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Abstract

 

Individual differences in skill acquisition are influenced by
several architectural factors. According to Ackerman’s theory,
general intelligence, speed of proceduralization and psycho-
motor speed influence different stages of skill acquisition.
Ackerman tested this theory by correlating performance on an
Air Traffic Controller (ATC) task with tests on specific abili-
ties. The present study discusses an ACT-R model of the ATC
task in which the relevant abilities can be manipulated directly,
providing additional support for the theory.
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Introduction

 

Skill acquisition is usually characterized as going through
three stages: a cognitive stage, an associative stage and an
autonomous stage (Fitts, 1964). The three stages can be char-
acterized by moving from conscious, slow and error-prone to
unconscious, fast and error-free. Anderson (1982) explains
these three stages in terms of a transition from declarative
knowledge to procedural knowledge. In the cognitive stage
knowledge is declarative and needs to be interpreted. Inter-
preting knowledge is slow, and may lead to errors if the rele-
vant knowledge cannot be retrieved at the right time.
Procedural knowledge on the other hand is compiled and
therefore fast and free of errors, and can be associated with
the autonomous stage. The associate stage is an in-between
stage, during which part of the knowledge is declarative and
another part compiled.

A problem in the study of complex problem solving, espe-
cially in a learning context, is the vastness of individual dif-
ferences. In order to study the acquisition of complex skills,
it is a good research strategy to have a theory of individual
differences. From the perspective of the cognitive architec-
ture, there are two sources of individual differences: 

 

archi-
tectural differences

 

 and 

 

knowledge differences

 

 (Taatgen,
1999a). Architectural differences are differences in the cog-
nitive architecture itself. In terms of an architecture like
ACT-R, architectural differences can be tied to global param-
eters. For example, working-memory capacity is tied to the

 

W

 

-parameter in ACT-R, the parameter that controls the
amount of spreading activation. Individual differences in
working-memory capacity can be explained by estimating a
different value of 

 

W

 

 for each individual (Lovett, Reder &
Lebiere, 1997). Differences in knowledge are based on the

idea that people have different problem solving strategies. In
terms of a cognitive model, this means individualized mod-
els have different initial contents of declarative and proce-
dural memory.

In this paper I will focus on architectural differences. Ack-
erman (1988, 1990) identified three sources: general intelli-
gence, perceptual speed, and psychomotor abilities.
According to Ackerman, each of these three abilities corre-
lates with a different stage of skill acquisition. In the cogni-
tive stage, general intelligence is the most important aspect,
as an adequate representation of the task needs to be formed.
In the associative stage, the knowledge compilation process
(which Ackerman associates with perceptual speed) will
dominate performance, so individual differences in that
aspect will become important. In the final autonomous stage,
all knowledge is proceduralized, and differences in psycho-
motor abilities will be the most important factor. Figure 1
illustrates the general predictions of the theory.

Ackerman (1998; 1990) gathered evidence for this theory
by correlating learning behavior on a complex task (the Kan-
fer-Ackerman Air Traffic Controller task
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, KA-ATC) with

r

practice

r

practice

r

practice

General ability

Perceptual Speed Ability
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Figure 1: Predicted ability-performance correlations accord-
ing to Ackerman. (adapted from Ackerman, 1988).
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performance on simpler tasks that explicitly test the three
abilities Ackerman thought to be relevant in the three stages
of skill acquisition. It turned out that measures of general
intelligence correlate well with the first blocks of ATC per-
formance, measures of perceptual speed with the middle
blocks, and measures of psychomotor abilities with the later
blocks.

Cognitive modeling offers a different approach to finding
support for Ackerman’s theory. Instead of correlating perfor-
mance on different tasks, a model can be made of the com-
plex task, and architectural parameters can be varied that
correspond to the relevant dimensions of individual differ-
ences. This the approach we will examine in this paper.

 

A Model of the ATC Task

 

The ATC Task

 

Although the ATC task is a simplified version of real Air
Traffic Control, it is still a complicated task. Figure 2 shows
the interface of the task. The goal is to score as many points
as possible by landing planes and making no errors. The
planes that have to be landed are represented at the top-left
part of the screen, and are organized in three hold levels
(indicated in the POS. column). Planes can be moved
between hold levels, and can be landed from hold level 1 (the
bottom four slots). There are four runways in the bottom-left
of the screen on which planes can be landed. The choice of
runway is constrained by a number of rules concerning run-
way length (long or short), plane type (prop, 727, dc10 or
747), runway direction (north-south or east-west), runway
condition (dry, wet or icy), wind direction (north, south, east
or west) and wind speed (0-20, 25-35 or over 40-50 knots).
The main rules of interest in the context of the model are the

rules about whether a plane may land on the short runway
(planes may always land on the long runway):

 

747’s may never land on the short runway
727’s may land on the short runway when the runway is dry or the wind 

speed is 0-20 knots
DC10’s may land on the short runway when the runway is not icy and 

the wind is not 40-50 knots.
Prop’s may always land on the short runway

 

Once a plane has successfully been assigned to a runway, it
occupies the runway for some time. The runway has to be
clear again before other planes may be assigned to it. Planes
have a limited amount of fuel: the fuel column indicates the
number of minutes the plane has left. When a plane runs out
of fuel, it crashes. Except for the planes in the three hold lev-
els, there is a queue of waiting planes. A waiting plane can
be entered into an empty slot.

The interface is operated by the keyboard, mainly by using
the up and down keys to move the arrow in the display up
and down, and the return key to select planes and runways.
Subjects receive 50 points for successfully landing a plane,
10 penalty points for violating a rule (the interface gives
feedback on these violations), and 100 penalty points for
each plane that crashes. Trials take 10 minutes each, after
which the total amount of points is calculated.

 

The Model

 

The model presented here uses the ACT-R architecture
(Anderson & Lebiere, 1998). As the ATC task is a compli-
cated task, modeling all aspects is a major effort. As the
model focuses on the learning aspects of the task, other
aspects will be ignored or simplified. The model does not
model the perceptual-motor parts of the task in detail, but
rather uses an ad-hoc lisp-interface to do this. For example, a
lisp function perceives all planes in hold level 1 and adds
descriptions of them to declarative memory. 

Another aspect the model simplifies are the more strategic
aspects of the task. The main exploratory learning aspect is
learning what planes under what conditions may land on the
short runway. Other strategic aspects are not modeled. As a
consequence, the model’s peak performance (around 2000
points) is not as good as human peak performance (around
3500 points). 

The basis for the model is the idea that the instructions are
represented in declarative memory, and need to be retrieved
and interpreted (Taatgen, 1999b; Anderson, 2000). The pro-
duction rules that interpret the declarative instructions are
not task-specific, and can be used for other tasks as well. The
declarative representation that is used is a mixture of ideas
expressed by Taatgen (1999b) and by Anderson (2000). 

Declarative rules are organized in lists of instructions that
are usually executed in order. Each rule has an action, and at
most two arguments. An argument can be a constant, a vari-
able or a reference. A constant is used as it is. A variable is
something that needs a value, for example by retrieving
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something from declarative memory or by perceiving some-
thing in the outside world. Instantiating a variable creates a
chunk of type binding, that holds the relation between the
variable, its value and the current context. An argument of
type reference later retrieves a binding.

The following example of a declarative instruction used in
the model is part of the instruction to land a plane:

The first instruction is to perceive an arbitrary plane in hold
level 1, and to store it and its type in two variables (which are
added to declarative memory as binding-chunks). The sec-
ond step is to check the weather, and to store the wind-speed
and runway-condition. The third step tries to retrieve a past
experience concerning the plane-type and the wind-speed. If
this past experience is unfavorable, the fourth step decides to
take the long runway.

The interpretation process of an instruction involves at
least two steps (=production rule firings): the instruction has
to be retrieved from memory, and the instruction has to be
carried out. Additional steps are necessary if variables and
references have to be instantiated, or if the instruction is
complicated. 

The current model is provided with a declarative instruc-
tion to do the ATC task. This instruction is not a literal inter-
pretation of the instructions given to the participants, but
reasonable first approximation of a strategy. Another
assumption in this strategy is that the model has not memo-
rized all the rules about when a certain plane may land on the
short runway, but instead relies on trial-and-error to redis-
cover these rules. The instructions can be summarized as fol-
lows:

 

Main goal

 

1. If there are any planes in hold level 1, land one of them

2. Else, move an arbitrary plane from hold level 2 or 3 to 
hold level 2 or 1.

3. If there are no planes anymore, get between 1 and 6 new 
planes from the queue.

 

Landing a plane

 

1. Select an arbitrary plane in hold level one.

2. Look at the current weather conditions

3. Try to retrieve a past experience with the current plane 
type and the current wind-speed

4. If the past experience is unfavorable, select the long run-
way and move the plane there.

5. Try to retrieve a past experience with the current plane 
and the current runway condition

6. If the past experience is unfavorable, select the long run-
way and move the plane there

7. If both experiences were favorable, or not present, select 
the short runway and move the plane there

 

To move something from A to B

 

1. Press up or down keys until the arrow is at A

2. Press enter

3. Press up or down keys until the arrow is at B

4. Press enter

 

Learning in the Model

 

Four learning mechanisms play a role in the behavior of the
model: declarative symbolic, declarative subsymbolic and
procedural learning (symbolic and subsymbolic). 

 

Declarative Symbolic Learning

 

ACT-R keeps past experiences in declarative memory. The
current model uses these experiences to decide on whether to
land a plane on the short or the long runway. The representa-
tion used for examples is restricted to two arguments, the
plane type and either the runway condition and the wind
speed. As a consequence, the model has no problems learn-
ing that 747’s can never be landed on the short runway, and
prop’s always, but it has trouble with the DC10’s and 727’s,
as these planes have complicated rules. 

 

Declarative Subsymbolic Learning

 

Due to practise, the activation of the instruction chunks and
the past experiences chunks steadily increases. As a conse-
quence, retrieval times of these chunks decreases.

 

Procedural Learning

 

New productions are learned using a combination of special-
ization and compilation. Specialization involves substituting
variables by constants, more in particular variables that
occur in the retrieved chunk. As a consequence, retrieving
the chunk is on longer necessary. Compilation involves mak-
ing one rule out of two rules. In order to make sure the new
rule has at most one retrieval, the first rule is specialized first.

This mechanism is not part of the current ACT-R 4.0, but
part of the proposal for ACT-R 5.0 (Taatgen, 2000). The
main function in the model that it compiles declarative
instructions into production rules. Recall that interpreting

 

land1
isa instruction
action perceive-a-plane 
arg1 plane 
type1 variable 
arg2 plane-type 
type2 variable 
prev land

land2
isa instruction
action perceive-weather 
arg1 wind-speed
type1 variable 
arg2 runway-condition 
type2 variable 
prev land1

land3
isa instruction
action retrieve-experience 
arg1 plane-type 
type1 reference 
arg2 wind-speed 
type2 reference 
prev land2

land4
isa instruction
action decide-no 
arg1 take-long-runway 
type1 constant
prev land3



 

instructions takes two steps: retrieving the instruction and
carrying out the instruction. Production compilation special-
izes the retrieval of the instruction, and concatenates the
result with the rule that carries out the instruction. The fol-
lowing rules gives an example of pushing enter (rules have
been abbreviated for clarity):

These rules can interpret instructions like:

 

mvhold3 isa instruction action press-enter prev mvhold2

 

Proceduralization produces the following rule given these
ingredients:

 

(p compiled-rule
=goal>
     isa gen-goal
     current mvhold2
     action nil
==>
=goal>
     current mvhold3
     action nil
!eval! (press-enter))

 

In order to promote a gradual introduction of new rules, their
parameters are set to the parameter values derived from the
parent rules, plus a penalty on the cost (b) parameter. So a
new rule starts out at a slight disadvantage, and is slowly
integrated into the system as parameters learning establishes
the true values of the production parameters.

 

Modeling Individual Differences

 

The three abilities identified by Ackerman are modeled by
varying three parameters. General ability is modeled by
varying the 

 

W

 

-parameter. The 

 

W

 

-parameter controls the
amount of spreading activation, and is associated with work-
ing-memory capacity (Lovett, Reder & Lebiere, 1997).
Working-memory capacity itself is strongly correlated with
general ability (Kyllonen & Christal, 1990). The simulation
uses values 0.8, 1.0 and 1.4 as 

 

W

 

-values. Speed of knowledge
compilation, measured by Ackerman through perceptual
speed, is modeled by varying a parameter that controls pro-
ceduralization speed. The parameter determines the proba-
bility that, given an opportunity to learn a new rule, the rule

is actually learned. Values used are: 0.1%, 0.2%, 0.5%, 5%
Psychomotor speed is modeled by varying the time needed

for a key-press. Values used for this parameter are: 150 ms,
200 ms and 250 ms

 

Results of the Model

 

In order to assess results of the model, I will compare the
model outcomes to the data from Ackerman (1990). 
A single run of the model consists of going through 24 trials
of 10 minutes each. For each combination of individual dif-
ference parameters the model was run twice, producing
4x3x3x2 = 72 runs. 

The model’s performance in terms of the number of points
scored is shown in Figure 3. As the model is only outfitted
with a very basic strategy, and no means to improve it, it is
no surprise the subjects outperform the model. The shapes of
the curves are however similar. 

Figure 4 shows correlations between abilities and perfor-
mance on the ATC-task found by Ackerman, and the correla-
tions between parameter settings and performance of the
model. According to Ackerman’s theory, these outcomes
should resemble the graphs in Figure 1. 

Figure 4a and d show the impact of general intelligence.
Ackerman measured intelligence by administering a battery
of tests for general intelligence (Letter sets, Raven progres-
sive matrices, figure classification and analogies). The model
simulates this ability by varying 

 

W

 

. A higher value of 

 

W

 

facilitates the retrieval process by increasing spreading acti-
vation. Initially this factor is very important, as both instruc-
tions and task information are represented declaratively. As
more and more instructions are proceduralized, the stress on
declarative memory lessens, so the impact of 

 

W

 

 on perfor-
mance decreases.

Figure 4b and e show the impact of speed of procedura-
lization. Ackerman assessed this ability and psychomotor
speed by administering a set of choice-reaction tests (9CRT,
4CRT, 2CRT and a simple reaction test) in 12 blocks. These
tests span the range of perceptual speed ability (more choices
and less practice) to psychomotor speed (less choices and

 

(p retrieve-instruction
   =goal>
     isa gen-goal
     current =prev
     action nil
   =instr>
     isa instruction
     prev =prev
     action =action
==>
   =goal>
     current =instr
     action =action)

(p press-enter
   =goal>
     isa gen-goal
     action press-enter
==>
   =goal>
     action nil
!eval! (press-enter))
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Figure 3: Points scored by the model and subjects in 
Ackerman (1990).



 

more practice). Figure 4b uses the results of the first block of
the 9CRT, the test at the perceptual-speed extreme of the
range, while Figure 4c uses simple-reaction time results in
block 12 at psychomotor-speed extreme of the spectrum. 

In the model the speed of proceduralization has its main
effect in the middle blocks of trials. As proceduralization

prerequires some experience with the knowledge it uses to
construct new rules, it plays only a small role in the first few
trials. Although proceduralization remains an important fac-
tor until the end of the experience, its impact trails off
slightly, as productions that have the largest impact on per-
formance are learned relatively early.
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Figure 4c and f depict the impact of psychomotor speed.
In the model this factor becomes more important as experi-
ence grows. Although the influence of the effort parameter
that models psychomotor speed remains the same, the vari-
ance due to other factors decreases, increasing the impact of
this psychomotor speed.

Note that for all three abilities, the correlations for the
model are larger than the correlations for the data. This
should be no surprise, as the parameter manipulations in the
model have a direct impact on performance, while assessing
these abilities through tests, as is done in the data, is only
indirect. Another reason why the correlations in the model
are higher is that the model ignores knowledge differences,
thereby amplifying the architectural differences.

 

Discussion

 

Despite the limitations of the model, it succeeds in going
through the three stages of skill acquisition, as demonstrated
by the correlations with abilities that characterize these
stages. As such it supports the ideas about skill acquisition
put forth here and in earlier models based on the same princi-
ples (e.g., Taatgen 1999b).

The model also exhibits an example of an ACT-R model
where all learning mechanisms are used, instead of a subset
of mechanisms for a small task. As such it supports the
notion of ACT-R as an architecture of cognition. 

One might ask what the added value of a cognitive model
is to Ackerman’s theory. It can be observed that the outcomes
of the model are much closer to the data than Ackerman’s
more qualitative predictions in Figure 1. The model allows
the study of what the exact impact of an individual difference
related parameter is, and may also help understand other
experiments where Ackerman’s theory does not seem to
hold. Some issues need further exploration: for example, it is
not clear what the exact relationship between perceptual
speed and speed of proceduralization is. Ackerman doesn’t
have a clear explanation for this. A model of the 9CRT using
proceduralization might clarify this issue.

The strategy of the model is still its main limitation: it can-
not improve the simple initial strategy very much. The
retrieval of examples to guide behavior is something that can
be extended, and general strategies to improve on plans can
be added. The declarative representation is very flexible, so
allows easy modification (as opposed to productions). Work
by Lee, Anderson and Matessa (1995) and John and Lalle-
ment (1997) may be useful for this purpose.

Finally, the perceptual-motor aspects of the model can be
extended to improve is credibility and scope of modeling
learning, possibly based on Lee and Anderson (in press).
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