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Abstract

Individual differences in skill acquisition are influenced by several architectural factors. 

According to Ackerman’s theory, general intelligence, speed of proceduralization and 

psychomotor speed influence different stages of skill acquisition. The ACT-R cognitive 

architecture allows for direct testing of this theory by manipulating parameters that 

correspond to these factors. The present study discusses an ACT-R model of the Kanfer-

Ackerman Air Traffic Control task in which the relevant abilities can be manipulated 

directly. The model predictions show the same patterns of correlations as the patterns 

found by Ackerman in the experimental data.
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A Model of Individual Differences in Learning 

the Kanfer-Ackerman Air Traffic Control Task

Skill acquisition is usually characterized as going through three stages: a cognitive 

stage, an associative stage and an autonomous stage (Fitts, 1964). The three stages can be 

characterized by moving from conscious, slow and error-prone to unconscious, fast and 

error-free. Anderson (1982) explains these three stages in terms of a transition from 

declarative knowledge to procedural knowledge. In the cognitive stage knowledge is 

declarative and needs to be interpreted. Interpreting knowledge is slow, and may lead to 

errors if the relevant knowledge cannot be retrieved at the right time. Procedural 

knowledge on the other hand is compiled and therefore fast and free of errors, and can be 

associated with the autonomous stage. The associate stage is an in-between stage, during 

which part of the knowledge is declarative and another part compiled.

A problem in the study of complex problem solving, especially in a learning context, 

is the vastness of individual differences. In order to study the acquisition of complex 

skills, it is a good research strategy to have a theory of individual differences. From the 

perspective of the cognitive architecture, there are two sources of individual differences: 

architectural differences and knowledge differences (Taatgen, 1999a). Architectural 

differences are differences in the cognitive architecture itself. In terms of an architecture 

like ACT-R, architectural differences can be tied to global parameters. For example, 

working-memory capacity is tied to the W-parameter in ACT-R, the parameter that 

controls the amount of spreading activation. Individual differences in working-memory 

capacity can be explained by estimating a different value of W for each individual (Lovett, 

Reder & Lebiere, 1997). Differences in knowledge are based on the idea that people have 
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different problem solving strategies. In terms of a cognitive model, this means 

individualized models have different initial contents of declarative and procedural 

memory.

In this paper I will focus on architectural differences. Ackerman (1988, 1990) 

identified three sources: general intelligence, perceptual speed, and psychomotor 

abilities. According to Ackerman, each of these three abilities correlates with a different 

stage of skill acquisition. In the cognitive stage, general intelligence is the most important 

aspect, as an adequate representation of the task needs to be formed. In the associative 

stage, the knowledge compilation process (which Ackerman associates with perceptual 

speed) will dominate performance, so individual differences in that aspect will become 

important. In the final autonomous stage, all knowledge is proceduralized, and 

differences in psychomotor abilities will be the most important factor. Figure 1 illustrates 

the general predictions of the theory.

Ackerman (1998; 1990) gathered evidence for this theory by correlating learning 

behavior on a complex task (the Kanfer-Ackerman Air Traffic Controller task

 

1

 

, KA-ATC) 

with performance on simpler tasks that explicitly test the three abilities Ackerman 

thought to be relevant in the three stages of skill acquisition. It turned out that measures 

of general intelligence correlate well with the first blocks of ATC performance, measures 

of perceptual speed with the middle blocks, and measures of psychomotor abilities with 

the later blocks.

Cognitive modeling offers a different approach to finding support for Ackerman’s 
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theory. Instead of correlating performances on different tasks, a model can be made of the 

complex task, and architectural parameters can be varied that correspond to the relevant 

dimensions of individual differences. This is the approach we will examine in this paper.

A Model of the ATC Task

The ATC Task

Although the ATC task is a simplified version of real Air Traffic Control, it is still a 

complicated task. Figure 2 shows the interface of the task. The goal is to score as many 

points as possible by landing planes and making no errors. The planes that have to be 

landed are represented at the top-left part of the screen, and are organized in three hold 

levels (indicated in the POS. column). Planes can be moved between hold levels, and can 

be landed from hold level 1 (the bottom four slots). There are four runways in the bottom-

left of the screen on which planes can be landed. The choice of runway is constrained by 

a number of rules concerning runway length (long or short), plane type (prop, 727, dc10 

or 747), runway direction (north-south or east-west), runway condition (dry, wet or icy), 

wind direction (north, south, east or west) and wind speed (0-20, 25-35 or 40-50 knots). 

The main rules of interest in the context of the model are the rules about whether a plane 

may land on the short runway (planes may always land on the long runway):

747’s may never land on the short runway
727’s may land on the short runway when the runway is dry or the wind speed is 0-20 
knots
DC10’s may land on the short runway when the runway is not icy and the wind is not 
40-50 knots.
Prop’s may always land on the short runway

Once a plane has successfully been assigned to a runway, it occupies the runway for some 

time. The runway has to be clear again before other planes may be assigned to it. Planes 
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have a limited amount of fuel: the fuel column indicates the number of minutes the plane 

has left. When a plane runs out of fuel, it crashes. Except for the planes in the three hold 

levels, there is a queue of waiting planes. A waiting plane can be entered into an empty 

slot.

The interface is operated by the keyboard, mainly by using the up and down keys to 

move the arrow in the display up and down, and the return key to select planes and 

runways. Subjects receive 50 points for successfully landing a plane, 10 penalty points for 

violating a rule (the interface gives feedback on these violations), and 100 penalty points 

for each plane that crashes. Trials take 10 minutes each, after which the total amount of 

points is calculated.

An overview of the ACT-R architecture

The model presented here is based on the ACT-R 4.0 cognitive architecture. The 

theoretical foundation of the ACT-R architecture is rational analysis of human cognition 

(Anderson, 1990). According to rational analysis, each component of the cognitive system 

is optimized with respect to the demands from the environment given its computational 

limitations. The main components in ACT-R are a declarative (fact) memory and a 

production (rule) memory. ACT-R is a hybrid architecture in that it has both symbolic and 

sub-symbolic aspects. I describe these components informally. Further details about the 

ACT-R architecture can be found in Anderson and Lebiere (1998).

Items in declarative memory, called chunks, have different levels of activation to 

reflect their use: chunks that have been used recently or chunks that are used very often 

receive a high activation. This activation decays over time if the chunk is not used. In 

addition, chunks cannot act by themselves; they need production rules for their 
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application. In order to use a chunk, a production rule has to be invoked to retrieve it from 

declarative memory and another rule to do something with it. Since ACT-R is a goal-

driven theory, chunks are always retrieved to achieve some goal. In the context of the KA-

ATC task there are several goals. One of the goals may be to land a plane for which it may 

be necessary to hand over the control to a lower-level goal, e.g., a goal to move the arrow 

on the screen to the desired plane.

The behavior of production rules is also governed by the principle of rational 

analysis. Each production rule has a real-valued quantity associated with its expected 

outcome. Expected outcome is calculated from estimates of the cost and probability of 

reaching the goal if that production rule is chosen. The unit of cost in ACT-R is time. 

ACT-R’s learning mechanisms constantly update these estimates based on experience. If 

multiple production rules are applicable for a certain goal, the production rule is selected 

with the highest expected outcome. 

In both declarative and procedural memory, selections are made on the basis of 

some evaluation, either activation or expected outcome. This selection process is noisy, so 

the item with the highest value has the greatest probability of being selected but other 

items get opportunities as well. This may produce errors or suboptimal behavior but also 

allows the system to explore knowledge and strategies that are still evolving. In addition 

to the learning mechanisms that update activation and expected outcome, ACT-R can also 

learn new chunks and production rules. New chunks are learned automatically: each time 

a goal is completed it is added to declarative memory. If an identical chunk is already 

present in memory, both chunks are merged and their activation values are combined. 

Chunks acquired through perception, information on the screen for example, are also 



 

Skill Acquisition in Air Traffic Control 8

stored. New production rules are learned on the basis of specializing and merging existing 

production rules. Since this process is quite crucial in our model we will examine it in 

more detail later on.

The Model

The ATC task is a complicated task, modeling all aspects is a major effort. As the model 

focuses on the learning aspects of the task, other aspects will be ignored or simplified. The 

model does not model the perceptual-motor parts of the task in detail, but rather uses an 

ad-hoc lisp-interface to do this. For example, a lisp function perceives all planes in hold 

level 1 and adds descriptions of them to declarative memory. 

Another aspect the model simplifies are the more strategic aspects of the task. The 

main exploratory learning aspect is learning what planes under what conditions may land 

on the short runway. Other strategic aspects are not modeled. As a consequence, the 

model’s peak performance (around 2000 points) is not as good as human peak 

performance (around 3500 points). 

The basis for the model is the idea that the instructions are represented in declarative 

memory, and need to be retrieved and interpreted (Taatgen, 1999b; Anderson, 2000). The 

production rules that interpret the declarative instructions are not task-specific, and can 

be used for other tasks as well. The declarative representation that is used is a mixture of 

ideas expressed by Taatgen (1999b) and by Anderson (2000). 

Declarative rules are organized in lists of instructions that are usually executed in 

order. Each rule has an action that can be supplied with at most two arguments. An 

argument can be a constant, a variable or a reference. A constant is used as it is. A variable 

is something that needs a value, for example by retrieving something from declarative 
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memory or by perceiving something in the outside world. Instantiating a variable creates 

a chunk of type binding, that holds the relation between the variable, its value and the 

current context. An argument of type reference later retrieves a binding. The creation of 

these bindings is a way for the model to keep track of aspects of the current task, however, 

these bindings may be lost due to decay in memory. The following example of a 

declarative instruction used in the model is part of the instruction to land a plane:

land1

isa instruction

action perceive-a-plane 

arg1 plane 

type1 variable 

arg2 plane-type 

type2 variable 

prev land

land2

isa instruction

action perceive-weather 

arg1 wind-speed

type1 variable 

arg2 runway-condition 

type2 variable 

prev land1

land3

isa instruction

action retrieve-experience 

arg1 plane-type 

type1 reference 

arg2 wind-speed 

type2 reference 

prev land2

land4

isa instruction

action decide-no 

arg1 take-long-runway 

type1 constant

prev land3
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The first instruction is to perceive an arbitrary plane in hold level 1, and to store it and its 

type in two variables (which are added to declarative memory as binding-chunks). The 

second step is to check the weather, and to store the wind-speed and runway-condition. 

The third step tries to retrieve a past experience concerning the plane-type and the wind-

speed. If this past experience is unfavorable, the fourth step decides to take the long 

runway.

The interpretation process of an instruction involves at least two steps (=production 

rule firings): the instruction has to be retrieved from memory, and the instruction has to 

be carried out. Additional steps are necessary if variables and references have to be 

instantiated, or if the instruction is complicated. 

The current model is provided with a declarative instruction to do the ATC task. 

This instruction is not a literal interpretation of the instructions given to the participants, 

but reasonable first approximation of a strategy. Another assumption in this strategy is 

that the model has not memorized all the rules about when a certain plane may land on 

the short runway, but instead relies on trial-and-error to rediscover these rules. The 

instructions can be summarized as follows:

Main goal

1. If there are any planes in hold level 1, land one of them
2. Else, move an arbitrary plane from hold level 2 or 3 to hold level 2 or 1.
3. If there are no planes anymore, get between 1 and 6 new planes from the queue.

Landing a plane

1. Select an arbitrary plane in hold level one.
2. Look at the current weather conditions
3. Try to retrieve a past experience with the current plane type and the current wind-

speed
4. If the past experience is unfavorable, select the long runway and move the plane there.
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5. Try to retrieve a past experience with the current plane and the current runway 
condition

6. If the past experience is unfavorable, select the long runway and move the plane there
7. If both experiences were favorable, or not present, select the short runway and move 

the plane there

To move something from A to B

1. Press up or down keys until the arrow is at A
2. Press enter
3. Press up or down keys until the arrow is at B
4. Press enter

Learning in the Model

Four learning mechanisms play a role in the behavior of the model: declarative symbolic, 

declarative subsymbolic and procedural learning (symbolic and subsymbolic). 

Declarative Symbolic Learning

ACT-R keeps past experiences in declarative memory. The current model uses these 

experiences to decide on whether to land a plane on the short or the long runway. The 

representation used for examples is restricted to two arguments, the plane type and either 

the runway condition and the wind speed. As a consequence, the model has no problems 

learning that 747’s can never be landed on the short runway, and prop’s always, but it has 

trouble with the DC10’s and 727’s, as these planes have complicated rules. 

Declarative Subsymbolic Learning

Due to practise, the activation of the instruction chunks and the past experiences chunks 

steadily increases. As a consequence, retrieval times of these chunks decreases.

Procedural Learning

New productions are learned using a combination of specialization and compilation. 

Specialization involves substituting variables by constants, more in particular variables 
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that occur in the retrieved chunk. As a consequence, retrieving the chunk is on longer 

necessary. Compilation involves making one rule out of two rules. In order to make sure 

the new rule has at most one retrieval, the first rule is specialized first.

This mechanism is an additional module for ACT-R 4.0 (Taatgen, 2000), but 

incorporated in the new ACT-R 5.0. The main function in the model is that it compiles 

declarative instructions into production rules. Recall that interpreting instructions takes 

two steps: retrieving the instruction and carrying out the instruction. Production 

compilation specializes the retrieval of the instruction, and concatenates the result with 

the rule that carries out the instruction. The following rules gives an example of pushing 

enter (rules have been abbreviated for clarity):

These rules can interpret instructions like:

mvhold3 isa instruction action press-enter prev mvhold2

Proceduralization produces the following rule given these ingredients:

(p compiled-rule
=goal>
     isa gen-goal

(p retrieve-instruction
   =goal>
     isa gen-goal
     current =prev
     action nil
   =instr>
     isa instruction
     prev =prev
     action =action
==>
   =goal>
     current =instr
     action =action)

(p press-enter
   =goal>
     isa gen-goal
     action press-enter
==>
   =goal>
     action nil
!eval! (press-enter))
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     current mvhold2
     action nil
==>
=goal>
     current mvhold3
     action nil
!eval! (press-enter))

In order to promote a gradual introduction of new rules, their parameters are set to the 

parameter values derived from the parent rules, plus a penalty on the cost (b) parameter. 

So a new rule starts out at a slight disadvantage, and is slowly integrated into the system 

as parameters learning establishes the true values of the production parameters.

Modeling Individual Differences

The three abilities identified by Ackerman are modeled by varying three parameters. 

General ability is modeled by varying the W-parameter. The W-parameter controls the 

amount of spreading activation, and is associated with working-memory capacity (Lovett, 

Reder & Lebiere, 1997). Working-memory capacity itself is strongly correlated with 

general ability (Kyllonen & Christal, 1990). The simulation uses values 0.8, 1.0 and 1.4 as 

W-values. Speed of knowledge compilation, measured by Ackerman through perceptual 

speed, is modeled by varying a parameter that controls proceduralization speed. The 

parameter determines the probability that, given an opportunity to learn a new rule, the 

rule is actually learned. Values used are: 0.1%, 0.2%, 0.5%, 5%

Psychomotor speed is modeled by varying the time needed for a key-press. Values 

used for this parameter are: 150 ms, 200 ms and 250 ms

Results of the Model

In order to assess results of the model, I will compare the model outcomes to the data from 
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Ackerman (1990). A single run of the model consists of going through 24 trials of 10 

minutes each. For each combination of individual difference parameters the model was 

run twice, producing 4x3x3x2 = 72 runs. 

The model’s performance in terms of the number of points scored is shown in 

Figure 3. As the model is only outfitted with a very basic strategy, and no means to 

improve it, it is no surprise the subjects outperform the model. The shapes of the curves 

are however similar. 

Figure 4 shows correlations between abilities and performance on the ATC-task 

found by Ackerman, and the correlations between parameter settings and performance of 

the model. According to Ackerman’s theory, these outcomes should resemble the graphs 

in Figure 1. 

Figure 4a and d show the impact of general intelligence. Ackerman measured 

intelligence by administering a battery of tests for general intelligence (Letter sets, Raven 

progressive matrices, figure classification and analogies). The model simulates this ability 

by varying W. A higher value of 

 

W

 

 facilitates the retrieval process by increasing spreading 

activation. Initially this factor is very important, as both instructions and task information 

are represented declaratively. As more and more instructions are proceduralized, the 

stress on declarative memory lessens, so the impact of W on performance decreases.

Figure 4b and e show the impact of speed of proceduralization. Ackerman assessed 

this ability and psychomotor speed by administering a set of choice-reaction tests (9CRT, 

4CRT, 2CRT and a simple reaction test) in 12 blocks. These tests span the range of 

perceptual speed ability (more choices and less practice) to psychomotor speed (less 

choices and more practice). Figure 4b uses the results of the first block of the 9CRT, the test 
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at the perceptual-speed extreme of the range, while Figure 4c uses simple-reaction time 

results in block 12 at psychomotor-speed extreme of the spectrum. 

In the model the speed of proceduralization has its main effect in the middle blocks 

of trials. As proceduralization prerequires some experience with the knowledge it uses to 

construct new rules, it plays only a small role in the first few trials. Although 

proceduralization remains an important factor until the end of the experience, its impact 

trails off slightly, as productions that have the largest impact on performance are learned 

relatively early.

Figure 4c and f depict the impact of psychomotor speed. In the model this factor 

becomes more important as experience grows. Although the influence of the effort 

parameter that models psychomotor speed remains the same, the variance due to other 

factors decreases, increasing the impact of this psychomotor speed.

Note that for all three abilities, the correlations for the model are larger than the 

correlations for the data. This should be no surprise, as the parameter manipulations in 

the model have a direct impact on performance, while assessing these abilities through 

tests, as is done in the data, is only indirect. Another reason why the correlations in the 

model are higher is that the model ignores knowledge differences, thereby amplifying the 

architectural differences.

Discussion

Despite the limitations of the model, it succeeds in going through the three stages of skill 

acquisition, as demonstrated by the correlations with abilities that characterize these 

stages. As such it supports the ideas about skill acquisition put forth here and in earlier 
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models based on the same principles (e.g., Taatgen 1999b).

The model also exhibits an example of an ACT-R model where all learning 

mechanisms are used, instead of a subset of mechanisms for a small task. As such it 

supports the notion of ACT-R as an architecture of cognition. 

One might ask what the added value of a cognitive model is to Ackerman’s theory. 

It can be observed that the outcomes of the model are much closer to the data than 

Ackerman’s more qualitative predictions in Figure 1. The model allows the study of what 

the exact impact of an individual difference related parameter is, and may also help 

understand other experiments where Ackerman’s theory does not seem to hold. Some 

issues need further exploration: for example, it is not clear what the exact relationship 

between perceptual speed and speed of proceduralization is. Ackerman doesn’t have a 

clear explanation for this. A model of the 9CRT using proceduralization might clarify this 

issue.

The strategy of the model is still its main limitation: it cannot improve the simple 

initial strategy very much. The retrieval of examples to guide behavior is something that 

can be extended, and general strategies to improve on plans can be added. The declarative 

representation is very flexible, so allows easy modification (as opposed to productions). 

Work by Lee, Anderson and Matessa (1995) and John and Lallement (1997) may be useful 

for this purpose.

Finally, the perceptual-motor aspects of the model can be extended to improve is 

credibility and scope of modeling learning, possibly based on Lee and Anderson (2001).
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Figure Captions

Figure 1. Predicted ability-performance correlations according to Ackerman. (adapted 

from Ackerman, 1988).

Figure 2. The KA-Air Traffic Controller task 

Figure 3. Points scored by the model and subjects in Ackerman (1990).

Figure 4. Correlations between Ability scores and performance on the ATC task. (a)-(c) 

Data from Ackerman (1990) (d)-(f) Outcomes of the model. Solid lines indicate the 

regression of the ability on practice (cubic polynomial). Each session in the data (a)-(c) 

consists of three trials.
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