JCCM 2001 | July 26.28

Posters

Can Cognitive Modeling Improve Usability Testing and Rapid Prototyping?

Robert L. West (robert_west@carlefon.ca)
Department of Psychology; Carleton University
Department of Cognitive Science, Carleton University
Ottawa, Canada

Bruno Emond (brunc_emond@uqgah.uquebec.ca)
Department of Education; Université du Québec a Hull
Hull, Canada

Abstract

We arpue that usability testing, as employed in the rapid
prototyping cycle, could be improved by testing simulated
users We briefly review some of the benefits that this
methodology could offer and discuss one approach to
building 2 siraulated user using ACT-R to embody 5 GOMS-
like memory structure

Rapid prototyping is frequently used to design interface
systems for comemercial sofiware The gosal is to rapidly
iterate 2 cycle of creating, evaluating, and redesigning, to
praduce an intuitive, easy to use interface In this paper we
discuss how usability testing, a popular means of evaluation
for rapid prototyping, could be aupmented by testing
simulated users, The simulated user is not a new idea; it has
its origins in GOMS modeling (Card, Moran, & Newell,
1983), and has also been explored using cognitive
architectures (e g, Gray, 2000; Howes & Young, 1996} such
a5 ACT-R (Anderson & Lebiere, 1998) and SOAR (Newell,
1990). However, not much attention has been paid to
integrating sirmulated users into rapid prototyping and
usability testing.

Usability testing involves having users perférm tasks on
an interface prototype to see how well it works The actual
testing procedure is relatively quick and informsl Usually,
four to seven subjects are asked to do a series of tasks using
the interface prototype While usability testing is effective,
like any methodology, it is not without problems There are
a number of different ways that simulated users could
improve usability testing but, due to space limitations, we
will focus only on the problem of not enough subjects
Using lower numbers of subjests increases the chance of not
finding a problem or of overestimating or underestimating
the likelihood of a problem occurring in the user population
(see the following for experimental evidence consistent with
this claim: Spool & Schroeder 20031; Kessner, Wood,
Dillon, & West, 2001; Molich, Thomsen, Karyukina,
Schmid, Ede, van Qel, & Arcuri, 1999). Rapid prototyping
does not allow enoupgh time to test large numbers of
subjects, 50 one solution is to use simulated subjects.
However, in order to do this, simulated users need to be
created and validated. Here we describe our initial attempts
to do this.

_ The goal of this project is to develop a system that will
Improve the rapid prototyping process. However,
developing a simulated user will not be much use if it is not
accepted as a methodology within the usability domain
Related to this is the usability of the simulated user itself In

27

rapid prototyping there is a very strong emphasis on
developing prototyping tools that are fast and relatively easy
to use. Therefore the simulated user should be as easy as
possible to program and understand. A good mode! for this,
we believe, is keystroke level GOMS (Card, Moran, &
Newell, 1983), which is designed to be easy to use, easy to
understand, and good enough for describing typical interface
designs. The type of system we would like to create would

be similar in nature to keystroke level GOMS but capable of

exploring and learning how o use a novel interface. Below
we deseribe our initial attempts to create such a system using
ACT-R

For this type of system, issues concerning perception,
attention, and action pose a problem. One selution would be
to use an architecture designed to deal with these issues,
such as ACT-RPM (Byme & Anderson, 1998) or EPIC
(Kieras & Meyer, 1997}, However, in keeping with our goal
of maintaining the simplicity of keystroke level GOMS, we
assume that everything is accurately perceived so that the
interface information can be coded (by LISP functions) into
declarative memory as it becomes perceptually available.
Perceptual, attentional, and motor operators are used only to
estimate how long each action takes. Objects on graphical
user interfaces tend to be fairly obvious and it is not
commonly found that users fail to notice objects. However,
the problem of not understanding the functionality of an
object {e g, not understanding what an icon symbolizes) is
quite commonly found in usability testing Unfortunately, it
is problematic to model object recognition, even using ACT-
RPM or EPIC Therefore, object recognition would need to
be assumed Note though, that it can also be assumed that an
obiect is not understood to simulate the effect of this.

GOMS models have been shown to be both effective at
modeling interface use and relatively easy and intuitive to
grasp (John, 1995). We hypothesize that the reason for this
is that the GOMS structure actually reflects the way humans
organize their knowledge of how to use interfaces. From this
perspective, trying to figure out an interface can be
understoed as the user attempting to mentally construct
something similar to a GOMS model Based on this
conceptualization, our approach has been to mode! the user
as trying to construct a GOMS-like model of the task in their
declarative memory system The template for how this
informatien is built-up and stored in memory is based on a
hierarchical structure similar to that used in GOMS (e,
goals, methods, operators)

Figure 1 illustrates the template structure The rectangles
represent goals, the boxes represent methods, and the circles

ICCM 2001 | July 26-28

represent operators. The gray shapes represent the elements
related to completing the first goal, and the white shapes
represent the elements related to completing the second
goal. At ezch level, knowledge of the sequence of steps is
represented by chunks describing each step, with each chunk
contalning a slot that identifies the next step. The model uses
the ACT-R goal stack to move to lower levels by pushing
subgoals that get popped when the sequence at that level is
complete. For example, if the goal was to open a file, a
subgoal for a method of opeaing & file would be pushed The
first step in the method (e g, “open file menu™) would then
push a sub-subgoal to execute the operators necessary for
this step The operators would fire in sequence, pop the sub-
subgoal, and the system would move on onto the next step in
the method. This process would repeat until the goal of
opening a file is completed The system would then move
onto the next goal by popping the method goal Note, that
there can be more than one method sequence per goal, and
more than one operator sequence per method. Leamning
which to use would be based on the chunk activation system
This would mean that the user would tend toward a “winner
take all” strategy, increasingly preferring the methods used
most in the past.

50 —p
Figure 1 A template structure for storing interface
operating knowledge

In a vsability test, the trick is to provide the subject with
enough information to understand the task, without revealing
all of the steps involved. Thus, the subjects’ task is to fill in
the missing knowledge. In terms of the data structure
described above this would be eguivalent to a modei of the
task with some of the connecting chunks missing In most
cases these would be method chunks since the goal chunks
would be needed to understand the task and the operator
chunks would be based mainiy on well known GUI objects
(e.g, buttons, text fields, etc). Based on this, we
conceptualized the leaming process as a search for missing
method chunks. When the model reaches a gap in its
knowledge it needs to search for chunks that it can link
together to get to the next known step in the task This
process of building up chains of linked chunks to represent
sequential actions is based on the scheme dascribed by
Lebiere & Wallach (1998) to account for sequence learning

We pian to implement different strategies for searching
for the missing chunks through production rules. As a
starting point, we are considering four basic strategies The
first is choosing based on past associations from other
interfaces. This would involve trying to achieve a goal by
using methods that have been used successfully to achieve

a7z

Posters

the same goal on other interfaces This creates a problem in
that it is necessary to provide the simulated user with a fair
amount of domain knowledge, but it is also beneficial as it
explicitly addresses the role of existing knowledge The
second strategy is to try interface objects that are labeled to
indicate to the user that they are related to the goal (it would
need to be assumed that the user understands the lasbel, see
above) The third strategy is to try interface objects at
random to see how they transform the problem space, and
the fourth strategy is to attempt to use the “help” features of
the interface. However, this is only a starting point for
further development through comparisens with human data
In terms of development, in our opinion, the best way to
proceed is by using the open source code concept We
believe that this would best facilitate the process of
development as well as the use of simulated users for rapid

prototyping.

References

Anderson, I R, & Lebiere, C. (1998) The atomic
components of thought. Mahwah, NJ: Lawrence Erlbaum
Associates

Byrne, M. B & Anderson, J. R (1998). Perception and
action. In Anderson, J. R & Lebiere, C (Eds), The
atomic components of thought. Mahwah NI Lawrence
Ertbaum

Card, 8. K, Moran, T. P, & Newell, A (1983) The
psychology of human-computer interaction. Hillsdale, NI:
Lawrence Erlbaum Associates.

Gray, W. D (2000). The nature and processing of errors in
interactive behavior. Cognitive Science, 24(2), 205-248
Howes, A, & Young, R M (1996). Learning consistent,
interactive, and meaningful task-action mappings: A

computational model. Cognitive Science, 20, 301-336.

John, B. E. (1995). Why GOMS? Interactions 2 {10}, 80-
89

Kessner, M., Wood, I, Dillon, R. F,, & West, R. L. (2001)
On the reliability of usability testing Proceedings of CHI
2001 ACM, Seatle

Kieras, D E, & Meyer D E (1997) An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction Human-
Computer Interaction, 12, 391-438

Lebiere, C., & Wallach, D. (1998) Implicit does not imply
procedural: A declarative theory of sequence learning
Paper presented at the Forty First Conference of the
German Psychological Society, Dresden, Germany

Molich, R., Thomsen, A D, Karyukina, B, Schmid, L,
Ede, M, van Qel, W, & Arcuri, M. Comparative
evaluation of usability tests Human factors in computing
systems CHI 99 Extended Abstracts, 83-84, 1999

Newell, A, (1990). Unified theories of Cognition
Cambridge, Mass: Harvard University Press.

Spool, }, & Schroeder, W (2001). Testing web sites: Five
users is nowhere near enough CHI 200! Extended
Abstracts, 285-286

