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Abstract

Cognitive development on certain tasks (e.g., the balance scale task) is characterized by periods of

relative stable, rule-like but suboptimal behavior that occur in a fixed order and alternate with short

transition periods. Many models have been developed to capture the developmental phenomena

associated with the balance scale task. However, most of these models do not account for

important phenomena as discontinuous transitions or rely on questionable assumptions, and none

of the models is able to predict improvement in behaviorwithout feedback. We propose a

computational model that is implemented in ACT-R and is based on the evaluation of success of

applied knowledge structures combined with a mechanism to construct new knowledge by

searching for differences in the presented balance scale problems. This model accounts for the

empirical phenomena, including learning without feedback as is common in developmental tasks.
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Modeling Developmental Transitions on the Balance Scale Task

In many domains, cognitive development is conceptualized as a progression through a series

of increasingly complex and accurate task specific strategies. Behavior on proportional reasoning

tasks like the balance scale task is shown to adhere to this type of development: Longer periods of

relatively stable performance alternate with short periods of instable performance in which

behavior relatively sudden improves to a new phase. In a balance scale setting, a child is asked to

predict the movement of a balance scale. Pegs are situated at equal distances from each other and

the fulcrum. A number of equally heavy weights can be placed on one of the pegs at each side of

the fulcrum. The balance will either tip to one side or remain in balance, depending on the number

of weights and on the pegs at which these are placed. Typically, no feedback about the correctness

of the answers is given during the experiment. This task is used to observe the strategies that

children employ, to study the effect of training on the use of the strategies, and to study the

development of one strategy into another (e.g., see Siegler, 1976, 1981; Siegler & Chen, 1998).

Traditionally, six item types1 are distinguished to categorize behavior: three simple item types and

three conflict item types. The simple item types consist of: (1) Balance items having an equal

number of weights, equidistant from the fulcrum; (2) Weight items with an unequal number of

weights, equidistant from the fulcrum; and (3) Distance items with an equal number of weights at

different distances from the fulcrum. For the conflict item types, the distance and weight

dimensions indicate different predictions. Conflict items have unequal numbers of weights at

different distances from the fulcrum: The side with the most weights has the smaller distance

value, and vice versa. For (4) Conflict Weight items, the balance tilts to the side with the larger

1These six item types constitute 68% of all possible items. The remaining items have more

weights at the side with the larger distance, and are therefore not suitable to categorize behavior.

We will refer to these items as Weight/Distance items.
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number of weights, for (5) Conflict Distance items, the tilt is to the side with the greater distance.

For (6) Conflict Balance items, the effects of the two dimensions level out: the scale remains in

balance. Studying the behavior of children on this task and, especially, comparing their

performance on the different item types have provided a number of well-known and relatively

stable empirical phenomena. These phenomena will be discussed in the next section. However,

identifying phenomena does not provide an account of the underlying mechanisms of behavior. As

argued by many authors (e.g., Boden, 1979; Anderson, 1987; Siegler, 1989), one needs to

understand the mechanisms that cause the changes in behavior to obtain a causal explanation of

development. In research that focused on explaining these mechanisms in the balance scale

domain, a number of computational models have been proposed. However, none of the proposed

models for balance scale behavior is able to explain the empirical phenomena to their full extent

without depending on less plausible assumptions. In this paper, we will present computationally

implemented explanations that account for the major empirical phenomena, and that do not depend

on implausible assumptions.

Empirical Phenomena and Criteria

In this section, we will discuss the major empirical balance scale phenomena. This includes

information that sheds light on the processes underlying changes in behavior. We will derive four

empirical criteria based on these phenomena that computational models of balance scale behavior

should meet.

EmpiricalPhenomena

Qualitatively Classifiable Behavior The behavior of children on the balance scale task is

classifiable into qualitatively different “rules”. The classification of behavior into different

rules has been one of the cornerstones of the balance scale research. The assessment of rules

is guided by the notion of homogeneous behavior on items from a particular item type. That

is, the answers to a particular type of items are either all correct, or in all or most cases
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incorrect. This consistency criterion (Reese, 1989) is often cited as evidence for rule use.

Within the balance scale domain, the consistency criterion is operationalized by Siegler’s

(1981) rule assessment methodology. Jansen and Van der Maas (1997) improved the rule

assessment methodology by applying latent class analysis. This statistical method provides a

more rigorous test of this criterion.

To improve performance, the existing rules have to be enhanced or replaced by better rules

which implies some sort of transition between rules. During these transitions, behavior is

less homogeneous as some items of a particular item type might already be answered

correctly, whereas others are still answered according to the earlier, incorrect rule. How new

rules are learned is not necessarily the same for all transitions. For example, most people

need explicit instruction to be able to perform according to the most sophisticated rule,

whereas transitions to earlier rules seem to come naturally.

The Rules Siegler (1976, 1981) identified four different patterns of behavior that can be

characterized by Rules2 (see Figure 1) that characterize children’s behavior during different

phases. Rule I: consider the amount of weights on each side: if equal, predict that the

balance scale will remain level, if unequal, predict that the balance scale will tip to the side

with greater weight. Rule II: also consistently predict that the side with the greater weights

will tip, but if the weights are equal, the distance dimension is taken into account. Rule III:

consider both the weight and distance dimension, but if one side has greater weight and the

other greater distance, “muddle trough” or guess. Rule IV: consider both dimensions and

compute the torques on each side by multiplication of the weights and distances of each side

if the dimensions conflict.

2For clarity reasons, the Rules empirically identified by Siegler and others are written with a

capital “R”, whereas the ACT-R production rules, to be introduced later, are written with a small

“r”.
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The unsystematicity of the behaviorbefore Rule I makes a classification of behavior

infeasible. The first three Rules are comparable because they consist of a number simple

steps containing only comparisons. Rule IV contains an additional step that involves

multiplication, which contrasts it with the simpler earlier Rules.

The six different item types have been carefully constructed to enable a categorization of

behavior according to the Rules by analyzing the proportion correct answers per item type.

For example, if most of the Balance, Weight and Conflict Weight items are answered

correctly and most of the other items incorrectly, behavior is classified as the result of the

use of Rule I. The period in which a child uses a particular Rule, is also referred to as a

phase. For example, if behavior is according to Rule I, the child is categorized as in Phase I.

After Siegler’s initial study, these Rules have been identified in numerous other studies.

Besides confirmation of the Siegler Rules, a couple of new Rules were identified. These new

Rules are mostly variants of Rule III, trying improve the classification of the “muddle

through” behavior. A well-known example of a Rule III variant is the Addition Rule

(proposed by Normandeau, Larivee, Roulin, & Longeot, 1989, as well as by Ferretti,

Butterfield, Cah, & Kerkman, 1985). Children using the Addition Rule consider both weight

and distance dimensions. If one side has greater weight and the other greater distance, they

compare the sums of the number of weight and the distance.

Transition Phenomena To be able to describe the development from one Rule to another, detailed

information is needed about the transition process. Information on these transitions has only

recently become available. Jansen and Van der Maas (in press) describe the transition from

Rule I to Rule II in terms of the cusp model from catastrophe theory (Thom, 1975). They

found empirical evidence for a discontinuous phase transition by manipulating the distance

dimension. The selection of distance was based on Siegler’s (Siegler & Chen, 1998; Siegler,

1976, exp.3) research, which suggests that theavailability of the distance dimension to the
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[weights unequal]

[weights equal]
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greater weight
down
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Guess Answer[distances unequal]
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Rule III

Rule IV
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Figure1. Rules that categorize behavior as identified by Siegler (1981).
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Distance Difference

Rule 1

Rule 2

(a) Maxwell convention (b) Delay convention (c) Sudden jump

Figure2. Three hysteresis patterns, x-axis denotes the difference in distances left and right of the

fulcrum, the y-axis denotes the used Rule. Note: Children are presented a sequence of items which

increasing distances first.

decision process mediates performance on the balance scale task. Jansen and Van der Maas

presented children with sequences of distance items with the same weight configuration but

different distance configurations. During the first part of the sequence, the difference

between the left and right distance from the weights to the fulcrum increased with one per

presentation; during the second part the distance difference decreased. As in most balance

scale studies, the children werenot given any feedback. During the sequence of increasing

difference, a proportion of children were expected to change from Rule I to Rule II because

of the increase in saliency of the distance and therefore the increased likelyhood of the

distance dimenstion being available. The decrease was expected to cause a regress to Rule I

in a proportion of the children. Their results speak in favor of a distance difference mediated

phase transition from Rule I to Rule II.

Comparing the levels of the distance difference for the jump upward and the regress resulted

in three different transition patterns. First, a group of children showed a jump upwards at the

same level of the manipulated distance difference as the regress to the old level of behavior,
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which is called the Maxwell convention (Figure 2a, left panel). Second, children showing

the delay convention (Figure 2b, middle panel) regressed to the old level of behavior at a

smaller distance difference than the jump to the new level. Third, children showing a sudden

jump (Figure 2c, right panel) did not regress to the old behavior, but remained at the new

level of behavior for all levels of the distance difference after the jump to the new behavior.

Jansen and Van der Maas (in press) only studied the transition from Rule I to Rule II.

Detailed empirical information on other transitions is not available.

Torque Difference Effect The homogeneity of answers for items of the same item type is

questioned in research of Ferretti and Butterfield (Ferretti et al., 1985; Ferretti & Butterfield,

1992). They found evidence for a torque difference effect (TDE), that is, items with a large

torque difference are more likely to be answered according to a more advanced Rule than

items with a smaller torque difference. This implies non-homogeneity of behavior within

item types. However, reanalysis of their data (Jansen & Van der Maas, 1997) shows that the

torque difference effect only occurs for items with extreme torque differences. Therfore, it is

concluded that the behavior is homogeneous for non-extreme torque difference levels and

that a torque difference effect occurs for large torque differences.

EmpiricalCriteria

Based on these phenomena, the following four empirical criteria will be used to judge to

what extent the computational models explain the observed data.

EC1. Rule-like Behavior The behavior of the model should be classifiable into Rules. Ideally,

this classification can be conducted by latent class analysis or by inspecting the structure of

the models3. As rule-like behavior implies transitions, the model must explain transitions

3Some models directly implement the Rules as specified in Figure 1. Classification by latent

class analysis is superfluous for these models.
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from one Rule to another.

EC2. Rule setsA complete model of balance scale behavior should at least include the four Rules

as identified by Siegler (1976) and the Addition Rule. Moreover, Rule IV should not be

learned by an approximation of multiplication (e.g., an extensive set of item-answer

mappings), but by calculation of the torque. The Rules should become available in a fixed

order, independent of items presented to the model.

EC3. No Feedback and Transition PatternsFirst, Jansen and Van der Maas (in press) showed

that transitions are possible on series of items with increasing saliency of one of the

dimensions,without feedback about the correctness of answers. Second, if the saliency of

the distance dimension is manipulated, the model should show the three transition patterns

as presented in Figure 2.

EC4. Torque Difference Effect for Large Torque Differences A model should explain the

Torque Difference Effect for large torque differences, but should not show a torque

difference effect for small difference values.

Computational Models

The underlying principles of the computational models of balance scale behavior range from

a static set of simple production rules to complex, self-expanding clusters of information

processing units. Because we do not want to enter the discussion on underlying principles of

computational models, we will primarily discuss the models in terms of their adherence to the

empirical criteria (EC1 to EC4).

However, we will test the models against one computational criterion: each model’s domain

related assumptions should be plausible and inspectable. This holds especially for the assumptions

related to the representation of the balance scale items, the prior knowledge available to the model

in different stages of behavior, and the results of the proposed learning mechanism. Moreover, the
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model must not be too sensitive to minor modifications in the assumptions. Because of the

emphasis on the empirical phenomena, we will only discuss this criterion if the model adheres to

the empirical criteria.

First, we will describe the symbolic production rule models of balance scale behavior.

Second, we will discuss the neural network models. Third, we will discuss a model based on a

decision tree mechanism.

ProductionRuleModels

We discuss two production rule models4. The first computational model of balance scale

behavior is Klahr and Siegler’s (1978) production rule model. They showed that different sets of

static production rules were able to capture the observed Rules. The model did not specify a

transition mechanism and it therefore fails the first empirical criterion (EC1) by not modeling

development.

Sage and Langley (Sage & Langley, 1983; Langley, 1987) added a transition mechanism.

Their model starts with a set of production rules that produce random answers. The model learns

by discrimination: if the model predicts an answer that is found to be incorrect, a new production

rule is created based on an analysis of the differences between the incorrectly answered item and

the last item for which the production rule performed correctly. This new production rule has an

additional condition that discriminates between the two items and the appropriate answer.

Performance is kept stable for some time by parameters that determine when a production rule is

replaced by another rule. This model shows rule-like behavior and transitions (EC1). However, the

model does not learn Rule IV because it is not equipped with the necessary knowledge of

multiplication. Another item is that the discrimination method often leads to production rules that

4A often cited production rule model of balance scale behavior is Newell’s (1990) SOAR model.

However, the sparse description of this model does not provide enough information to evaluate this

model.
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are not found in human behavior. The model therefore fails EC2. Only if knowledge about the

correctness of a prediction is available, the model learns new Rules and therefore fails the

no-feedback criterion (EC3). Since the model only checks whether weights and distances differ or

not, it does not show the Torque Difference Effect for extreme torque differences (EC4).

ConnectionistModels

McClelland (McClelland, 1989, 1995) presented a connectionist model of balance scale

behavior that learns by back-propagation of feedback. The model consists of two output nodes

representing the predicted answer, and five input nodes for weights and for distances per side of the

scale. The input and output nodes are connected by separate hidden layers for the distance and

weight dimensions. To explain the use of the weight dimension before the distance dimension,

McClelland assumes that weight items are (initially) more frequent than distance items.

The first empirical criterion poses a problem for this model. McClelland tested the model

using Siegler’s rule assessment methodology, claiming a successful fit to human data. However,

reanalysis of the model’s behavior using latent class analysis has shown that the behavior of the

model cannot be described by a set of distinct rules unlike human data (Jansen & Van der Maas,

1997). Therefore, the model fails EC1. With respect to EC2, the model is not able to learn stable

Rule IV behavior. It sometimes regresses after a period of stable behavior in a more advanced

phase. Because the model is only able to learn by feedback-dependent back-propagation, it fails

the no-feedback criterion (EC3). With respect to EC4, the model does show the Torque Difference

Effect (McClelland, 1995). However, Jansen and Van der Maas (1997) argued that this model fails

to show homogeneity within item types at all. Furthermore, Raijmakers, Van Koten, and Molenaar

(1996) showed by reanalysing the model that it fails to show qualitative transitions between the

Rules.

Shultz and his co-workers (Shultz & Schmidt, 1991; Shultz, Mareschal, & Schmidt, 1994;

Shultz, Schmidt, Buckingham, & Mareschal, 1995) modeled balance scale behavior with
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cascade-correlation networks. The central tenet of cascade-correlation is that if the

back-propagation-like learning mechanism does not reduce the error between predictions and

feedback fast enough, new hidden nodes are incorporated into the model. Here we will discuss the

model as presented in Shultz et al. (1995). This model has five input units for each side and two

output units. The distance dimension determines which of the input units it activated, and the

weight dimension determines the amount of activation. The model is pre-trained with weight items

to model the initial preference for weight.

As in McClelland’s model, the behavior of the cascade correlation network is categorizable

into Rules using Siegler’s rule assessment methodology. Regrettably, no latent class analysis has

been applied to the model’s data. However, because the learning mechanism of the cascade

correlation network is comparable to that of McClelland’s model, it is not likely that the overall

pattern ofgradual adaptation is different. Our impression of gradual adaptation is reinforced by

Shultz’ (1994, p. 81) remark that: “The cascade correlation model suggests that balance scale [..]

transitions are soft and tentative rather than abrupt and definitive”. It is therefore likely that the

results of a latent class analysis are comparable to the analysis of McClelland’s model (i.e., fail

EC1). This model is able to learn all four Rules in the correct order (EC2). However, as no torque

is being calculated to come up with an answer, the model only partly (i.e., only for the trained

domain) adheres to Rule IV behavior. With respect to the no-feedback (EC3) and the Torque

Difference Effect/homogeneity (EC4) criteria, the same comments hold as for McClelland’s model.

DecisionTreeModel

Schmidt and Ling (1996) presented a model based on decision tree learning. This model

learns behavior on the balance scale by constructing decision trees. This mechanism involves

explicit extraction of rule-like regularities from a set of data. At the root of the tree is the most

predictive condition, one level below are the next most predictive decisions, etcetera. For example,

a decision tree for Rule II (Schmidt & Ling, 1996, p217) starts with “Are weights and distances
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equal?” If both are equal, the model answers “balance”, otherwise, the next step is “Which side has

the most weights?”. During the construction of the tree, new conditions are added until the tree

reaches a pre-specified “error tolerance” threshold. Note that although alternative decision tree

algorithms exist, the algorithm used by Schmidt and Ling requires that a complete training-set is

available to the model when constructing the tree. It is not able to learn incrementally but Schmidt

and Ling claim that comparable trees are constructed when incremental learning algorithms would

have been used. Therefore, the different states of the model are better described as “different

snapshots of development”, instead of illustrative for “continuous development”. The input to the

model deviates from the input to the other models. Not only the numbers of weights and distances

are presented to the model, but also (1) a binary attribute representing whether both weights and

distances are equal, (2) the difference in weights between both sides and (3) the difference in

distances between left and right.

The model adheres to the first empirical criterion, as the Rules can be identified by

inspecting the constructed decision trees and the incremental version of decision tree mechanism is

probably able to simulate the transitions (EC1). The model also learns the Rules in the right order

(EC2). However, because no knowledge of multiplication is represented in the model, it does not

calculate the torque which is necessary for correct Rule IV behavior. Instead, the model’s

approximation of Rule IV is based on extensive item-to-answer mappings. EC3 is not easily

evaluated as the model does not learn new Rules incrementally. Therefore, the transitions from one

Rule to another are by definition sudden and abrupt. Because the construction of a new tree is only

based on detecting regularities in the mapping of items to the associated answers, improving

behavior without feedback is impossible. Hence, the model does not fulfill the no-feedback

criterion (EC3). The model is able to construct different Rules for different difference intervals

because the model has access to the differences in weights and distances. Therefore, it is able to

model the Torque Difference Effect. Even more, because the distance difference has to exceed a

certain value before the Torque Difference Effect occurs, the homogeneity of items with a smaller
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torque differences is preserved (EC4).

Based on the empirical criteria, the decision tree model simulates development on the

balance scale task relatively well. However, one of the aspects of the computational criterion is the

input representation. To be able to meet criteria EC1, EC2 and EC4, the differences between left

and right values for weight and distance had to be included. This assumes that this information is

always and automatically available to a child solving a balance scale problem. To be able to

perform at Rule IV level, the decision tree model has to explicitly include all possible balance scale

items that are not solvable by comparisons. This results in a complex and extensive decision tree.

It might be questioned whether these input representation and the decision tree structure

assumptions are plausible.

Conclusions

As discussed above, although all models provide an interesting point of view on the process

of balance scale development, none is able to model the empirical data to full extent. The main

problems are that learning without feedback are not captured in the presented models.

Furthermore, the non-symbolic models have difficulty simulating rule-like behavior whereas the

symbolic models require less plausible assumptions or are not able to correctly model the

development of new Rules. Below, we present two models of balance scale behavior using the

ACT-R cognitive architecture which overcome most of these problems.

Models of Balance Scale Behavior

In this part of this paper, we will present two models of cognitive development on the

balance scale task. The first model uses feedback on its answers to pass through the sequence of

behavior. The second model simulates the construction of Rules in the absence of feedback. As we

will show, together these two model meet the empirical critera. Both models are implemented in

ACT-R (Anderson, 1990; Anderson & Lebiere, 1998 and see Lebiere & Anderson, 1998 for an

earlier demonstration of the application of ACT-R to cognitive development). ACT-R stores
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knowledge in two types. Factual knowledge is stored in the form of declarative chunks, whereas

actions are stored as production rules, which take the form of IF-THEN rules. Each of these types

of knowledge has an associated value that expresses the empirical usefulness of that piece of

knowledge. This value is related to the key assumption of ACT-R: the process of rational analysis.

An ACT-R model constantly re-evaluates the usefulness of its knowledge by rational analysis. If

knowledge proves to be relatively successful, it will be selected for usage more often, whereas less

successful knowledge will be less often selected. Ultimately, this decrease renders the knowledge

impossible to access if the associated value drops below a threshold. Before discussing the

subsymbolic rational analysis, we will discuss the chunks and production rules at the symbolic

level.

Each chunk belongs to a particular type. The type determines the structure of that chunk:

the slots that can be filled with variable information. Production rules can request the retrieval of a

particular type of chunk. Chunks play an important role in the guidance of an ACT-R model. At

start, a chunk is tagged as goal. This goal chunk determines which production rules can be applied.

Each production rule specifies to which goal type (i.e., chunk type) it belongs. The

production rule can only be applied if its type is equal to the type of the goal chunk. Generally, the

IF-part consists of constraints on the current goal (e.g., a production rule to say the answer to a

problem can only be applied if the answer is already available in the current goal) and a retrieval of

a chunk (e.g., a phonetic pattern associated with the answer). The THEN-part of a production rule

expresses the actions to be taken if the constraints are satisfied and the requested chunk can be

retrieved. Often, a complex task can be divided into subtasks that have their own set of applicable

production rules. Within a model, this is achieved by sub-goaling (e.g., the task to answer a simple

arithmetic problem can be divided into a subgoal to find the answer to a problem and a different

subgoal to say the found answer). This process is initiated in ACT-R models by pushing a new goal

on the goal stack which then becomes the current goal.

The subsymbolic value of chunks associated with rational analysis is their activation. Each
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chunk has an activation which is determined by the number and recency of past references to that

chunk. The activation of a chunk is determined by the following formula: B = ln(
∑n

j=1t−dj ). The

summation is over all previous references to this chunk, with tj being the time in seconds between

referencej and present andd being the decay rate (often fixed at .5). If a model needs to retrieve a

chunk, and if more than one chunk reaches threshold and satisfies the constraints of that retrieval

request, the chunk with the highest activation will be retrieved.

For production rules, the value used for rational analysis is the expected gain. The expected

gain of production rules is determined by a combination of the proportion of successful

completions of goals in which that production rule played part and the total costs associated with

that production rule. This is expressed in the following formula: Expected Gain = EG = PG - C.

The P stands for the proportion of successful completions, G is a constant value representing the

value of the goal, and C stands for the costs associated with the production rule. As with chunks, if

more than one production rule meets the current constraints, the production rule with the highest

expected gain is selected for execution. With regard to subgoaling, the expected gain variables of a

production rule depend on that production rule’s success and on the subgoals it initiates. For

example, if the retrieved answer to an arithmetic problem is incorrect, the expected gains of the

production rules that were used to express the answer are not affected because these were used

within the context of a subgoal.

If a production rule explicitly removes the goal chunk from the stack of goals, the goal is

completed successfully. However, if at a certain point no production rule above threshold matches

the goal, the architecture removes this goal from the goal stack and all applied production rules are

ascribed a failure which lowers the expected gain.

A recent addition5 to ACT-R (Taatgen & Anderson, submitted; Taatgen, 2000) proposes a

5This addition is not yet part of the current ACT-R version, but is incorporated in the forthcoming

ACT-R 5.0. Although the current version of ACT-R is also able to construct new production rules,

the new mechanism constructs new rules using a more elegant and principled method.
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proceduralization mechanism that constructs new production rules. Instead of supplying the model

with production rules (implying that these rules have been constructed outside the scope of the

model), the proceduralization mechanism uses declarative representations of actions. Production

rules are learned in one of two ways: (1) declarative descriptions of actions are transformed into

production rules, (2) existing rules are merged into a new, specialized production rule.

With respect to the first method, during the process of reasoning with the declarative

representations new production rules can be constructed on a probabilistic basis. This reflects the

notion that automatizing behavior is a side effect of performing (an earlier form of) the same

behavior. So, given enough experience with a declarative representation, it is likely that a similar

production rule is created. Because the cost (and therefore the expected gain) of one production

rule is lower than the cost of reasoning with the declarative representationand performing the same

actions, the new production rule will take over. The second method constructs a new production

rule when two rules are executed after another with the first rule retrieving a chunk. A new,

specialized production rule is formed that combines the two, eliminating the step that retrieves of

the chunk. That is, instead of retrieving a chunk, that chunk’s information is hard coded into the

production rule. For an extended overview of proceduralization, refer to Taatgen and Anderson

(submitted).

A Feedback ACT-R Model of Balance Scale Behavior

The model that we present in this section consists of a set of production rules that resemble

the original Rules. We show that the standard ACT-R expected gain learning mechanism

successfully produces the correct sequence of transitions.

The Rules presented by Siegler are presented in the form of decision trees (see Figure 1).

For example, Rule I is represented as: if the weights are equal, answer “balance”, otherwise give as

answer the side with the most weights. To describe this Rule in terms of IF-THEN rules, two

IF-THEN rules have to be created: (1) IF the weights are equal THEN say balance, (2) IF the
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weights are unequal THEN push a subgoal to give as answer the side with most weights.

Table 1 shows all production rules derived from the decision trees6. As not all production

rules are used for all Rules, the first column specifies in which Rule the production rule occurs.

The first three production rules in this table (1-3) are relatively simple production rules that reflect

the initial steps of starting with a problem and retrieving the number of weights on the left and the

right side. Then, either production rule 4a or 4b is selected for execution, depending on the

equality of the retrieved weight values. For the transition to Rule II, production rule 4a has to be

replaced with production rule 4a-1 which starts a new sequence of production rules that process

distance information (4a-1;4a-2;4a-3a;4a-3b). The next transition is signaled by the replacement of

production rule 4b by 4b-1. This again leads to a new sequence of production rules which process

distance information (4b-1;4b-2;4b-3b;4b-3c). The last transition is the replacement of production

rule 4b-3c with the force rule 4b-3d.

To explain the order of Rules in development, the model has to explicate how some

production rules are used in earlier behavior (e.g., 4a and 4b), whereas other production rules are

not used until later in development (e.g., 4b-1 and 4b-3d). As introduced before, all production

rules in ACT-R are subjected to expected gain evaluation. The production rule which has the

highest expected gain, is selected for execution. This value is calculated by EG = PG - C. As G is

kept constant (at the default setting of 20), P and C are the values that can be used to explain

development.

The costs of production rules (“C”) are assumed to be determined externally because of

application of the rules in other tasks or domains. It is unlikely that tasks like comparison, addition

or multiplication are first used within the context of the balance scale task. Obviously, the costs of

6With respect to Rule III, this overview deviates from the original decision tree specifications.

As empirical studies (Jansen & Van der Maas, 1997) demonstrated the use of the Addition Rule

instead of the original Rule III, the model presumes the use of the Addition Rule as specified by

Normandeau et al. (1989).



Modeling Developmental Transitions 20

Table 1

Productionrule representationof balancescaleRules.

Rule Number Production rule description

I-IV 1. Sets a goal to search for an answer based on properties of the presented problem.

I-IV 2. Selects the weight property as initial property to base an answer on.

I-IV 3. A subgoal that retrieves the values of the previously selected property from the

balance scale.

I 4a. IF the weights are equal, THEN give “balance” as answer.

II-IV 4a-1. IF the weights are equal, THEN selects the distance property for further

processing.

II-IV 4a-2. See production rule 3.

II-IV 4a-3a. IF the weights and the distances are equal, THEN give “balance” as answer.

II-IV 4a-3b. IF the weights are equal and the distance values are retrieved, THEN base the

answer on the distances.

I-II 4b. IF weights are not equal, THEN select as answer the side with most weights.

III-IV 4b-1. IF the weights are not equal, THEN select the distance property for further

processing.

III-IV 4b-2. See production rule 3.

III-IV 4b-3a. IF the distances are equal, THEN base the answer on the weights.

III-IV 4b-3b. IF the weights and distances have a larger value on the same side, THEN give as

answer that side.

III 4b-3c. IF weights and distances are retrieved, THEN base the answer on the addition of

weights and distances.

IV 4b-3d. IF weights and distances are retrieved, THEN base the answer on the

multiplication of weights and distances.

these operations decrease with age. However, the costs ofall these operations decrease. Because

only the differences between costs are relevant, We make the simplifying assumption that the C
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value is static during development. Although the cost of production rules is set in absolute values

(by default expressing time in seconds), within this model the costs must be regarded relative to the

other costs. We used the following relation to estimate the costs of the production rules: cost of

comparison resulting in an equality< cost of comparison resulting in an inequality< cost of

addition< cost of multiplication. (The relations used are 0.5:1:3:4, although the model is robust to

minor modifications of these values.)

The other parameter (“P”) of the expected gain formula reflects the prior success-rate of the

associated production rule. Although particular methods (e.g., multiplication) might be used before

in other domains, their success-rate is unknown for the new domain of balance scale behavior. As

this holds for all production rules, we set the P value of all production rules to the same value: P =

.875 = 175 successes / (175 successes + 25 failures). This “initial experience” reflects the

confidence in the yet unused rules, but claiming that the untested production rule will predict

perfectly7. Without setting these “experiences”, the first balance scale item could cause a sudden

shift in the P value. The qualitative behavior of the model is insensitive to modifications in these

numbers, as long as the initial number of successes is smaller than the number of failures.

The P value is the main source of development in this model. If the model is presented with

randomly chosen balance scale items, the P values of the production rules will be adjusted to

reflect the empirical evidence. The number and percentage of correct responses per Rule is

presented in Table 2.

As can be seen in this Table, the earlier production rules have a lower success-rate than the

later production rules. Because of this difference in success-rate, production rule 4a-1 (20%

correct) will be replaced by production rule 4a-1 (100% correct). In a similar fashion, 4b (78%)

will be replaced by 4b-1 which lead to an answer given by either 4b-3a, 4b-3b or 4b-3c (91%

correct). Finally, the not 100% successful production rule of Rule III (4b-3c) will be replaced by

7See, for example, Lovett and Anderson (1996) for an illustration and discussion of using the P

parameter to model behavior.



Modeling Developmental Transitions 22

Table 2

Numberandpercentageof correctresponsespercombinationof Ruleandbalancescaletype.

Balance Scale Items Total

B D W CB CD CW WD Correct Responses

Rule I 25 0 100 0 0 88 200 413 66%

weight equal, 4a 25 0 ∅ ∅ ∅ ∅ ∅ 25b 20%

weights unequal, 4b ∅ ∅ 100 0 0 88 200 388c 78%

Rule II 25 100 100 0 0 88 200 513 82%

weight equal, 4a-1 25 100 ∅ ∅ ∅ ∅ ∅ 125b 100%

weights unequal, 4b ∅ ∅ 100 0 0 88 200 388c 78%

Rule III

Additiona, 4b-3[a-c] 25 100 100 20 64 64 200 573 91%

Rule IV, 4b-3d 25 100 100 24 88 88 200 625 100%

Note. The numbers after Rule IV and the subsets of the other Rules refer to the production rules

in Table 1 that are directly related to this behavior. The absolute numbers assume a five× five

balance scale configuration. Different configurations lead to both different absoluteand relative

values. B=balance item, D=distance item, W=weight item, CB=conflict balance item, CD=conflict

distance item, CW=conflict weight item, WD=weight/distance item.

aAs described in Normandeau et al. (1989).

bOf a total of 125 items with equal weights.

cOf a total of 500 items with unequal weights.

4b-3d (100%).
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Simulation

To test the behavior of the model, randomly selected balance scale items were presented to

the model. This was done by setting a goal to solve a balance scale problem, and adding the

appropriate weight and distance chunks to declarative memory. The training set was not biased to

weight items nor to balance items (as sets in some of the previous studies were). Each time an

answer to a balance scale problem is given, the expected gains of the involved production rules are

updated. Development takes place because of this updating. The expected gains of some main

production rules can be used to illustrate the current state of the model. Because production rules

like the first three production rules in Table 1 are used during all phases, they do not affect the

behavior of the model. Another pair of production rules of which the expected gain is less

informative, are 4a-3a, 4a-3b, 4b-3a and 4b-3b. These production rules have to be triggered by one

of the two production rules (4a-1 and 4b-1) that shift the attention to the distance feature. As the

answers given by these production rules are all correct, these production rules will not be replaced

by other rules. Moreover, their expected gain will increase to an asymptote of P=1. Therefore, only

the following production rules are informative about the current state of the model: 4a, 4b, 4a-1,

4b-1, 4b-3c and 4b-3d. As soon as 4a is replaced by 4a-1, the model behaves according to Rule II.

When 4b is replaced by 4b-1, the model is able to include both weight and distance in its decision

process, leading to either the use of 4b-3c (Rule III, Addition) or 4b-3d (Rule IV, Multiplication).

The expected gains of these production rules are plotted in Figure . For clarity, the x-axis is

plotted in logarithmic scale. Initially (upto about 100 training items), the expected gains of only

two production rules are modified. The topmost expected gain (solid line) is associated with

production rule 4a (“weights equal, answer balance”), whereas the lower line (dashed line) is the

expected gain of 4b (“weights unequal, answer heaviest side”). Although the first rule starts out

with a higher expected gain because it contains a comparison resulting in an equality, the

probability of success of that rule is only .20. Therefore, the expected gain of this production rule

decreases fast, which is visible in the steeper negative slope of the plotted expected gain. This fast
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decrease causes the replacement of this production rule by 4a-1 (dot-dashed line, “weights equal,

continue with distance”) sooner than 4b is replaced. The sequence which is initiated by 4a-1

performs flawlessly, resulting in a slow but steady increase of the P parameter to an asymptote of

P=1. However, this increase is relatively slow because this production rule is only used in

approximately 24% of the cases.

If a new production rules causes an error just after it was first used, a period of instable

performance occurs in which the new and old production rule are used in turns. Because the new

“continue-with-distance” rule yields perfect answers, no instable performance is shown during the

transition to Rule II. After all, if the weights are equal, the distances determine the tilt of the

balance scale.

As the expected gain of the weight-unequal production rule 4b (dashed line) decreases, it

drops below the expected gain of 4b-1 (dotted line, “weights not equal, continue with distance”).

This triggers the model to take both weights and distances into account.

After this production rule has been executed, the model has access to both weight and

distance information. The majority of items can be solved by the “cheap” (considering the costs,

“C”) comparison-based production rules (4b-3a and 4b-3b). However, if these do not result in a

correct response, the model tries to combine the information on weights and distances. The first

Rule that implies a combination is the Addition Rule (production rule 4b-3c). Because the

Addition Rule performs relatively poor for the items it applies to (148 out of 200 correct or 74%),

it will be replaced by the force production rule, 4b-3d, which yields perfect answers.

Discussion of the Simulation Results With respect to the first empirical phenomenon, EC1, the

above presented model does show rule-like behavior as can be seen in Figure . If performance has

reached a certain level, it stays at that level for a while before improving to the next level.

Obviously, the model adheres to Siegler’s Rules as the decision trees were used to construct

the production rules. This was confirmed by latent class analysis of the model’s responses. The
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main question was whether these Rules were learned at all and whether they occur in the correct

sequence. Because all Rules are learnedand learned in correct sequence, the model satisfies EC2.

The model fails EC3 as the learning of new production rules depends on feedback. The model as

presented above does not have any information about the size of the differences on the weight and

distance dimension. Therefore, it is not able to show any torque difference effects and fails EC4.

Another issue to be raised is the computational criterion. The above presented model is

equipped with all necessary production rules from start. Although the more complex production

rules are not used until later in the simulated development, the model does not explain how these

new production rules are instantiated.

Although the model fails both EC3 and EC4, this model does show that if one considers the

Rules to be increasingly difficult, exposing the internal representation of the Rules to randomly

selected items is sufficient to show transitions from Rule I to Rule IV. In ACT-R terms, the initial

costs and the adaptation of production rules parameters explain the order in which development

takes place. On a more general level, this model shows how gradual adaptation is able to exhibit

performance that is characterized by periods of stable behavior, separated by sudden jumps.

Below, we present a model of the transition from Rule I to Rule II based on detailed

empirical knowledge. Because this model focuses on a transition, the main criteria are EC3 and

EC4 and the computational criterion of plausibility.

ModelingTransitionswithoutFeedback

To explain what causes a transition to a later Rule, one has to explain how an earlier Rule

can be replaced by a later Rule, and how new knowledge, necessary for this later Rule, is acquired.

Above, we discussed how the evaluation of success of production rules explains the development

through the identified phases. This approach presupposed that all necessary knowledge was readily

available to the model. In this section we will discuss a model that is able to construct new

production rules to solve balance scale items. To construct a model thatexplains transitions rather
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thanmerelyshows transitions, detailed information is needed about the transitions. Recently, two

studies (Siegler & Chen, 1998; Jansen & Van der Maas, in press) have been reported that studied

phenomena related to the transition from Rule I to Rule II. Therefore, this model will focus on that

particular transition.

As discussed earlier, children who are attributed to Rule I often do not notice the distance

dimension. Siegler and Chen (1998) asked children to reconstruct a balance scale problem after

they studied it for 10 seconds. In correspondence with earlier findings (Siegler, 1976), children

attributed to Rule I were less likely to reconstruct the distance dimension correctly than Rule II

children. A related finding is reported by Jansen and Van der Maas (in press). They showed that

enhancing the saliency of the distance feature increased the proportion of items that were answered

correctly. Possibly, the previous level of performance was at least partly caused by the inability to

incorporate distance in the decision process. This suggests the following mechanism:Answersto

balancescaleproblemsarebasedonasearchfor differencesin relatedproperties.

This leads to the following hypothesis to explain the transitions:“A transitionis only

possibleif anecessarypropertybecomesavailable”. Although not much is known about the

performance before Rule I, the main difference is that Rule I children are able to systematically

incorporate the weight dimension into their decision process. Therefore, this same mechanism

might apply for the transition to Rule I.

Because no feedback was given in the studies reported by Jansen and Van der Maas (in

press) and Siegler and Chen (1998), expected gain modifications like in the previously presented

model cannot explain the transitions from Rule I to Rule II. Jansen and Van der Maas manipulated

the saliency of the distance dimension by increasing the distance difference between the left and

right side of the balance for consecutive items. Siegler and Chen presented subjects with the

answers to a number of distance items and asked for an explanation of the observed behavior. The

manipulations in both experiments drew attention to the relevant dimension, which increased the

probability of incorporating that feature. This suggests that the dimensions themselves have to be
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encoded before the values of those dimensions can be incorporated into the decision process. For

example, if a child is presented a balance scale problem, the first decision has to be what

information of that balance scale will be used to base an answer on. It is possible that certain

features are not noticed as being potentially useful because their internal representation (a chunk,

in ACT-R terms) is not available to the child at that moment, for example because the chunk’s

activation is below threshold. We modeled the stressing of the distance dimension in

abovementioned studies by an increase in the associated chunk’s activation level. If this increase

raises the activation above a threshold, the dimension can be used and incorporated into the

decision process.

Besides explaining why performance is stuck or develops, a model also has to explain the

construction of the knowledge on which new performance is based. Hereto, we will use the new

ACT-R proceduralization mechanism. We will show that a model that combines the

threshold-based retrieval of features and the proceduralization mechanism is able to explain

development from Rule I to Rule II, even without feedback.

The Structure of the Model The model starts withoutany production rules about how to answer

balance scale problems. Only general purpose production rules are available. These production

rules are concerned with interpreting declarative representations (for example, selecting a next

applicable action, carrying out retrievals, etc.). This knowledge is completed with a production

rule that gives an answer to a presented problem (i.e., guesses) if no further steps can be taken. The

following declarative representations of actions are available:

• If an answer has to be given to a difference problem, try to retrieve a yet unused feature to

solve the problem

• After selecting a feature, try to retrieve the associated values

• If the retrieved values are equal, then start again

• If the retrieved values are unequal, base the answer on the observed difference
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This declarative representation presupposes an important role for the concept of inequality.

We assume that children start searching for an inequality if presented with balance scale items.

Because they are instructed to predict which side goes down, it is likely that they will try to find

which dimension differs between the two sides. Where other computational approaches presented

the model a higher proportion of weight items, we assume a preference for the weight feature

expressed in an additional activation for the chunk representing the weight dimension. Without this

preference, the weight feature would be below the retrieval threshold like the distance feature. This

is based on the assumption that children “know” that weight is important if they have to predict

which side goes down.

The model is presented with randomly selected balance scale items. The above presented

declarative representations are being interpreted to answer these problems. As a side effect of this

interpretation, new production rules are formed. The following set of rules8 emerges:

1. Start-And-Retrieve-Weight-Values: Starts the problem solving process, and directly retrieves

the weight values.

2a. Give-Answer-If-Weights-Are-Unequal: Selects which answer will be given, based on the side

with the larger number of weights.

2b. Start-Search-For-Another-Feature-If-Values-Are-Equal: If the retrieved values are equal, start

over by searching for another feature.

This set of production rules is functionally equivalent to the production rules (sequence

1;2;3;4a/4b) associated with Rule I of the basic model presented earlier. One of the differences in

these production rules, compared to the previous model’s production rules, is the removed subgoal

for retrieving the weights. The production rules of the new model are specialized by the

proceduralization architecture to automatically retrieve the weights if a balance scale problem is

8Note that the names of these production rules arenot constructed by the model but are assigned

post-hoc for explanatory reasons.
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encountered. If the weight values are equal, the model searches for another feature. However, we

assume that, initially, the activation of the distance feature is too low to be retrieved. This renders

step 2b of this model to be functionally equivalent to the weights-equal production rule (step 4a) of

the previous model. Because no difference in features is found, the production rule that gives an

answer if no further steps can be taken answers “balance”. As a result, the model’s behavior is

comparable to the behavior of children in Rule I.

If the activation of the distance feature is increased, for example because of extended cueing

of the distance dimension, the model starts to incorporate the distance feature in its problem

solving process. In the same fashion as it learned its own production rules for Rule I, the model

learns new production rules for Rule II behavior. Note that this improvement in behavior does not

rely on the explicit addition of new knowledge. The same knowledge that leads to the transition to

Rule I leads to the transition to Rule II. After the proceduralization mechanism has proceduralized

the representations and merged and specialized the production rules, the following production rules

result:

1. Start-And-Retrieve-Weight-Values: As above.

2a. Give-Answer-If-Weights-Are-Unequal: As above.

2b-1. If-Weight-Equal-Continue-With-Distance: If the weights are equal, note in the goal that the

answer should be based on the distance feature.

2b-2. Retrieve-Distance-Values: Retrieve the distance values from the presented balance scale.

2b-3a. Answer-If-Distances-Are-Unequal: Base the answer on the values of the retrieved distance

values.

2b-3b. Start-Search-For-Another-Feature-If-Values-Are-Equal: As above.

As with the model of Rule I behavior, this state of the current model is highly comparable to

the basic model, with two modifications/extentions: (1) the retrieval of the values of the dimensions

are specialized and (2) the search for another feature is functionally equivalent to a balance answer
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because no other features can be found. This shows that the assumption of a proceduralization

process and simple prior knowledge is sufficient to simulate development from Rule I to Rule II.

Simulations: Transition Patterns To test the model, we compared the model’s behavior to

individual patterns acquired in the empirical study of Jansen and Van der Maas (in press). The

model is presented with the same sequence of items as in this study. Like the children in the

empirical experiment, the model receivesno feedback about the correctness of its answers. All

items have two weights on each side of a five pegged balance. In the first item, the weights were

placed on the first peg left of the fulcrum and on the second peg right of the fulcrum, resulting in a

distance difference of one. In the next four items, the weights on the right side of the fulcrum were

shifted one peg to the right. When the distance difference reached the maximum of four, the

sequence was reversed.

As discussed earlier (see Figure 2) Jansen and Van der Maas observed three types of

transitions when the salieny of distance was manipulated: (1) A Maxwell convention pattern: when

the jump to Rule II occurs at the same distance difference as the regress to Rule I; (2) a delay

convention pattern: the jump to Rule II occurs at a higher distance difference than regress to

Rule I, and (3) a sudden jump if the child remains in Rule II after the jump.

The simulation started with an activation of the distance chunks below the retrieval

threshold, resulting in Rule I behavior. To be able to improve to Rule II behavior, the activation of

the distance chunk had to increase to reach the threshold. The experimental manipulation of Jansen

and Van der Maas is incorporated into the model by assuming an additional saliency related

activation component. Hereto, the chunk activation formula presented earlier

(Activation = B = ln(
∑n

j=1t−dj )) is rewritten to: Activation = B + saliency. We assume the

additional saliency activation to be linearly related to the distance difference (saliency =

∆distance/c, wherec is a scaling constant).

As transition to Rule II is explained by an increase in activation, regression to Rule I
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behavior is explained by a decrease in saliency activation. After the item with the most extreme

distance difference has been presented, the saliency component of the activation equation

decreases. However, during Rule II behavior, the distance feature chunk has been retrieved a

number of times. This increases the base activation of the chunk which in some cases is sufficient

to remain in Rule II for lower levels of the additional saliency activation.

Given these mechanisms, what causes one child to show behavior according to the Maxwell

convention, whereas others behave according to the Delay convention or even show a sudden

jump? A possible explanation lies in differences of thoroughness of processing. For example, one

child might make a mental “note” after discovering a new method to solve the problem, whereas

another child might be less inclined to elaborate the new method. We incorporated this explanation

into the model. Elaboration is modeled by extra retrievals of the involved chunks, leading to an

increase in the number of references. Differences in elaboration of the new method leads to

differences in activation increase.

Simulations have shown that this notion of differences in elaboration was sufficient to

simulate all observed transition patterns. The results of these simulations are plotted in Figure 4.

Each of the panels of this figure contains the base activation, the additional saliency activation and

the combination of these two. If the combination of both activations reaches threshold (the dotted

horizontal line at y=0), the model is able to retrieve the distance feature, and performance will

improve to Rule II (shown by the dotted line with round markers). Figure 4 shows that the base

activation increases for all three panels if the distance feature is retrieved. The size of the increase

depends on the amount of elaboration expressed in retrievals. For the left-panel, the Maxwell

convention, we assumed that the distance chunk was retrieved only once resulting in one additional

reference, the delay convention occurs if the distance chunk is retrieved and elaborated resulting in

three additional references, and the sudden jump occurs if retrieving and elaboration lead to five

additional references.

Besides explaining the transitions, this mechanism also gives an explanation of the torque
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Figure4. Hysteresis patterns explained by the retrieval of the distance feature.

difference effect. Because torque difference is strongly correlated with distance difference, a large

torque difference increases the activation of the chunk that represents the distance dimension. This

suggests that the torque difference effect is mainly found during the periods around the transitions.

This is in accordance with the results of Jansen and Van der Maas (1997), showing that although a

Torque Difference Effect is observable for extreme cases, the homogeneity assumptions still hold.

Discussion of the Model With respect to EC1, the model constructs new production rules. These

new production rules are then subjected to expected gain learning. When the expected gain of

these new production rules drops below the expected gain of the interpretation proceduralization

rules, the model tries to find a better method to solve presented balance scale items. By means of

this process, the model is able to learn new production rules, for example for Rule III and Rule IV.
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However, because no detailed information is available on the transitions to Rule III and Rule IV,

we did not incorporate these transitions in the model. Therefore, this models satisfies EC2 only for

the transition from Rule I to Rule II. If more detailed information on the transitions to Rule III and

Rule IV comes available, these transitions can be easily incorporated into the model.

The model presented above explains transitions without feedback and also shows the three

transition patterns as presented in Figure 2. Therefore, this model reproduces the no-feedback

learning phenomenon (EC3). This model also reproduces the torque difference effect. Because this

model only exhibits the Torque Difference Effect around transitions and for item types which are

better answered in the next, more complex Rule, the model still adheres to the homogeneity of item

types. This satisfies EC4.

Summarizing, we showed that a model based on small set assumptions and a principled

proceduralization mechanism is able to simulate human development. At the same time, this model

is able to simulate and explain individual development patterns. Moreover, the model showed that

the torque difference effect (Ferretti & Butterfield, 1986) might be caused by the unstable period

around the transition, instead of being a global effect.

Discussion

Four different phenomena can be distinguished in development on the balance scale task.

First, behavior of children has been shown to be classifiable into qualitatively distinguishable

phases. Second, behavior in these phases can be described by a set of increasingly complex Rules

(see Figure 1). Third, recent research has identified particular transition patterns during the

transition from Rule I to Rule II. Moreover, no feedback is necessary to induce this transition.

Fourth, given a large difference between the torques on left and right side of the balance scale,

behavior is likely to be according to a more advanced Rule than if the difference is smaller (the

Torque Difference Effect).

Since the first description of the Rules, a number of computational models have been
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proposed as models of development on the balance scale task. The production rule model of Sage

and Langley (1983) reproduces transitions, but the structure of the model led to the construction of

production rules that deviated from the empirically identified Rules. Another approach was taken

by McClelland and Shultzetal. (McClelland, 1989, 1995; Shultz & Schmidt, 1991; Shultz et al.,

1994, 1995). They constructed different types of connectionist models which showed feedback

mediated transitions. However, reanalysis of the behavior of these models has shown (Jansen &

Van der Maas, 1997) that the behavior of these models is not accurately described by qualitatively

different rules. A third approach was taken by Schmidt and Ling (1996). They modeled behavior

on the balance scale task with a model that constructs decision trees. With a number of additional

assumptions concerning the input representation, their model showed behavior comparable to

human data. However, the plausibility of both the internal representation of the Rules (especially

the problem-to-answer mappings of Rule IV) and the additional input related assumption is

questionable.

Taken together, the two ACT-R models presented here meet the empirical criteria. The first

ACT-R model reproduces the correct sequence of Rules. The model advances through the observed

Rules by replacing production rules for less succesful Rules with production rules for more

advanced Rules. The model makes three key assumptions. The first assumption is that the

knowledge used to solve a balance problem varies in costs, representing difficulty. Because of this

assumption, the model does not rely on ad hoc distributions of balance scale items. The second

assumption of the model is that parameters of the production rules that reflect success and failure

are initialized with a number of prior successes and failures. This results in a more stable learning

pattern. Without these initial experiences the expected gains of the production rules are heavily

influenced by a single successful or unsuccessful application of the production rule. The third

assumption of this model is the availability of the production rules. How the rules are constructed

is shown for Rule I and Rule II by the second model. The central notion of this model is that a

general mechanism guides the discovery of the Rules. This mechanism is associated with the
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detection of differences. If a balance scale problem is presented, children have to predict to which

side the scale tilts. For this, they have to find a difference between the left and right side. Children

who use Rule I have discovered the importance of the weight dimension, children using Rule II

have also grasped the importance of the distance dimension. This is incorporated into the model by

assuming a necessary retrieval of the dimension to be used in the reasoning process. If retrieval is

not possible, either because the dimension is not available at all or because its activation is below a

retrieval threshold, then the model does not perform at the level for which the retrieval was

necessary. If the retrieval succeeds and proves successful by producing correct answers, this newly

discovered reasoning process is incorporated by the construction of new production rules which

automate the retrieval of the dimension. The new rules prove useful and their costs gradually

decrease and so they come to dominate behavior. Because of this, new Rules are learned. The

model based on this idea, is shown to learn Rule I and Rule II. Rule III and Rule IV are also

learnable by the model, assuming knowledge about the combination of two dimensions is available

to the model. However, because the lack of detailed empirical data related to these transitions,

these transitions are not incorporated in the second model.

The models reproduce the same phenomena found in cognitive development. First, the

models’ behavior is classifiable into qualitatively distinguishable phases. Second, the first model

shows the correct sequence of Rules. Furthermore, the second model gives a detailed account of

the transition from Rule I to Rule II. Third, the transition model shows development without being

dependent on feedback. We assume that because of visual saliency, the distance dimension is more

likely to be noticed given larger differences between the left and right side of the balance. This is

reflected in the model by the activation of the memory chunk that represents the distance

dimension. Given a larger difference between the distances on the left and right side of the balance,

the activation of the distance dimension chunk might increase to just above the retrieval threshold.

If this occurs, the behavior of the model shifts from Rule I to Rule II. This mechanism gives an

explanation for the development from Rule I to Rule IIwithout feedback. This idea also accounts
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for the transition patterns observed by Jansen and Van der Maas (in press). If an increase in

difference is able to push the activation over the threshold, a decrease in difference might cause a

drop below the threshold. Combined with an increase in activation caused by the retrievals, the

identified transition patterns emerge. Fourth, because larger distance differences are related to

larger torque differences, this model shows the Torque Difference Effect during the transition

periods. If the distance differences increase, the chances of applying Rule II increase. The same

effect as implied by the Torque Difference Effect. However, the model predicts this effect to occur

during transitions only. When behavior is stable, no chunks need to be retrieved, so no influence of

torque differences is observed in the model. During stable behavior, the model will show

homogeneous answers for problems of the same item type. This is in line with the conclusion that

the Torque Difference Effect is solely observable for large toque differences (Jansen & Van der

Maas, 1997).

Summarizing, we have shown how a model that is capable to show the standard phenomena

of qualitative Rules and observed order of Rules. To model these phenomena, the model is

constructed on a basis of clearly stated assumptions. With respect to the learning without feedback

and the transition patterns, we have presented a model that is able to improve from Rule I to

Rule II without feedback. As far as we know, this is the first model able to model development in

the balance scale domain without being dependent on feedback. Furthermore, this model is able to

show the transition patterns related to this transition. This same model is also able to explain the

Torque Difference Effect. However, instead of presenting the Torque Difference Effect as a global

effect, this model suggests that the Torque Difference Effect is related to the less stable periods

around a transitions.
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