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Abstract Correct performance often depends on re-
membering the task one has been instructed to do. When
the task periodically changes, memory for the current
task must decay (lose activation) to prevent it from in-
terfering with memory for the next task when that is
encoded. Three task-switching experiments examine this
decay process. Each shows within-run slowing, a perfor-
mance decline occurring as memory for the current task
decays. In experiment 1, slowing is attenuated when
memory for the task is optional, suggesting that memory
is indeed causal. Experiment 2 finds slowing despite a
flat hazard rate for task instructions, suggesting that
slowing is not an artifact of instruction anticipation.
Experiment 3 finds slowing in the familiar alternating-
runs paradigm (Rogers & Monsell, 1995), suggesting
that it may lurk elsewhere. A process model of activation
explains within-run slowing and relates it to switch cost
and ‘‘restart cost’’ (Allport & Wylie, 2000) in functional
terms.

Functional decay of memory for tasks

Correct performance often depends on remembering
what one has recently been instructed to do. For
example, one might be asked to fetch something from
another room, in which case it is necessary, having
achieved that room, to remember what the target thing
was. In a more controlled setting, a participant in a
psychological experiment might encounter an event
sequence like IAAAAAIBBBBB, where IA and IB are
instructions indicating which task to perform, and A and

B are trials. Seeing IA, the participant would perform
task A for several trials, then switch to B on seeing IB.
The stimulus on each trial might be a simple character,
‘‘4,’’ for example, to be classified according to the cur-
rent task. If the task were ‘‘odd or even,’’ then the cor-
rect response would be ‘‘even,’’ and if the task were ‘‘low
or high’’ (relative to 5), then the correct response would
be ‘‘low.’’ Memory for the current task (the task cued by
the most recent instruction) is essential here because the
stimulus is ambiguous (Spector & Biederman, 1976) or
bivalent (Fagot, 1994) in affording either task.

In recent years, there has been growing interest in
studying the processes that encode a new task cogni-
tively such that it replaces the previous task and assumes
control of performance. These task-encoding processes
(and perhaps others) are reflected in what is commonly
known as ‘‘switch cost,’’ or the latency increase on the
first trial governed by a new task. The view has been that
this switch cost ‘‘might seem to offer an index of the
control processes involved in reconnecting and recon-
figuring the various modules in our brains, so as to
perform one task rather than another given the same
input’’ (Monsell & Driver, 2000a). To date, however, the
proliferation of empirical results on switch cost (Monsell
& Driver, 2000b) has outpaced the development of in-
tegrative theory.

No task-switching work to date has focused on the
question of how the current task is retained in memory.
The importance of retention is shown by the event se-
quence above. If the instructions (IA and IB) are the only
cues to the task – that is, if no additional cues appear on
trials – then memory for the latest cue is the only source
of information about what task to perform. Therefore, a
memory trace for that cue must remain accessible until
the next cue comes along.

This article tests a theory of retention of tasks in
memory, and relates it to the processes of establishing a
task set. Functional decay theory proposes that inter-
ference is a central constraint on cognitive control.
However, contrary to the view that interference causes
switch cost directly (Allport, Styles, & Hsieh, 1994;
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Allport & Wylie, 2000), the argument is that interference
drives cognitive adaptations, and that these adaptations
are what we see reflected in behavior. One such adap-
tation is decay of memory for the current task, and the
parameters of this decay are tested in three experiments.
In the General discussion, an activation model is intro-
duced to offer a process account of this decay. This ac-
tivation model relates decay to initial task encoding,
addressing some of the sources of behavioral variance
often lumped together under the designation ‘‘switch
cost.’’

Functional decay theory

One way to frame the question of how a task is retained
in memory is to try to predict the time course of per-
formance over several trials under that task. For ex-
ample, the sequence IAAAAAIBBBBB begins with an
instruction to do task A, which is followed by a run of
four A trials. (In general a run could be of any length,
and runlength need not be predictable). Does perfor-
mance change in any systematic way over these trials?
There appear to be roughly three possible answers. First,
one could predict a practice effect (e.g., Newell & Ro-
senbloom, 1981) that would cause performance to im-
prove within a run. Second, one could predict that the
‘‘modules in our brains’’ cited earlier, once ‘‘reconnected
and reconfigured’’ to represent a new task, remain stable
until control processes intervene again, producing no
systematic change (Rogers & Monsell, 1995). The third
and seemingly unlikely alternative is that performance
worsens within a run.

The third prediction, that performance worsens
within a run, is developed here, because, unlikely as it
seems, it follows rather directly from an analysis of
functional constraints on the cognitive system. The logic
begins with a simple signal-detection analysis of memory
for a task, as illustrated in Fig. 1. The abscissa in each
panel shows the activation of a memory trace. A mem-
ory trace here represents an instructional cue, and for
convenience will be referred to as a task set. The ordi-
nate in each panel shows the probability of a task set
being at a given activation level. Because memory is a
noisy system, activation fluctuates transiently about an
expected value, so is represented by a probability density
function. Time progresses from the top panel to the
bottom. In the top panel, a first task set has just been
encoded, and in the bottom panel a second has just been
encoded. Each has the same initial activation level, on
the assumption that cue processing does diverge in any
systematic way over successive cues. In the middle panel,
representing the interval between the two encodings, the
first task-set decays (loses activation), such that its
density function as a whole shifts gradually to the left
along the activation axis. This decay meets a central
functional constraint on the cognitive system: There
must be a positive d’ (in signal detection terms) sepa-
rating the two activation densities in the bottom panel.

Without a positive d’, the system would be unable to
‘‘detect’’ the later task set; in other words, there would
be catastrophic interference among task sets, crippling
the ability to be goal-directed.

The basic behavioral prediction of this signal detec-
tion analysis comes from the middle panel of Fig. 1.
There, the task set encoded in the top panel decays
gradually. Because this is the current task set – it rep-
resents the latest instruction – performance governed by
that task set should reflect this decay. Specifically, re-
sponse latency should increase gradually from trial to
trial as the current task set loses activation and becomes
harder for the system to recall. When the next cue ap-
pears, the system will encode a new, full-strength task set
and performance will return to its pre-decay level. Thus,
in terms of the three possible trends introduced earlier,
performance should indeed worsen, rather than improve
or stay the same. This worsening performance, as mea-
sured in terms of response latency in particular, will be
referred to as within-run slowing.

Preliminary evidence for within-run slowing exists
already (Altmann & Gray, 2002), and the goals here are

Fig. 1 A signal detection analysis of memory for task sets. A task
set codes one event of being exposed to an instructional cue. Task
set 1 is encoded in the top panel and decays in the middle panel,
such that d’ is positive when task set 2 is encoded in the bottom
panel
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to strengthen the connection between data and theory,
and to generalize the effect. Experiment 1 aims to
demonstrate that memory is causal by manipulating the
need for it – when memory is unnecessary, the effect
should be attenuated. Experiment 2 addresses an alter-
native account of within-run slowing, namely instruction
anticipation. The ‘‘aging’’ hazard function governing
runlength in most task switching studies (including
experiment 1) could let the system predict arrival of the
next instruction and slow down in anticipation of having
to shift mental gears. Experiment 3 aims to generalize
the effect by searching for it in the familiar alternating-
runs paradigm of Rogers and Monsell (1995). This
experiment is also an opportunity to clarify how inter-
ference manifests under functional decay theory as
compared to the task-set inertia model (Allport et al.,
1994; Allport & Wylie, 2000). Two remaining theoretical
issues are addressed in the General discussion. First, it is
important to address the tarnished reputation of decay
as a theory of forgetting. Second, a process model is
introduced to account for decay and to relate it to run-
initial effects like switch cost.

Experiment 1

Experiment 1 used sequences of the form
IAAAAAIBBBBB in the context of a memory manipu-
lation. In one condition, the stimulus sets for the two
tasks were completely overlapping, and in the other they
were completely non-overlapping. In the overlapping
(Necessary) condition, memory for the most recent in-
structional cue was strictly necessary to disambiguate
each of the stimuli that followed. In the non-overlapping
(Optional) condition, the task could be inferred from the
stimulus itself, so memory was not strictly necessary.
The memory contingency prediction is that within-run
slowing will be attenuated in the Optional condition.
The prediction is not that within-run slowing will be
eliminated, because short of disabling the memory sys-
tem one cannot prevent its use. Indeed, memory could
be a more efficient source of information about the task
than an inference process run anew on every stimulus.
Nonetheless, given that the system generally chooses
stochastically from among available strategies (e.g.,
Hommel, 2000), making memory optional should at-
tenuate within-run slowing in aggregate data.

Materials and methods

Experiment 1 was replicated twice, as experiments 1A and 1B, with
some variety of tasks and stimuli. Forty-six Michigan State Uni-
versity undergraduates participated for $10 or course credit, 22 per
replicate and 11 per condition with two excluded for falling below
90% accuracy overall.

Stimuli were single digits or letters, 7 mm wide·10 mm high,
presented in the center of a dark screen in a fixed-width sans serif
font. A stimulus was red, blue, or white, with red and blue serving
as instructional cues. Digits were 1 through 9, except 5, and letters
were G, K, M, R, A, E, I, and U in experiment 1A and A, B, E, F,

T, U, X, and Y in experiment 1B. Stimulus presentation and re-
sponse recording were controlled by software developed in Mac-
intosh Common Lisp 4.3, running on Power Macintosh computers
(240–500 MHz) under MacOS 8.6, 9, or 9.1.

Each replicate had two between-subjects conditions, Necessary
and Optional (as described above). Four tasks were used in all:
classifying the stimulus as odd or even (OddEven), lower or higher
than five (LowHigh), consonant or vowel (ConsVow), or nearer the
start or nearer the end of the alphabet (StartEnd). In experiment
1A the Necessary tasks were LowHigh and OddEven (both per-
formed on digits) and the Optional tasks were LowHigh and
ConsVow (one performed on digits and the other on letters). In
experiment 1B, the Necessary tasks were ConsVow and StartEnd
(both performed on letters), and the Optional tasks were ConsVow
and OddEven. In the Necessary conditions, the instructional cue
was a blue or red stimulus, which was followed by a run of white
stimuli leading up to the next cue. In experiment 1A, red indicated
OddEven and blue indicated LowHigh, and in experiment 1B, red
indicated StartEnd and blue indicated ConsVow. In the Optional
conditions, all stimuli were white, with no redundant color cues for
the instruction. The assumption was that avoiding redundancy was
more important than controlling for color cue because redundancy
could open doors for strategic variation in cue processing.

The runlength, or number of trials following an instructional
cue, ranged from one to eight, uniformly distributed. A block
contained 12 runs. After the block, a feedback display appeared
giving accuracy for that block, as well as the number of the next
block to indicate progress through the session. There were 36
blocks per session, which took roughly 45 min to complete. Re-
sponse time was measured from stimulus onset to key downstroke.
Responses were made with the C and M keys of a standard key-
board, with participants asked to use their index fingers. In ex-
periment 1A, Odd, Low, and Consonant mapped to C and Even,
High, and Vowel mapped to M. In experiment 1B, Consonant,
Start, and Odd mapped to C, and Vowel, End, and Even mapped
to M. C and M also dismissed the feedback display. The response-
stimulus interval (RSI) was zero, and there was no error feedback
other than on feedback displays.

Participants were tested individually. Each was read a descrip-
tion of the tasks and responses and told the possible range of
runlengths and the total number of blocks. Each was told, ‘‘It’s
important that you try to work as accurately as you can from start
to finish,’’ and was encouraged to use the feedback screen as a self-
paced rest period. The participant completed a practice block of 50
trials broken into ten runs of varying lengths, with 25 trials under
each task and five task switches. The color/task and response/key
mappings were visible on the screen for the practice block and then
removed. Participants were encouraged to memorize the mappings
during the practice block. The experimenter was present during the
practice block, and stayed longer if necessary until the participant
was able to perform both tasks correctly and switch between them.

Results

Results are shown in Fig. 2. Latencies and standard
deviations are means of participant medians and stan-
dard deviations, respectively, on correct trials. Standard
deviations are examined to assess whether within-run
slowing reflects a shift in location or an increase in
variability of the latency distribution, and errors are
examined to test whether within-run slowing simply re-
flects a speed-accuracy tradeoff. To control for task ef-
fects, only the task common to the two conditions was
included. The first six blocks of a session were excluded
to remove the period of most rapid learning as a source
of variance, and the first run of a block was excluded as
a warm-up after the feedback break. Data were analyzed
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with 7·2 repeated-measures analyses of variance
(ANOVAs) on Position (P2 to P8) and Memory (Nec-
essary, Optional). P0 was excluded because it was the
stimulus/cue combination, so stimulus and cue process-
ing were directly confounded. P1, the first non-cue trial
of a run, is much slower than later trials (Gopher, Ar-
mony, & Greenshpan, 2000; Kramer, Hahn, & Gopher,
1999), and was excluded to avoiding obscuring the effect
of interest.

Experiment 1A

For latencies, the main effect of Position was reliable
[F(6,120)=8.0, P<0.001]. A contrast by the method of
orthogonal polynomials showed a linear trend
[F(1,120)=43.1, P<0.001], which accounted for 90% of
the variance due to Position. No higher-order trends
were significant. The effect of Memory was reliable
[F(1,20)=5.7, P<0.03], and there was a Posi-
tion·Memory interaction [F(6,120)=3.2, P<0.007].

To probe the interaction, separate one-way ANOVAs
were conducted on Position for each level of Memory. In
the Necessary condition, there was a main effect of Po-
sition [F(6,60)=8.4, P<0.001], and a linear trend
[F(1,60)=44.8, P<0.001], which accounted for 89% of
the variance due to Position. There was also a marginal
cubic trend [F(1,60)=3.9, P=0.052], which accounted

for 8% of the variance due to Position, but no other
trends were significant. In the Optional condition, there
was no main effect of Position (P>0.1), but there was a
linear trend [F(1,60)=4.5, P<0.04], which accounted
for 69% of the variance due to Position. No higher-
order trends were significant.

For standard deviations, no main effects, trends, or
interactions were significant.

For errors, there was a main effect of Position
[F(6,120)=3.5, P<0.004], and a linear trend
[F(1,120)=13.9, P<0.001], which accounted for 65% of
the variance due to Position. No higher-order trends
were significant. There was a main effect of Memory
[F(1,20)=6.0, P<0.03], but no Position·Memory in-
teraction (F<1).

Experiment 1B

For latencies, there was a main effect of Position [F(6,
120)=5.7, P<0.001, and a linear trend [F(1,120)=28.7,
P<0.001], which accounted for 85% of the variance due
to Position. No higher-order trends were significant.
There was no effect of Memory (P>0.1), but there was a
Position·Memory interaction [F(6,120)=3.4, P<0.005].

To probe the interaction, one-way ANOVAs were
conducted on Position for each level of Memory. In the
Necessary condition, Position was reliable [F(6,60)=7.2,

Fig. 2 Data from experiment 1.
Top panels: within-run slowing
is present in the Necessary
condition and attenuated in the
Optional condition. Markers
with no lines are standard de-
viations. Bottom panels: error
also increases within a run, in
both conditions. Error bars are
±RMSE for the Position effect
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P<0.001], as was the linear trend [F(1,60)=37.5,
P<0.001], which accounted for 86% of the variance due
to Position. There was again a marginal cubic trend
[F(1,60)=3.6, P=0.063], accounting for 8% of the
variance due to Position. In the Optional condition,
Position was not significant (F<1), nor were any trends.

For standard deviations, Memory was reliable
[F(1,20)=5.1, P<0.04], but no other effects were.

For errors, there was a marginal main effect of Po-
sition [F(6,120)=2.1, P=0.054], and a marginal linear
trend [F(1,120)=3.5, P=0.065], which accounted for
27% of the variance due to Position. No higher-order
trends were significant. There was no main effect of
Memory (F<1), but there was a Position·Memory in-
teraction [F(6,120)=14.5, P<0.009].

To probe the error interaction, one-way ANOVAs
were conducted on Position for each level of Memory. In
the Necessary condition, Position was reliable
[F(6,60)=3.8, P<0.004], as were all trends except linear
and quintic (P<0.05), reflecting the influence of the ou-
tlier at P8. Statistical variation seems the most likely ex-
planation for this outlier, particularly as errors are rare to
begin with and grow more so for later positions (there
were 134–205 observations per data point for P2 but only
12–35 for P8). With P8 omitted, the main effect of Posi-
tion and the linear trend were significant (P<0.02 and
P<0.006, respectively), with the linear trend accounting
for 52% of the variance due to Position and no reliable
higher-order trends. In the Optional condition, Position
was not significant (P>0.1), but there was a linear trend
[F(1,60)=7.0, P<0.03], accounting for 75% of the vari-
ance due to Position. No other trends were significant.

Discussion

In both replicates, Necessary latencies increased gradu-
ally but steadily within a run, but Optional latencies
increased barely at all, supporting the memory contin-
gency prediction. In the logic of causality, these results
are a critical demonstration of both modus ponens and
modus tollens – the need to remember the latest cue
implies within-run slowing, and attenuated within-run
slowing implies no need for memory.

Errors increased in both conditions, supporting the
theory in an equally critical way – had errors decreased
within a run, one could have explained within-run
slowing as half of a speed-accuracy tradeoff (e.g., Wic-
kelgren, 1977). Finally, standard deviations showed no
trends across trials, suggesting that within-run slowing
does not reflect a growing influence of outliers, which
might have implicated a gradual within-run adjustment
of arousal or vigilance.

Experiment 2

Experiment 1 leaves open an alternative account of
within-run slowing, which is that Necessary participants

were anticipating the appearance of the color cue in a
way that caused a gradual trial-by-trial slowdown and
increase in error. An anticipation account of within-run
slowing seems intuitively plausible, and is the primary
focus of experiment 2, but does bear several burdens
that are important to identify at the outset. First, per
experiment 1, anticipation would have to be linked to
the format of the Necessary instructional cue, not to a
pending switch per se (which also occurred in the Op-
tional condition). Second, to match functional decay
theory in terms of explanatory adequacy, anticipation
would have to play a functional role, providing some
kind benefit to the system in the context of task
switching. Third, anticipation is a notoriously flexible
construct. For example, if experiment 1 were repeated
with a redundant color cue in the Optional condition,
and there were still no within-run slowing in that con-
dition, the objection might be that the system only an-
ticipates cues that are not redundant. Thus, anticipation
as a model has handicaps of its own.

Experiment 2 implemented three changes to make
anticipation more difficult and less necessary. First,
runlengths were now exponential, not uniform as in
experiment 1. An exponential density produces a flat
hazard rate for the imperative event, affording no pre-
dictive information about the event’s time of occurrence
(e.g., Luce, 1986). Here, a flat hazard rate for the cue
meant that the probability of the cue occurring after the
current trial was equal for all trials. Of course, partici-
pants could still have made subjective predictions about
cue arrival, but to explain within-run slowing these
would have to conflict with the statistical structure of the
environment, placing yet another explanatory burden on
an anticipation account.

The second change involved the format of the cue,
which was now temporally and structurally distinct from
the trial stimulus. In experiment 1, the integration of the
color cue and stimulus in the Necessary condition meant
that to encode a cue the system had to first inhibit its
usual stimulus processing. Failure to inhibit could cause
the system to ‘‘overrun’’ the cue, producing an error on
that trial, and on downstream trials if it meant that the
cue was not properly encoded in memory. To remove the
danger of the cue being overrun, it was now inserted
temporally between two trials and located spatially in
the same position as trial stimuli. Thus, the cue was now
much harder to miss.

The third change involved randomizing cue order. In
experiment 1, tasks alternated predictably, but now each
cue was equally likely to indicate either task. This is
referred to below as the Continuity variable, with levels
Switch and Noswitch. On Switch runs, the cue at the
start of the run switched the task from the previous run
(breaking task continuity), whereas on Noswitch runs
the cue simply continued the task from the previous run.
Thus if within-run slowing in experiment 1 reflected a
gradual shift of mental resources away from the current
task to prepare for the other task, this strategy would
now pay off only at chance levels.
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The Continuity variable also affords a prediction for
errors, which under functional decay theory can be
caused by interference. When the stimulus is incongru-
ent (i.e., when the correct response differs with the task),
recalling the wrong task will produce the wrong re-
sponse. Thus incongruent stimuli should produce more
response errors, but only on Switch runs, because only
then does the previous task set (task set 1 at the bottom
of Fig. 1) code the wrong task. On Noswitch runs, the
previous task set codes the correct task, so a memory
error should not cause a problem.

Materials and methods

Twelve Michigan State University undergraduates participated for
course credit.

Materials, design, and procedure were as in experiment 1, with
the following changes. Runlengths were now sampled from an
exponential rather than a uniform distribution. Participants were
informed that there would be at least one trial in every run, but that
‘‘there’s no fixed limit so you might get some sequences that seem
to go on for a while.’’ Mean runlength was 3.67 trials, minimum
runlength was one, and maximum runlength ranged from 16 to 31
across participants. There were now 48 blocks, of which the first
eight were excluded from analysis. The mapping from response
category to key (again C or M) was now randomized between
participants.

The two tasks were OddEven and LowHigh and stimuli were
again 1–9, except 5. However, each instructional cue was now
equally likely to indicate either task. The cue itself now consisted of
a distinct word pair like ‘‘Odd Even’’ displayed in the center of the
screen, rather than a color change in the stimulus. The order of
words in the pair was consistent with the response mapping for that
participant (e.g., if the pair were ‘‘Odd Even,’’ odd would map to C
and even to M). Each pair was visible for 500 ms immediately after
the preceding trial. No response was necessary, and any responses
were ignored. After instruction offset, P1 began immediately, and
RSI after trials was again 0.

Results

Within-run data are shown in in Fig. 3, and were ana-
lyzed with 8·2·2·2 ANOVAs on Position (P2 to P9),
Continuity (Switch, Noswitch), Congruency (Congru-
ent, Incongruent) and Task (OddEven, LowHigh). P1
was omitted as before. P9 was the last trial position for
which there was at least one datum per participant. In
terms of Congruency and Task effects (not shown in
Fig. 3), Incongruent and OddEven trials were generally
slower and less accurate than their opposites.

For latencies, Position had a main effect
[F(7,77)=7.8, P<0.001], and linear [F(1,77)=46.2,
P<0.001] and quadratic trends [F(1,77)=4.1, P<0.05]
explaining 86% and 7% of the variance due to Position,
respectively. Neither Continuity nor Task had main ef-
fects (P>0.1), but Incongruent trials were 21 ms slower
than Congruent [F(1,11)=8.9, P<0.02]. There was a
marginal Task·Continuity·Congruency interaction
[F(1,11)=4.1, P=0.064], but no other reliable effects.

For standard deviations, there was a main effect of
Position [F(7,77)=2.2, P<0.05], and a decreasing linear
trend [F(1,77)=9.6, P<0.003]. No other effects were
significant.

For errors, Position had a marginal main effect
[F(7,77)=1.9, P=0.084] and a fourth-order trend
[F(1,77)=6.1, P<0.02]. Switch runs had 1.7% more
errors than Noswitch [F(1,11)=10.1, P<0.01], Incon-
gruent trials had 1.3% more errors than Congruent
[F(1,11)=10.4, P<0.01], and there was a marginal
Continuity·Congruency interaction [F(1,11)=4.7,
P=0.054]. OddEven trials had 0.9% more errors than
LowHigh [F(1,11)=9.9, P<0.01]. No other effects were
significant.

To probe the Continuity·Congruency interaction,
8·2·2 ANOVAs were applied to each level of Conti-
nuity. On Switch runs, Incongruent trials had 2.2%
more errors than Congruent [F(1,11)=9.5, P<0.02],
and OddEven trials had a marginal 0.9% more errors
than LowHigh [F(1,11)=4.3, P=0.062]. On Noswitch
runs, Congruency was not reliable (P>0.2), but Odd-
Even trials had 0.9% more errors than LowHigh
[F(1,11)=5.6, P<0.04]. No other effects were reliable.

Run-initial latency data appear in Fig. 4, and were
analyzed with a 2·2·2·2 ANOVA on Position (P1, P2),
Continuity, Congruency, and Task. There were main
effects of Continuity [F(1,11)=7.6, P<0.02], and Posi-
tion [F(1,11)=16.7, P<0.003], and the two interacted
[F(1,11)=10.2, P<0.01]. Continuity also had a simple

Fig. 3 Data from experiment 2. Within-run slowing is present
despite steps taken to minimize anticipation. Markers with no lines
are standard deviations. Errors are more frequent on Switch runs.
Error bars are ±RMSE for the Position effect
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effect at P1 [F(1,11)=9.7, P<0.02]. Incongruent trials
were 40 ms slower than Congruent trials [F(1,11)=15.9,
P<0.003], with no Congruency·Position interaction
(F<1). OddEven trials were 65 ms slower than Low-
High trials [F(1,11)=20.7, P<0.002]. Task interacted
with Congruency [F(1,11)=6.0, P<0.04], Position
[F(1,11)=24.7, P<0.001], and the two together
[F(1,11)=7.0, P<0.03].

Discussion

Within-run slowing survived several steps taken to re-
duce the success of and need for anticipating a task
switch. Trial position within a run provided no infor-
mation about cue arrival, and inserting the cue as a
distinct event between trials should have minimized the
incentive to predict its arrival. Also, with switches ran-
domized, preparing for a switch as such would not have
paid off on average. These results, together with those of
experiment 1, shift the burden to anticipation models to
provide an improved account of within-run slowing.

The error data do not echo the within-run increase of
experiment 1, but do support the predicted Congruen-
cy·Continuity interaction – incongruent trials produced
more errors, but only on Switch runs. This finding
suggests a way to probe the underlying decay model.

Curvilinear decay, for example (see Fig. 6, below),
would seem to predict that d’ should vary within a run
and thus a Continuity·Congruency·Position interac-
tion. Future studies with additional power may detect
such an effect.

Experiment 3

The goal in experiment 3 was to generalize within-run
slowing to another, preferably familiar task-switching
paradigm. A natural candidate was the alternating-runs
paradigm of Rogers & Monsell (1995). Their experiment
6 contained runs of four trials instead of the usual two,
and, indeed, ‘‘Inasmuch as there was any trend in RT
over Trials 2 through 4, it was a 10-ms increase rather
than a decrease.’’ An analysis excluding P1 ‘‘confirmed
that this was not significant, F<1,’’ but it is not reported
whether this analysis included a linear contrast across
the three relevant positions. Their experiment 6 (hence-
forth ‘‘the original study’’) is also apt because it was
meant to test an interference-based interpretation of
switch costs, though interference effects were interpreted
differently there than they are here. The distinction is
addressed in the discussion below.

Materials and methods

Ten Michigan State University undergraduates participated for
course credit.

Stimuli were single characters, presented in white on a dark
background. (In the original study they were two characters, but
became single characters in Monsell, Yeung, & Azuma, 2000, and
for simplicity this change was adopted here.) Each stimulus ap-
peared in one of eight slices of a pie marked on the screen by light-
gray lines, rotating clockwise one slice per trial at a radius of 2.8 cm
from center of screen to center of character. Digit stimuli were 1
through 9, except 5, and letters were G, K, M, R, A, E, I, and U.
RSI was 500 ms (increased from 450 ms in the original study),
timed from key downstroke on the previous trial. An error was
signaled immediately by a 100-ms visual flash (changed from an
auditory signal in the original study), followed by a 1500-ms re-
covery interval and then the next stimulus. A block contained 20
runs of four trials and a session contained 20 blocks. Each block
was followed by a display giving accuracy feedback and the number
of the next block, as before. Instructions once again emphasized
accuracy and did not mention speed.

The tasks were OddEven and ConsVow, with the current task
indicated by which half of the screen the stimulus appeared in. The
screen was divided either vertically or horizontally, with the di-
viding line being slightly thicker than the lines marking the other
slices of the pie. The orientation of the dividing line (vertical or
horizontal), the mapping from half of screen to task, and the
mapping from response category to C or M were all randomized
between participants.

Results

Results are shown in Fig. 5. The first six blocks of a
session and the first two runs of a block were excluded,
and error trials and trials after error trials were excluded
from the latency measure. Data were analyzed with 3·2
ANOVAs on Position (P2 to P4) and Task (OddEven,

Fig. 4 Data from the first two trials of a run (P1 and P2) in
Experiment 2. ‘‘Restart cost’’ is P1 Noswitch–P2 Noswitch, and
‘‘start cost’’ is P1 Switch–P2 Switch. Error bars are ±RMSE for
the Continuity effect
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LowHigh). Latencies are again means of participant
medians. For comparison with the original study, means
of participant means for P1 to P4 were 826, 607, 622, and
634 ms.

For latencies, there was a main effect of Position
[F(2,18)=11.5, P<0.002], and a linear trend
[F(1,18)=23.0, P<0.001], accounting for 99% of the
variance due to Position. No other trends were signifi-
cant. There was an effect of Task [F(1,9)=11.1, P<0.01]
(OddEven was 28.5 ms slower), but no Position·Task
interaction (F<1). For standard deviations, there were
no reliable effects. For errors, Position had no effect
(F<1), but Task had a marginal effect [F(1,9)=3.6,
P=0.09] (OddEven producing 1.5% more errors). The
interaction was not reliable (P>0.1).

Discussion

Experiment 3 shows that within-run slowing can be
found when memory for the task is optional – when
stimulus set (letter or digit) and spatial location serve as
cues on every trial. In the future, it will be important to
ask what produced reliable slowing here when the effect
was largely absent in the Optional conditions of exper-
iment 1. Anticipation was at least possible here, as the
timing of a switch was perfectly predictable, and spatial

cues were available to facilitate prediction. It may also
be useful to replicate fully the stimuli of the original
study, in which an irrelevant flanking character cued the
wrong task, the correct task, or neither, and could be
congruent or incongruent with the relevant character.
This complex priming from the flanker could enhance
within-run slowing, but could also attenuate it by am-
plifying the interference level in memory and thereby
making spatial location more attractive as a source of
information about the current task.

Whatever the cause of within-run slowing in the
present experiment, the effect was highly reliable, and
the changes in materials and design relative to experi-
ments 1 and 2 suggest it might be rather general. Indeed,
within-run slowing is easy to overlook, being not only
small but also unexpected under the usual ‘‘reconfigu-
ration’’ metaphor, with its tacit implication that mental
states are stable once configured and would have no
reason to evolve gradually over time. Perhaps, then, one
might find it in other data on extended runs, by applying
the appropriate trend analysis.

Experiment 3 also shows that within-run slowing
survives an inter-stimulus interval. In the earlier exper-
iments, within-run slowing could have been an artifact
of inadequate preparation time between trials having a
cumulative effect of some kind. Here, however, the
500 ms RSI was about as long as the system seems able
to make use of in preparing to perform a task (Rogers &
Monsell, 1995).

A decay account of slowing in experiment 3 suggests
a very different view of interference than taken in the
original study. The goal there was to test the task-set
inertia hypothesis (Allport et al., 1994; Allport & Wylie,
2000) which, like functional decay theory, posits inter-
ference from previous task sets. However, unlike func-
tional decay theory, task-set inertia has interference
causing residual switch cost directly. Rogers and Mon-
sell (1995) reasoned that on this view, switch cost should
persist over several trials, declining gradually as the
previous task set decays. Because switch cost was borne
entirely by P1, they rejected interference as the cause of
residual switch cost, and with it the task-set inertia hy-
pothesis. Here, the proposal is that interference effects
are mediated by other processes, notably decay (mea-
sured as within-run slowing). Another mediator is a
strengthening process (introduced below) that may ac-
count for much of the latency cost at the start of a run.
Thus, the view here is that interference is more than a
nuisance reflected in switch costs – it is an architectural
constraint reflected in adaptive processes like decay and
strengthening.

General discussion

All three experiments showed within-run slowing and
individually supported functional decay theory in spe-
cific ways. Slowing can be greatly attenuated simply by
use of non-overlapping stimulus sets, showing that

Fig. 5 Data from experiment 3. Within-run slowing is present in a
paradigm modeled after Rogers and Monsell (1995), experiment 6.
Markers with no line are standard deviations. Error bars are
±RMSE for the effect of Position (P2 to P4)
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memory moderates the effect (experiment 1). The effect
survived procedural changes meant to limit the oppor-
tunity and the need to anticipate the next instructional
cue (experiment 2). Finally, the effect transfers to at least
one other, moderately distinct paradigm (experiment 3).
Thus, indications are that within-run slowing is robust
and general enough that task-switching theory will have
to contend with it in some fashion. It is also important
to note that slowing does not conflict with practice ef-
fects: Slowing within a run can coexist with speedup over
a session (Altmann & Gray, 2002).

What of the sullied reputation of decay as a model of
forgetting (e.g., McGeoch, 1932)? Cast as a process that
affects distractors rather than targets, decay has actually
appeared in other guises, such as ‘‘stimulus fluctuation’’
(Estes, 1955) and ‘‘unlearning’’ (Postman, 1971). Em-
pirical evidence for a distinct decay process has also
accumulated, in task switching (Koch, 2001; Meiran,
1996) and in memory studies generally (Baddeley &
Scott, 1971; Reitman, 1974). Indeed, a pillar of inter-
ference theory – the probe-digit data of Waugh and
Norman (1965) – contains evidence for gradual decay in
the form of a presentation rate by serial position inter-
action (Altmann & Schunn, 2002). Overall, then, decay
is quite as common as it is disreputable.

Functional decay theory addresses task retention, but
what can it tell us about task encoding? In particular,
can it tell us anything about switch cost, the focus of
most task-switching studies to date? In terms of the
signal detection analysis of Fig. 1, the question reduces
to how a task set arrives at its initial activation level –
the mean, say, of the density in the top panel. If an item
is to lose activation (decay), as in the middle panel of
Fig. 1, then it must have activation to begin with, which
must itself be the product of some encoding process. A
model of this encoding process would be a candidate for
explaining the substantial slowdown on P1, the initial
trial of a run.

An activation model of encoding and decay appears
in Fig. 6, which shows mean activation of a task set over
time. Fig. 6 bears a direct relation to Fig. 1, which also
showed task-set activation at different points in time. In
Fig. 1 the emphasis was on activation variability and the
ensuing signal-detection problem. In Fig. 6 the emphasis
is on tracking (mean) activation over time as a function
of an underlying process. The process is described by the
equation activation ¼ ln r=

ffiffi

t
p� �

, adapted from ACT-R
memory theory (Anderson & Lebiere, 1998). r is how
often the task set has been retrieved over its lifetime. In
Fig. 6, each marker on the curve is a retrieval (this is a
finer-grained view of retrieval than is taken in other
task-switching models; e.g., Mayr & Kliegl, 2000). t is
the span of this lifetime, from trace encoding to present.
Thus the model assumes an instance representation
(Logan, 1988), in which each task set codes a single,
episodic exposure to a cue.

Under this model, a task set passes through three
phases during its lifetime: strengthening, use, and disuse
(top of Fig. 6). During strengthening, activation builds
up rapidly as the system ‘‘pays attention’’ to the cue,
operationalized as a closely spaced sequence of retrievals
(each indicated by a marker on the curve). This ‘‘mass-
ing’’ of retrievals is possible because the system is fully
engaged with the cue; no other processing is called for at
this point. Following Altmann and Trafton (2002), who
develop an alternative to the ACT-R construct of self-
activating goals and apply it to problem solving data,

Fig. 6 Task set activation over time, from onset of an instruction
(Cue 1) through five trials (P1 to P5). Task-set retrievals are
marked by filled circles. Activation ¼ ln r=

ffiffi

t
p� �

, with r=retrieval
count and t=time since encoding. During strengthening, retrievals
are massed (every �100 ms). During use, retrievals are spaced
(every �600 ms), each boosting activation but not enough to offset
the downward trend. During disuse, retrievals stop. Because of
decay during use, d’ is positive once the next task set (dashed ink) is
fully encoded, as in Fig. 1
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the assumption in Fig. 6 is that strengthening retrievals
can occur every 100 ms. When strengthening is com-
plete, the task set’s (mean) activation is as high as it will
ever be. This mean activation is also the mean of the
density function in the top panel of Fig. 1.

Next, during the use phase, the task set is retrieved
whenever the system needs to know what task to per-
form, once per trial, say, after the system has encoded
the stimulus and begins response selection. Retrievals
are now less frequent because there is other work to be
done, like stimulus encoding and response selection; a
trial takes roughly 600 ms, so the retrieval rate is now a
sixth of what it was during strengthening. Each retrieval
boosts activation slightly, but the abrupt shift from
massed to spaced produces an overall downward trend,
‘‘serrated’’ across trials.

Finally, the task set falls into disuse, once it is su-
perseded by a new task set. Now the old task set decays
more rapidly. If it is retrieved again, this reflects a
memory error caused by transient activation noise
making it more active than the current task set (in terms
of Fig. 1, such an error would correspond to a false
alarm). This disuse phase overlaps in time with the
strengthening phase of the new task set (in dashed ink in
Fig. 6). At its peak activation, the new task set is sepa-
rated from the old task set by the same d’ that separates
the densities in the bottom panel of Fig. 1.

This activation model has a number of attractive
properties. First, it maps functional decay to a memory
process, one that also accounts for other memory
strategies like maintenance rehearsal (Anderson &
Lebiere, 1998). Thus, no new mechanisms are necessary
to meet the constraints of functional decay theory.
Second, it reduces task set ‘‘reconfiguration’’ to a
memory process also, one that may cause much of the
variance on P1 – ‘‘switch cost,’’ broadly defined. Indeed,
time-extended strengthening offers one account of the
otherwise-puzzling phenomenon of ‘‘restart cost’’ (All-
port & Wylie, 2000), the marked slowing on P1 caused
by a cue that does not actually switch the task. Fig. 4
illustrates restart cost with data from experiment 2,
where a cue was as likely to ‘‘restart’’ the old task as it
was to ‘‘start’’ a new one. Restart cost is P1 Noswitch
minus P2 Noswitch, and is a substantial 110 ms (see
experiment 2, Results, for analysis). The source of this
cost, under the activation model, is the strengthening
needed regardless of cue type. The previous task set will
always have decayed, so a task set for the current cue
must always be strengthened to maintain performance
through the following run. Strengthening that cannot be
completed while the cue is visible will spill over into P1,
manifesting as restart cost in the Noswitch case and as
start cost (P1 Switch minus P2 Switch) in the Switch
case. Figure 6 shows this spillover schematically, with
strengthening continuing into P1.

There are at least three limitations to this strength-
ening account of costs at the start of a run. First, other
plausible accounts have yet to be ruled out. Restart cost
and some amount of start cost could be due to the ‘‘task

switch’’ of shifting from processing a cue to processing a
stimulus. They could also reflect a temporary shift in the
response criterion to cautious responding, in those cases
where P1 error decreases (Allport & Wylie, 2000). Sec-
ond, as presented here the model does not explain why
start cost should be greater than restart cost, as in Fig. 4.
The difference between start and restart cost – a ‘‘pure’’
switch cost, net of task-neutral costs on P1 – might re-
flect prolonged strengthening in the Switch case, or
foreshortened strengthening in the Noswitch case due to
priming from the previous task set. A computational
model incorporating the latter hypothesis has been im-
plemented (Altmann & Gray, 2000) but awaits a fuller
exposition. Third, the model does not explain why, in
the general case, strengthening should spill from the
instructional cue into P1. In experiment 2, the duration
of the cue was only 500 ms, which may not have left
enough time for strengthening to complete. On the other
hand, longer preparation periods than this produce little
extra reduction in ‘‘residual’’ cost on P1 (Rogers &
Monsell, 1995). A strengthening account will clearly
have to be more elaborate than the simple unitary stage
depicted above if it is to account for this stubborn re-
sidual. One possibility is that strengthening and the
failure-to-engage account of residual switch cost (De
Jong, 2000) tell different parts of the same story. The
offset of strengthening may be stochastic, like activation
itself, and sometimes leave work to be done on P1 while
a trace of the cue still lingers in perceptual memory.
Under these conditions, a residual strengthening stage
actually improves the cost/benefit ratio of strengthening
overall (Altmann & Gray, 2000).

Despite the abstract level at which this activation
model is specified, it carries a substantial theoretical
advantage in being part of a larger, integrated set of
mechanisms rather than a standalone account of a single
effect. From this perspective, it makes a good starting
point. Further development will depend on estimation of
retrieval frequency and cycle time parameters, and
elaboration to account for ‘‘pure’’ switch cost and re-
sidual processing on P1.

The signal detection model of memory (Fig. 1) has
implications beyond those developed here, some inter-
esting and some moderately awkward. One is that the
decay rate (activation lost per trial) should vary in-
versely with runlength, if d’ stays relatively constant.
This effect has been found (Altmann & Gray, 2002),
but a corollary is that the relationship is non-linear,
escalating to very rapid decay indeed for full inter-
leaving (ABABAB). Whether decay can be rapid en-
ough to support such interleaving, or whether
interleaving requires additional memory strategies, or
whether a single alternative model can explain all
within-run effects, will be important questions to ad-
dress. Finally, other phenomena that seem like candi-
dates for integration using the signal detection model
include backward inhibition (Mayr & Keele, 2000),
stimulus priming (Allport & Wylie, 2000), and mixing
cost (e.g., Los, 1996).
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In conclusion, conventional wisdom on executive
control has ‘‘modules in our brains’’ being ‘‘reconnected
and reconfigured’’ to produce fully formulated mental
states (Monsell & Driver, 2000a). An alternative to this
mechanical, all-or-none metaphor is that control arises
from ordinary activation-based memory processes. As
developed here, this memory approach captures the
broad outlines of task switching behavior end to end,
not stopping with the switch trial but continuing
through the entire run. Filling in the details of this
framework may quickly bear more fruit than compli-
cating the job description of a mechanical homunculus
to explain effects like within-run slowing.
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