important to note available. So in tower states the model must either
that the model operates on local subgoals related to do the planning needed to place the globe (layer of
correctly placing individual globes (layers of paint). paint) or make a random move. After choosing an
That is, the model focuses on placing a single globe approach and making the prescribed move or moves,
(layer of paint), and then shifts its focus to another the model checks to see if the focal globe (layer of
one that is out of place. The utility of planning in the paint) has been placed. If it has, the smallest globe
model is evaluated on the basis of how quickly the (lightest layer of paint) that is still out of place is
focus globe (layer of paint) is placed, not how selected as the focus. If not, it continues to work on
quickly the whole problem is solved. the same one. Either way, the model again selects an

The model performs the task in the following way. approach and executes it. This cycle repeats until the
When a new problem is presented, it is first encoded. problem has been solved.
The model then focuses on moving the small globe The critical juncture in the operation of the model
(yellow paint) from its current location to its goal lies in the selection of which action to take. There is
location. When that is accomplished, focus is shifted a production for each of the possible actions (see
to the medium globe (blue paint). Because the model Table 2). At each point when a decision needs to be
focuses on just one globe (layer of paint) at a time, it made only three of these productions will apply, one
is possible that the small globe (yellow paint) may for each option (only two will apply in tower states).
be displaced in the process of placing the medium Productions that do not apply in the current situation
(blue) one. If this occurs, the model simply returns to will not be considered. The choice of which of the
the small globe (yellow paint) after the other is applicable productions fires in ACT-R is determined
placed. Once both items have been placed, the single by the calculation ofE for each production. In this
move needed to solve the problem is made. At each calculation, the two subsymbolic quantities relating
point in the problem where the focus globe (layer of to procedural knowledge (anticipated cost and prob-
paint) is correctly placed onto its goal peg, the ability of achieving the goal) are calculated for each
parameters in the model are updated (see below). production to represent how beneficial the product-

At almost any point in the problem, the model has ion’s use is expected to be in terms of achieving the
three options. The first option is that the model can goal of placing the focal globe (layer of paint) in its
execute a random move. If the model chooses to goal location. The production producing the highest
execute a random move, it simply selects one of the value for this quantity is selected and fires. The
legal moves available and executes it. While this equation for expected gain (E) in ACT-R is:
approach minimizes planning, it tends to produce
very poor solutions. The second option is that the E 5PG 2C 1 noise,
model may instead choose to do the planning
necessary to correctly place the current focus globe where P is the probability that the goal eventually
(layer of paint). This can involve from one to four will be achieved if the production is used,C is the
moves, and the likelihood that the effort will be anticipated cost (in seconds) of ultimately achieving
made will vary as a function of how much planning the goal using the production, andG is a global
needs to be done. If this option is chosen, the variable representing the value (in seconds) of
required moves are executed. The third option is to achieving the goal (i.e. how much time is the model
execute moves based on the flat-to-flat strategy. If willing to spend to solve the problem). Because the
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Table 2
Initial parameter settings for the choice productions in the model

Production History Total cost Cost (C) E
(H ) (TC) (TC /H ) (PG 2C)

Random:
Random-move 200 1400.00 7.00 43.00

Flat-to-flat options:
Move to a flat state 2 14.00 7.00 43.00
Place item—flat to flat 2 17.00 8.50 41.50
Ease planning—flat to flat 2 21.00 10.50 39.50

Optimal planning:
Place focus item—1 move 2 14.00 7.00 43.00
Place focus item—2 moves 2 15.50 7.75 42.25
Place focus item—3 moves 2 17.00 8.50 41.50
Place focus item—4 moves 2 18.50 9.25 40.75

focus globe (layer of paint) always arrives in its goal C 5 6.2510.753moves.
location eventually, the probability of success is
always 1 (P51). The value ofG was set at 50 (s) in The lone exception to this is the production that

1this model. However, sinceP is equal to 1, the chooses to execute a flat-to-flat transformation to get
particular value does not really impact the model’s a larger globe (darker layer of paint) out of the way
performance. (called ‘Ease planning’ in Table 2). This transforma-

The selection of less effective approaches will tion produces a state where only two moves are
result in more moves being made on average before needed to place the small globe (yellow layer of
the focus globe (layer of paint) is placed. This makes paint), whereas four moves would be required to
the cost parameter vital in determining how likely place it before this transformation is made. This
the model is to engage in planning. The cost application of the flat-to-flat strategy goes against
parameter is an estimate of the total time spent from simpler problem solving heuristics (i.e. hillclimbing).
the firing of that production until the goal is That is, when in a flat state that is seven moves from
achieved. The model keeps a record of all the costs the goal, the large globe (black paint) is in its correct
so far and calculates an average cost as its estimate location. So executing a flat-to-flat transformation at
of C: that point requires that it be moved away from its

goal location. In addition, the resulting flat state hasC 5 total efforts /history,
no globes (layers of paint) in their goal locations,

where total efforts is the sum of all past costs and making it superficially seem further from the goal.
history is the number of past experiences. Table 2 Due to these features, it seems to have been rela-
shows the initial values that were set for each of the tively uncommon in participants’ approaches and so
productions used in choosing how to solve the it was given a higher expected cost which results in a
problems (Table 2). These values reflect an anticipa- lower likelihood that it will be used.
tion of how long the actions are likely to take. They In addition to cost, each of the critical productions
were set so that the initial expected cost increased was given a history of successes. This quantity
linearly with the number of moves involved in the controls the stability ofE by influencing how much
approach to be implemented: impact a single use of the production will have.

More prior experience reduces the impact of each
1 single use of the production. For all except theThis value is traditionally set at 20 s in ACT-R. However,

random-move production, this value was set at 2,these problems take longer than that for the model (and particip-
ants) to solve. This value was raised to accommodate this fact. allowing these values to change rather quickly. This
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means that the values ofC for these productions will When a new globe (layer of paint) becomes the
quickly come to accurately reflect the actual cost of focus, a number of actions may be taken before it is
using them to solve the problems. The separate value placed. Some actions (e.g. a random move) may be
that was estimated for the random-move production taken more than once. When the globe (layer of
(200) seems to reflect a rather strong reluctance by paint) is finally placed, the parameters for the
participants to exert the effort needed to do any productions that select actions are updated accord-
planning at all. As experience accrues, the model ingly. Firstly, for each time the production was used,
obtains information about how much time is needed the history of that production are incremented by
to place a globe (layer of paint) when each of the one. To update the cost, the time spent placing the
available approaches is used. As a result, it becomes globe (layer of paint) is calculated from each point
more likely to plan longer sequences of moves since where an action was selected. This total is added to
planning produces more efficient solutions. As it will the total efforts, which is then divided by the history
also take more moves using flat-to-flat transforma- to give a new value forC (see equation above). This
tions to get the globe (layer of paint) in place, the may be best illustrated using a quick example. If, at
model also tends to abandon that approach in favor the beginning of the problem, the model makes two
of optimal planning behavior that minimizes the random moves, it can arrive at a state where three
number of moves needed to solve the problems. moves are needed to get the small globe (yellow

The initial settings for these parameters are pre- layer of paint) to its goal location. If the model then
sented in Table 2, along with the calculated values of decides to plan those three moves, the globe (layer of
E that these settings produce. The actual effort (time) paint) will be placed correctly in five moves (20 s).
required by the model to execute each move was set In this case, the random-move production will have
to 4 s, based on participants’ data. So, the model two events added to its history (it was used twice in
takes 4 s to make a random move, 8 s to plan and this scenario) and will have 36 added to its cost
execute two moves to place a globe (layer of paint), parameter (20 s from the first use plus 16 s from the
12 s to carry out a flat-to-flat transformation, and so second). Meanwhile, the production that chooses to
on. plan three moves will have its history increased by 1,

The final parameter of importance is a noise and its cost increased by 12. In fact, every time that
parameter that is added to the calculation ofE. A the plan-three production is used it will incur a cost
noise value is produced separately for each pro- of 12 and will succeed in placing the focus globe
duction on each cycle of the model. In this model, (layer of paint). In contrast, the random-move pro-
noise was set such that the value is randomly duction can experience widely varying costs, and
selected from a distribution with a mean of 0 and a over time this cost is likely to be quite high on
standard deviation of 1.81 s (or about one-half of a average. As the model gains experience it learns that
move). The strategy-choice production selected to planning is worthwhile because it gets the globe
fire is the one that has the highest value ofE after (layer of paint) to its goal location more quickly.
noise has been added to the calculation described Random moves are quite ineffective, while the flat-
above from among the applicable alternatives. A to-flat approach consistently requires one or two
major assumption of the model is that most particip- extra moves. Over time, these experiences will lead
ants would be unlikely to plan ahead very much the model to plan optimally more often.
when they began the experiment. In the model, this The initial parameter values (Table 2) were set to
is instantiated in the initial values ofE for the choice match the aggregate move data (Figs. 3 and 6). At
productions. In particular, the initial values ofE are this level, the model’s performance corresponds
lower for approaches that require more planning. quite closely to the data from the participants. In
Thus, the model generally begins with simple ap- particular, for experiment 1 the correlation between
proaches (random moves, placing a globe (layer of the model and the data is 0.96 (RMSD50.57
paint) in a single move when that option is available, moves). For experiment 2 the results are similar
etc.) and moves toward more effective ones (i.e. (correlation50.95; RMSD50.71 moves). In terms of
planning up to four moves in order to place a globe strategy use at the most abstract level, the model
or layer of paint into its goal location). produces comparable data for its flat-state visitation
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rates (Table 1). Since the actual exploratory moves The transfer problems can be interpreted in an
and final paths produced by participants are more analogous way, although the minimum number of
indicative of which strategy they were using, these moves to solve them is seven rather than five. In
measures were used as indicators of how closely the these problems, the model continues to make quite
model was matching participant performance. These accurate predictions in terms of final path length
data are presented next. (Fig. 8; correlation50.981, RMSD54.3%). As can

be seen, final path length by the transfer phase is
4 .2. Model’ s fit to exploratory and final paths fairly stable across the six problems. The most

obvious change across problems is the decrease in
The progressive decrease in exploratory path the number of nine-move final paths. As indicated

length in the data is closely matched by the model above, the flat-to-flat strategy adds two moves to the
(Figs. 3 and 6). As the model becomes more likely to transfer problems, as opposed to the single move
plan, it follows that planning will tend to emerge added to the other problems. This extra cost in-
earlier in problem solutions. The result is that the creases the advantage of planning ahead.
model gets on the right track (final path) more Taken together, the model fit to the data from both
quickly as it gains experience, just as the participants experiments provide evidence that participant per-
do. The second experiment makes this point even formance in this task can be adequately explained
more clearly. When participants switch to the transfer using two straightforward strategies, plus some ran-
problems, exploratory path length continues to de- dom exploration. In addition, one complication con-
crease, even though overall solution length becomes cerning the five-move problems provides an interest-
longer. Since much of the decrease in solution length ing test of the model. Recall from above that there
is produced by a decrease in exploratory path length, are two flat states that are five moves away from any
it seems that much of the improvement in per- given flat state. A careful examination of these two
formance over problems is produced by a reduction problems reveals that they are not equivalent in a
in random search. strict sense. For one of those flat states, the small

Looking more closely at the final path data, it is globe (yellow layer of paint) can be placed in two
possible to infer what strategies were being used. moves (easy; ‘Start 2’ in Fig. 2), while this requires
Optimal final paths are assumed to be the result of four moves from the other flat state (hard; ‘Start 1’
optimal planning. Again, support for this conclusion in Fig. 2). Assuming that participants were focusing
comes from both the accuracy of those solutions as initially on the small globe (yellow layer of paint), it
well as from the move latencies produced in these is the case that the hard problems require more
solutions (Fig. 5). For those solutions that did not planning to solve optimally than the easy problems.
incorporate a five-move final path, other strategies In turn, those problems should have proven more
are likely to have been used. Six-move final paths difficult for participants to solve in the experiment.
can be described as using a pair of flat-to-flat As it turns out, a quarter (6) of the participants in
transformations executed in sequence. Fig. 4 presents experiment 1 solved only hard problems and a
the evidence for the two approaches for experiment quarter solved only easy problems, while half (30) of
1, illustrating the overall trend toward better solu- the participants in experiment 2 received only hard
tions with practice. As can be seen, the model does a training problems and the other half received only
good job of reproducing both the overall tendency to easy training problems. Fig. 9(a) shows that particip-
use each of the strategies, as well as shift that which ants solving only hard problems tended to require
occurred over the course of the experiment more moves to reach the goal state than participants
(correlation50.996; RMSD56.0%). A similar anal- solving only easy problems. Although this effect was
ysis can be made for the first 12 problems in only marginally significant in the data,F(1,68)5
experiment 2 (Fig. 7; correlation50.993, RMSD5 2.97, p 5 0.09, the model produces an effect that is
5.1%). It is important to note that the proportion of similar in magnitude. This effect arises in the model
solutions that donot fall into these categories is quite because of the reluctance to plan longer sequences of
small, illustrating that the two strategies account for moves. When the model solves easy problems, it can
the vast majority of the data in this respect. get away with planning only two moves at a time.
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do this in order to solve those problems optimally.
Thus, when they began the transfer problems, they
were more prepared to engage in the necessary
planning (placing the focus globe or layer of paint in
four moves), making it less likely that they would
fall back on simpler approaches (i.e. the flat-to-flat
strategy). In contrast, those who had been solving
easy problems only needed to plan two moves at a
time during training (placing the focus globe or layer
of paint in two moves). Initially they were not as
likely to plan the four moves necessary in order to
solve the transfer problems optimally. As a result,
they more frequently used the flat-to-flat strategy
initially. However, their experience with the transfer
problems gradually changed utilities in favor of extra
planning, and their final paths improved throughout
that phase of the experiment.

Collectively, the data suggest a gradual improve-
ment in performance throughout the experiment.
However, it is possible that this gradual improve-
ment is produced by having different participants
make abrupt improvements at different times. This is
an instance of the general question of whether
learning occurs as abrupt, all-or-nothing transitions
or as gradual, noisy shifts in performance. As
described above, the model’s performance is basedFig. 9. Evidence for the differential difficulty of the two types of

five-move problems used in experiments 1 and 2. on the latter assumption. The important question is
whether the human participants bear out this predic-

This is not true of the hard problems. So, since the tion. One measure used to address this is a back-
model is less likely to plan four moves than it is to wards learning curve (Fig. 10; Bower & Trabasso,
plan two moves, it has a greater tendency to make 1963). This measure is obtained by first identifying
erroneous moves while solving the hard problems. thelast error made by participants. In this case, it is
This results in the hard problems requiring somewhat
more moves to solve than the easy problems.

This effect becomes more interesting when the
transfer problems in experiment 2 are considered.
The two different training conditions produce an
interesting effect in the transfer problems. Specifical-
ly, participants who had been solving easy problems
during training are initially more likely to produce
nine-move final paths than those who had been
solving hard problems. This difference decreases
over time, as participants in the easy training con-
dition produce progressively fewer nine-move paths
as they gain experience (Fig. 9(b)). Participants in
the hard training condition were able to learn the
value of planning four moves at a time while they Fig. 10. Backwards learning curve for the five-move problems in
were solving the training problems. They needed to both experiments.
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considered to be the last non-optimal final path.
Then, for each of the previous trials it is possible to
determine if the final path was optimal or not. If
learning were all-or-none, the likelihood of an opti-
mal final path before the last error should not change
as a function of the number of trials before the last
error (see Bower & Trabasso, 1963 for a full
explanation). However, if participants are gradually
increasing their tendency to complete the task opti-
mally as the model predicts, the likelihood that an
optimal solution was produced just before the last
error should be greater than the likelihood that an
optimal solution was produced many trials before.

Fig. 11. Proportion of participants solving problems with a five-Fig. 10 plots the probability of an optimal final path
move and six-move final path with given frequencies for the

as a function of the number of trials before the last five-move problems in both experiments.
non-optimal final path, showing that the model’s
predictions are supported by the data. This provides
further evidence that the model is solving the participants indicated that they recognized that the
problems in a manner that is quite similar to the tasks were isomorphs of the Tower of Hanoi. Mak-
participants themselves. ing this connection early on would provide them

with information that could influence their planning
4 .3. Variability among individuals behavior. The comparison in the transfer phase of

experiment 2 simply relates to final paths of seven,
The results presented so far have been the average eight, or nine (Fig. 12). These data also show that

performance of the model and the participants. the model does a fair job of capturing the range of
However, there was some variation in performance participant behavior. The same caveat exists to a
among individuals in the experiment. These differ- lesser extent in these data, with more participants
ences relate to their propensity to plan in order to than predicted producing optimal final paths for all
solve the problems. This variability can be seen in six problems.
the lengths of the final paths they produced during So, it seems that the model generally does a rather
the experiments. Specifically, participants differed in good job in producing variability in performance in
terms of how many problems they solved optimally comparison to the participants. Within the model, the
with five-move final paths versus non-optimally with
six-move final paths. It is possible to examine the
variability of the model on this same measure. For
experiment 1 and the training portion of experiment
2, the model captures relatively well the diversity of
strategy use in terms of final paths (Fig. 11). Of
course, the model shows a much smoother distribu-
tion in strategy variation since the data for the model
are based on 2000 model runs, whereas there were
only 84 participants in the two experiments. In
addition, there were some participants who produced
optimal final paths for all of the problems, while the
model almost never does this. These data suggest
that some of the participants were somehow different Fig. 12. Proportion of participants solving problems with seven-
in terms of the knowledge they brought with them to move, eight-move, and nine-move final paths with given fre-
the task. Indeed, after the experiment some of the quencies in the transfer portion of experiment 2.
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noise is responsible for the variability in perform- the random and flat-to-flat strategies to an optimal
ance, producing both the rough transition in strategy planning strategy. The exploratory paths get shorter
use as well as differences in performance among because as the model learns, it is more likely to plan
individual model runs. Thus, the tendency to switch moves earlier in the problem, thereby starting down
strategies can be seen as a function of when the the final path sooner. The learning also allows the
strategies are used in the process of solving the model to differentiate between the two local planning
problems. Specifically, strategy switching is related strategies, gradually coming to prefer overall ef-
to when strategies happen to be applied, which will ficiency over simplicity of execution. The ACT-R
most directly affect the cost of using them in order to cost mechanism used in the model provides a
place globes or layers of paint (C). This seems straightforward explanation for these phenomena.
reasonable in this experiment, where the tasks were The comparison is made on the basis of how much
rather easy for the participants. Consequently, in- effort (time) is expected to be needed for each
dividual differences in some cognitive capacity, like approach. With experience, these estimates come to
working memory, should not be expected to have a accurately reflect their costs. The addition of noise to
huge impact on performance. Rather, the model the calculation ofE results in a model that produces
suggests that in this case variability in performance a noisy shift from less effective to more effective
may simply be the result of making the right choice plans, in much the same way as participants in the
at the right time. Depending on when the options are experiments. This type of shift in performance seems
chosen, they will result in different costs for placing incompatible with theories that posit representational
the globes (layers of paint) correctly. This, in turn, shifts that lead to better solutions. These explana-
will affect the likelihood that the various approaches tions typically rely on sudden changes, or insight,
will be attempted in the future. that lead to abrupt and permanent improvements in

performance (e.g. Anzai & Simon, 1979).
The model also predicts the differences found

between the two types of five-move problems used in
5 . Conclusion these experiments. If planning begins with a focus on

the small globe (yellow layer of paint), one of these
The experiments provide clear evidence of a problem types is more difficult to solve, as it requires

transition toward more planning and to planning that two extra moves in order to place the small globe
more frequently produced optimal solution paths. (yellow layer of paint) in its goal location. This also
With no experience, participants took more moves to explains why those who did the easier problems
solve the problems, and more often used the less would be initially more dependent on the flat-to-flat
effective flat-to-flat strategy to reach the goal state. strategy in the transfer problems. Since planning two
By the end of each experiment, the length of the moves was sufficient to find the optimal solution on
exploratory paths had dropped substantially and a the easy training problems, the participants who
greater proportion of the solutions incorporated solved them were less likely to plan the longer
optimal final paths. Based on previous research (e.g. sequences (four moves) in the transfer problems. In
Svendsen, 1991), it seems that the increase in this case, they fell back on heuristic plans like the
planning in this task can be characterized as learning flat-to-flat strategy.
about the benefits of planning more so than learning Not only does the model provide a good fit to the
about the task. aggregate strategy use data, but also produces vari-

The ACT-R model provides an explanation of the ability in performance that approaches that of the
transitions in planning and strategy use throughout participants themselves. Specifically, the model
the experiment. It was constructed to make random produces variation in strategy use on the final path
moves or to plan using either the flat-to-flat or that nearly captures the range of participant behavior
optimal strategies suggested by the data. As the (Figs. 10 and 11). This is an encouraging sign, as
model learns the relative costs and benefits of one major criticism of computational models has
planning and of these strategies, it tends to shift from been that they often fail to capture the variability of
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human behavior, tending only to fit average results optimal final paths. This suggests that such evalua-
(e.g. Roberts & Pashler, 2000). tions of utility are generally applicable features of

The research and model presented here comple- cognitive functioning.
ment other research in problem solving and provide
evidence pertinent to other interesting research areas.
Firstly, the model’s fit to the data is based upon a A cknowledgements
mechanism that has been used previously to explain
shifts in behavior over time (e.g. Lovett, 1998; This research was supported by NSF grant
Matessa & Anderson, 2000). As familiarity is gained [BCS997-5-220. Portions of this research were
with a task, more accurate appraisals can be made of presented at the Fourth International Conference on
how well various approaches will fare. The result is Cognitive Modeling in Fairfax, Virginia (July 2001).
problem solving behavior that becomes increasingly The authors would like to thank Raluca Budiu, Dick
optimal over time. Secondly, this mechanism in- Hayes, and Marsha Lovett for their comments on
volves a noisy shift from simpler strategies to more earlier versions of this paper.
sophisticated approaches, producing gradual im-
provement over time. Both the data and the model
support this type of transition, adding to the literature
that has addressed this general issue in several areasA  ppendix A. Descriptions and rules for Tower
(e.g. Bower & Trabasso, 1963; Siegler, 1987). of Hanoi isomorphs used in this study
Finally, the model provides an explanation of how
individual variability may arise in tasks that do not  Monster move isomorph
place a heavy burden on cognitive capacities. Differ-
ences in performance among individuals in this  Description
experiment appear to be the result of accidents of the On a strange planet far from here, there is a race
participant’s behavior. Making the ‘correct’ random of intelligent, if slightly odd, monsters. They are
move, or trying a strategy at an opportune moment six-handed and have curious customs including the
increases the likelihood that the strategy will be used use of globes in ceremonies. Because of the curious
on a subsequent trial. Over the course of 12 or 18 nature of their society, both monsters and globes
problems, these random variations in specific moves come in exactly three sizes: small, medium, and
or problems can accumulate to produce noticeable large.
differences in overall performance. These monsters live in a complex culture, where

In conclusion, the experiments and model pre- different occasions or events require that each size
sented here illustrate a noisy shift from strategies that monster hold a particular size globe. In addition, they
are easy but relatively ineffective to ones that are have a detailed system of etiquette which determines
more difficult to execute, but also quite effective in how the globes may be exchanged. You will be asked
solving the problems. The model provides an expla- to help three monsters prepare for events by telling
nation for this shift that involves comparing the them how to exchange globes in agreement with
strategies based on the estimated costs of using them their traditions and culture.
to achieve local goals (subgoals). These findings add
credence to the idea that such transitions are not  Rules
produced by all-or-none transitions in strategy choice Monster etiquette is complicated and very specific.
or planning behavior (Lamaire & Reder, 1999; According to the rules of this culture, globes may
Reder, 1982; Siegler, 1987). Rather, over a number only be passed according to the following restric-
of trials, better estimates of cost can be made based tions.
on the experienced costs. As this happens, greater
sophistication gradually supplants random explora- 1. Only one globe may be passed at a time.
tion. This idea accounts for both the decrease in 2. A smaller globe may not be passed to a monster
exploratory path length and for the transition to more holding a larger globe.
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Bower, G., & Trabasso, T. (1963). Reversals prior to solution in3. If more than one globe is being held by a single
concept identification.Journal of Experimental Psychology, 66,monster, that monster may only pass the largest
409–418.

globe it is holding.
Gunzelmann, G., & Blessing, S. B. (2000). Why are some

problems easy? New insights into the Tower of Hanoi. In
 Paint stripping isomorph Proceedings of the Cognitive Science Society, p. 1029, Poster

session presented at the Annual Meeting of the Cognitive
Science Society, Philadelphia, PA. Description

Hayes, J. R., & Simon, H. A. (1974). Understanding writtenA chemical has been developed that allows a
problem instructions. In Gregg, L. W. (Ed.),Knowledge and

person to strip a layer of paint from a painted surface cognition. Hillsdale, NJ: Erlbaum, pp. 167–200.
and reuse the paint on something else. It is cheaper,Hayes, J. R., & Simon, H. A. (1977). Psychological differences

among problem isomorphs. In Castellan, N. J., Pisoni, D. B., &faster and less environmentally damaging than tradi-
Potts, G. R. (Eds.),Cognitive theory, vol. II. Hillsdale, NJ:tional painting techniques. The only drawback is that
Lawrence Erlbaum, pp. 21–41.the paint that has been stripped must be reapplied

Kotovsky, K., Hayes, J. R., & Simon, H. A. (1985). Why are some
right away. A single coat of paint can be stripped problems hard?Cognitive Psychology, 17, 248–294.
and reapplied an unlimited number of times without Lamaire, P., & Reder, L. (1999). What affects strategy selection in
sacrificing the quality or look of the paint. arithmetic? The example of parity and five effects on product

verification. Memory & Cognition, 27, 364–382.In this problem you will be helping an individual
Lovett, M. C. (1998). Choice. In Anderson, J. R., & Lebiere, C.repaint pieces of furniture. She has heard of this new

(Eds.), The atomic components of thought. Mahwah, NJ:product and is fascinated by the possibilities. Of
Lawrence Erlbaum, pp. 255–296.

course, there are some practical limitations in using Lovett, M. C., & Anderson, J. R. (1996). History of success and
this product. current context in problem solving: combined influences on

operator selection.Cognitive Psychology, 31, 168–217.
Lovett, M. C., & Schunn, C. D. (1999). Task representations, Rules

strategy variability, and base-rate neglect.Journal of Ex-Whenever using paint, there are some practical
perimental Psychology: General, 128, 107–130.

issues that must be considered. For this problem, Luchins, A. S. (1942). Mechanization in problem solving: the
they are as follows. effect of einstellung.Psychological Monographs, 54(6), 95.

Matessa, M., & Anderson, J. R. (2000). Modeling focused
learning in role assignment.Language and Cognitive Processes,1. Only one layer of paint may be stripped at a time.
15, 263–292.2. If there is more than one layer of paint on a

Reder, L. M. (1982). Plausibility judgments versus fact retrieval:
surface, only the darker (visible) layer of paint alternative strategies for sentence verification.Psychological
may be stripped. Review, 89, 250–280.

3. A lighter shade of paint may not be painted over a Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A
comment on theory testing.Psychological Review, 107, 358–darker shade of paint.
367.

Siegler, R. (1987). The perils of averaging data over strategies: an
example from children’s addition.Journal of Experimental

R eferences Psychology: General, 116, 250–264.
Simon, H. A. (1975). The functional equivalence of problem

solving skills. Cognitive Psychology, 7, 268–288.Anderson, J. R. (1993).Rules of the mind. Hillsdale, NJ:
Svendsen, G. B. (1991). The influence of interface style ofLawrence Erlbaum.

problem solving. International Journal of Man-MachineAnderson, J. R., & Lebiere, C. (1998).Atomic components of
Studies, 35, 379–397.thought. Hillsdale, NJ: Lawrence Erlbaum.

Anzai, Y., & Simon, H. A. (1979). The theory of learning by VanLehn, K. (1991). Rule acquisition events in the discovery of
doing. Psychological Review, 86, 124–140. problem-solving strategies.Cognitive Science, 15, 1–47.
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