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Abstract

Performance and data from some cognitive models suggested that emotions, experienced during problem solving, should
be taken into account. Moreover, it is proposed that the cognitive science approach using both theoretical and experi-
mental data may lead to a better understanding of the phenomena. A closer investigation of ACT-R cognitive architecture
(Anderson 1993) revealed some properties analogous to phenomena known from the activation theory of emotion. A
model of the classical Yerkes-Dodson experiment was built to test the predictions. The study explained such psycho-
logical phenomena as arousal, motivation and confidence within the mathematical notation. The influence of changes
in these motivational states, controlled by emotion, on information processing has been investigated and it is shown that
the dynamics corresponds to the well-known optimisation methods, such as best-first search and simulated annealing.

1 Introduction

Recent progress in cognitive modelling has allowed the
testing of quite a broad range of human psychology and
cognition theories. A lot of work in experimental psychol-
ogy has been reproduced and reconsidered by cognitive
scientists within theories such as SOAR (Newell 1990)
or ACT (Anderson 1993). This work has produced new
insights into our understanding of some phenomena of
human memory, learning, perception and reasoning. Yet
there have been few (if any) attempts to understand emo-
tion and affect within this framework.

The subject of emotion has bothered many psycholo-
gists, philosophers and neurobiologists since William Ja-
mes first attempted to define emotion. Many theories of
emotion, sometimes quite contradictory, have appeared
since then (see (Plutchik 1994, LeDoux 1996) for reviews).
Recently the subject of emotion has attracted the attention
of the computer science and artificial intelligence commu-
nities, and has emerged into a new area of research, some-
times referred as affective computing (see (Picard 1997)
for review).

Although there is no doubt emotion is a very impor-
tant component of human and animal psychology, one
of the most intriguing and interesting question remains
unanswered: Is affect and emotion the necessary compo-
nent of intelligence? And if it is, how should it be in-
cluded into AI theory?

It is known from the whole history of experimental
psychology that emotion is closely related to cognitive
processes such as learning, decision making and mem-
ory. Recently there have been claims, based on some
experimental evidence, that damage to emotion respon-
sible areas of the brain impairs these cognitive processes
(Damasio 1994), and therefore emotion is the necessary

component of intelligence, as also suggested by Goleman
(1995). But, as noted in (Sloman 1999), this conclusion is
a little premature, as the role of the damaged brain areas is
still not sufficiently well understood due to the complex-
ity of the human brain.

Perhaps, in order to support these experimental ob-
servations, one needs some theory explaining these phe-
nomena as a mathematical model. We believe that such
a theory can be created within the frame of cognitive sci-
ence. If the role of emotion in cognition can be under-
stood within this theory then, perhaps, we shall also be
able to decide what role it plays in intelligence.

It is becoming evident that cognitive models used to
test different psychological theories should take emotion
into account (Belavkin, Ritter & Elliman 1999). Many
of these models simulate subjects solving various puz-
zles and problems, some models consider children, as in
(Jones, Ritter & Wood 2000), whose emotions are eas-
ily observable. We know from our own experience and
observation that emotion accompanies any problem solv-
ing process, but these computer simulations say nothing
about it. It seems that in cognitive science this subject has
not yet been studied deeply enough.

This is not to claim that cognition and emotion were
not considered together at all, but there was not many at-
tempts to study this subject with cognitive architectures
such as SOAR or ACT-R. Although there is already a num-
ber of cognitive appraisal models, such as (Ortony, Clore
& Collins 1988) or (Roseman, Antoniou & Jose 1996),
that allow us to conclude which emotion a subject should
feel under given circumstances, these symbolic represen-
tations do not explain what happens to the thinking pro-
cess itself as a result of these emotions. What is the differ-
ence between assembling the tower of Hanoi in an angry
or a happy mood?



2 Modelling the cognition

Although cognitive science is moving towards a unified
theory of cognition, there are several schools and architec-
tures implementing different interpretations. Many ideas
in this work were developed after observation of some
cognitive models, implemented in ACT-R (Anderson 1993),
and after closer investigation of the ACT-R conflict reso-
lution mechanism.

2.1 ACT-R architecture and models

The main distinguishing feature of the ACT-R architecture
is its sub-symbolic processing capabilities. The mecha-
nism, called rational analysis, acts underneath the pro-
duction system and it can be seen as a stochastic opti-
misation mechanism. In brief, all the symbols in ACT-R

(declarative knowledge units and production rules) have
some activation values and associations between them with
different strengths. Values of these activations and asso-
ciations affect many processes in the production system,
such as retrieval of knowledge facts, conflict resolution
(the choice of one production rule from several satisfy-
ing the current condition) and these values are statistically
learned, may decay in time and be affected by global pa-
rameters.

Such a mechanism can be controlled through many
parameters, such as noise variance, goal value, retrieval
and utility thresholds, etc. These parameters may dramat-
ically alter the behaviour of the production system and are
used by cognitive modellers to adjust the performance of
their models and test some theories.

Although ACT-R was sometimes criticised for having
too many parameters (and hence a good correlation with
the data), there is a great deal of experimental evidence
for including them in the theory. There is even a neu-
ral implementation ACT-RN (Lebiere & Anderson 1993)
(“N” for neural), and the latest version of ACT-R pos-
sesses most of its connectionist properties while still re-
taining the high level of abstraction allowing for encoding
and solving complex cognitive problems.

2.2 The Tower of Nottingham

As was mentioned earlier, many ideas for this work were
inspired by the results of the Tower of Nottingham model
(Jones et al. 2000), which was used to study cognitive de-
velopment. The idea of this work was to create a model
resembling the behaviour of adult subjects assembling the
Tower of Nottingham puzzle (Figure 1) and then to achieve
a match with the data from seven years old children by
modifying the original adults model.

The model was implemented in ACT-R and used the
Nottingham “Eye and Hand” perception-action module
(Baxter & Ritter 1996) to interact with the task simula-
tion. It achieved a fair match with the data from adult
subjects at default parameters settings. Then, to match

Figure 1: The Tower of Nottingham and two of 21
wooden blocks used to build the Tower of Nottingham

young problem solvers, Jones tried several architectural
changes using parameters, such as number of chunks in
working memory, retrieval threshold, fovea and parafovea
sizes (perception) and others.

It is not necessary to describe all the results of that
work here, but there was one particular adjustment to the
model, that alone produced excellent results (other single
parameters could not produce such a good correlation).
It was the model with increased noise in conflict resolu-
tion. The corresponding parameter :egn (expected gain
noise), when set to a value of 6.0, produced a particularly
good match for the data such as time needed to complete
each layer or the number of constructions assembled on
each layer (Figure 2. From (Jones et al. 2000)).

Figure 2: Time taken to assemble each layer and number
of constructions assembled on each layer of the Tower by
children and EGN6 model.

The fact that children seem to be more “noisy” or,
speaking in ACT terms, less rational than adults lead to
some interesting speculations and questions. For exam-
ple, it may indicate that emotions play a greater role in
children’s learning and problem solving. Indeed, joy and
frustration are more observable in children. Could we
possibly model younger children by increasing the noise
even further? Or could these or better results be produced
by some other parameters in conflict resolution?

3 Decision making in ACT-R

The questions mentioned in previous section were studied
by the author during the experiments with the Tower of
Nottingham model and a closer investigation of ACT-R

conflict resolution mechanism formed the basis for this
study. We do not need to explain here the whole spectra of
mechanisms and parameters in ACT-R and we shall refer
to (Anderson & Lebiere 1998) for further information, but



it is important to give a brief introduction to the ACT-R

conflict resolution mechanism and its notation, since it
will be used in the rest of the paper. Those familiar with
ACT-R may skip the next section.

3.1 Conflict resolution in brief

In ACT conflict resolution (a process of selecting one rule
out of several matching the condition) is realised through
its rational analysis model, which uses the subsymbolic
information. Every rule, in addition to its symbolic rep-
resentation, has also so called expected gain E and a rule
with the highest gain wins the competition in a conflict
set.

Expected gain E is calculated by the following equa-
tion:

E = PG − C + ξ(τ), (1)

where P is expected probability of achieving the goal if
the rule fires, G is the value of the current goal in time
units, C is expected cost of that rule in time units (it rep-
resents how long will it take to achieve the goal if that rule
fires), and ξ(τ) is a random variable representing noisy or
non-deterministic part of ACT-R conflict resolution mech-
anism. The level of this noise can be controlled through a
global variable called expected gain noise variance σ and
we shall refer to it as the noise temperature τ =

√
σ/π.

Although there is a lot of experimental evidence in
favour of ACT rational analysis model, unfortunately, the
ACT-R book (Anderson & Lebiere 1998) does not give
any justification or reference to a source of above formula
(perhaps, assuming that every reader is familiar with Bell-
man’s dynamic programming theory). In this paper the
probabilistic interpretation of expected gain will be intro-
duced and we shall see how equation (1) can be derived
from it. First let us take a closer look at this formula.

As we can see the expected probability P and ex-
pected cost C are properties of the production rule. These
properties can be learned statistically and there is also
a mechanism to “forget” some of this information with
time, called probability decay. So, if there are two rules
matching the current goal and ACT-R model learned from
previous experience that applying the first rule will lead
to the goal in 5 minutes (C = 5) with expected probabil-
ity P = .5, while for the second rule C = 10, P = .8
respectively, then for G = 20 (default value) the expected
gains of these rules will be E1 = .5 · 20 − 5 = 5 and
E2 = .8 · 20 − 10 = 6. In this example the second rule
will be selected for E2 > E1.

But not only statistical information about expected prob-
abilities and costs of a rule affect the conflict resolution.
The goal value G is a property of the current goal and it
is global parameter as well as the noise temperature τ . In
the above example one can easily check that for a lower
goal values, such as G = 14, the first rule will have higher
expected gain and it will be selected, despite its lower ex-
pected probability. Also, if the noise variance is too high

the choice will become more random and less dependent
on P s and Cs of rules in conflict set.

As mentioned above, there is a great deal of exper-
imental evidence confirming the plausibility of ACT-R’s
choice mechanism. For example, the data from (Friedman,
Burke, Cole, Keller, Millward & Estes 1964) shows that
although subjects choose according to the probability of
success (or reinforcement), the proportion of choices of
an alternative with maximum success probability (P =
1.0) never reaches 1.0. Similarly, subjects still sometimes
choose even the most unfortunate alternative (with 0 suc-
cess probability). So, there is always some degree of ran-
domness (noise) in their choice. Other works on choice
probability, such as (Myers, Fort, Katz & Suydam 1963),
showed that the choice depends more on the probability
of success for higher rewards (goal value).

3.2 Asymptotic properties of rationality

Only one rule can be selected to fire on each cycle and
with n production rules in the conflict set, the probability
of selecting a particular i-th one is given by Boltzmann
equation:

pi =
eEi/τ

∑n
j=1 eEj/τ

, (2)

where Ei is the evaluation of i-th rule, which is PiG −
Ci. We are interested in how the choice probability pi

depends on Pi and Ci for extremely high or low values of
goal value G and noise temperature τ .

For simplicity, let us consider the case of two produc-
tion rules and let P1 and P2 be their expected probabilities
and C1 and C2 their costs. We may also take P2 = 1−P1.
Then the probability p1 of choosing the first of two rules
will be calculated as

p1 =
e(P1G−C1)/τ

e(P1G−C1)/τ + e((1−P1)G−C2)/τ
.

Now we shall describe the asymptotes of this choice prob-
ability and resulting behaviour of the system at extreme
values of G and τ . These properties have been shown and
then tested on a model in (Belavkin 1999).

i) τ → 0 (no noise). In this case the system entirely
relies on statistical information and may be too de-
terministic. We speculate that the behaviour models
in some cases the behaviour that has been described
by Damasio concerning some of his patients, such
as repetitive errors, inability to choose from equal
opportunities. The first is due to excessive reliance
on the past experience, which may become obso-
lete in a changing environment because it takes too
long to learn new statistics to override the old ones.
The second type of behaviour occurs simply due to
the possibility of equal expected gains for several
rules.



ii) τ → ∞ (high noise). It is easy to show that

p1 → 1
2
, ∀Pi, Ci

In this case the choice becomes completely random
(or irrational) since it does not depend on the past
experience at all. Note, that sometimes such be-
haviour may be useful.

iii) G → 0 (low motivation). Then

p1 → e−C1

e−C1 + e−C2
.

In this case the choice is completely determined by
the the costs C of rules and not by the expected
probabilities P . The system is trying to put as little
efforts into the task as possible and does not “care”
about the probability of successful outcome.

iv) G → ∞ (too high motivation). In this case the
resulting p1 will depend on the value of expected
probability P1, which can be between 0 and 1. In
the extreme cases we shall have:

p1 → 1 for P1 = 1
p1 → 0 for P1 = 0 .

This case is opposite to the previous one: the choice
does not depend on the costs C, but is purely deter-
mined by the expected probabilities P . The system
does not pay attention to the effort (time) it spends,
and achieves the goal whatever the cost.

Note, that if we increase both G and τ keeping the
ratio G/τ constant, then expected probabilities become
more important then costs. Indeed, let τ → ∞ and G →
∞. In this case, like in iii), asymptotes of p1 are deter-
mined by the value of P1:

p1 → e

e + 1
for P1 = 1

p1 → 1
e + 1

for P1 = 0 .

So, p1 for P1 = 1 is e times bigger than for P1 = 0
(e > 1).

Similarly, for both G → 0 and τ → 0 the costs be-
come more important. It means that the values of G and
τ are important and not only their ratio G/τ .

4 On activation theory of emotion

Asymptotic properties of choice probability show that the
ratio G/τ determines how much the choice depends on
the learned statistical information, while the values of G
and τ determine whether the choice is made from costs
of probability perspective. Based on this observation we
may think of the G/τ ratio as an indicator of confidence

of a problem solver and the values of G and τ represent-
ing the activation or the “energy” of a cognitive process,
which is called arousal in activation theory of emotion. If
this is true, then the laws of activation theory of emotion,
such as Yerkes-Dodson Inverted-U curve relating arousal
to performance, should also apply to ACT-R cognitive
models.

4.1 The Yerkes-Dodson experiment

In order to test this idea, a model replicating the classi-
cal “dancing mouse” experiment by Yerkes and Dodson
(Yerkes & Dodson 1908) was built (Belavkin & Ritter
2000) using ACT-R.

In the original experiment a mouse was placed into a
discrimination box with two exits: one marked by a white
card and another by a black one. A mouse was trained ini-
tially to exit the box through any door, but after two days
it was only allowed to exit through the white door and if
it did a mistake, it was subjected to a slight electric shock
at the black door. The order of the doors was changed
randomly and researchers measured the number of wrong
choices a mouse made each day until a perfect habit had
been formed (i.e., when no errors were produced for three
consequetive days).

Such experiments with certain variations were per-
formed by many psychologists studying discrimination
learning or perception in the early 20-th century. The
remarkable feature of Yerkes and Dodson work was that
they looked at the speed of learning with respect to the
strength of stimuli. They changed the lighting of the box
so that it was easier or harder to discriminate between the
white and the black doors, and they increased the strength
of the electric shock from weak to medium and strong.

The main result of this experiment was that the best
(fastest) learning occurred under the medium stimulus (Fig-
ure 3. From (Yerkes & Dodson 1908)). Performance for
the strong stimulus was better then for the weak one, but it
was worse than medium, especially when visual discrim-
ination was not perfect.

4.2 Task simulation and “dancer” model

The task simulation was implemented using Common Lisp
and Garnet graphics library. The user interface consists of
three main windows (Figure 4): discrimination box with
three rooms and two doors, a control panel with a slider
for setting the contrast between the two doors and a con-
trol for setting the virtual “voltage”, and the third is a
window for displaying the number of errors a mouse is
making and other data. The contrast between the doors is
related to the G/τ ratio in ACT-R while the voltage con-
trol indirectly sets the goal value G.

The dancing mouse is represented by a red arrow head
object and its actions are controlled by a cognitive model,
implemented with ACT-R. It uses a simple perception-
action cycle and two-dimensional world representation model.



Figure 3: Learning curves for weak “W”, medium “M”
and strong “S” stimuli under medium visual discrimina-
tion. Abscissae represent the average number of errors for
four mice produced in ten tests for each series. Ordinates
represent the number of series.

Figure 4: User interface of the “dancing” mouse experi-
ment simulation. Left: the discrimination box with two
doors. Right: a simple control panel with a slider for set-
ting a contrast between the doors (and the G/τ ratio) and
voltage control related to G value.

It has visual sensors sending information about the ob-
ject right ahead and skin sensors sending the information
about the strength of external stimulus. The current and
goal states are represented by objects of a special type
self, that can be located at some point or inside an envi-
ronment (a room) object. The mouse model uses means-
ends analysis concept to achieve a goal by taking actions
(turning and moving) to reduce the difference between the
current and the goal state.

The model uses ACT-R’s two main learning mecha-
nisms: probability learning (statistical learning about the
usage of a particular production rule) and production com-
pilation mechanism (Anderson & Lebiere 1998) to form
new production rules.

The main room the mouse is initially placed in has
two exits, and the choice of one of two objects is repre-

sented by a special chunk-type choice. When the model
is presented with a choice chunk as a goal, it has initally
only two actions encoded in two simple production rules
like the one bellow to choose the first object:

IF the goal isa choice of first or second
THEN focus on first

and a similar rule for choosing the second object. Here no
features of the first and second objects are used to make
the decision.

With no electric shock behind the doors the mouse
chooses doors randomly and due to the statistical proba-
bility learning it may eventually form a slight preference
for one of the doors. When the shock is introduced, on
choosing the wrong door (black door) the mouse recalls
the last choice it has made and learns to choose another
alternative paying now attention to the features of the ob-
jects it is choosing. This learning uses the production
compilation mechanism and it may add a new production
rule like:

IF the goal isa choice of first or second
AND first isa black door
THEN focus on second

So, if next time the mouse is presented with the same
choice again, it will already have three production rules.
Note, that in the above rule the learning occurs based on
one dimension — colour. Another dimension is door po-
sition (left or right) and a mouse can learn to choose based
only on the position of the door. Two-dimensional learn-
ing, when both colours and positions are taken into ac-
count, is also possible. The probability of using the colour
information in learning depends on the contrast between
the doors.

The model was tested under several scenarios. With
the contrast control set to a particular value, the G/τ ratio
remained constant, while the values of G and τ were con-
trolled by the “voltage” going from small to high values.

In the first experiment only the speed of probability
learning was studied since G and τ parameters affect only
the conflict resolution and not the production compilation.
So, the doors remained in the same order (statistical learn-
ing would not work if the order of the doors was random)
and information about eventual successes or failures was
used to learn the expected probabilities of the two com-
peting rules.

As predicted by the asymptotic properties, probability
learning is badly affected by high noise (low G/τ ), but
the performance increased with the “voltage”. The later
is due to the fact that probabilities P become more impor-
tant at high G values (even for the same G/τ ). The curve
for number of errors during statistical learning has a shape
of exponential decay (Figure 5). The speed of errors de-
cay increases with lower noise temperature τ and higher
goal value G. At extremely high values of G and τ and
when the ratio G/τ is not very high (significant noise) the



Figure 5: Model performance in the first experiment on
the speed of statistical learning. The error curves have ex-
ponential decay shape with the fastest decay for medium
(“M”) stimulation. See Figure 3 for more description.

performance becomes more varied (higher standard devi-
ation) and the average at least does not become any better.

In the second experiment the model was tested with
the production compilation mechanism and a random or-
dering of the doors. The resulting curves have slightly
different shapes with a distinguished “break point” and
slope. This is due to the fact that statistical probability
learning for the initial two rules does not produce use-
ful results since the doors are changed randomly. The
break point corresponds to the moment when the learned
new rules, including information about the features of the
doors, start being used. Initially, the newly formed pro-
duction rules have a small strength, but their chance to
win the competition in conflict resolution increases every
time the rule is relearned. The more often a rule is used
the more information about its eventual success or fail-
ure is being collected and the more important becomes its
probability P . This way a mouse learns to avoid the black
door.

Nevertheless, the effect of G and τ on conflict reso-
lution is still important since all the rules satisfying the
choice goal are in the conflict set. The curves for a differ-
ent strength of stimuli are shown on Figure 6.

The higher degradation of performance could be bet-
ter observed if we assumed that the ratio of G/τ decayed
at high “voltage” values. Recall that this ratio can be re-
lated to confidence, which obviously did not grow under
the fear of a strong electrical shock. In addition, there
might be other factors such as memory loss or perception
damage affecting the perfomance under strong stimula-
tion.

Figure 6: Model data for the second experiment with ran-
dom doors order and production rules learning. The error
curves decay faster when the newly learned rules become
stronger (a break-point). See Figure 3 for more descrip-
tion.

5 Dynamics of motivation and ran-
domness during problem solving

In this section the probabilistic interpretation of expected
gain E will be introduced and ACT-R conflict resolution
will be considered as a probability maximisation problem.
We shall discuss the dynamics of the G and τ parameters
and its analogy with emotions experienced during prob-
lem solving.

5.1 Parameters game

The dancing-mouse model showed that the Yerkes-Dodson
Inverted-U curve effect can be observed on cognitive mod-
els and that we could model different arousal and motiva-
tional states using the goal value and noise parameters in
ACT-R. But we know that arousal, motivation and confi-
dence may change during the problem solving when we
experience emotions such as frustration or joy.

It was proposed earlier in (Belavkin et al. 1999) that
the goal value G and noise temperature τ should not re-
main constant, which was more obvious after some exper-
iments with the Tower of Nottingham model. An attempt
of the authors to model 3–4 years old children behaviour
by simple further increase of noise did not lead to the de-
sired result: the model could not solve the problem any-
more and sometimes it ran for several simulated hours,
which obviously was very far from the behaviour of 3–4
years old children. A reasonable question to ask was why
the model did not abandon the task?

As was mentioned earlier, the parameter indicating
how long it is planned to spend on the task is the goal
value G and its default value is 20 minutes. But in ACT-



R by default its value remains constant throughout the
task,1 which means that after unsuccessful two hours the
model is still ready to spend another 20 minutes solving
a problem. Obviously, this is not reflecting reality. The
goal value should be seen as the maximum amount of re-
sources (not necessarily time) that the problem solver is
ready to allocate at the current cycle, but it may not, and
perhaps, should not remain constant.

5.2 Expected gain and probability

Let us consider a problem solver, that has a set of random
decisions x = {X0, ..., Xn} and it is supposed to find a
solution at one of the time moments t = {T0, ..., G}. We
use G here for compatibility with ACT-R notation and it
is the “dead-line” by which we plan to get the answer.

If a problem is solvable in principle, then it means
that initially a problem solver has enough knowledge and
means to interact with the task to be able reach the goal
state and given the same problem again it should be able
to repeat this process. In other words, if a goal is achiev-
able, then it means that there exists at least one decision
X ∈ x, such that applying it to the problem at the ini-
tial time moment will lead eventually to the goal state at
a moment C ∈ t (again, we use C according to ACT-R

notation for the cost).
Let us denote by y some states in the environment or

working memory (problem space) and let Y ∈ y be such
a state, that satisfies the goal criteria (in other words, Y
is the goal state). We can think of Y as an evaluation of
some function at the (X,C) point:

Y = f(X,C, ξ1, ..., ξn),

where ξi are some random variables (unknown parame-
ters).

Since the function f may be not known and there may
be some unknown parameters, we may consider a proba-
bility P (X,C | Y ) of the decision X and time moment C
for the desired outcome Y .2 This probability is a priori,
and Pout(X,C | Y ) = 1 is a posteriori probability if the
goal state Y has been achieved. If decisions x and time
moments t are conditionally independent, then

Pout(X,C | Y ) = Pout(X | Y )Pout(C | Y )
= Pout(X | Y ) = Pout(C | Y ) = 1,

where Pout(X | Y ) and Pout(C | Y ) are marginal prob-
abilities. Since G ≥ C for C ∈ {T0, ..., G} we can write
the following inequality:

Pout(X | Y )
G

C
− 1 ≥ 0.

or
Pout(X | Y )G − C ≥ 0 ,

1Here we do not consider subgoals and their values.
2Here P is not the expected probability of a rule in ACT-R, because

it considers both rules and time moments

which corresponds to the form of equation (1) for the ex-
pected gain.

We can see now that G and C in (1) represent the
“time” component of the a priori probability P (x, t | Y )
and choosing a rule by maximum expected gain means
choosing by the maximum a priori probability of rules
and their costs for a particular goal state. The ratio G/C
is proportional to the marginal probability P (C ≤ G | Y )
and if it is not 0, then by increasing G we increase the
chance to find the solution.

5.3 Climbing the probability hill

The values of the a priori probabilities P for different
rules and time moments can be represented on a 3D graph.
For a better illustration, we may consider a probability
density surface ϕY (x, t) on continuous decisions-time plane
for a goal state Y (Figure 7). The points (x, t) on this sur-
face correspond to expected probabilities P and costs C
of production rules in ACT-R. This information is learned
and updated during problem solving. Finding the max-
imum on this probability surface is a hill-climbing task
with G determining the angle, or direction of the search.
A solution for the direction (value of G) is given by the
maximum-gradient method, and ideally it should change
towards the maximum incline. But the maximum gradi-
ent method does not necessarily give a unique solution
and the initial direction.

Figure 7: 3D representation of hill-climbing analogy. The
surface ϕ is the probability density of decisions x and
time moments t for a goal state Y . The line (P,C) rep-
resents current information about P s and Cs of the pro-
duction rules. The line t = Gx represents the direction
or area of search for the given G value. Three lines repre-
sent different cases: e0 when G = constant throughout
the task; e+ when G varies towards the maximum incline;
e− when G varies from the incline.

It is not hard to notice that low G corresponds to breadth-
first search. Indeed, according to asymptotic properties,
low G gives most priority to rules with low costs (less



time needed), and it means that more production rules
can be tried. On the other hand, high G corresponds to
depth-first search since it gives priority to rules with high
expected probabilities P not considering their cost very
much (problem solver may spend more time executing
one rule with higher cost). So, problem solving with low
motivation corresponds to breadth-first search, while high
motivation to depth-first search. A search method com-
bining these two strategies is known as best-first search
(from breadth to depth), and it suggests that G (motiva-
tion) should gradually increase during the problem solv-
ing approaching a goal.

5.4 Annealing analogy

On the contrary, noise temperature τ should be high in the
initial state of problem solving making the process more
random. This corresponds well to the situation, when sub-
jects start solving a task, such as Tower of Nottingham,
when they are just playing with blocks and trying some
simple constructions. When more information becomes
known about the task, subjects become more confident,
which corresponds to higher G/τ ratio and lower noise.

Now, looking at the Boltzmann equation (2), we may
notice that such heuristics for controlling G and τ is ex-
actly the same as optimisation by simulated annealing
(Kirkpatrick, Gelatt & Vecchi 1983) (with E playing a
role of negative energy).

5.5 Emotion and heuristics

This observation suggests that an emotional problem solver
in general follows a very powerful optimisation methods:

• Positive emotions, experienced on successes during
problem solving, are accompanied by increase of
the motivation (goal value G) and confidence (G/τ
ratio). This process corresponds to cooling the sys-
tem in the simulated annealing and a goal state cor-
responds to crystallisation.

• Negative emotions correspond to a decrease in G
and G/τ (heating the system up). Negative emo-
tions occurring during problem solving can play
a positive role in overcoming possible problems.
In a “hill-climbing” illustration these problems are
known as local maximum, plateau and ridge. The
strategies used to overcome these problems are the
change of direction of the search (G decrease) and
random jump (noise temperature τ increase). In
simulated annealing it corresponds to melting the
system from a glass state.

The amount of overall activation before experiencing
success or failure may determine the strength of the ex-
perienced emotion. For example, frustration corresponds
to negative emotion with low activation, while anxiety to
negative with high activation.

The relation of positive and negative emotions with
high or low value of G/τ ratio correlates very well with
another observation that subjects tend to overestimate a
success and underestimate a failure in a good mood, while
being more sceptical in a bad mood (Johnson & Tversky
1983) (Nygren, Isen, Taylor & Dulin 1996). Indeed, at
high values of G and low τ the expected gain (1) depends
entirely on the statistically learned expected probability
P , which may not necessarily reflect the real situation.
The reverse situation occurs at low G and high τ when the
learned choice does not depend on P , although its value
may perhaps be 1.

6 Conclusion and open questions

In this work we tried to apply modern cognitive science
and modelling methods to the subject relating intelligence
and emotion. The subject is highly speculative and there
are still many questions with no answers. For example,
how to evaluate a success or failure during problem solv-
ing and how to implement it in cognitive architecture to
make the emotional changes in information processing
automatic? If motivation control plays the role of resource
management, what should be the uniform measure for the
resources of an artificial intelligence with emotions?

These questions hopefully will be answered in the fore-
seeable future, but now let us try to summarise the results
of this work. Three main conclusion can be:

1. It is possible, and we have shown how, to model a
range of psychological phenomena, related to emo-
tion using cognitive architectures such as ACT-R.

2. It has been shown that emotion and affect should be
taken into account by cognitive modellers since the
motivational and emotional changes during prob-
lem solving may produce noticeable effects in per-
formance.

3. It has been shown that in general emotion makes
a positive contribution to problem solving, since
it implements powerful heuristic methods already
known in AI and mathematics, and hence it is im-
portant for intelligence.
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