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To investigate the neural mechanisms of planning, we used a novel
adaptation of the Tower of Hanoi (TOH) task and event-related
functional MRI. Participants were trained in applying a specific
strategy to an isomorph of the five-disk TOH task. After training,
participants solved novel problems during event-related functional
MRI. A computational cognitive model of the task was used to
generate a reference time series representing the expected blood
oxygen level-dependent response in brain areas involved in the
manipulation and planning of goals. This time series was used as
one term within a general linear modeling framework to identify
brain areas in which the time course of activity varied as a function
of goal-processing events. Two distinct time courses of activation
were identified, one in which activation varied parametrically with
goal-processing operations, and the other in which activation
became pronounced only during goal-processing intensive trials.
Regions showing the parametric relationship comprised a fronto-
parietal system and include right dorsolateral prefrontal cortex
[Brodmann’s area (BA 9)], bilateral parietal (BA 40�7), and bilateral
premotor (BA 6) areas. Regions preferentially engaged only during
goal-intensive processing include left inferior frontal gyrus (BA 44).
The implications of these results for the current model, as well as
for our understanding of the neural mechanisms of planning and
functional specialization of the prefrontal cortex, are discussed.

P lanning is ubiquitous in our daily lives: we plan our workday,
our child’s birthday party, the most efficient route through

the grocery store, and the organization of a manuscript such as
this one. At a finer time scale, planning occurs when we solve
multicolumn addition problems or puzzles such as the Tower of
London (TOL) or Tower of Hanoi (TOH). It is at this time scale
that we investigate the neural circuitry involved in the planning
process.

Since its introduction as a task to study planning from the
information-processing perspective by Simon in 1975 (1), the
TOH has been a prototype task in the study of high-level
cognition and problem-solving behavior (2–4). TOH and TOL
have been widely used in studies of patient populations as well
(5–6), whereas recent neuroimaging studies have used TOL to
map planning behavior onto brain activity (7–9).

Recent research has investigated the role of brain areas such
as the prefrontal cortex in the service of planning. However,
Goel and Grafman (10) have suggested that, whereas patient
populations (5, 6) and frontal patients (11, 12) show deficits in
performing planning tasks, a more precise analysis in terms of
information-processing mechanisms is necessary to map func-
tionality onto explicit cognitive mechanisms. By analyzing strat-
egy use of their patient data in terms of formally specified
information-processing models as described by Simon (1), these
investigators identified the focal points of difficulty in TOH in
frontal patients as deficiencies in short-term memory as well as
difficulties in dealing with goal–subgoal conflicts. Similarly,
recent functional neuroimaging studies have begun to investigate
the neural basis of planning, with several studies showing that
during variants of the TOH and TOL, frontal activation is
observed (7–9). However, most studies to date have used a block

design so that the functional significance of regional brain
activity observed in these studies remains uncertain.

Any study using a complex task such as the TOH to activate
the brain must address the issue of strategy variability in the
interpretation of data. Even a seemingly simple behavioral
model that captures latency and error profiles at both the
aggregate and individual levels may belie the concurrent and
differential use of multiple strategies when performing a task
(13, 14). This issue becomes especially relevant when we consider
the interpretation of neuroimaging results. Without clarification
of what strategy or multiple strategies are being used in a
particular task, it is difficult to assess the functionality of neural
circuitry except at a coarse task-level description.

Operationalization of Planning, Cognitive Modeling, and ACT-R. We
have formalized planning behavior in the TOH as a computa-
tional model within the adaptive control of thought–rational
(ACT-R) cognitive modeling framework. ACT-R (15, 16) is a
general cognitive modeling architecture. It is a theoretical
framework that embodies important general principles of cog-
nition as well as a simulation system that allows us to form
well-specified models of performance and learning in a rich
variety of complex cognitive tasks. Because it is a simulation
system run on a computer, the modeler is forced to be theoret-
ically explicit within the framework. Given this precision, such
models can run and are run to simulate data that can be
compared to human performance, allowing for direct evaluation
of the goodness of a model, with the additional benefit of
allowing for behavioral predictions to be made regarding novel
variations of the modeled task. Further, such models allow us to
characterize and discuss behavior across a wide variety of tasks
within a formally defined set of cognitive mechanisms as spec-
ified within the architecture.

Our current effort has its focus in ACT-R’s goal-processing
mechanism. Goal processing has a special status in ACT-R, with
complex control of behavior accomplished through the creation
and manipulation of goal structures. Planning behavior in the
TOH task necessitates the processing of multiple goals and
exercises this mechanism to a great degree. To control the
strategy used by participants, we extended the behavioral meth-
odology described in Anderson and Douglass (4). That meth-
odology includes training participants in what is called a ‘‘so-
phisticated perceptual subgoaling strategy.’’ This training allows
us to know when participants are setting goals in the perfor-
mance of the task and how many goals they are setting. It is this
particular strategy that we have modeled within the ACT-R
framework.
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We exploit our well-specified cognitive model by coupling its
trial-by-trial behavioral predictions with event-related functional
MRI (fMRI). Event-related fMRI provides distinct advantages
over the block designs that have previously been used to study
planning (17, 18). Most salient of these advantages is that
event-related fMRI provides a temporal component, with the
magnetic resonance signal over time being associated with
psychological behavior at the individual trial level. It is this rich
temporal component of the data and the ability of cognitive
models to capture behavior over time that suggest an approach
of combining computational cognitive modeling with event-
related fMRI. By training participants in the use of a particular
strategy and constructing an explicit cognitive model of that
strategy, we are able to frame the time courses of activity within
brain areas in terms of specific cognitive mechanisms.

Methods
Subjects. Eight right-handed English-speaking subjects (four
male, four female, ages 18–32 years) enrolled in this study.
Institutional Review Board approval was obtained from both
Carnegie Mellon University and the University of Pittsburgh. All
participants were given informed consent in accordance with
Carnegie Mellon and University of Pittsburgh guidelines.

Prescan Practice Procedure. Participants were explicitly trained to
use the sophisticated perceptual subgoaling algorithm. This
training was accomplished by having participants solve 21 TOH
problems of the sort described in ref. 4. Participants explicitly
indicated when each move selection was part of the planning
process with which they were instructed or an immediate move
to be made. They received automated immediate feedback and
were kept on the optimal solution path by being forced to
indicate the correct move before proceeding. To minimize eye
movements in the magnet, we next transitioned to a simpler
version of TOH that we call the Grid of Pittsburgh (GOP). Fig.
1 illustrates this representation and shows a sequence of such
grids, each representing a state in the solution path of an example
problem. The mapping is straightforward. The three grid col-
umns correspond to the three pegs. Digits 1–5 correspond to disk
1 (the smallest) through disk 5 (the largest). Participants prac-
ticed 21 pseudorandom GOP problems of varying complexity by
using a mouse to indicate plans and moves.

For the remainder of the training procedure, participants were
required to use a response glove (similar to the device available
in the magnet) to indicate moves. Three buttons corresponded
to the three pegs in the display. Participants had to use two

button presses to indicate a move. The first press indicated the
source peg (and, by convention, its topmost disk), and the second
press indicated the destination peg. During the next phase,
participants were trained to perform the task almost identically
to how they would in the magnet. Participants were instructed to
continue using the same strategy but to compute the planning
steps covertly: only actual moves were to be indicated. This
method was to ensure that, in the imaging data, motor responses
would not be confounded with number of goal-setting opera-
tions—one move, one response, independent of the number of
goal setting operations. In addition, the pace of each move was
fixed at 16 sec to prepare for the task as it is conducted within
the magnet. To prevent participants from planning ahead,
performance of a simple secondary task was required during the
last 8 sec of each 16-sec window. As in prior training, participants
were forced to stay on the optimal solution path. If they made
an incorrect move, the display was updated to show the correct
next state.

To allow the visual interface within the magnet to be as simple
as possible, participants were next instructed to memorize a
single goal state. This configuration would serve as the goal state
toward which they would always work during the scanning
session of the study. Having them do this allowed us to display
only the current state of a problem with the assumption that they
would always work toward the single memorized goal state. To
assist in this memorization, participants were trained by using 10
simple practice problems with initial states that varied between
one and five moves from the target goal state.

Scanner Behavioral Procedure. The behavioral task in the scanner
consisted of 12 blocks of �6 min in length. During each block,
participants solved a unique TOH problem defined by a pseu-
dorandom initial state and the goal state memorized during
training. The problems were of average difficulty, requiring
between 19 and 23 moves in the optimal solution path. Problems
were constructed so that two seven-move sequences of the type
shown in Fig. 1 were embedded in the middle of the overall
solution path. Only the current state was displayed to the
participant, and it subtended less than 2° of visual angle.
Responses were collected through the response glove, as de-
scribed in prescan practice. As during prescan training, partic-
ipants were kept on the correct solution path. Incorrect trials and
their immediate successors were ignored in subsequent analyses.

MRI. Images were acquired with a conventional 1.5-T GE Signa
whole-body scanner (General Electric) and a standard radio

Fig. 1. Illustrative three-disk subproblem with plans and move by problem state. In this example, the initial configuration has disks 1, 2, and 3 in column a and
disks 4 and 5 in column c. The goal state is to build a tower of all five disks in column c. The intermediate states shown here are the problem states in the optimal
solution path, as determined by the strategy with which participants were trained. The plan and eventual move for each transition are shown below the
corresponding problem states in the solution path. The succinct description of the strategy with which subjects were trained is described as follows: (i) Select
the largest out-of-place disk and the destination peg. (ii) If there is no disk blocking the move, make the move and go to step i. (iii) If the largest disk blocking
the move is on the destination, select it and the other peg and go to step ii. (iv) If the largest disk blocking the move is on the source, select it and the other peg
and go to step ii. For example, the first move in this problem requires three planning steps resulting in the actual move of disk 1 to column c (actual moves are
indicated in boldface). Each problem solved in the scanner was designed to include two of this type of three-disk subproblems. These subproblems are the focus
of all analyses reported.
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frequency head coil. Twenty-five oblique axial slices (3.80 mm
thick, 3.75 mm2 in-plane resolution) were acquired parallel to the
anterior commissure–posterior commissure (AC-PC) line, with
the middle of the seventh slice from the bottom through the
AC-PC line (a total of 95 mm of brain coverage). Functional
scans were acquired by using a two-shot T2*-weighted spiral scan
pulse sequence [repetition time � 2,000 ms, echo time � 34 ms,
FOV � 24 cm, flip angle � 70°) (19). Scanning was event-
related, with image acquisition synchronized to stimulus onset,
such that four volumes, each containing 25 slices, were acquired
during each 16-sec trial.

Anatomical scans (36 slices) were acquired by using a standard
T1-weighted pulse sequence, with the middle of the 15th slice
from the bottom through the AC-PC line. Data from individual
subjects were subjected to a between-block subtractive mean
normalization. Images were then coregistered to a common
reference structural MRI scan by means of a 12-parameter
automatic algorithm AIR (20) and smoothed with an 8-mm
full-width half-maximum three-dimensional Gaussian filter to
accommodate individual differences in anatomy.

Analysis. Data analysis was driven by the underlying ACT-R
model of the task. The following equation describes the voxel-
wise regression model used in the analysis: MR(t) � B0 �
B1*trial(t) � B2*ACT-R(t) � e(t) (MR, magnetic resonance).
The signal for a particular voxel over time, MR(t), is modeled as
a linear combination of constant intercept and two reference
functions. The reference function trial (t) is an unscaled hemo-
dynamic response that is identical for each trial in the experi-
ment. This term in the model is designed to capture variation in
the MR signal due to generic trial processes such as encoding and
response generation, independent of what we consider to be the
cognitive component of the task, captured by the term ACT-
R(t). In the ACT-R model of the TOH task, planning is carried
out through varying numbers of goal-setting operations. To
generate the ACT-R(t) time series, we begin by using a model to
simulate solutions for each problem encountered in the scanner.
The goal-setting events and their timestamps are identified and
collected. To generate the reference time series, these discrete
goal-setting events are convolved to generate an unscaled he-
modynamic response function (18, 21). Fig. 2 shows the discrete
events and their convolution for the seven-move subproblem like
the sequence shown in Fig. 1 that is common to all problems. For
each of these seven-move sequences, the first move has high
planning (three goals set), the fifth move medium planning (two
goals set), and the rest low planning (one goal set). Spatial t maps

were generated through a between-subject voxel-wise analysis of
the regressor coefficient B2 of the ACT-R-generated time series.
A voxel-clustering threshold of 8 was used to increase control for
multiple comparisons (22). Only voxels significant at the P �
0.0005 level are presented.

Behavioral Results. All analyses are constrained to those data
corresponding to moves made during three-disk subproblems of
the type shown in Fig. 1. Fig. 3 shows the aggregate latency
profile for correct trials over the move sequence for these
subproblems. These seven moves served as the levels within a
single-factor repeated-measures ANOVA. Latencies were sig-
nificantly different for moves in these three-disk subproblems, F
(6,42) � 48.7, P � 0.0001, MSE � 101026. These results are
consistent with the ACT-R model of the task. As can be seen in
Fig. 3, the first high-planning move in the sequence takes the
longest time. The medium-planning move 5 takes the next
longest. The remaining low-planning moves show the fastest
latencies, reflecting the fact that each requires only a single
planning step. Mean accuracy across moves was 95%. A repeated
measures ANOVA of the move factor for accuracy was margin-
ally significant, F (6,42) � 3.07, P � 0.05, MSE � 0.003, with
most errors occurring during the high-planning state (89%
accuracy). All error trials and their immediate successors were
eliminated from subsequent analyses.

fMRI Results. Regions identified as differentially responsive to
goal-processing operations are distributed among prefrontal
cortex, parietal cortex, cingulate gyrus, and subcortical struc-
tures (Fig. 4, Table 1). Frontal regions include right dorsolateral
prefrontal cortex (DLPFC) [Brodmann’s area (BA 9)], left
inferior frontal gyrus (BA 44), bilateral premotor cortex (BA 6),
left supplementary motor area (SMA) (BA 6), and right SMA�
preSMA (BA 8). Parietal regions include a large bilateral region
(BA 7�40) that encompasses superior parietal cortex, precuneus
(BA7), inferior parietal lobules (BA 40), and angular gyri (BA
39). Other parietal regions include bilateral cuneus (BA 18) and
left precuneus (BA 31). The cingulate area identified is in the
rostral anterior cingulate cortex (BA 24). Subcortical structures
include right caudate nucleus and thalamus.

Examination of the time courses of activity suggests two
distinct patterns of activation, one in which the blood oxygen-
ation level-dependent (BOLD) response varied parametrically
as a function of goal-processing operations as predicted by
model, and another in which activity substantially increased only
during the high-planning trials. Region of interest (ROI) time
courses are baseline normalized to the mean activation of the
ROI over the course of the experiment for each subject. Within
the context of a repeated-measures ANOVA (Time 4 � Planning

Fig. 2. Convolution of goal-setting events as predicted by the ACT-R model
yields an unscaled hemodynamic response. This model serves as the reference
time series for the regression model discussed in the text. The function shown
here is generated from solving a three-disk subproblem common to all
problems.

Fig. 3. Behavioral latency profile of three-disk subproblems that are the
focus of analyses.
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Load 3), we performed a single degree of freedom contrast for
each ROI, testing whether time points 2 and 3 of the medium-
planning time course fall midway between the same points in the
time courses of the low- and high-planning states. The signifi-
cance threshold is set to P � 0.01; contrasts with a P � 0.01
indicate a rejection of the null hypothesis that there is a
parametric relationship between planning load and the BOLD
response. Time courses that show a clear parametric relation
with planning load include those of left SMA (BA 6), F (1,42) �
1.38, MSE � 0.0054; bilateral premotor cortex (BA 6), F (1,42) �
0.135, MSE � 0.0016; bilateral parietal cortex (BA 7�40), F
(1,42) � 2.86, MSE � 0.0045; right cuneus (BA 18), F (1,42) �
0.426, MSE � 0.0038; and bilateral anterior cingulate (BA 24),
F (1,42) � 0.0788, MSE � 0.0078. Time courses that do not
suggest a parametric relationship with planning load include left
inferior frontal gyrus (BA 44), F (1,42) � 7.345, MSE � 0.0022;
left precuneus (BA 31), F (1,42) � 13.044, MSE � 0.0083; and
bilateral thalamus, F (1,42) � 9.3210, MSE � 0.0049. Several
time courses yielded marginally significant contrasts (P � 0.05),
suggesting an ambiguity about the parametric relationship.
These areas include right SMA�preSMA (BA 8), F (1,42) �

4.492, MSE � 0.0040; right DLPFC (BA 9), F (1,42) � 5.804,
MSE � 0.0046; left cuneus (BA 18), F (1,42) � 5.537, MSE �
0.0040; and caudate nucleus, F (1,42) � 5.145, MSE � 0.0013.
We consider a subset of our ROIs displaying activity patterns
from each category in turn in the following discussion.

Discussion
The results of our analysis of the neural substrates of planning,
using GOP and a computational model of task performance,
confirm the involvement of a distributed neural network that
includes frontal, parietal, and subcortical elements. Within this
network, an analysis of the time course of activation and its
relationship to planning suggests a degree of modularity as
subgoals are constructed and maintained in the service of
correct task performance.

Parametric Relationship with Planning Load and the Frontoparietal
Network. Fig. 5 shows the time courses displaying the parametric
relationship with planning load for the frontoparietal system,
including right dorsolateral prefrontal (BA 9), bilateral parietal
(BA 7�40), and bilateral premotor (BA 6) regions. The right

Fig. 4. Activation map overlay on female reference brain. Regions with eight or more contiguous voxels significant at level P � 0.0005 are shown. Slices
are shown in radiological space (image left is brain right; image right is brain left) and are ordered from top of brain to bottom. Slice 19 is AC-PC line. See
also Table 1.

Table 1. Foci of activation

Anatomical region BA Voxel count

Stereotaxic coordinates, mm

Maximum t (average t)x y z

Left medial frontal gyrus (SMA) 6 30 �1 �2 55 9.68 (7.41)
Right medial frontal gyrus (SMA�pre-SMA) 8 8 7 18 43 8.35 (7.28)
Right precentral sulcus (premotor) 6 93 33 �8 51 13.01 (8.03)
Left precentral sulcus (premotor) 6 25 �22 �19 51 8.75 (7.25)
Right superior frontal gyrus (DLPFC) 9 8 45 37 32 8.98 (7.54)
Left inferior frontal gyrus 44 19 �42 5 27 16.71 (8.95)
Left�right parietal 7 233 �7 �59 51 23.05 (8.07)

Left�right precuneus 7
Left�right angular gyrus 39
Left�right inferior parietal lobule 40

Left precuneus 31 8 �3 �71 27 7.37 (6.96)
Right cuneus 18 16 22 �67 16 9.64 (7.40)
Left cuneus 18 18 �22 �77 20 11.80 (7.94)
Right caudate nucleus 23 18 5 27 9.58 (7.80)
Left�right thalamus 169 1 �19 12 15.21 (7.96)
Left�right anterior cingulate 24 21 �7 33 12 9.20 (7.66)

Activation foci sensitive to number of planning steps as identified by between-subject voxel-wise t tests of the ACT-R(t) model coefficient in the linear
model of the MR signal (see Analysis). Only regions with eight or more contiguous active voxels (significant at level P � 0.0005) are reported. Coordinates
refer to location of maximal activation in Talairach space.
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DLPFC particle is somewhat ambiguous. Although the contrast
testing whether the time courses vary strictly parametrically
indicated marginally significant deviation, a pairwise t test of the
difference between means of the middle time points of medium-
and low-planning conditions is significant, t(7) � 3.42, P � 0.005
one-tailed, indicating that this region is differentially sensitive to
planning load. Although the ACT-R time series used to identify
these regions is generated by using only goal-processing events,
examination of the model reveals that these events are tightly
coupled with requirements for active short-term memory main-
tenance when formulating a plan for action. We propose that at
a coarse level, these regions operate in concert and essentially
serve to warehouse intended moves and resulting problem states
associated with the goals.

There are rich interconnections between parietal, premotor,
and dorsolateral prefrontal areas (23, 24). Numerous neuroim-
aging studies of spatial working memory and problem solving
have shown coactivation of prefrontal and parietal areas (see ref.
25 for a review), and recent fMRI work by Diwadkar, Carpenter,
and Just (26) has demonstrated a clear relationship between
activity in DLPFC and parietal areas. Dorsolateral prefrontal
cortex plays a crucial role in the active maintenance of infor-
mation and is differentially responsive to working memory load
(27). Right DLPFC, in particular, has been found active during
a variety of spatial working memory tasks (28–31). Further,
coactivation of right DLPFC and parietal cortex has also been
demonstrated in spatial working memory tasks (32), as has
coactivation of parietal and premotor areas (25).

Differentially Greater Activity During High-Planning Load. A number
of areas are identified in our analysis that did not show a strictly
parametric relationship between planning load and activation,
instead showing pronounced activity only during the high-
planning load condition. We limit our discussion to the left
inferior frontal gyrus (BA 44). Fig. 6 shows the time course of
activity for this area.

We see that, in contrast to the right DLPFC region, the left
inferior frontal gyrus shows equal responsiveness for low- and
medium-planning loads and a differentially greater response for
high-planning load. The general point to be taken here is that,
whereas all regions identified in the current analysis are respon-
sive to planning load, all areas are not identically responsive.
Rather, the results suggest that different brain regions are
responding differently to separate cognitive demands in the task.
With respect to the differences in the prefrontal regions, par-
ticipants report not having to work out their plans in the
medium-planning state but rather retrieving them. The plan in
these states always involves moving the smallest disk out of the

way so that the next smallest can be moved. Retrieval of these
plans is quite plausible, because participants were highly trained
in the task and so had many experiences with this particular
configuration. This fact suggests a functional dissociation be-
tween these prefrontal regions with the left inferior frontal gyrus
especially active when building subgoals in the construction of a
plan. This view is consistent with previous studies suggesting a
general selection function for this region of the brain (33).
Further, we noted earlier that the responsiveness of the right
DLPFC region during the medium-planning state was slightly
lower than expected with respect to the current model. To the
extent that this region subserves both goal-processing and main-
tenance functions, the depressed time course for the medium-
planning condition might reflect that fewer subgoals are created
when using this strategy.

Although the parametric responsiveness of parietal, premotor,
and right DLPFC regions is consistent with data reported in
Baker et al. (8) in their direct contrast of easy and hard TOL
problems, these results are not consistent with those reported in
Dagher et al. (7). Their TOL data show that activity in lateral
premotor and DLPFC areas varies parametrically with problem
complexity but does not show such a relationship in parietal
areas. We attribute this difference to issues inherent in the
blocked design methodology (17) and to task and strategy
differences between their TOL task and the GOP task.

One prefrontal cortical region previously associated with plan-
ning, anterior, or polar frontal cortex (BA 10) was not active in our

Fig. 5. Right DLPFC, premotor, and parietal time series. Activity increases parametrically with number of planning steps. Percent signal change is relative to
mean signal strength over the course of the experiment.

Fig. 6. Left inferior frontal gyrus time series. Activity most prevalent in
high-planning states while equivalent between low and medium-planning
loads. Percent signal change is relative to mean signal strength over the course
of the experiment.

3350 � www.pnas.org�cgi�doi�10.1073�pnas.052703399 Fincham et al.



analysis. Current hypotheses regarding the contribution of this
region to higher cognitive functions include processes related to the
evaluation of self-generated representations (34) and the support of
cognitive branching (35), defined as the maintenance of superor-
dinate goals during subgoal processing. Operations such as these
would be engaged during all levels of planning in the present
paradigm, which may account for a lack of differential activation
with the number of planning steps in our present analysis.

Conclusion
Our goals in this study were 2-fold. The first and most specific
was to identify the brain circuitry that is differentially responsive
to goal-processing operations in the GOP task. We have shown
that the frontoparietal network and other areas are differentially
activated with unique time course profiles in response to task
demand, characterizing that demand in terms of goal-processing
operations and spatial working-memory requirements of the
task. The second and more general goal was to show that a
computational cognitive architecture can be used as a frame-
work through which we can precisely articulate the cognitive
components of a task and so improve our ability to assess and
describe the functionality of particular brain areas and networks
of areas in terms of cognitive mechanisms. The results of our

analysis suggest a functional dissociation between a right pre-
frontal–parietal network whose activity reflects the working
memory demands of the task and a left posterior DLPFC
component associated with the active selection of task-
appropriate subgoals in the service of planning. Also suggested
is an extension of the ACT-R model in which multidisk config-
ural cues are taken into account when constructing a plan for
action.

We have focused on the goal-processing mechanism of ACT-R
in the current task at a still fairly coarse level. At this level, it
remains challenging to isolate goal-processing proper activity
from other task-related activity. However, the architecture con-
tains many other features that we have not considered here,
including retrieval mechanisms, perceptual-motor mechanisms,
and subsymbolic computations. Our goal is to continue using
ACT-R as a framework through which further iterations of
mapping features of the theory onto neural substrates will serve
to both inform the models and architecture and serve as a tool
from which we can frame results across other neuroimaging
studies in terms of specific cognitive mechanisms.

This work was supported by National Science Foundation Grant SBR-
9873465 and Grant 5-T32-MH19983 from the National Institute of
Mental Health.
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