

i

Learning without Limits

From problem solving towards a unified theory of learning

ii

Beoordelingscommissie:

Prof. dr. J.R. Anderson

Prof. dr. J.A. Michon

Prof. dr. P.L.C. van Geert

Paranimfen:

Alwin Visser

Hans van Ditmarsch

Druk:

Universal Press

iii

Rijksuniversiteit Groningen

Learning without Limits

From Problem Solving
towards a Unified Theory of Learning

Proefschrift
ter verkrijging van het doctoraat in de

Psychologische, Pedagogische en Sociologische Wetenschappen
aan de Rijksuniversiteit Groningen

op gezag van de
Rector Magnificus, dr. D.F.J. Bosscher

in het openbaar te verdedigen op
donderdag 24 juni 1999

om 14.15 uur
door

Niels Anne Taatgen
geboren op 6 mei 1964

te Enkhuizen

iv

Promotores:

Prof. dr. G. Mulder

Prof. dr. G. R. Renardel de Lavalette

ISBN: 90-367-1061-8

v

Voorwoord

Een van de momenten die ik me nog kan herinneren van toen ik nog heel klein was,
is het moment waarop ik heb leren lezen. Ik moet een jaar of vijf zijn geweest, ik zat
thuis (we woonden op een boot) en was bezig met het bestuderen van een boek. Ik
begon uiteraard niet met een blanco lei: ik kende alle letters, en ook kon ik al een
aantal woorden lezen (die kende ik gewoon uit mijn hoofd). Maar ik kon nog niet
zomaar een willekeurig woord lezen. Terwijl ik zo bezig met het uitspreken van
woorden die ik al kende en het uitspreken van klanken bij letters die ik nog niet
kende, werd mij plotseling duidelijk wat de bedoeling was. Als ik de klanken van
de letters van een woord snel uitsprak, en tegelijkertijd naar mezelf luisterde, dan
kon ik het woord dat op papier stond verstaan, en dus lezen! Zo verguld was ik met
deze ontdekking, dat ik prompt het hele boekje heb uitgelezen (het was een
kinderboek, dus dat viel nog wel mee).

Deze herinnering heeft een aantal opmerkelijke kenmerken. Een eerste kenmerk is
natuurlijk, dat ik me een gebeurtenis van zo lang geleden nog kan herinneren. Maar
voor mij was het dan ook een belangrijk punt in mijn leven: de mogelijkheid te
kunnen lezen opent zoveel nieuwe mogelijkheden, dat het beginpunt daarvan
natuurlijk memorabel is. Maar een tweede, nog opmerkelijker kenmerk is het alles-
of-niets karakter van de gebeurtenis. In luttele minuten beschikte ik over een
complexe vaardigheid die ik daarvoor nog niet had. Uiteraard was er wel wat
voorwerk nodig om dit moment te kunnen bereiken: de kennis van de letters, het
kunnen lezen van enkele woorden, en natuurlijk de vaardigheid om taal te kunnen
spreken en te kunnen verstaan. Maar het kwam wel samen in dat ene moment.

Voorwoord

vi

Dit proefschrift gaat over dit soort momenten, momenten waarna we opeens veel
meer kunnen dan ervoor. Het zijn deze momenten die ons mensen in staat stellen om
bijna alles was maar leerbaar is ook te leren. En dat maakt het onderzoek ernaar zo
fascinerend, maar tegelijk ook zo moeilijk.

Mijn interesse voor het begrijpen van menselijk denken heeft een lange geschiedenis.
Het is allemaal begonnen met Lego, waarmee je alles kon bouwen wat je fantasie je
ingaf. Geleidelijk kwamen hier motortjes, schakelaars en lichtgevoelige cellen bij, en
voor ik het wist was mijn interesse verschoven naar electronica. Via electronica
kwam ik bij de eerste microcomputers terecht, toen nog dingen die uit een printplaat
bestonden en geprogrammeerd werden door het intypen van getallen. Nadat ik mijn
eerste computer had gekregen (een Commodore PET 2001), was mijn
computertijdperk definitief begonnen. Tijdens mijn studie informatica werd mijn
interesse gevangen door iets dat n�g ingewikkelder is dan de computer: de
menselijke hersenen. Uiteindelijk heeft mij dit via psychologie bij de oprichting van
Technische Cognitiewetenschap terecht doen komen, een tak van wetenschap die
alles combineert wat mij interesseert.

Vele mensen hebben, direct of indirect, bijgedragen aan het tot stand komen van dit
proefschrift. John Anderson wil ik bedanken voor wellicht de belangrijkste bijdrage
aan dit proefschrift, de ACT-R theorie. Ook ben ik erg blij dat hij lid is van de
beoordelingscommissie en bereid is voor mijn promotie naar Groningen te komen.
Een ander lid van de beoordelingscommissie, John Michon, heeft niet alleen aan de
wieg gestaan van de studie Technische Cognitiewetenschap, maar heeft ook in de
beginperiode van mijn promotieonderzoek en daarvoor mijn afstudeeronderzoek
een belangrijke invloed gehad om mijn denken over cognitie. Ik ben blij dat hij nu,
aan het einde van het project, er wederom bij betrokken is. Paul van Geert mag ik in
dit kader zeker ook niet vergeten te bedanken, met name omdat hij, ondanks zijn
vele verantwoordelijkheden als onderzoeksdirecteur, de tijd heeft gevonden om met
name mijn beweringen over de ontwikkelingspsychologie kritisch tegen het licht te
houden.

Om tot een goed wetenschappelijk product te komen is het belangrijk om regelmatig
met mensen te discussi�ren die met hetzelfde bezig zijn als jezelf. Alexander van den
Bosch, ook een Groninger ACT-R-er van het eerste uur, is een belangrijk voorbeeld
van zo iemand. Daarnaast waren ook anderen uit de ACT-R groep uit Groningen een
belangrijk klankbord: Mark Dekker, Ritske de Jong, Hedderik van Rijn, Pieter de
Vries en Alan White. Ook wil ik in deze context Aladin Aky�rek noemen, die in de
beginperiode van mijn onderzoek een belangrijke discussiepartner was. Aladin was
vaak zo kritisch dat ik er soms bijna moedeloos van werd. Vooral ook omdat hij
meestal gelijk had. Dieter Wallach, die ik in het kader van de ACT-R workshop in
Pittsburgh heb ontmoet, bleek eveneens een goede partner in het onderzoek: delen
van hoofdstuk 6 zijn mede van zijn hand.

Voorwoord

vii

Niet alleen onderzoeksgenoten hebben belangrijke bijdragen geleverd aan mijn
onderzoek. Met name ook de andere Technische Cognitiewetenschappers zijn door
het cre�ren van een goede werksfeer onontbeerlijk gebleken. Tjeerd Andringa en
Petra Hendriks, collegaÕs van het eerste uur, maar ook Tinie Alma, Rineke
Verbrugge, Gerard Vreeswijk, Ronald Zwaagstra, Esther Stiekema, Ben Mulder,
Henk Mastebroek, Frans Zwarts en niet te vergeten Hans van Ditmarsch, die tijdens
zijn vakantie het hele manuscript doorgelezen en becommentarieerd heeft, een taak
die vooruitloopt op zijn functie van paranimf. Ook vallen in deze categorie de
collegaÕs van de sectie Experimentele en Arbeidspsychologie.

Studenten spelen in veel promotieonderzoeken een belangrijke rol. Annelies
Nijdam, Richard Vos en Thijs Cotteleer hebben elk hun bijdrage geleverd. Daarnaast
zijn er natuurlijk alle TCW-studenten, die met hun enthousiasme, nieuwsgierigheid
en motivatie voor een continu positief achtergrondgeluid zorgen.

Niet alleen collegaÕs, maar ook vrienden zijn van belang. Evelyn van de Veen heeft
op het laatste moment binnen twee weken het hele manuscript op taalfouten
gecontroleerd, en heeft daarbij een van de laatste hobbels op weg naar de drukker
weggenomen. Alwin Visser, een van de paranimfen, is al tien jaar lang samen met
mijn roeiploeg ÒWrakhoutÓ een belangrijke sportieve steun.

Dan kom ik nu bij Linda Jongman. Linda, je valt eigenlijk in alle categorie�n. Niet
alleen ben je voor mij persoonlijk heel belangrijk, je hebt ook nog een inhoudelijke
bijdrage geleverd aan dit proefschrift (het experiment op pagina 192-193).
Bovendien was jij altijd de eerste die mijn schrijfwerk aan een kritische blik
onderwierp, en mij waarschuwde als ik met al te onbegrijpelijke schemaÕs dingen
juist onduidelijker in plaats van duidelijk maakte.

Tenslotte wil ik mijn promotoren, Bert Mulder en Gerard Renardel de Lavalette
bedanken voor de tijd die ze in mijn begeleiding hebben gestoken. De gezamenlijke
gesprekken waren voor mij altijd een bron van inspiratie. Met name voor Bert, die
ondanks zijn ziekte nog al mijn hoofdstukken nauwkeurig bekeken heeft, heb ik
grote bewondering.

Mijn taak zit erop, het is nu aan de lezer om mijn voetstappen in onderzoeksland na
te lopen. Voor degenen die niet de volle tocht willen ondernemen, wil ik de verkorte
route in de vorm van de Nederlandse samenvatting achter in het proefschrift
aanbevelen, aangezien ik mijn best heb gedaan daar een zo begrijpelijk mogelijk
verhaal van te maken.

Groningen, 23 april 1999

Niels Taatgen

Voorwoord

viii

ix

Contents

CHAPTER 1

Introduction

1

The weak method theory of problem solving

2

Problems of the weak-method theory

4

Problem solving from the viewpoint of skill learning

6

How to study learning in complex problem solving?

9

NP-complete problems

12

The consequences of intractability

15

Examples of NP-complete problems

16

Examples in Planning

16

Language

18

Puzzles and games

20

Mathematics

21

The limits of task analysis, or: why is learning necessary
for problem solving?

21

Overview of the rest of the thesis

23

CHAPTER 2

Architectures of Cognition

25

What is an architecture of cognition?

26

An architecture as a theory

27

Judging the success of an architecture

30

Matching model predictions with experimental data

32

An overview of current architectures

34

Contents

x

Soar

34

ACT-R

39

EPIC

45

3CAPS

47

A summary of the four architectures

47

Neural network architectures

49

Machine learning

50

Conclusions

55

Appendix: The ACT-R simulation system

55

CHAPTER 3

Scheduling

59

Introduction

60

Experiment

61

Method

63

Analysis of the results

64

Analysis of solution times

64

An informal analysis

64

An analysis using multilevel statistics

66

Analysis of the Þrst part of the experiment

67

Analysis of the second part of the experiment

70

Conclusions

70

Analysis of verbal protocols

71

Analysis of participant 2

72

Quantitative analysis

83

Conclusions

85

Maintaining the current problem context

86

The role of insight and rule learning

87

Appendix: Proof of NP-completeness of fully-Þlled
precedence constrained scheduling

87

CHAPTER 4

Implicit versus Explicit Learning

91

Introduction

92

A model of the dissociation experiment

96

An ACT-R theory of implicit and explicit learning

101

A model of rehearsal and free recall

103

A model of free recall in ACT-R

105

Simulation 1

106

Simulation 2

107

Simulation 3

108

Contents

xi

Simulation 4

108

Simulation 5

109

Discussion

111

CHAPTER 5

Strategies of learning

113

Introduction

114

Search vs. Insight

115

A dynamic growth model

116

The model

117

Results

120

The nature of learning strategies

122

PiagetÕs stage theory

123

FischerÕs levels

124

Karmiloff-SmithÕs representational redescription

129

SieglerÕs overlapping-waves theory

130

Discussion

131

Modeling explicit learning strategies in ACT-R

133

An ACT-R model of a simple explicit strategy

135

The beam task

135

Simulation results

137

Discrimination-shift learning

140

Discussion

141

CHAPTER 6

Examples versus Rules

143

Introduction

144

Learning strategies

146

Instance-based learning 147
Learning production rules 148

Sugar Factory 152
The Task 152
The models 153
Retrieving instances 154
Theoretical Evaluation 155
Empirical Evaluation 155
Conclusion 157

The Fincham task 157
The ACT-R model 158
Empirical evaluation of the model 163
Experiment 1 163

Contents

xii

Experiment 2 166
Experiment 3 167

Discussion 169

CHAPTER 7 Models of Scheduling 173
Introduction 174
Generalized abstractions 175

Representation of an abstraction 175
Chaining abstractions 177
Proceduralizing abstractions 178

A Þrst model 178
Storing elements in a list and doing rehearsal 178
Abstractions that implement a simple strategy 179
Verbal protocol 179
Results of the model 179
Protocol of Þrst problem 181

Learning new abstractions 182
The second model 183

Example verbal protocol 184
Results of the model 186
Individual differences 187
Is proceduralization necessary for mastering complex
skills? 189

Some empirical evidence for the scheduling model 192
Discussion 193
Appendix: Implementation of abstractions in
ACT-R 195

The basic generalized abstraction 195
Chaining abstractions 200
Proceduralizing abstractions 201
Building lists and doing rehearsal 201
Learning new abstractions 204

CHAPTER 8 Concluding remarks 207
The skill of learning 208
Processes involved in skill learning 210
Individual differences 213
Evaluation of ACT-R 215

Production compilation 216

Contents

xiii

Chunk types 216
Base-level decay 217
Production-strength learning 217
Assessing model Þts 218
A look back at Soar 218

Practical implications 219
Application in the domain of expert systems 219
Application in the domain of cognitive ergonomics 219
Application in the domain of education 220

A UniÞed Theory of Learning? 220

Web documents and Publication list 221

References 223

Samenvatting 231
Hoe denken mensen? 231
Een theorie over menselijk redeneren 233
Maar hoe zit het dan met echt complexe problemen? 234
Impliciet en expliciet leren 235
Hoe werken dan die leerstrategie�n, en hoe komen we
eraan? 236
De rol van het formuleren van regels en het onthouden van
voorbeelden 237
Alle puzzelstukjes weer bij elkaar 238
Conclusies 240
Een ge�niÞceerde theorie van leren? 240

Index 241

Contents

xiv

CHAPTER 1 Introduction

1: Introduction

2

1.1 The weak method theory of problem solving

Since the birth of cognitive science in the Þfties, human problem solving has been
one of its central topics. The marriage between psychology and computer science
proved to be especially fruitful, since simulation of cognitive processing allowed
deeper insights into the empirical data from human participants than was possible
with the now old-fashioned techniques offered by behaviorists. A landmark in
problem solving was Newell and Simon's 1972 book Human Problem Solving.
Newell and Simon show detailed analyses of data collected from human
participants, along with results from computer simulation. The main conclusion of
the book is that human problem solving can be characterized by a small set of
methods. These methods require very little knowledge about a particular problem,
and are therefore sometimes called weak methods. The tie between psychology and
computer science was very strong in this enterprise, since most of the weak
methods were algorithms used in artiÞcial intelligence, the sub-discipline of
computer science most involved with cognitive science.

The weak-method theory pictures problem solving as search in a problem space.
This problem space is a directed graph that has problem states as its nodes, and
problem operators as its vertices. A state represents the current configuration of the
problem, and operators manipulate these configurations. In problem-solving terms,
an operator transforms a current state into a new state. Figure 1.1 shows a simple
example of a problem space, the example of the blocks world. This world consists of
a table and three blocks, and the only possible action is to move one uncovered block
from its current spot to a new spot, either on another block or on the table. Each of
the possible configurations of blocks is a state, and is represented in the figure by a
rounded rectangle. There is one possible operator: moving a block. This operator can
be instantiated in multiple ways, as depicted in the figure by arrows. Suppose the
problem starts with the configuration depicted in the upper-left corner of the figure,
and the goal is to build the pile of blocks depicted in the lower-right corner. Solving
the problem involves selecting a sequence of instantiated operators that transform
the start state into the goal state, in this case moving block A to the table, moving
block B onto block C, and finally moving block A onto block B.

The problem-space view of problem solving transforms the abstract idea of problem
solving into a concrete, easily depictable problem, the problem of deriving the right
sequence of operators to transform the start state of a problem into a goal state. To
actually find this sequence, one of the weak methods can be applied. Which method
is most appropriate depends on the amount and type of knowledge the problem
solver has about the problem. The most simple methods are blind-search methods,
like generate-and-test, depth-first search and breadth-first search. These methods
only assume knowledge about the set of possible states, allowed operators, and the
consequences of these operators. Each method systematically searches the problem
space until it stumbles over a goal state, in which case the problem has been solved.

The weak method theory of problem solving

3

Blind-search methods assume that the problem solver has no way of knowing
whether a certain state is close to the goal or which operator can bring it closer to the
goal. This kind of knowledge is called heuristic knowledge, and methods that use
heuristic knowledge are called heuristic methods. The most simple heuristic method
is hill-climbing. Hill-climbing assumes a heuristic function that can estimate the
distance between a state and the goal state. Using this function, the operator that
leads to the most promising new state can be selected. For example, in the blocks-
world problem of figure 1.1 the heuristic function might be the number of blocks that
are in the right place with respect to the goal state.

A more complex method is means-ends analysis. Means-ends analysis involves a
comparison between the goal state and the current state, and the selection of an
operator that reduces the difference. If the selected operator is not applicable in the
current state, a subgoal is created to reach a state in which the desired operator is
applicable. Figure 1.2 shows an example of means-ends analysis: planning a trip
from Groningen to Edinburgh. The most notable difference between Groningen and
Edinburgh is that they are situated in different countries. So an operator is sought
that reduces this difference, in this case flying from Amsterdam to London. This
operator is, however, not applicable in Groningen. So getting from Groningen to
Amsterdam becomes a subgoal, and is solved by taking the train to Amersfoort and
then to Amsterdam. The difference between London and Edinburgh can be found in
the same way. An important advantage of means-ends analysis is its divide-and-
conquer strategy. This aspect is especially important if the problem space is large or
infinite, which is often the case in practice. The disadvantage of means-ends analysis

A
B C

A
B

C

A B C
A

B C
A
B

C

A
B

CA
B
C

A
B
C

A
B
C

Start State

Goal State

Figure 1.1. The problem space of the blocks world. Rounded rectangles represent states, and arrows
represent operators.

A B
C

A B
C

A

B
C

A

B
C

1: Introduction

4

is its requirement of additional knowledge. It must be possible to find differences
between states, differences must be ranked in some way (in the example: a difference
in country is more important than a difference in city), and operators must be keyed
to these differences.

To summarize: for each of the weak methods there is a parallel between the
knowledge needed and efficiency. One would expect that as participants gain more
knowledge in a certain problem domain, they will tend to use more efficient
methods. Jongman (1997) has found some evidence for this hypothesis. In her study,
participants have to find information on the Internet. While a majority of the
participants start using a hill-climbing strategy, many of them switch to means-ends
analysis as they gain experience.

Problems of the weak-method theory
Despite the fact that the weak-method theory offers a systematic framework for
studying problem solving and provides explanations for many aspects of human
problem solving, it leaves a number of questions unanswered. A Þrst problem of the
weak-method theory is that it assumes precise and unambiguous knowledge about
problem states, operators and goals, even for the most simple blind-search
methods. This assumption is correct for many problems used in problem-solving
research, like the towers-of-hanoi, the eight puzzle and blocks-world puzzles.

Groningen Edinburgh?

Groningen Edinburgh?
Amsterdam London Airport

Airplane
?

Groningen Edinburgh?
Amsterdam London Airport

Airplane
?

Amersfoort

Train

Groningen Edinburgh
Amsterdam London Airport

Airplane
?

Amersfoort

Train Train

Groningen Edinburgh
Amsterdam London Airport

Airplane
?

Amersfoort

Train Train

London Station

Train

Underground
Groningen Edinburgh

Amsterdam London Airport

Airplane

Amersfoort

Train Train

London Station

Train

Figure 1.2. Step-by-step creation of a plan to travel from Groningen to Edinburgh

The weak method theory of problem solving

5

Research that stresses the importance of insight in problem solving on the other
hand, uses problems for which this assumption does not hold. A well-known
example is the nine-dots problem (Þgure 1.3), in which the problem is to connect all
nine dots using four connected lines. The difÞcult aspect of this problem is the fact
that a solution is only possible if lines are used that extend beyond the borders of
the 3x3 grid of points. In problem-space terms, the problem basically has an inÞnite
number of possible operators, since there are inÞnitely many ways to draw a line.
Participants tend to reduce the set of possible operators to operators that just draw
lines between two points of the 3x3 grid. The crucial step in solving the problem is
the realization that this reduction is too severe. So problem solving not only
involves selecting the right sequence of operators, but also Þnding out what the
operators are, and what they do. The example also shows that re-evaluating the
operators currently used may be part of the problem-solving process.

A second problem is the fact that in many cases not all the activities of a participant
can be explained in terms of clear problem-solving methods. Participants use
multiple strategies for a single problem, skipping between them and inventing new
ones on the fly. People tend to forget results if they can not be used immediately, or
have to use memorization techniques to prevent forgetting things. Finally, and that
is a criticism often quoted, people have the ability to Òstep out of a problemÓ, to
reason about their own reasoning (see, for example, Hofstadter, 1979, for an
extensive discussion of this point). Evidence for this kind of meta-reasoning are
exclamations like ÒThis doesnÕt work at allÓ, and ÒLetÕs try something differentÓ.
Although it is not at all clear how extensive meta-reasoning can be, people evidently
use some sort of self-monitoring to prevent them from doing the wrong thing for too
long.

The third problem is that the weak-method theory does not explain how people gain
a higher level of understanding in a certain problem domain. An example of this is
mathematics. In order to be able to solve simple algebraic equations like ,
one must master simple arithmetic first. Composite concepts from arithmetic form

Figure 1.3. The nine-dots problem (left) and its solution (right)

2x 3+ 7=

1: Introduction

6

the basic building blocks of simple algebra. Solving , for example, takes at
least four simple arithmetic operators. Experience allows people to collapse these
operators into higher-level operators, so they can solve the equation in just one step.
Mastering simple equations is a prerequisite for more complex mathematics like
differential equations. The idea of several levels of understanding is quite common
in developmental psychology, and stems from the stage theories of Piaget (1952).

The three problems discussed above, although somewhat different in nature, boil
down to the same issue: learning. The problem solving process is not a pure search
process but also includes exploration. Exploration is necessary to learn what the
possible operators are and what they do or to question the operators if they fail to
perform well. Exploration can also derive and refine heuristic knowledge, and find
out what methods and strategies are most suitable for the current problem. To be
able to do this several strategies must be tried and compared. Learning can also
result in higher-level operators and an increase the level of abstraction of the
problem-solving process. Exploration can also attempt to use knowledge from other
domains for solving the current problem.

Problem solving from the viewpoint of skill learning
The main topic of this thesis is to study the learning aspect of problem solving.
While complex problem solving will be the starting and the end point, several tasks
will be discussed that are not strictly problem-solving tasks, unless one adopts
NewellÕs claim that any task is a problem-solving task. So the topic is actually
broader and extends to skill-learning in general, with complex problem solving as
the main skill to be studied.

An important theme throughout the thesis will be the distinction between implicit
and explicit learning (Reber, 1967; Berry, 1997). Implicit learning is often defined as
unconscious learning: the learner is unaware of the fact that he or she is learning, and
is unable to recall what is learned afterwards. Increased task performance is the only
indication something is learned. Explicit learning, on the other hand, supposes a
more active role of the problem solver. An example of this type of learning is when
the participant sets explicit exploration goals, or explicitly decides to memorize
aspects of a certain problem because they may be useful for another problem. Both
types of learning are important for problem solving. During search the problem
solver gains information in an implicit fashion, since learning is not the goal but only
a by-product. Search for the solution may be alternated by setting explicit learning
goals that try to combine earlier experiences, perform generalizations, explore other
problem domains, or, on a more mundane level, try to keep partial results active in
memory.

One of the core problems of search as a problem solving method is the fact that
problem spaces are often very large or infinite. The reason for this is that in each state

2x 3+ 7=

The weak method theory of problem solving

7

there are several possible operators leading to new states. In general, the size of the
problem space grows exponentially with the maximum length of the sequence of
operators. For human purposes, blind, systematic search in an exponential problem
space will only be successful if the sequence of operators is relatively short. If longer
sequences are required, knowledge is needed to offer guidance in the choice of
operators, to retrieve partial sequences used for other problems, or to collapse
several operators into one composite operator. Therefore, the maximum capacity for
solving problems in a certain domain is determined by the knowledge for this
domain extended by a limited amount of search. Actually solving a problem using
search, possibly enhanced by explicit learning, may extend the space of solvable
problems.

Figure 1.4 shows an impression of this idea. The top Þgure represents the set of all
possible problems, loosely ordered in the sense that more complex problems are at
the top of the rectangle, and less complex problems at the bottom. The horizontal
dimension is used to indicate that problems are related to each other. Some of these
problems can be solved by a particular individual by a relatively simple procedure.
This portion of the set is indicated by the black area at the bottom of the set. Problems
in the grey area require more effort, and need some combinatorial search. Problems
in the white area require so much search that the problem becomes practically
unsolvable.

Problems in the black area take relatively little time. As soon as the grey area is
entered, combinatorial search is needed, which increases the time requirements
exponentially. At some point these time requirements become unpractically high,
marking the beginning of the white area. Learning increases the black area in the set,
sometimes by a single item, sometimes, after generalization, by a substantial area. As
a consequence the border between the grey and the white area also moves outwards,
as indicated by the small arrows in the graph. Take for example the left-most peak in
the Þgure. This might represent the algebra skill of a certain individual. This
individual is, for example, capable of solving equations without much effort (black
area), able to solve simple problems of integration by trying out several different
methods (grey area), but not proÞcient in doing double integrations yet (white area).

The time requirements are shown in the graphs at the bottom of the Þgure. Problems
that can be solved in a direct fashion usually do not require much time. But once the
expertise runs out and combinatorial search is needed, the grey area is entered and
the time requirements increase exponentially with the amount of search needed. Due
to this increase, the time requirements soon exceed practical limitations (white area).
This discussion is of course still very informal. A more formal approach will be
discussed later in this chapter.

1: Introduction

8

Set of possible problems

problems for which some
combinatorial search is
needed

problems solvable in a direct fashion (retrieval,
simple procedure)

problems that cannot be solved yet

level of
com-
plexity

time
needed
for a
solution

searchdirect not solvable

Figure 1.4. Impression of the set possible problems. Some can be solved easily (black area), some
need combinatorial search to Þnd the solution (grey), and others cannot be solved at all. The top
Þgure outlines the expertise of a certain arbitrary individual who has three areas of expertise.
The small arrows in the top Þgure indicate the effects of learning. The ÒpeaksÓ in the Þgure
indicate areas in which this particular individual is an expert. The two graphs at the bottom
indicate the time to Þnd the solution given the type of search needed and can be seen as a
vertical cross-section of the top Þgure. The left graph represents a novice, who has to use search
for almost everything, and the right graph represents an expert, who can solve many problems
in a direct way.

time
needed
for a
solution

search not solvable

Novice Expert

level of complexity level of complexity

Problems close to one another on the horizontal
dimension are closely related

How to study learning in complex problem solving?

9

1.2 How to study learning in complex problem solving?

Within cognitive science there are a number of research paradigms to study
learning. The main paradigm to study learning is the experimental paradigm used
in cognitive psychology. A common approach is to present participants with a
sequence of similar problems, and see how their performance improves with
respect to reaction time (latency) and rate of errors. One fundamental law found in
this fashion is the power law of practice, a law that states that regardless what the
task is, the reaction time can be described by the function:

(1.1)

In this equation is the reaction time for trial n, and b and α are constants.

Another method often employed in experimental learning research is the search for
dissociation effects. Typical experiments Þrst expose participants to some
information, which is tested at a later time using different types of tests. Typical
examples of dissociations are:

• If a participant is tested directly after learning, he or she performs equally on test
A and B. If he or she is tested again after a week, performance on test A is the
same, but performance on test B has decreased severely (Tulving, Schacter &
Stark, 1982)

• Performance of a participant suffering from amnesia is equal to a healthy
participant on test A, but much worse on test B (e.g., Morris & Gruneberg, 1994).

Dissociations are often used as evidence for the existence of different memory
systems, for example a separate implicit and explicit memory.

Although experimental work offers many insights in the nature of learning and
memory, the standard experimental paradigm is limited to phenomena that can be
quantified easily in, for example, the power law of practice, or the hypothesis that
implicit and explicit information is stored in separate memory systems. Take, for
example, the power law of practice. The smooth form of the curve suggests learning
is a continuous process. Although this may well be the case, this is not necessarily so.
As noted by, amongst others, Siegler (1996), the smooth curve may have resulted
from averaging several step-functions. Also, a hypothesis about the existence of two
separate memory systems is rather crude, and offers little insight into the necessity
of separate memory systems. As we will see later on in chapter 4, dissociations can
sometimes also be explained using a single memory system.

Because the pure experimental paradigm can only state rather global hypotheses, it
often limits itself to experiments where all participants behave roughly the same.
Participants only tend to behave the same if there is only one way to do things. In
terms of figure 1.4, only problems in the black area are investigated. The grey area,

Tn bn α–=

Tn

1: Introduction

10

however, is the area where interesting learning phenomena with respect to problem
solving can be found. In that area almost all participants will behave differently due
to the exponential number of choices. So it will be much more difficult to state
hypotheses in the usual fashion. As a consequence, participants can no longer be
studied as a group, but must be studied individually. The challenge is to still be able
to make generalizations about the population, despite individual differences.

The paradigm that machine learning offers for the study of learning radically differs
from what is used in experimental psychology. Complexity is the main challenge.
Although many types of algorithms are used, some of which will be reviewed in
chapter 2, the common goal in machine learning is to derive generalized knowledge
from examples, sometimes guided by domain knowledge. The goal is to arrive at an
accurate generalization using the most efficient algorithm. In a typical machine
learning study to judge the quality of a new learning algorithm, a set of examples is
used. For example, in a medical setting, an example contains a number of symptoms
and a diagnosis. The set of examples is split in two parts, a training set and a test set.
The training set is first given to the learning algorithm, which tries to generalize rules
or other representations that can predict a diagnosis from the symptoms. The test set
is then used to judge the correctness of these representations. A new algorithm is
judged to be promising, if its performance on the test set exceeds the performance of
a number of established learning algorithms. Performance is measured by the
number of correct classifications the algorithm makes on the test set, and by the time
it needs to learn the training set.

Machine learning algorithms are quite powerful when judged with respect to
efficiency and quality of classifications. Whether or not the learning of such
algorithms has any similarity to human learning is not considered important. This
does not necessarily mean algorithms from machine learning are useless for
studying human learning, since evolution may well have optimized human learning
in the same way computer scientists try to optimize machine learning. Nevertheless,
machine learning algorithms often make computational assumptions that are not
easy realizable for humans. People can, for example, not learn large databases of
examples easily.

A third domain of cognitive science in which learning is studied is developmental
psychology. Developmental psychology studies changes in behavioral capacities in
children over time. According to some theories these changes can be characterized
by transitions between stages, meaning there are periods with little change and
periods with large changes in capacities. Developmental psychologists are mainly
interested in these changes and their characteristics, and less in the processes that
cause these changes. Studying how a complex skill is learned in several steps can
offer important clues about the nature of the learning processes that cause the
change in skill. Possibly the most cited example is the learning of past tenses
(Rumelhart & McClelland, 1986; Pinker & Prince, 1988; Elman, Bates, Johnson,

How to study learning in complex problem solving?

11

Karmiloff-Smith, Parisi & Plunkett, 1996). The literature often distinguishes three
stages in this particular skill. In the first stage, all past tenses are learned as separate
facts. The second stage is characterized by the discovery of a rule for regular verbs.
This rule is, however, overregularized so that irregular verbs that were used
correctly in the first stage are now put in the past tense using the regular rule. Only
in the third stage the irregular words are recognized and used correctly. Although
this description tells us little about the processes that cause change, it reveals
nevertheless that an interplay between rules and examples is important. We will
come back to this issue in a later chapter.

Since one of the goals of this thesis is to approach learning in problem solving from
an experimental perspective, we have to deal with the problems mentioned earlier.
Alan Newell already noted the limitations of the classical experimental paradigm in
1973, when he wrote his famous paper titled ÒYou canÕt play twenty questions with
nature and winÓ. According to Newell, psychologists investigate cognitive
phenomena. Examples of these phenomena are:

1. recency effect in free recall

2. reversal learning

3. rehearsal

4. imagery and recall

Although these are just four items from NewellÕs list of 59, they will discussed more
extensively later in this thesis. All four of them will turn out to be important for
problem solving. NewellÕs criticism focuses on the fact that despite the fact that all
these phenomena are researched thoroughly, no clear theory of cognition emerges.
The main type of structures psychology attempts to establish are binary oppositions.
Among these oppositions are the following:

1. Continuous versus all-or-none learning

2. Single memory versus dual memory

3. Existence or non-existence of latent learning

4. Stages versus continuous development

5. Conscious versus unconscious

Again these examples are picked from a list of 24, and will become important at some
point in the discussion later on. The point Newell tries to make is that resolution of
all these binary oppositions (Ò20 questionsÓ) will not bring us any closer to a grand
theory of cognition. Fortunately, Newell also proposes three solutions to the
problem, two of which we will discuss here.

A first solution is to create a single system, a model of the human information
processor that can carry out any task. He also proposed a candidate for such a

1: Introduction

12

system, namely a production system. If a production system would be given the
right set of rules, it should, in principle, be able to perform any experimental task. It
turned out this solution became the main paradigm dominating the rest of NewellÕs
work. In 1990, he wrote ÒUnified Theories of CognitionÓ, in which he presented his
final proposal for a grand theory of psychology. At that time, the single system idea
had already spread, and other people had been thinking about unification as well.
AndersonÕs 1983 book ÒThe Architecture of CognitionÓ is an example, in which
Anderson presents his ACT* system. The Rumelhart and McClelland 1986 books
ÒParallel Distributed ProcessingÓ also attempt to bring all types of cognitive
phenomena together in a single paradigm. The single-system approach has two
important aspects: it constrains the researcher in the type of theories he can state, in
the sense that the theory has to fit in the system, and it forces the researcher to be
very precise: the theory has to be simulated within the system. In this thesis I will
also conform to this single-system approach. The system is the ACT-R 4.0 system, a
descendant of ACT*, as described in Anderson & Lebiere (1998). ACT-R and its
competitors will be discussed in detail in chapter 2.

A second solution Newell offers is to analyze a single complex task. This addresses
the problem that psychology often designs its experiments according to the
phenomenon studied, resulting in simple tasks. The choice for a complex task is less
common, because it is very hard to relate results of a complex task to a single
phenomenon. Experiments using complex problems do however offer sufficient
samples of all human cognitive capacities. A possible complex problem is chess.
Chess involves planning, means-ends analysis, all types of learning, mental imagery,
etc. If we were able to know all there is to know how people play chess, would this
not be a big step towards understanding cognition in general? I will also adopt this
second recommendation in this thesis. But in stead of focussing on a single task, I
will focus on a single class of problems: NP-complete problems.

1.3 NP-complete problems

What is a complex problem? There are many ways to give a subjective judgement of
how difÞcult a problem is. Chess is difÞcult and tic-tac-toe is easy. Fortunately, there
are more formal ways to categorize problems. A formal approach also requires us to
be more precise on what a problem is. First we will examine how to formally look at
problems and problem solving. Then we will look at what complexity is, and by the
end of the section the class of NP-complete problems will be discussed.

In informal speech, the term problem has two different meanings. We can talk about
a problem as a general category, for instance the problem of deciding the next move
in chess. It is not possible to give an answer to this question, because it depends on
the position on the chessboard. The term problem can also be used in a more specific

NP-complete problems

13

sense: what move should I make on a chess board with the black king at e1, the white
king at e3, and a white rook at a8? In this case a specific answer is possible: move the
white rook to a1, checkmate. A problem in the general sense is a set of problems in
the specific sense. To avoid confusion, the formal term problem refers to a problem
in the general sense, and a specific problem is called an instance. This distinction can
roughly be compared to the terms ÒtaskÓ and ÒtrialÓ in experimental psychology: a
task is a general description of what a participant must do, a trial is a specific
instance of the task.

A formal definition of a problem defines it as a set of instances and a criterion.
ÒSolving a problemÓ means that we decide for a particular instance whether or not
it satisfies the criterion. For example, a formal description of the informal problem of
deciding whether there is a forced checkmate for white specifies the set of instances
as the set of all possible configurations of chess pieces on the board, and the criterion
is the yes/no-question of whether a forced checkmate is possible for white. This last
characterization of the criterion is of course still informal: the formal definition
involves all rules of chess. ÒSolving a problemÓ in formal terms means we have a
solution for all instances in the set. If the set is finite, the solution may be an
enumeration of all solutions, but usually a solution for a problem is some algorithm
that can decide whether the criterion holds or not. In order to formalize an
informally stated problem, like Òwhat is the best next move in a certain chess
positionÓ it must be stated as a yes/no-question, for example ÒIs move X in position
Y the best move?Ó. A solution to this problem is an algorithm that computes this
answer for any possible move and possible position in chess.

To be able to define the complexity of a problem in a meaningful way, it has to have
an infinite set of instances and there must be some way to measure the ÒsizeÓ of an
instance. Unfortunately, the example of chess is not infinite: although the number of
positions is huge, it is nevertheless finite. The game of checkers, which is played both
on an 8 x 8 board and a 10 x 10 board, can be generalized to a problem with an
infinite number of instances by allowing n x n boards.

Very simple problems, however, can have infinite sets of instances. For example, the
problem to decide whether a list is sorted or not has an infinite set of instances. The
size can be defined by the length of the list. Summarizing, a problem can be defined
in the following terms:

• A set of instances

• A criterion (a yes/no-question about instances)

• A size function on each of the instances

• A solution, i.e. an algorithm that can decide whether the criterion holds for a
certain instance.

1: Introduction

14

Now suppose we have some way to find the ÒbestÓ algorithm to solve a problem.
This ÒbestÓ algorithm will use computational resources. The amount of resources the
algorithm consumes is an indication of its efficiency. But since it is the best algorithm
for a certain problem, the efficiency of the best possible algorithm defines the
complexity of the problem. So what do we mean by Òuse of computational
resourcesÓ? There are two computational resources, time and (memory) space. Since
the use of these resources is related, time is often the resource an analysis of
complexity focuses on.

Complexity theory uses relative time instead of absolute time. The time it takes a
certain algorithm to solve a problem is expressed in a complexity function, which
maps the size of the instance on the amount of time it takes to solve the problem. This
complexity function gives a much clearer indication of the efficiency of the algorithm
than absolute time can. If a small increase in the size of the instance causes a large
increase in time, the algorithm is inefficient. So, an algorithm with a linear
complexity function is more efficient than an algorithm with a square or exponential
complexity function. Complexity functions can be calculated, if the algorithm is
known, or approximated empirically when the algorithm is too messy or
complicated to analyze.

If we want to know the complexity of a problem, we are looking for an algorithm that
solves this problem and has the best complexity function. So the complexity of a
problem is the lower bound of the complexity of all the algorithms that solve it. Some
problems, like deciding whether an item is in an unsorted list, have only a linear
complexity. The most efficient algorithm is to examine the items in the list one by one
and compare them to the item we seek. The average number of items that has to be
examined is n/2 if the item is in the list, and n if it is not in the list (n is the length of
the list). Other problems have a higher complexity. Problems that have an
exponential time complexity are called intractable. The source of complexity is often
combinatorial: if, for example, n elements must be ordered, the number of possible
ordenings is n!. If there is no systematic way to weed out the major part of these
ordenings, the problem is intractable. In the case of checkers on arbitrarily large
boards (I will not use chess, because it is finite), the number of board positions to be
examined increases exponentially with the number of moves you want to look
ahead. The question if white can win from the first move is decidable in principle,
but not in practice, because there are more possible checkers games than atoms in the
universe.

Why is exponential time complexity intractable, and polynomial complexity
tractable? Because exponential functions grow so much faster than polynomial
functions. This can be illustrated using part of a figure from Garey & Johnson (1979)
that shows the time it takes to solve an instance of a problem of size n, given the fact
that a single operation can be carried out in a microsecond (figure 1.5). One might

NP-complete problems

15

argue that some problems with a polynomial complexity, especially with a high
exponent (e.g. n200), are also intractable, but in practice these types of complexities
never occur (only in contrived problems).

The consequences of intractability
Intractable problems are interesting candidates for NewellÕs idea of a complex
problem that exposes many aspects of human cognition. Since they have an
exponential time complexity, it is impossible to use an efÞcient procedure that
solves all instances of a problem. It is, however, not always necessary to be able to
solve all instances of a problem, it may be enough to be able to solve a relevant
subset of them. Relevant in this case means that the system somehow has a use for
them. So for any particular intractable problem, we may have a situation similar to
Þgure 1.4: some instances of the problem, particularly instances with a small size,
can be solved efÞciently, some instances need additional search that may require
exponential exploration of cases, and some cases are unsolvable within a reasonable
amount of time. So intractable problems may serve as a miniature but faithful
representative of the case of learning problem solving.

To further improve on the representativeness of example problems, we will narrow
down the set of intractable problems to the set of NP-complete problems, which is in
itself a subset of NP. ÒNPÓ is an abbreviation for Non-deterministic Polynomial. A
problem in NP can be solved by a non-deterministic Turing Machine in polynomial
time. Less technically, given an instance of an NP-problem and a path to its solution,
(so not only the yes/no-answer, but also the choices that are made to reach it) it is
possible to check this solution using a tractable algorithm. In summary: finding the
solution may be intractable, but checking it is tractable.

Complexity
function

n=10 n=20 n=30 n=40 n=50 n=60

n
linear

.00001
second

.00002
second

.00003
second

.00004
second

.00005
second

.00006
second

n2

polynomial
.0001
second

.0004
second

.0009
second

.0016
second

.0025
second

.0036
second

n5

polynomial
.1 second 3.2

seconds
24.3
second

1.7 minutes 5.2 minutes 13.0
minutes

2n

exponential
.001
second

1.0 second 17.9
minutes

12.7 days 35.7 years 366
centuries

Figure 1.5. Comparison between a linear, two polynomial and an exponential time complexity
function (from Garey & Johnson, 1979)

1: Introduction

16

Although it has technically not yet been proven that NP-complete problems really
are intractable, the general consensus is that they are for all practical purposes
(Garey & Johnson, 1979). In the next section some examples of NP-complete
problems will be examined, showing the broad range of domains they appear in.
Nevertheless they form a tight class due to their completeness-property. This
completeness property means that any NP problem can be transformed into a
particular NP-complete problem by an algorithm of polynomial complexity. So, take
for example the travelling salesman problem, a well-known NP-complete problem.
Due to its completeness property, it is possible to take an instance of another NP-
complete problem, for example resolving a particular ambiguity in a sentence, and
transform this instance into an instance of the travelling-salesman problem. So if you
find an efficient solution for one particular NP-complete problem, you have
automatically found an efficient solution for all of them. Regrettably, this doesnÕt
mean that a partial solution (in terms of Þgure 1.4) will be at all helpful in this matter.
Nevertheless, if it is possible to gain insight into how people partially overcome the
problems of combinatorial explosion with respect to one particular NP-complete
problem by learning, it carries the promise that this learning scheme may also work
for other hard problems.

1.4 Examples of NP-complete problems

NP-complete problems may be very interesting problems to study, but this
endeavor is purely academical if these problems have little to do with real-life
situations. In this section a number of examples of NP-complete problems will be
examined to show that NP-complete problems are part of everyday life. For some of
these problems, for example language, almost everyone is an expert. For other
problems, for example scheduling problems, extensive skill is normally thought of
as the competence of an expert.

Most of the problems discussed here have been catalogued by Garey and Johnson
(1979), together with their basic reference. Most examples explained here require
some answer, instead of just ÒyesÓ or ÒnoÓ. A problem that requires an answer can
almost always be converted to a yes/no question, as I have shown in the case of
chess.

Examples in Planning
A plan is a sequence of actions that achieves a certain goal. Sometimes reaching the
goal is enough, but in other cases additional requirements must be satisÞed, like
Þnding the most efÞcient sequence. Planning nearly always involves time and
optimizing time. People plan every day, for example how to make coffee, a plan that
requires no search. Other types of planning do require some search, for example to
plan a route through town to go through a shopping list (Hayes-Roth & Hayes-

Examples of NP-complete problems

17

Roth, 1979), or to plan a meal (Byrne, 1977; van den Berg, 1990). Other planning
tasks involve scheduling, for example school and hospital rosters, or planning
symposia (Numan, Pakes, Schuurman & Taatgen, 1990). Computer science has
invested much effort in programs for planning, resulting in different approaches:
hierarchical, non-hierarchical, opportunistic and script-based planners (See
Aky�rek, 1992 for an overview).

Most planning problems are intractable unless heavily restricted. We will look at two
intractable problems that are closely related to planning. In the travelling-salesman
problem the task is to find the shortest closed route connecting a set of cities. More
precisely, a number of cities is given and a matrix stating the distance between each
pair of cities. A route is a sequence of cities, and the length of the route is the sum of
the distances between successive cities. Figure 1.6 shows a case of the travelling-
salesman problem with four cities. The thick line indicates the shortest route, which
has a length of 15.

The general problem is NP-complete, but we can imagine a particular salesman, who
always visits a subset of, say, 25 cities, and who has developed his own private
strategy for solving the problem. When this salesman is transferred to another part
of the country, he has only limited use for his experience: he can use some of his old
knowledge, but must devise some new procedures for his new environment.

The travelling-salesman problem obviously is a planning task, and shows much
resemblance to other planning tasks, for example the shopping-task from Hayes-
Roth & Hayes-Roth (1979). It is often easy to prove that a certain planning task is
intractable, using the fact that the travelling-salesman problem is intractable.

A second planning problem is scheduling. In this problem each instance consists of
a set of tasks, each of which has a certain length, a number of workers, a partial order
on the tasks, and an overall deadline. The task is to create a schedule for all the tasks,

4

572

6

1

Figure 1.6. Example of the travelling-salesman problem (left)

1: Introduction

18

obeying the precedence constraints as specified in the partial order and the deadline.
Figure 1.7 shows an example of an instance of this problem.

Again the general problem is intractable, but particular sub-problems may be
attainable. For example, the timetable of a certain school is always made by a
particular deputy headmaster. Although it takes him two full weeks every year, he
is the only one in the school who can do it at all. Previous experience is the key to
successful problem solving in this case, another indication of the importance of
learning.

Language
Understanding natural language is generally not considered to be problem solving.
However, formal theories of language, especially with respect to grammar or
syntax, use the same terminology as the formal theory of problem solving. For
example, part of the natural language understanding process is concerned with the
question whether a sentence is grammatically correct. In problem-solving terms, the
set of instances is the set of all (Þnite) sequences of words. The criterion is the
question whether a particular sequence of words is grammatically correct or not.

Part of research in linguistics concerns the construction of grammars and grammar
systems that describe language. The goal of a grammar of a certain natural language
is to be able to produce every grammatical sentence in that language, but no other,
ungrammatical, sentences. A grammar system aims to provide a framework within
which all grammars of natural languages can be fitted. Chomsky (Chomsky &
Miller, 1963) has defined the basic types of grammars: finite-state, context-free,
context-sensitive and unrestricted grammars, called the Chomsky hierarchy.

Figure 1.7. Screen shot of an instance of the scheduling problem. In this experiment (discussed in
chapter 3), participants can move around the blocks to create the schedule.

Examples of NP-complete problems

19

Grammars can produce language, but to parse natural language, to decide whether
a certain sentence belongs to the language, an automaton is needed. It can be shown
that each of the four grammar systems from the Chomsky hierarchy corresponds to
a certain type of automaton: finite-state grammars to finite-state automatons,
context-free grammars to push-down automatons, context-sensitive grammars to
linear-bounded automatons and unrestricted grammars to Turing machines.
Chomsky has shown that finite-state grammars are too restricted to be able to
generate a complete natural language. Unrestricted grammars, due to their
connection with Turing machines, are undecidable. This leaves context-free and
context-sensitive as possible formalisms, of which context-free is always considered
a more desirable alternative, because parsing a context-free grammar is tractable.
The important question is whether the generative power of context-free grammars is
enough to generate natural languages.

Barton, Berwick & Ristad (1987) argue this discussion has outlived its usefulness,
and more modern methods must be used. They show that the fact that a grammar is
context-free is no guarantee for efficiency. The generalized phrase structure
grammar system (GPSG), for example, has the seemingly attractive property that
any GPSG can be converted to an equivalent context-free grammar. This suggests
that since context-free grammars can be parsed efficiently, a GPSG can also be
recognized easily. Barton et al. show this argument is misleading, because for a

GPSG G of size m the equivalent context-free grammar has in the order of
rules.

Barton et al. propose complexity theory as a replacement for the equivalence-to-
context-free-grammar criterion. It is a much more precise and reliable instrument to
measure the efficiency of a grammar system. They also argue efficiency is an
important criterion for natural language systems: if we have a formal system of a
natural language that uses combinatorial search (an intractable algorithm) where it
is not really necessary, there obviously is some systematic property in the language
that the formal system fails to account for. For nearly all grammar systems used in
linguistics, parsing turns out to be an intractable problem. According to Barton et al.,
this is partly due to intractable properties of language itself, but can often also be
attributed to the formalism: it simply fails to account for certain features of the
language. The unnatural sources of complexity must of course be expelled from the
formalism, but the natural intractable properties can not. They must be accounted
for by what Barton et al. call a performance theory, in which they hint at least some
combinatorial search takes place.

An example of an intractable property of natural language understanding is the
combination of agreement and lexical ambiguity. Agreement refers to two or more
words in a sentence having the same number, gender or other feature, like in
subject/verb agreement. Lexical ambiguity refers to the fact that a single word can

3
m!m2m 1+

1: Introduction

20

have different functions, as with homonyms. For example, the word ÔwalkÕ can be
either a noun or a verb. In the case of a verb, it can be either first or second person
singular or plural. Agreement grammars are simple context-free grammars that can
account for both agreement and ambiguity. However, Barton et al. prove that the
problem of parsing an agreement grammar is NP-complete with respect to the
length of the sentence.

The conclusion is that although care must be taken to avoid unnecessary
intractability in language, it cannot be avoided altogether, and what remains must
be accounted for by a so-called performance theory. This performance aspect is of
course rather problematic. In ChomskyÕs theory the performance part of language is
just a degraded version of the ÒidealÓ competence counterpart due to human
limitations. In the theory of Barton et al. performance has a function that can not be
formalized but is nevertheless crucial.

So, even understanding everyday language is in itself already an intractable
problem. Therefore language performance can not be explained purely by a static
syntactic framework. The learning component, as is the case with other intractable
problems, has to be part of the explanation of the human capacity of understanding
language.

Puzzles and games
Research on problem solving is often done on toy problems. Puzzles in which
letters must be replaced by numbers, missionaries and cannibals must be shipped
over a river, problems where blocks must be rearranged by a robot arm, or puzzles
where numbered tiles must be pushed around to get them in sequence. The
problem with each of these problems is to what extent results, either empirical or by
simulation, can be generalized to other domains. Especially in the case of computer
simulation, the fact that a simulation solves a certain problem has no signiÞcance,
because a conventional algorithm can do the same job. Even when a convincing
simulation can be made, it is difÞcult to generalize the results.

Some games are different, however. They go beyond the toy-realm, because they
keep eluding final solutions. Chess, checkers and Go are examples of games that
have a long history of gradual improvement, never reaching perfection. The games
of checkers and Go are intractable when generalized to an n x n board. Although
chess is highly complex, it is not intractable because it can not easily be generalized
to an n x n board, and standard chess games are always finite. Complexity theory
needs some kind of infinity to work with. Other kind of puzzles are also intractable,
for examples fitting words into an n x n crossword puzzle.

So, studying intractable problems is a far greater challenge than working with toy-
problems. They pose a real challenge to problem solving, but with a larger pay-off.
Since no conventional algorithms exist, the fact alone that a system simulating

The limits of task analysis, or: why is learning necessary for problem solving?

21

human problem solving on an intractable problem can solve certain cases is
significant.

Mathematics
The main and original source of intractable problems is mathematics. Many
problems involving graphs, partitioning, matching, storage, representation,
sequencing, algebra and number theory are intractable (Garey & Johnson, 1979).

One of the most well-known NP-complete problems stems from logic: the
satisfiability problem (SAT) (Cook, 1971). The problem is to find, for a propositional
logic formula, values for the variables so that the formula evaluates to true. A
straight-forward algorithm used to solve SAT is called truth-table checking, which
amounts to checking every possible combination of values for the variables. Since in
propositional logic a variable can have two values, the number of combinations to be
checked is , where n is the number of variables. This is obviously an exponential
function, leading to an intractable algorithm.

Another nice property of the problems mentioned here is the fact that they are (with
the possible exception of the language problems) knowledge-lean. That is, they are
already highly complex without needing huge data banks of knowledge to work on.
This makes simulation a lot easier, and the results easier to interpret.

1.5 The limits of task analysis, or: why is learning necessary for
problem solving?

The picture sketched in Þgure 1.4 is one of gradual change in mastery of a problem
due to learning. But how important is this learning aspect? Suppose we want to
make a task analysis of scheduling. WouldnÕt it be useful to constrain the total set of
instantiations of scheduling to a manageable subset, and derive a set of rules and
methods that can account for that subset? More speciÞcally, is it possible to create
an account of how an expert scheduler works, assuming an expert is someone with
a set of methods that is broad enough to render learning superßuous?

Suppose we have a scheduling expert. This expert can solve some instances of
scheduling, but has problems with other instances: these instances take too much
time to solve. For each expert, we can divide the total set of scheduling instances into
two subsets: the instances he can solve and the instances he can not solve. This
boundary is not entirely clear-cut, since the amount of time the expert is willing to
invest in a solution plays a role, but due to the exponential increase in solution time
this willingness for extra effort pushes the boundary only very slightly. There are
many experts of scheduling, each of whom has his own expertise and knowledge of

2
n

1: Introduction

22

scheduling, so each has his own subset of instances he can do and subset of instances
he cannot do. Now suppose we want to find the ultimate scheduling expert. If the
normal expert can solve something, the ultimate expert can do it too, so the set of
instances that the ultimate expert can solve is the union of all sets of solvable
instances of all possible experts.

In order to find the ultimate expert, we now examine a subset of all possible experts,
the experts that can only solve a single instance. If this expert is presented with its
instance of expertise, it gives its memorized answer, but if another instance is
presented, it says it doesnÕt know. So, each of these experts has a set of instances it
can solve of just one member. Now, if we take the union of the knowledge of all these
dumb experts, we get the ultimate dumb expert, who happens to know the answer
to any instance of the problem. This is clearly in contradiction with the fact that the
problem is intractable, so we must conclude that the assumption that an ultimate
expert exists must be false.

The conclusion of this formal exercise is that the there are no ultimate experts for
intractable problems. There is always something left to learn, always a new member,
or preferably, a set of members that can be added to the set of items that can be
solved. But, the reply might be, suppose we incorporate this ÒlearningÓ in the
algorithm. ShouldnÕt this algorithm be capable of solving any instance of the
problem, clearly contradicting the fact that it is intractable? The answer is that a
learning algorithm is not an algorithm in the normal sense. A learning algorithm
changes after each instance it has or hasnÕt solved, so it defies the usual analyses of
algorithms. A learning algorithm is not a solution to the problem of intractability.
However, it can offer explanations for the fact why intractable problems are only
mildly problematic for people.

The fact that learning is an essential part of problem solving also shows that the
traditional art of task analysis has its limitations. For many problems a task analysis
is impossible, because even experts still learn, and use learning to solve problems.
The usual idea that at some point an expert knows all there is to learn is not true in
general. The same point can be made with respect to linguistics. Viewing language
as a static formal structure that must be discovered by linguistic research is like
trying to make a task analysis of an intractable problem, so it cannot expose the full
extent of language processing.

One of the research approaches to task performance is to get a full account of
performance first, and worry about learning later. The previous analysis shows this
approach will not work for complex tasks. As models discussed later in this thesis
show, task performance is an intricate interplay between learning and performance.
Just focussing on performance will only give a very limited insight into what is going
on.

Overview of the rest of the thesis

23

If traditional task analysis is an insufficient formal theory of task performance, what
should replace it? Architectures of Cognition have the capability. They are formal
enough to allow general analyses and making predictions, and they incorporate
learning. Instead of focussing on the knowledge of an expert, the focus will be on the
learning mechanisms that allow one to become an expert and that allow experts to
maintain and adapt their knowledge.

1.6 Overview of the rest of the thesis

The goal of this thesis is to gain more insight into skill-learning, in particular
learning of complex problem solving. The way to accomplish this goal is to use a
single theory in the form a cognitive architecture, and to start with a single complex
problem, the scheduling problem. In chapter 2, the discussion is centered around
the topic of the architecture. There are currently four inßuential architectures of
cognition, Soar, ACT-R, EPIC and 3CAPS. I will Þrst establish some general criteria
to compare these architectures, after which all four architectures will be discussed.

Human problem solving on the scheduling task, discussed in chapter 3, will turn out
to be a puzzle with many pieces. People tend to rehearse and forget things during
problem solving. People discover new strategies if old strategies donÕt work. Some
global statistical analysis using multi-level statistics will chart the outlines of the
learning process. A detailed protocol analysis will shed some more light on what is
going on in the reasoning process.

The approach for chapter 4 to 6 will be to study each of the pieces of the puzzle
offered by the experiment using well-known experiments from cognitive
psychology. These tasks will be modeled in ACT-R to gain insight into how the
particular phenomena relate to the cognitive system as a whole. Chapter 4 will pick
up the issue of implicit and explicit learning in general, and rehearsal in particular.
ACT-R offers a new type of explanation for the implicit-explicit distinction by
removing its Newellian binary status and offering a unifying explanation of an
apparent distinction. The bottom line will be that explicit learning can be explained
by learning strategies, general knowledge specifically aimed at the acquisition of
new knowledge.

Chapter 5 further investigates these learning strategies. It tries to offer a rationale for
using a learning strategy, and investigates the representation of learning strategies
in terms of ACT-R. The best domain to study learning strategies is developmental
psychology. The idea is that learning strategies themselves have to be learned, so the
best way to find out more about them is to compare children of different ages. The
chapter ends in modeling two particular learning strategies, and seeing whether

1: Introduction

24

they are applicable to multiple problems, and whether any evidence can be found for
the fact that the strategies themselves are learned.

Chapter 6 focuses on another discussion with respect to skill learning, whether skills
are learned by generalizing examples into rules, or by just storing and retrieving
examples. The answer will turn out to be that both methods are used, and that the
impact of these methods on performance depends on how useful they are.

In chapter 7, I return to the primary goal of modeling scheduling. Using all of the
insights gained in the smaller projects of chapter 4 to 6, a model will be presented
that is able to solve small scheduling problems and learn from this process in a
human-like fashion. This model can be used to generate verbal protocols of problem
solving, and is able to make some predictions with respect to individual differences.

Chapter 8, finally, is used to draw some conclusions. An overview will be given of
the skill-learning theory developed during the thesis, and some applications of this
theory are discussed. The usefulness and shortcomings of ACT-R will be discussed.
In a sense, the approach used in this thesis will turn out to show close resemblance
to the final theory we will arrive at. But this is as it should be, since figuring out how
learning in complex problem solving works, is in itself also a form of complex
problem solving.

CHAPTER 2 Architectures of Cognition

2: Architectures of Cognition

26

2.1 What is an architecture of cognition?

Chapter 1 discussed the single system approach to understanding cognition. This
chapter will discuss these systems: architectures of cognition. Cognitive science has
borrowed the term architecture from computer science. Computer scientists use the
term architecture to refer to the aspects of a computer that are relatively Þxed: the
hardware and that part of the software that is Þxed for all applications.

A typical computer architecture has great flexibility: it is capable of executing an
infinite variety of programs. However, the architecture can pose constraints on
programs. For example, if a computer has a certain amount of memory, it can not run
programs that need more memory than is available. The software part of the
architecture may also pose constraints. For example, in many time-sharing systems
it is impossible to guarantee accurate timing.

Although these limitations may bother many users of computers, they are not
interesting for theoretical computer science. In principle, any computer has the same
capabilities with respect to what kind of functions it can calculate. This is due to the
fact that every computer is equivalent to a universal Turing Machine with respect to
the functions it can calculate, except for the fact that a Turing Machine has an infinite
memory.

According to the famous Church-Turing thesis (Turing, 1936), a universal Turing
Machine can calculate any function that can be calculated at all. A computer
architecture is therefore a platform that is ultimately flexible: given the right
program, it can calculate any function that is computable in principle, given enough
time and memory. The Church-Turing thesis, together with TuringÕs thought
experiment called the Turing Test, can be used to argue that human intelligence can
be simulated on a computer (Turing, 1950; Taatgen & Andringa, 1997).

Human cognition is also very flexible. Given enough time, it is capable of learning to
perform almost any task that is feasible at all for people. An important distinction
between computers and people is that people are not programmed in the sense that
computers are. On the other hand, people cannot learn new things out of the blue:
they almost always need prior knowledge. For example, one cannot learn to add
numbers without knowing what numbers are.

This analogy is the basis for the idea of an architecture of cognition. It is the fixed but
versatile basis of cognition. The architecture is capable of performing any cognitive
task, regardless of the domain the task is from. But where is a cognitive architecture
different from a computer architecture, since a computer architecture is already
capable of performing any conceivable task? A first difference is that a computer
runs a program, and a cognitive architecture a model. On the surface, a model is a
kind of program, written in the language of the cognitive architecture. The difference

What is an architecture of cognition?

27

is that a program implements an algorithm, an abstract method to solve a problem.
A model is not an algorithm, however, although in some cases it may behave like
one. Rather, it specifies the prior knowledge the system has. So, if the model tries to
explain the behavior of an expert, the knowledge in it may resemble an algorithm,
because experts have effective ways of solving problems. If the model tries to explain
novice behavior on the other hand, it can only specify general knowledge. A model
of a novice has to discover an effective way to do a task itself, by translating
instructions into procedures it can carry out, or by discovering these procedures by
itself.

Another difference concerns the way a cognitive architecture is designed. In
computer science, the architecture is part of the design of a computer. The
architecture is the starting point of the computer. Given the architecture, a VLSI-
designer can implement the architecture on a chip, and programmers can write an
operating system and other software. If you design a better architecture, you get a
better computer. Human cognition is already there, so designing an architecture of
cognition serves a different purpose. Designing an architecture of cognition is like
specifying a theory, a theory of how cognition works. The quality of a cognitive
architecture is not measured in terms of performance, but in terms of the power of
the theory it implements. This difference in purpose is the same as the difference
between artificial and natural languages. An artificial language is defined by its
grammar, while a grammar for a natural language is a theory of the structure of that
language.

The starting point for the human cognitive architecture is the brain. But many
architectures are more abstract than the architecture of the brain. The main point of
discussion is whether or not the grain size of individual neurons is proper for
formulating a theory of cognition. According to connectionists, properties of
individual neurons are crucial for understanding cognitive performance, and an
understanding of how neurons cooperate and learn in different areas of the brain
will be the most fruitful route to an understanding of cognition in general. Others,
often called symbolists, argue that the level of individual neurons is not the right
level to study cognition, and some higher-level representation should be used. The
title of Anderson & LebiereÕs 1998 book The Atomic Components of Thought directly
refers to this issue. But whatever grain-size we choose, we always abstract away
from the biological level of the brain, even if we model neurons in neural networks.

An architecture as a theory
What to expect from a cognitive architecture? Since human cognition is complex, a
cognitive architecture will have to be able to make complicated predictions.
Analytical methods such as the statistics used by most psychologists can be used to
make predictions, but are often limited to linear relationships. Cognition is often
non-linear, making analytical mathematical methods infeasible. If analytical
methods fail, simulation is the next best method to be able to make predictions.

2: Architectures of Cognition

28

Generally, an architecture is an algorithm that simulates a non-linear theory of
cognition. This algorithm can be used to make predictions in speciÞc domains and
for speciÞc tasks (Figure 2.1).

To be able to make predictions about how people will perform on a specific task, the
architecture itself is not enough. Analogous to the computer architecture, where a
program is needed to perform tasks, a task model is needed to enable an architecture
to simulate something meaningful. Prior knowledge, specified by the model, may be
specific to the task, or may be more general. For example, many psychological
experiments require the participants to perform some very specific task, such as
adding letters as if they were numbers. Such an experiment relies on the fact that
participants know how to add numbers and know the order of the alphabet. A model
of adding letters would involve knowledge about adding numbers, numbers
themselves, letters in the alphabet and knowledge on how to adapt knowledge from
one domain to another. It should not incorporate knowledge about adding letters,
since it is unreasonable to suppose an average participant in an experiment already
has this knowledge. This task-specific knowledge can only be learned during the
experiment, or, in the case of the model, during the simulation.

The way task knowledge is merged with the architecture depends on the nature of
the architecture. In connectionist theories, all knowledge often has to be learned by
a network. To be able to do this, a network has to have a certain topology, some way
in which input is fed into the network, and some way to communicate the output.
Some types of networks also need some supervisor to provide the network with

Figure 2.1. Relationship between theory, architecture, models and cognition

Architecture
of

cognition

CognitionModel of
chess

Unified
theory of
cognition

Model of the
blocksworld

Model of
language

Model of
planning

is simulated by

implements

What is an architecture of cognition?

29

feedback. In neural networks task knowledge is not easy to identify, but is implicit
in the environment the network is trained in. In symbolic architectures knowledge is
readily identifiable, and consists of the contents of the long-term memory systems
the architecture has. Another problem is that it is very hard to give a network any
prior knowledge: one always has to start with a system that has no knowledge at all
yet. In many cases, this is no problem, but it is in learning complex problem solving,
since solving a problem is based to a large extent on prior knowledge.

Regardless of the details, at some point the general theory is combined with task-
specific elements to create a task model. A task model is a system that can be used to
generate specific predictions about behavior with respect to a certain task. These
predictions can be compared to participant data. Figure 2.2 shows the layout of this
paradigm. The consequence of this type of research is that the general theory cannot
be tested directly. Only the predictions made by task models are tested. If the
predictions made by a task model fail to come true, this may be attributed to the
architecture, but it may also be attributed to inaccurate task knowledge or the way
task knowledge is implemented in the architecture. To be able to judge the
achievements of an architecture, there must be some way to generalize over models.

One way to judge the performance of an architecture with respect to a certain task,
proposed by Anderson (1993), is to take the best model the architecture can possibly
produce for that task. Although this is a convenient way, it is not entirely fair.
Suppose we have two architectures, A and B. Given a set of task knowledge,
architecture A can only implement a single task model, while architecture B can
implement ten task models, nine of which are completely off. Although
architecture B may produce the best model, architecture A provides a stronger
theory since it only allows for one model.

Architecture
(Theory)

Task
knowledge

Task
model

Predictions Comparison Analyzed data

Analysis

Experiment

Figure 2.2. Research paradigm in cognitive modeling. Adapted from van Someren, Barnard and
Sandberg (1994).

2: Architectures of Cognition

30

Judging the success of an architecture
Instead of just focussing on successes, an architecture also has to be judged by its
failures. Figure 2.3 shows a schematic impression of this idea, based on Kuipers
(Kuipers & Mackor, 1995). Imagine the set of all conceptually possible cognitive
phenomena. Not all of these conceivable phenomena can actually be witnessed in
reality. For example, in chapter 1 we discussed the power law of practice, but we
might also hypothesize a linear law of practice, or a negative exponential law of
practice. As a consequence, only a subset of the possible phenomena can actually
occur in reality.

When a theory of cognition is proposed, this creates a new subset: the set of
phenomena that are predicted by the theory. In terms of an architecture of cognition
this means that the architecture allows an infinite set of models, each of which
predicts some cognitive phenomena. The union of all these phenomena is the set of
cognitive phenomena that are possible according to the theory. In order to judge the
quality of the theory, we first have to look at the intersection of the Òreality-subsetÓ
and the subset predicted by the theory. This intersection represents phenomena that
can be predicted by some model, and can actually occur in reality. Although these
successes are very important, we also have to look at the failures of the theory.
Failures fall into two categories: counter examples, which are phenomena in reality
that cannot be predicted, and incorrect models, phenomena predicted by the theory
that cannot occur in reality. In the discussion about unified theories of cognition the
emphasis is often on the counter examples: are there any phenomena the theory
cannot account for? The other category, incorrect models, often gets less attention.
This is unfortunate, because incorrect models pose a much bigger problem to
architectures of cognition than counter examples.

Figure 2.3. Judging an architecture

conceptually possible cognitive phenomena

phenomena

phenomena

correct
incorrect

counter

by models
predicted

of the theory
possible
in reality

models
models/

explained
phenomena

examples

What is an architecture of cognition?

31

The reason why incorrect models are a big problem is due to the Church-Turing
thesis mentioned earlier. According to this thesis, any computable function can be
computed by a general purpose machine such as the Turing Machine. This implies
that, theoretically, any sufficiently powerful computer architecture can implement
both all possible correct and all possible incorrect models. Figure 2.4 illustrates this
implication: a general purpose architecture can, in principle, model any cognitive
phenomenon. In terms of a theory of cognition: an ÒemptyÓ theory can predict
anything. So, the goal of designing a cognitive architecture is not to give it as much
features as possible, but rather to constrain a general purpose architecture as much
as possible so that it can only implement correct cognitive models. In practice, as
shown in figure 2.4, a typical architecture can produce many incorrect models, but
generally produces good models. Constraining the general computer architecture
may have an undesired side-effect in the sense that phenomena that could
previously be explained are now unreachable.

A cognitive theory in the form of an architecture is not a theory in the sense of
Popper (1959), but more like a research program in the sense of Lakatos (1970).
According to Popper a good theory is a theory that can be refuted. As we have seen,
only predictions by models can be refuted directly. Only the claim that an
architecture is an ideal architecture, in the sense of figure 2.4, can be refuted by
exposing an incorrect model or producing a counter example. In LakatosÕs view of
science, scientists work in research programs. A research program consists of a set of

Figure 2.4. Possible instantiations of Þgure 2.3

predicted = possible

reality

possible
reality =predicted

possible

reality predicted

An arbitrary computer
architecture with the power of a
universal Turing Machine can
model any possible phenomenon

An ideal architecture of cognition
only allows models that predict
phenomena that can actually
occur in reality

Typical architectures cannot
exclude all incorrect models, and
may not be able to generate
models for all phenomena

2: Architectures of Cognition

32

core ideas and a paradigm to do research. The core ideas of a research program are
generally not disputed within the program, and researchers will continue working
within a certain program as long as the paradigm keeps producing encouraging
results. In the research program view, the architecture can be viewed as the core idea
of a research program. Creating models of cognitive phenomena is part of the
research paradigm. Another part of the research paradigm is a methodology to test
models. When is a model considered to be a ÒcorrectÓ model?

Matching model predictions with experimental data
To consider a model of a cognitive task as a faithful model of human performance, it
is not sufÞcient that it can perform the task. A model has to perform the task in the
same manner as a participant. In order to be able to make this comparison, we have
to compare data from an experiment with the output of a model. Ideally, a model
produces data that can be directly compared to participant data. Measures that are
used often in psychological experiments are reaction times and accuracies. Models
should at least be capable of making predictions in terms of these measures. Some
architectures, like ACT-R, are capable of making direct predictions about reaction
times. Other architectures only indicate a correspondence between steps or cycles in
the system and time. In these type of architectures only relative time between
different types of problems or trials can be compared to the data. Accuracy is often
measured by the rate of correct responses or by the percentage of items recalled.
Not all architectures can model all aspects of accuracy. An architecture like Soar, for
example, is only interested in errors that result from incomplete or inconsistent
knowledge. So errors due to ÒslipsÓ or forgetting are not considered interesting in
the view of the Soar theory.

Since cognitive models give a detailed account of how a task is performed, they
make it possible to do more elaborate testing than just reaction times and accuracies.
If a trial consists of a number of operations before the response can be given, an
attempt can be made to determine the individual latencies of the separate
operations, for example by registering eye movement. Reaction times and accuracies
tend to change over time, mainly due to learning. The influence of learning can only
be disregarded in cases where the task is very simple or the participant is trained
exhaustively. Most architectures can account for learning, so should be able to model
effects of learning on performance.

The quality of the predictions of a model is often expressed using the R2 measure,
the proportion of variance the model can explain. Suppose we have an experiment
that produces n data points, so for example a free-recall experiment in which 20
words can be recalled, we have 20 percentages, one for each of the words, so n=20.
The experiment produces data points (datai) that have an average of . The model
makes a prediction of these data points (modeli). The explained variance can now be
calculated using the following equation:

data

What is an architecture of cognition?

33

(2.1)

An R2 of 0.90 or higher is generally considered good, while an R2 of 0.80 or lower is
suspect. In that case there is some source of variance that is left unexplained by the
model.

Although the R2 measure gives a rough estimate of the quality of the model, it does
not take into account a number of factors. A first point to consider is the relation
between the number of predicted values and the number of parameters that a model
uses to make its predictions. If a model needs to tweak 20 parameters in order to be
able to predict 20 data points, it is clearly not a good model, regardless of the
proportion of variance it can explain. A second point is that this measure only
considers the data points from the experiment as averages. As a consequence, any
individual differences are discarded. This is no problem if all participants basically
behave the same and individual differences are only due to noise that cannot be
accounted for. The R2 measure, however, doesnÕt capture any systematicity within
the behavior of single participants.

One way to take into account that participants differ in their choices is to use a
technique called model tracing. Anderson, Kushmerick and Lebiere (1993) used
model tracing to assess a model of a route planning task. For each individual
participant at each point of the problem solving process they compared the choice of
the participant to the choice of the model at that point. If both choices agreed they
allowed the model to continue to the next step. If there was no agreement, the model
was forced to take the same step the participant took. In this particular experiment,
it turned out that there was an agreement of 67% between the participantÕs choice
and the modelÕs choice. In 20% of the cases, the participantÕs choice was the second-
best choice of the model. This agreement turned out to be quite good when
compared to random-choice and hill-climbing strategies, and to be quite similar to
individual differences between participants.

Although model tracing allows the scoring of models in which participants have to
make a number of choices in each trial, it still provides no account of individual
differences. The model of the task is still a generic model. To really account for
individual differences, a generic model must be made that can be instantiated for
each individual participant. An example is a model of a working memory task by
Lovett, Reder and Lebiere (1997). The model can explain individual differences by
varying a single parameter in the generic model.

R2

datai data–()
2

datai modeli–()2

i 1=

n

∑–
i 1=

n

∑

datai data–()
2

i 1=

n

∑
--=

2: Architectures of Cognition

34

In summary, a good model is a model that can approximate as many data points as
possible using as few parameters as possible. In tasks with large individual
differences, a model that can explain individual differences by varying parameters
is better than a model that reproduces averages.

2.2 An overview of current architectures

In this section I will review four popular architectures of cognition, all of which
have been reasonably successful in modeling various cognitive phenomena. The
four architectures to be discussed, Soar, EPIC, 3CAPS and ACT-R, are all either pure
symbolic or hybrid architectures. This means all of them share the idea that symbols
are the right grain-size to study cognition. However, a pure symbolic theory
assumes the underlying neural structure is irrelevant, while a hybrid theory argues
that subsymbolic processing plays an important role.

Soar
The Soar (States, Operators, And Reasoning) architecture, developed by Laird,
Rosenbloom and Newell (1987; Newell, 1990; Michon & Aky�rek, 1992), is a
descendant of the General Problem Solver (GPS), developed by Newell and Simon
(1963). Human intelligence, according to the Soar theory, is an approximation of a
knowledge system. Newell deÞnes a knowledge system as follows (Newell, 1990,
page 50):

A knowledge system is embedded in an external environment, with which it
interacts by a set of possible actions. The behavior of the system is the sequence
of actions taken in the environment over time. The system has goals about how
the environment should be. Internally, the system processes a medium, called
knowledge. Its body of knowledge is about its environment, its goals, its actions,
and the relations between them. It has a single law of behavior: the system takes
actions to attain its goals, using all the knowledge that it has. This law describes
the results of how knowledge is processed. The system can obtain new
knowledge from external knowledge sources via some of its actions (which can
be called perceptual actions). Once knowledge is acquired it is available forever
after. The system is a homogeneous body of knowledge, all of which is brought
to bear on the determination of its actions. There is no loss of knowledge over
time, though of course knowledge can be communicated to other systems.

According to this definition, the single important aspect of intelligence is the fact that
a system uses all available knowledge. Errors due to lack of knowledge are no failure
of intelligence, but errors due to a failure in using available knowledge are. Both
human cognition and the Soar architecture are approximations of an ideal intelligent
knowledge system. As a consequence, properties of human cognition that are not

An overview of current architectures

35

part of the knowledge system approach are not interesting, and are not accounted
for by the Soar architecture.

The Soar theory views all intelligent behavior as a form of problem solving. The basis
for a knowledge system is therefore the problem-space computational model (PSCM), a
framework for problem solving based on the weak-method theory discussed in
chapter 1. In Soar, all tasks are represented by problem spaces. Performing a certain
task corresponds to reaching the goal in a certain problem space. As we have seen in
chapter 1, the problem solving approach has a number of problems. To be able to
find the goal in a problem space, knowledge is needed about all possible operators,
about consequences of operators and about how to choose between operators if there
is more than one available. SoarÕs solution to this problem is to use multiple problem
spaces. If a problem, ÒimpasseÓ in Soar terms, arises due to the fact that certain
knowledge is lacking, resolving this impasse automatically becomes the new goal.
This new goal becomes a subgoal of the original goal, which means that once the
subgoal is achieved, control is returned to the main goal. The subgoal has its own
problem space, state and possible set of operators. Whenever the subgoal has been
achieved it passes its results to the main goal, thereby resolving the impasse.
Learning is also keyed to the subgoaling process: whenever a subgoal has been
achieved, new knowledge is added to the knowledge base to prevent the impasse
that produced the subgoal from occurring again. So, if an impasse occurs because the
consequences of an operator are unknown, and in the subgoal these consequences
are subsequently found, knowledge is added to SoarÕs memory about the
consequences of that operator.

In the same sense as the PSCM is a refinement of the idea of a knowledge system, the
PSCM itself is further specified at the symbolic architecture level, the Soar
architecture itself. Figure 2.5 shows an overview of the architecture, in which buffers
and memory systems are represented by boxes, and processes that operate on or
between these systems by arrows. Except for sensory and motor buffers, which are
not modeled explicitly, Soar has two memory systems: a working memory and a
production memory. Working memory is used to store all temporary knowledge
needed in the problem solving process. The primary data structure in working
memory is the goal stack, which stores all current goals in a hierarchical fashion.
Tied to each of the goals on the stack is the current state of the problem space related
to that particular goal, and, if present, the current operator.

An example of the goal stack at a particular moment in a particular task is shown in
figure 2.6 (Lehman, Lewis, Newell & Pelton, 1991). The task is language
comprehension. Each triangle represents a goal with an associated problem space.
The small squares, diamonds and circles represent states, and the arrows between
them operators. The impasse-subgoal process is represented by the question mark
and the dotted arrow to a subgoal. The theory behind this model assumes that
sentence comprehension involves reading a sentence word-by-word. During the

2: Architectures of Cognition

36

Production
Memory

Working
Memory

Perceptual
Systems

Motor
Systems

Senses Muscles

Execution
Chunking

Decision

Match

Figure 2.5. Overview of the Soar architecture (from Newell, Rosenbloom & Laird, 1989)

Figure 2.6. Example of the goal stack in Soar in a language comprehension model (from Lehman,
Lewis, Newell and Pelton, 1991).

Top problem space
Two alternating operators: comprehend a
word and attend the next word

Language space
Try to update the current interpretation of
the sentence in accordance with the new
word

Constraint space
Try to find syntactic and semantic
constraints to restrain the number of
choices

Semantics space
Try to find general world knowledge to
further constrain choices

An overview of current architectures

37

reading process a representation of the meaning of the sentence is assembled. So, at
the top problem space, the goal is to comprehend a sentence. This goal is
accomplished by alternating two operators: an attend operator, which reads the next
word, and a comprehension operator, which augments or updates the current
interpretation of the sentence. Comprehending a word is generally not possible in a
single step, so after the comprehend operator is selected, an impasse will occur. This
impasse generates the language subgoal, which tries to update the current
interpretation of a sentence given a new word. The language subgoal has several
operators to do this. A word can simply be linked in the interpretation. Sometimes a
new word refers to a word read earlier, making it necessary to find the word referred
to. In other cases the interpretation built earlier is wrong, and has to be
reconstructed. The language space often offers too many choices to link words to
each other, so a third subgoal, the constraint goal, is needed to create constraints on
the possible linkings. This constraint space uses syntactic and semantic constraints
to help making the choice. To find semantic constraints, it is sometimes necessary to
use general world knowledge, which is found using the fourth and final subgoal, the
semantics goal.

All knowledge needed for problem solving is stored in production memory in the
form of rules. Although all knowledge is stored in production rules, they do not have
the same active role production rules usually have. A rule in Soar cannot take actions
by itself, it may only propose actions. So if Soar is working on a certain goal and is
in a certain state, rules may propose operators that may be applied in the current
state. Other rules may then evaluate the proposed operators, and may add so-called
preferences to them, for example stating that operator A is better than operator B.
The real decisions are made by the decision mechanism. The decision mechanism
examines the proposals and decides which proposal will be executed. The decision
mechanism is actually quite simple. If it is possible to make an easy decision, for
example if there is just one proposal or preferences indicate a clear winner, it makes
this decision, else it observes an impasse has been reached and creates a subgoal to
resolve this impasse. So, the problem of choice in Soar is not handled at the level of
individual production rule firings, which are allowed to occur in parallel, but at the
level of the proposals of change made by these rules. The learning mechanism in
Soar is called chunking.

As mentioned before, learning is keyed to impasses and subgoaling. Whenever a
subgoal is popped from the goal stack, Soar creates a new production rule with a
generalization of the state before the impasse occurred as the condition, and the
results of the subgoal as the action. Dependent on the nature of the impasse, this new
rule may propose new operators, create preferences between operators, or
implement operators or do other things.

In the language comprehension example discussed earlier learning occurs at all
levels of the model. At the level of the comprehension problem space, Soar may learn

2: Architectures of Cognition

38

a production rule that implements the comprehension operator for a specific word
in a specific context. But Soar may also learn a production rule in the constraints
problem space to generate a semantic constraint on possible meanings of a sentence.

The knowledge system approach of Soar has a number of consequences. Because not
all aspects of human cognition are part of the knowledge system approximation,
some aspects will not be part of the Soar theory, although they contribute to human
behavior as witnessed in empirical data. Another property of the Soar system is that
all choices are deliberate. Soar will never make an arbitrary choice between
operators, it either knows which operator is best, or it will try to reason it out. Since
intelligence, according to the knowledge system definition, can only involve
choosing the optimal operator based on the current knowledge, it does not say much
about what the system has to do in the case of insufficient knowledge.

An aspect of human memory that is not modeled in Soar is forgetting. According to
the knowledge-system view this is a deviation from ideal intelligence, a weakness of
the human mind. This rules out the possibility that forgetting has a function, for
example to purge the memory from useless information, allowing for better access
to useful information. An error such as choosing a sub-optimal strategy is also
considered as aberration of rationality, and is therefore not part of Soar. To
sometimes favor a sub-optimal strategy over the optimal strategy may on the other
hand have advantages. Maybe one of the sub-optimal strategies has improved due
to an increase in knowledge or a change in the environment, and has become the
optimal theory. In many situations, the only way to discover how optimal a strategy
is, is to just try it sometimes.

Since SoarÕs behavior deviates from human behavior with respect to aspects that are
not considered rational by the Soar theory, the Soar architecture can only make
predictions about human behavior in situations where behavior is not too much
influenced by ÒirrationalÓ aspects. Another consequence of the fact that Soar only
models rational aspects of behavior is the fact that its predictions are only
approximate. An example is SoarÕs predictions about time. A decision cycle in Soar
takes Ò~~100 msÓ, where Ò~~Ó means Òmay be off by a factor of 10Ó. So in a typical
experiment SoarÕs predictions have to be determined in terms of the number of
decision cycles needed, while the data from the experiment have to be expressed in
terms of reaction times. If both types of data show the same characteristics, for
example if both show the power law of practice, a claim of correspondence can be
made.

One of the strong points of Soar is its parsimony. Soar has a single long-term
memory store, the production memory, and a single learning mechanism, chunking.
Soar also adheres to a strict symbolic representation. The advantage of parsimony is
that it provides a stronger theory. For example, since chunking is the only learning
mechanism, and chunking is tied to subgoaling, Soar predicts that no learning will

An overview of current architectures

39

occur if there are no impasses. In a sense Soar sets an example: if one wants to
propose an architecture with two long-term memory stores, one really has to show
that it can not be done using just one.

ACT-R
The ACT-R (Adaptive Control of Thought, Rational) theory (Anderson, 1993;
Anderson & Lebiere, 1998) rests upon two important components: rational analysis
(Anderson, 1990) and the distinction between procedural and declarative memory
(Anderson, 1976). According to rational analysis, each component of the cognitive
architecture is optimized with respect to demands from the environment, given its
computational limitations. If we want to know how a particular aspect of the
architecture should function, we Þrst have to look at how this aspect can function as
optimal as possible in the environment. Anderson (1990) relates this optimality
claim to evolution. An example of this principle is the way choice is implemented in
ACT-R. Whenever there is a choice between what strategy to use or what memory
element to retrieve, ACT-R will take the one that has the highest expected gain,
which is the choice that has the lowest expected cost while having the highest
expected probability of succeeding.

The principle of rational analysis can also be applied to task knowledge. While
evolution shapes the architecture, learning shapes the knowledge and parts of the
knowledge acquisition process. Instead of only being focused on acquiring
knowledge per se, learning should also aim at finding the right representation. This
may imply that learning has to attempt several different ways to represent
knowledge, so that the optimal one can be selected.

Both Soar and ACT-R claim to be based on the principles of rationality, although
they define rationality differently. In Soar rationality means making optimal use of
the available knowledge to attain the goal, while in ACT-R rationality means optimal
adaptation to the environment. Not using all the knowledge available is irrational in
Soar, although it may be rational in ACT-R if the costs of using all knowledge are too
high. On the other hand ACT-R takes into account the fact that its knowledge may
be inaccurate, so additional exploration is rational. Soar cannot handle the need for
exploration very well, since that would imply that currently available knowledge is
not used to its full extent.

The distinction between procedural and declarative memory is studied quite
extensively in psychology. Although one should be careful to map distinctions from
psychology onto cognitive architectures directly, the best way to explain this
distinction is to assume different representations and different memory systems. The
disadvantage of this differentiation is that the architecture becomes less simple than
an architecture with only a single memory system, like Soar. On the other hand,
ACT-R has no separate working memory and instead uses declarative memory in
conjunction with an activation concept to store short-term facts. To keep track of the

2: Architectures of Cognition

40

current context, ACT-R uses a goal stack. The top element of the goal stack is called
the focus of attention, a pointer to an element in declarative memory that represents
the current goal. New goals can be pushed onto the goal stack, and the current goal
can be popped (removed) from the stack. Figure 2.7 shows an overview of the
processes and memory systems of ACT-R. In an appendix to this chapter, some
practical aspects of using the ACT-R simulation system will be discussed.

ACT-RÕs symbolic level
ACT-R comprises two levels of description: a symbolic and a subsymbolic level. On
the symbolic level representations in memory are discrete items. Processing at the
symbolic level entails the recognize-act cycle typical for production systems, with
declarative memory fulÞlling the role of working memory. Declarative memory
uses so-called chunks to represent information. A chunk stores information in a
propositional fashion, and may contain a certain fact, the current or previous goals,
as well as perceptual information. An example of a goal chunk, in which two has to
be added to six and the answer has not yet been found, is:

 GOAL23
ISA ADDITION
ADDEND1 SIX
ADDEND2 TWO
ANSWER NIL

In this example, ADDEND1, ADDEND2 and ANSWER are slots in chunk GOAL23,
and SIX and TWO are fillers for these slots. SIX and TWO are references to other

current context

Procedural memory

production
compilation

Figure 2.7. Overview of the ACT-R architecture

Outside world

Declarative memory

Focus of attention
points to current goal

match goal
retrieve facts

transform goal
add subgoals

An overview of current architectures

41

chunks in declarative memory. The ANSWER slot has a value of NIL, meaning the
answer is not known yet.

Assume that this chunk is the current goal. If ACT-R manages to fill the ANSWER
slot and focuses its attention on some other goal, GOAL23 will become part of
declarative memory and takes the role of the fact that six plus two equals eight.
Later, this fact may be retrieved for subsequent use.

Procedural information is represented in production memory by production rules.
A production rule has two main components: the condition-part and the action-part.
The condition-part contains patterns that match the current goal and possibly other
elements in declarative memory. The action-part can modify slot-values in the goal
and can create subgoals (and some other actions we will not discuss in detail here).
A rule that tries to solve a subtraction problem by retrieving an addition chunk
might look like:

IF the goal is to subtract num2 from num1 and there is no answer
AND there is a addition chunk num2 plus num3 equals num1

THEN put num3 in the answer-slot of the goal

This example also shows an important aspect of production rules, namely variables.
Num1, num2 and num3 are all variables that can be instantiated by any value. So this
rule can find the answer to any subtraction problem, if the necessary addition chunk
is available.

ACT-RÕs subsymbolic level
The symbolic level provides the basic building blocks of ACT-R. Using this level
only already allows for several interesting models for tasks in which a clearly
deÞned set of rules has to be applied. The symbolic level leaves a number of details
unspeciÞed, however. The main topic that it delegates to the subsymbolic level is
choice. Choices must be made when there is more than one production rule that can
match, or when there is more than one chunk that matches a pattern in a production
rule. Other matters that are taken care of by the subsymbolic level are accounts for
errors and forgetting, as well as the prediction of latencies.

At the subsymbolic level each rule or chunk has a number of parameters. In the case
of chunks, these parameters are used to calculate an estimate of the likelihood that
the chunk is needed in the current context. This estimate, called the activation of a
chunk, has two components: a base-level activation that represents the relevance of the
chunk by itself, and context activation through association strengths with fillers of the
current goal chunk. Figure 2.8 shows an example in the case of the subtraction
problem 8-2=?. The fact that eight and two are part of the context increases the
probability that chunks associated with eight and two are needed. In this case 2+6=8
will get extra activation through both two and eight. The activation process can be
summarized by the following equation:

2: Architectures of Cognition

42

(2.2)

In this equation, Ai is the total activation of chunk i. This total activation has two
parts, a relatively Þxed base-level activation (Bi) and a variable part determined by
the context (the summation). The summation adds up the inßuences for each of the
elements in the current context. Whether or not a chunk is part of the current
context is represented by Wj: if a chunk is part of the context, Wj=W/n, otherwise
Wj=0. n is the total number of chunks in the context and W is some Þxed ACT-R
parameter which usually has a value of 1. The Sji values represent the association
strengths between chunks.

The activation level of a chunk has a number of consequences for its processing. If
there is more than one chunk that matches the pattern in a production rule, the
chunk with the highest activation is chosen. Differences in activation levels can also
lead to mismatches, in which a chunk with a high activation that does not completely
match the production rule is selected. Such a chunk can be matched anyway, at an
activation penalty, by a process called partial matching. Finally activation plays a
role in latency: the lower the activation of a chunk is, the longer it takes to retrieve it.
This retrieval time is calculated using the following equation:

(2.3)

Since a chunk is always retrieved by a production rule, this equation expresses the
time to retrieve chunk i by production rule p. Besides the activation of the chunk,
the strength of the production rule (Sp) also plays a role. The F and f parameters are
Þxed ACT-R parameters, both of which default to 1. As the sum of activation and

Goal405
Subtraction

Goal23
Addition

Two

Six

Eight

Nil

Current context

Figure 2.8. Example of spreading activation in ACT-R. The current goal is Goal405, which
represents the subtraction problem 8-2=?. The context consists of Goal405 and the numbers
eight and two. Context elements are sources of spreading activation. In this example they give
extra activation to Goal23, an addition fact that can be used to Þnd the answer to the subtraction.
Spreading activation is indicated by dotted arrows.

Ai Bi W jS ji noise+
j

∑+=

Timeip Fe
f Ai Sp+()–

=

An overview of current architectures

43

strength decreases, the time to retrieve a chunk grows exponentially. To avoid
retrieval times that exceed the order of a second, a retrieval threshold is deÞned.
Chunks with an activation value below the threshold cannot be retrieved.

Choices between production rules are determined by estimates of their expected
gain. To be able to calculate the expected gain of a certain rule, several parameters
are used to make an estimate. The main equation that governs this estimate is:

(2.4)

In this equation is the estimated probability of reaching the goal using
production rule p, G is the value of the goal, and the estimated cost of reaching
the goal using p. The unit of cost in ACT-R is time. Suppose we are willing to spend
10 seconds on a certain goal (G=10), and suppose there are two production rules p1
and p2, and p1 reaches the goal 60% of the time () in 2 seconds on average
(). Similarly, and . In that case the expected gain of p1 is 4,
and the expected gain of p2 is 3. So, p1 is selected in favor of p2, since its expected
gain is higher. To be able to estimate all these values, ACT-R maintains a number of
parameters with each production rule. Besides parameters to calculate the expected
gain, production rules also have a strength parameter, comparable to activation of
chunks. The strength parameter is another component that determines the latency of
firing a production: productions with a higher strength take less time to match
(equation 2.3).

Learning in ACT-R
While ACT-R has two distinct memory systems with two levels of description,
distinct learning mechanisms are proposed to account for the knowledge that is
represented as well as for its parameters. At the symbolic level, learning
mechanisms specify how new chunks and rules are added to declarative and
procedural memory. At the subsymbolic level, learning mechanisms change the
values of the parameters. Objects are never removed from memory, although they
may become virtually irretrievable.

A new chunk in declarative memory has two possible sources: it either is a
perceptual object, or a chunk created internally by the goal processing of ACT-R
itself. ACT-RÕs internally created chunks are always old goals, as exemplified by the
ADDITION-goal discussed earlier. Any chunk in declarative memory that has not
originated from perception has once been the current goal in ACT-R.

Learning new production rules is a more intricate process. Production rules are
learned from examples. These examples are structured in the form of a dependency
chunk. A dependency is a special type of chunk, which points to all the necessary
components needed to assemble a production rule. Figure 2.9 shows the
dependency structure necessary for the subtraction rule. In this example, three slots

Estimated Gain for production p PpG C p–=

Pp
C p

Pp1 0.6=
C p1 2= Pp2 0.8= C p2 5=

2: Architectures of Cognition

44

of the dependency are filled: the goal slot contains an example of a goal in which the
answer slot is still empty (nil), and the modified slot has an example of the same goal,
but now with its answer slot filled. The constraints slot contains the fact that has been
used to transform the original goal into the modified goal. Since a dependency is a
chunk that obviously is not a perceptual chunk, it must be an old goal. In order to
learn a new rule, a dependency goal must be pushed onto the goal-stack. After
processing, the dependency is popped and the production compilation mechanism
(in former versions of ACT-R called analogy) generalizes the dependency to a
production rule. This scheme for production rule learning has two important
properties: it is dependent on declarative memory, and assembling a rule is a goal-
driven process.

Since the parameters at the subsymbolic level estimate properties of certain
knowledge elements, learning at this level is aimed at adjusting the estimates in the
light of experience. The general principle guiding these estimates is the well known
BayesÕ Theorem (Berger, 1985). According to this principle, a new estimate for a
parameter is based on its prior value and the current experience.

The base-level activation of a chunk estimates the probability that it is needed,
regardless of the current context. If a chunk was retrieved a number of times in the
immediate past, the probability that it will be needed again is relatively high. If a
chunk has not been retrieved for a long time, the probability that it will be needed
now is only small. So, each time a chunk is retrieved, its base-level activation should

Dependency

Addition
Subtraction goal

with solution
Original

subtraction goal
Nil

Eight Six Two

Figure 2.9. Example of the declarative structure needed to learn the subtraction production. In this
case, the dependency has three Þlled slots: the original goal, the modiÞed goal in which the
answer slot is Þlled, and a constraint, an old addition goal that was used to calculate the answer

goal modified constraints

arg1 arg1arg2
arg2

answer

answer addend1
addend2

sum

An overview of current architectures

45

go up, and each time it is not used, it should go down. This is exactly what the base-
level learning mechanism does: it increases the base-level activation of a chunk each
time it is retrieved, and causes it to decay over time. The following equation
calculates the base-level activation of a chunk:

(2.5)

In this formula, n is the number of times a chunk has been retrieved from memory,
and represents the time at which each of these retrievals took place. So, the longer
ago a retrieval was, the less it contributes to the activation. d is a fixed ACT-R
parameter that represents the decay of base-level activation in declarative memory
(default value=0.5).

The other parameters are estimated in a similar fashion. For example, the probability
of success of a production rule goes up each time it leads successfully to a goal, and
goes down each time the rule leads to failure.

EPIC
Soar and ACT-R focus on central cognition. The EPIC (Executive-Process Interactive
Control) architecture (Meyer & Kieras, 1997) instead stresses the importance of
peripheral cognition as a factor that determines task performance. This stress on
peripheral cognition is immediately apparent in the overview of EPIC in Þgure 2.10.
Except for the cognitive processor with its associated memory systems, the main
focus of the other three architectures discussed in this chapter, EPIC provides a set
of detailed perceptual and motor processors. In order to study the role of perceptual
and motor processors, it is also necessary to simulate a highly detailed task
environment. The perceptual modules are capable of processing stimuli from
simulated sensory organs, sending their outputs to working memory. They operate
asynchronously, and the time they require to process an input depends on the
modality, intensity and discriminability of the stimulus. The time requirements of
the perceptual modules, as well as other modules, are relatively Þxed, and serve as
an important source of constraints.

EPICÕs cognitive processor is a parallel matcher: in each cycle, which takes 50 ms,
production rules are matched to the contents of working memory. Each rule that
matches is allowed to fire, so there is no conflict resolution. It is up to the modeler to
prevent this parallel firing scheme from doing the wrong thing. Whereas both Soar
and ACT-R have a production firing system that involves both parallel and serial
aspects, EPIC has a pure parallel system of central cognition. As a consequence, EPIC
predicts that serial aspects of behavior are mainly due to communication between
central and peripheral processors and structural limitations of sense organs and
muscles. Corresponding to this idea that processing bottlenecks are located in the

Bi t() t t– j() d–

j 1=

n

∑log=

t j

2: Architectures of Cognition

46

periphery, EPIC has no goal stack in the sense of Soar and ACT-R. EPIC can
represent multiple goals in a non-hierarchical fashion, and these goals can be
worked on in parallel, provided they do not need the same peripheral resources. If
they do, as is the case in experiments where participants have to perform multiple
tasks simultaneously, executive processes are needed to coordinate which of the
goals belonging to the tasks may access what peripheral processors. Because EPICÕs
executive processes are implemented by production rules, they do not form a
separate part of the system. EPICÕs motor processors coordinate muscle commands.
Movements are carried out in two phases: movement preparations and movement
execution. During the execution of a movement the next movement can be prepared.

An important aspect of EPICÕs modular structure is the fact that all processors can
work in parallel. Once the cognitive processor has issued a command to the ocular
motor processor to direct attention to a spot, it does not have to wait until the visual
processor has processed a new image. Instead, it can do something else. In a dual-
task setting the cognitive processor may use this extra time to do processing on the
secondary task. Although all the possibilities for parallel processing increase the
flexibility of the architecture, it doesnÕt offer many constraints. The modeler has a
choice between creating a very clever parallel model and a pure serial model of a task
by providing other executive production rules. This can only be justified if it can be
shown that participants exhibit both types of behavior. In a sense, what was one of
the virtues of Soar is one of the vices of EPIC: its lack of parsimony. Another
drawback of EPIC as a cognitive modeling tool, is that it does not incorporate

Figure 2.10. Overview of the EPIC architecture (from Meyer & Kieras, 1997)

An overview of current architectures

47

learning. As has been discussed in chapter 1, it can be doubted whether information
processing and learning can be studied separately.

3CAPS
While EPIC proposes that most constraints posed on the architecture are due to
structural limitations of sense organs and muscles, 3CAPS (Just & Carpenter, 1992)
proposes limitations on working-memory capacity as the main source of
constraints. 3CAPS has a working memory, a declarative memory and a procedural
memory. As in ACT-R, memory elements have activation values. As long as the
activation of an element is above a certain threshold, it is considered part of
working memory and can be accessed by production rules. Capacity theory,
3CAPSÕs foundation, speciÞes that a certain amount of activation units is available.
These activation units can be used to either keep elements active in working
memory or to propagate activation by Þring production rules. If the maximum
amount is reached, both working memory maintenance and production Þring
processes get less activation units than they need. The result of activation
deprivation for working memory is that memory elements may be forgotten
prematurely. If processing gets less activation than needed, production rules have to
Þre multiple times to get the activations of target working memory elements above
the threshold, effectively slowing it down.

The 3CAPS theory views the limitation in activation units as a source of individual
differences. It has been successful in explaining individual differences in language
comprehension, relating performance differences in reading and comprehending
sentences to working memory span (Just & Carpenter, 1992). A limitation of 3CAPS
is that it does not incorporate learning.

A summary of the four architectures
Figure 2.11 summarizes the properties of the four architectures discussed in this
section. Each of the architectures has its own central theory, and its own roots. Most
of the architectures settle on two long-term memory stores, one for procedures and
one for facts. All of them have some form of working memory, although in the case
of ACT-R this is only a goal stack with pointers to declarative memory. Both ACT-R
and 3CAPS have an activation-based mechanism to represent availability of
memory elements. Although the mechanisms behind them differ, they share some
characteristics. 3CAPS poses a strict activation limit. The consequence of exceeding
the limit is forgetting and longer reaction times. These consequences, however, also
concur with ACT-RÕs effects of low activation. If the current context in ACT-R
contains many elements, spreading activation is divided over all these elements,
resulting in lower activation of associated elements. Although there is no explicit
activation limit in ACT-R, thinning out activation may lead to a sudden decrease in
performance when elements drop below the retrieval threshold. At least the
predictions of both mechanisms are roughly equivalent, although it may turn out

2: Architectures of Cognition

48

that they differ in subtle aspects. Not all architectures encompass learning and
peripheral cognition. Only ACT-R models both, although peripheral cognition only
in a recent extension (ACT-R/PM). This extension borrows many ideas from EPIC.
Architectures tend to seek constraints in an area that is related to the central theory,
and leave other areas unconstrained. Probably all the architectures still have too few
constraints.

Soar ACT-R EPIC CAPS

Central theory Problem solving Rational Analysis Embedded
cognition

Capacity theory

Roots ArtiÞcial
Intelligence

Cognitive
Psychology

Human-Computer
Interaction

Language
Processing

Type Symbolic Hybrid Symbolic (central
cognition)

Hybrid

Learning yes yes no no

LTM systems 1 (Productions) 2 (Productions
and Facts)

2 (Productions
and Facts)

2 (Productions
and Facts)

STM systems Working memory Goal stack Working memory,
several sensory
stores

Limited capacity
working memory

Detailed latency
predictions

no yes yes yes

Parallel
production
Þring

yes no yes yes

Main source of
constraints

Single LTM, single
learning
mechanism

Small production
rules, principle of
rationality

Peripheral
modules

Limited capacity

Parsimony ++ +/- - +/-

Peripheral
cognition

no extension (ACT-R/
PM)

yes no

Figure 2.11. Comparison between architectures

Neural network architectures

49

2.3 Neural network architectures

As of yet, there are no general neural network architectures. The four architectures
discussed are either purely symbolic or hybrid. The hybrid architectures borrow
some ideas from neural networks in order to calculate activation levels and other
parameters, but have a symbolic production system engine as main processor.

Lebiere & Anderson (1993) have developed a neural network implementation of
ACT-R. This implementation proved to be a useful exercise, since it offered
additional constraints to ACT-R. One of the changes made to ACT-R due to the
constraints posed by the neural network implementation is the fact that only goals
are matched in parallel, and any remaining matches have to be done serially. This is
curious, since other architectures, most notably 3CAPS, claim parallel matching is a
Òneurally inspiredÓ feature. But a ÒtrueÓ neural network architecture cannot be an
implementation of a symbolic architecture, since according to connectionists the
level of subsymbolic elements is the right level of abstraction to study cognition.
Before a ÒtrueÓ neural network architecture of cognition can be developed, a number
of problems has to be solved.

A first problem is the binding problem. In a symbolic architecture it is easy to create a
temporary binding between a variable in a production rule and elements in working
memory. In neural networks this is much harder. The simplest way to create a
temporary link between two structures is to activate a connection between the two.
But allowing for connections between arbitrary concepts requires an infeasibly large
number of connections. An alternative to a direct connection is to represent a
temporary connection between two concepts by a synchronous activation pattern. In
that way arbitrary concepts can be combined without the need for a physical
connection between them. The rest of the neural architecture has to be designed to
handle this kind of representation, of course, producing networks with a totally
different topology from what is currently used in neural network research. Shastri &
Ajjanagadde (1993) designed a network based on this idea, which is capable of
representing both short-term and long-term facts, and which has the ability to reason
with those facts.

A second problem is stability. Neural networks are famous for their capacity to learn.
Maintaining this knowledge is harder though. If a standard three-layer network is
trained on a certain set of data, and new information is added, the old information is
forgotten, unless special care is taken to present new information along with old
information. Since we cannot count on the outside world to orchestrate presentation
of new and old information in the way the network would like it, McClelland
hypothesizes this is a function of the hippocampus. Another solution is to design
networks that are not as susceptible to forgetting as the standard networks.
GrossbergÕs (Carpenter & Grossberg, 1991) ART-networks are an example of this
idea. An ART network first matches a new input with stored patterns. If the new

2: Architectures of Cognition

50

input resembles one of the stored patterns closely enough, learning allows the new
input to interact with the stored pattern, possibly changing it due to learning. If a
new input does not resemble any stored pattern, a new node is created to accumulate
knowledge on a new category. In this way, new classes of input patterns do not
interfere with established concepts.

A third problem is serial behavior. Many cognitive tasks, most notably problem
solving, require more than one step to be performed. In order to do this, some control
structure must be set up to store intermediate results. Recurrent networks (see, for
example, Elman 1993) have this capability in some sense. A recurrent network is a
three layer network with an additional ÒstateÓ that feeds back to the hidden layer of
the network. If several inputs are presented in a sequence, for example in processing
a sentence, this state can be used to store temporary results.

Although solutions have been found for each of the roadblocks to a fully functional
neural architecture of cognition, these solutions do not add up (yet). Notably
solutions to the binding problem demand radical changes in the architecture of a
neural network, requiring new solutions to the other problems as well. But the fact
that the brain is built out of neurons promises that there is a solution to all of the
problems. But the debate on what the right grain-size of studying cognition is, has
not ended yet.

2.4 Machine learning

All knowledge in the long-term memory stores of an architecture is somehow
acquired at some point in time, unless it is inborn. Since only Soar and ACT-R
model learning, the other architectures can not even address this issue. A model of a
task that fully addresses the issue of learnability starts with a body of knowledge
that is not speciÞcally tailored for the task, but is a set of general problem solving
methods and a large database of facts. Given the task instructions, it should be able
to learn some initial task-speciÞc knowledge, which is reÞned during practice. Both
Soar and ACT-R provide the tools to do this in the form of learning mechanisms.
But these mechanisms must be applied within a context of prior knowledge to be
able to get a complete picture of learning.

The general problem of how to extract knowledge from examples, instruction and
experience is studied in machine learning, a subdiscipline of artificial intelligence.
Although machine learning is not primarily aimed at human cognition, it can give
an overview of available methods. The task a machine learning algorithm has to
carry out is often described as concept learning: given some examples of a concept
and sometimes some prior knowledge, derive a knowledge representation of the

Machine learning

51

concept. A representation of a concept can be used to decide whether some new
example is an example of the concept or not.

Carbonell (1990) distinguishes four machine learning paradigms: the inductive,
analytic, genetic and connectionist paradigm. The inductive paradigm assumes a
concept has to be derived from a set of examples. Examples can be positive (x is an
example of the concept) or negative (y is not an example of the concept). The goal of
an inductive machine learning algorithm is to find a generalization that covers all the
positive examples, but excludes all negative ones. This generalization is based
purely on the features of the examples themselves, and not on any other knowledge.
The analytic paradigm has the opposite assumption that there is a rich and complete
domain theory, from which the concept can be derived in principle. But since
deriving things from the domain theory must be guided by some utility aspect,
examples are used as a catalyst. In the analytic paradigm often only a single example
is needed to create a concept description.

To take an example, suppose the concept of a swan has to be derived by an inductive
paradigm. This paradigm would require a set of examples, consisting of swans and
non-swans. Suppose this set contains three examples, a large white swan with a
yellow beak, a large white swan with an orange beak, a small white duck with a
yellow beak. Possible characterizations of a swan in this case are: large, or large and
white, since both of these characterizations include both swans and exclude the
duck. An analytic algorithm works in another way. It supposes we show some object
to a reasoning system and ask it whether or not it is a swan. Suppose the object has
the following properties: wings, white, large, orange beak, lays eggs, flies. Now the
reasoning system needs to have knowledge to answer this question. It knows, for
example that a swan is a large white bird that birds have wings, can fly and lay eggs.
It also knows that airplanes may be white and large too, and are also able to fly. After
some deduction, it may conclude that the object is indeed a swan. The analytic
algorithm may now learn a new rule about swans: if the object is large, white, flies
and lays eggs, it is a swan. The orange beak is not important, since it has not
contributed to the decision, and the fact that the swan has wings is ignored because
it is implied by the fact that it can fly.

Both the genetic and the connectionist paradigm can be seen as special cases of the
inductive paradigm, since both try to generalize concepts solely using examples. But
each of these approaches has grown into a separate research community. The genetic
paradigm assumes that the choice of whether or not knowledge should be learned is
based on utility instead of truth. This idea is not unique for the genetic approach,
since the utility of knowledge is also central in ACT-R. The assumption the genetic
approach makes, is that the mechanisms for determining the utility of a certain
knowledge element are the same as the mechanisms nature uses to determine the
utility of a certain organism that new knowledge is derived in the same fashion as
new organisms are conceived. In genetic algorithms knowledge is represented by

2: Architectures of Cognition

52

strings of symbols with a fixed length and alphabet. Usually a genetic algorithm
starts with a set of random strings, the initial population. For each of these strings a
fitness value is determined, a value that estimates the utility of the knowledge coded
by the string. Subsequently a new generation is calculated. Candidate member for
the new generation are selected from the old generation using a randomization
process that favors strings with a high fitness value. The new candidates are then
subjected to a mutation process: some pairs of strings are mutated by a cross-over
operator that randomly snaps each string in two pieces and exchanges the two pieces
between strings. Other strings are mutated by a point-mutation operator that
randomly changes a single token in the string. This new generation of strings is
subjected to the same procedure. The idea is that the average fitness increases with
each new population. To prove this idea, Holland (1975) derived the schema
theorem. This theorem shows that fragments of a string (called schemas) that
contribute to its overall fitness have a higher than average chance to appear in the
new population, while schemas that do not contribute will gradually disappear.
Consequently, in the long term the schemas with the highest fitness will survive.

The connectionist paradigm, although it has many flavors, can also be considered as a
form of inductive learning. Take for example the popular three-layer feed-forward
networks. In these networks an input is fed into the input layer of a network, which
is connected to a hidden layer. The hidden layer is connected to an output layer that
makes a final classification. After a classification has been made, the
backpropagation algorithm is used to change the connection weights in the network
based on the discrepancy between the required output and the actual output. Links
which, on average, contribute to successful classifications will be strengthened,
while links that do not contribute to success will be weakened. Cells in the hidden
layer will often be feature-detectors, a role that shows close resemblance to
HollandÕs schemata.

If one looks at the different paradigms, it is apparent that there is a difference in the
number of examples the algorithms need before a reasonable successful
generalization can be made. While an analytical algorithm sometimes only needs a
single example, the connectionist and genetic algorithms often need thousands of
trials before they converge. An analytical algorithm on the other hand needs to do a
lot of processing and requires background knowledge to arrive at a generalization.
New knowledge is often logically deduced from old knowledge, ensuring that if the
domain knowledge is correct, the newly derived knowledge is also correct. This
distinction is more like a dimension, since algorithms can be conceived of that use
both domain knowledge and some generalization based on examining multiple
examples. We will call this dimension the rational-empirical dimension.

Another issue in machine learning that is often left implicit, is the goal of learning.
Sometimes learning is aimed at obtaining new knowledge. For example, if a neural
network learns to discriminate letters on the basis of features or pixel patterns, it has
learned new concepts. But learning can also be aimed at speeding up an existing

Machine learning

53

skill, by compiling knowledge into more efficient representations. This second goal
of learning is also very important in human learning, and is in general described by
the power law of practice, as discussed in chapter 1. Speedup and new knowledge
are not always separate goals. As is also discussed in chapter 1, a speedup in
processing may make some instances of problems tractable that were previously
intractable. In that case speedup opens the road to new knowledge. So this second
distinction can also be seen as a dimension, which we will call the exploration-
performance dimension.

While machine learning algorithms often take extreme positions on both
dimensions, human learning has to be both rational and empirical, and aimed at
both performance and exploration. Figure 2.12 shows how some current learning
algorithms and theories can be positioned on the two learning dimensions.
Induction algorithms tend to be aimed at exploration. The inductive algorithms
based on logic often use some sort of inference to arrive at the best solution given a
set of examples. So this kind of algorithm is rational in NewellÕs definition, in the
sense that they use the available knowledge as rationally as possible, but also
empirical, since they use multiple examples. Genetic algorithms and neural
networks lack a rational component, and derive their generalizations from principles

Soar
Chunking

Rational

ACT-R
production
compilation

Empirical

EBL

ACT-R subsymbolic
learning

ACT-R chunk
learning

Genetic
algorithms

Neural
networks

Exploration

Performance

Figure 2.12. Learning algorithms and theories shown on the exploration-performance dimension
and on the rational-empirical dimension.

Behaviorist learning
logic-based
Induction
algorithms

2: Architectures of Cognition

54

inspired by genetics and neuroscience. Behaviorist principles of learning can also be
found in this area: they are strictly empirical, and are not interested in performance.
This may well be one of the reasons why connectionists are sometimes falsely
accused of being a new breed of behaviorists. Analytical algorithms, exemplified by
explanation-based learning (EBL), are on the opposite side of the figure. EBL is
strictly rational in the sense that all new knowledge is specialized domain
knowledge, and is based on a single example. As a consequence it can not gather any
new knowledge. SoarÕs chunking mechanism resembles EBL in the sense that
learning is based on a single example, summarizing processing in a subgoal, and its
stress on rationality.

ACT-RÕs learning mechanisms are harder to classify, since they cannot really be
considered as learning algorithms. So their positions in the diagram are
approximate. The chunk learning mechanism refers to the fact that ACT-R stores
past goals in declarative memory. This may serve several functions. An old goal may
just help to increase performance, for example of the fact that three plus four equals
seven is memorized as a result of counting it. But a chunk may also contain
information gathered from the outside world, or may contain a hypothesis posed by
reasoning. If exploration is considered to be a function that proposes a new
knowledge element as something that may be potentially useful, the chunk-learning
mechanism is more an exploration mechanism than a performance increasing
mechanism. Since new chunks are single examples, and are based on reasoning, they
are more a product of rational than empirical learning. The empirical aspect of
learning is covered by ACT-RÕs subsymbolic learning mechanisms. By examining
many examples, ACT-R can estimate the various parameters associated with chunks
and productions. But contrary to other subsymbolic learning algorithms, parameter
learning is mainly aimed at performance increase. A higher activation allows
quicker retrieval of a declarative chunk, and a better estimate of expected-gain
parameters allows for more accurate strategy choices. In order to compile a new
production in ACT-R, a detailed example must be available in the form of a
dependency structure. Although production compilation can be used in any possible
fashion, it is not feasible to create large amounts of production rules that contain
uncertain knowledge. So the most likely role of production compilation is to increase
the efficiency of established knowledge.

Although we have discussed ACT-RÕs mechanisms separately, they usually work in
concert. So some new knowledge may initially be learned as a chunk. The
parameters of this chunk may be learned by parameter learning. If parameter
learning has established that the chunk serves an intermediate function in a problem
solving step, it may be transformed into a production rule. So although ACT-RÕs
learning mechanisms are not fully fledged learning algorithms, they have the
capability, in principle, to cover the whole spectrum of learning means and goals. In
later chapters I will show how these primitive learning mechanisms can serve as
building blocks for a theory of skill learning.

Conclusions

55

2.5 Conclusions

For the purposes of this thesis, accurate modeling of learning processes in complex
problem solving, the ACT-R architecture turns out to be the clear winner with
respect to the comparisons made in this chapter. Neural networks Þrst have to solve
a number of problems before they can achieve the architecture stadium, and 3CAPS
and EPIC do not encompass learning. Although Soar supports learning, it is rigid in
the sense that it is mainly aimed at performance increases, and gaining new
knowledge is hard to model. SoarÕs theoretical assumptions are the main problem:
by deÞning intelligence as using available knowledge, it discounts the importance
of gaining new knowledge, and by ignoring performance aspects of behavior it
makes detailed predictions of behavior impossible. When the learning mechanisms
of ACT-R are examined in the context of machine learning, it turns out that they can
in principle cover the whole spectrum of learning.

Although ACT-R is the vehicle I will use in the rest of this thesis, some of SoarÕs ideas
will resurface. The idea to key learning to impasses in problem solving is not only
rational in the Soar sense, but also, as we will see in chapter 5, in ACT-RÕs.

2.6 Appendix: The ACT-R simulation system

The ACT-R simulation system is a program written in Common Lisp. The basic
version is based on a command-line interface in Lisp. Typically, a user loads
Common Lisp, loads ACT-R and starts working on a model. A model in ACT-R,
which is just a text Þle, usually consists of four areas: global parameter declarations,
the contents of declarative memory, the contents of procedural memory and lisp-
code to run the particular experiment.

There are two types of declarations for declarative memory: the specification of the
chunk types and the initial contents of declarative memory. Although chunk types
do not change during the execution of a model, the contents of declarative memory
almost always does, since all the goals and subgoals ACT-R creates are added to it.
In some models, a specification is added that gives the initial chunks an activation
value that differs from the default value 0, for example to reflect that it is a chunk
that has been in declarative memory for a long time. The next part of a model is an
initial set of production rules. Sometimes initial parameters are specified for these
rules. Finally some code is added to run an experiment, and to store results.

2: Architectures of Cognition

56

Figure 2.13 show an example of a very small model, a model that tries to solve an
addition-problem. It knows only two addition-facts: 3+4=7 and 4+2=6. Whenever it
tries to solve an addition-problem, two rules are applicable: the do-addition rule that
tries to retrieve a matching addition-fact and the do-addition-fail rule that give
ÒdonÕt knowÓ as an answer. The parameter declaration for the do-addition-fail rule
makes sure that its expected gain is lower than the expected gain of the do-addition
rule. ACT-R will therefore first try do-addition, and only when that rule fails will do-
addition-fail be allowed to fire.

The Lisp code consists of a function that goes through n addition-problems. It
generates a random addition-problem, which is given to the model. After one of the

; Very simple ACT-R example model

; Parameter declarations: switch on
rational analysis and set Activation Noise
to 0.1
(sgp :era t :ans 0.1)

; chunk-type declarations
(chunk-type addition-problem arg1 arg2
answer)
(chunk-type addition-fact addend1 addend2
sum)

; initial contents of declarative memory

(add-dm
(fact34

isa addition-fact
addend1 3
addend2 4
sum 7)

(fact42
isa addition-fact
addend1 4
addend2 2
sum 6))

; contents of production memory

(p do-addition
=goal>

isa addition-problem
arg1 =num1
arg2 =num2
answer nil

=fact>
isa addition-fact
addend1 =num1
addend2 =num2
sum =num3

==>
=goal>

answer =num3)

(p do-addition-fail
=goal>

isa addition-problem
answer nil

==>
=goal>

answer dont-know)

; Parameter declaration for do-addition-
fail

(spp do-addition-fail :r 0.2)

; Lisp code to run sample experiment

(defun do-it (n)
(let ((result 0))

(dotimes (i n)
(let ((task (gentemp "goal")))
(eval `(add-dm

(,task isa addition-problem
arg1 ,(random 5)
arg2 ,(random 5))))

(eval `(goal-focus ,task))
(run 1)
(when

(equal (+
(eval `(chunk-slot-value ,task

arg1))
(eval `(chunk-slot-value ,task

arg2)))
(eval `(chunk-slot-value ,task

answer)))
(setf result (1+ result)))

 (pop-goal)))
(format t "~%Accuracy = ~6,3F" (/

result n))))

Figure 2.13. Example ACT-R model

Appendix: The ACT-R simulation system

57

production rules has fired, the lisp-function checks whether the answer is correct.
After all n problems have or have not been solved, the function gives an accuracy
score.

The following trace fragment illustrates the output of the model:

? (do-it 2)
 Cycle 0 Time 0.000: Do-Addition-Fail
 Matching latency: 1.000
 Action latency: 0.050

 Stopped at cycle 1
 Run latency: 1.050
 Cycle 1 Time 1.050: Do-Addition
 Matching latency: 0.950
 Action latency: 0.050

 Stopped at cycle 2
 Run latency: 1.000
Accuracy = 0.500

Figure 2.14. The ACT-R environment

2: Architectures of Cognition

58

This fragment goes through two addition-problems. The first problem fails, but the
second succeeds. The trace shows relatively little detail, but additional tracing
options can be used to get more information.

Although ACT-R can be used from a command-line interface, an elaborate
environment is also offered. Figure 2.14 shows some of the viewers available in the
environment, using the addition example. In the environment, models can be
executed step-by-step. At each moment the current contents of declarative and
procedural memory can be viewed, as well as the rules that are applicable to the
current goal. The environment also provides for a syntax-directed editor that makes
it easier for novices to enter chunks and production rules. Finally, the environment
supports a tutoring function that can be used in combination with a web-based
tutorial. The ACT-R code, as well as the tutorial and the code for the environment, is
available from http://act.psy.cmu.edu The models discussed in this thesis are listed
in an appendix at the end of the thesis, and are all available from a web page as well.

CHAPTER 3 Scheduling

3: Scheduling

60

3.1 Introduction

In this chapter I will discuss an experiment that investigates performance changes
due to learning while performing the task of precedence constrained scheduling
(PCS). In PCS, a number of tasks has to be assigned to a number of workers. Each of
the workers has a Þxed number of hours to perform tasks. Each of the tasks can
have a different (but integer) duration. Finally, a number of order constraints has to
be met: sometimes a certain task has to be Þnished before another task may start. All
workers are assumed to work in parallel. A simple example of this problem is:

There are two workers, each having 6 hours
Task A takes 1 hour
Task B takes 2 hours
Task C takes 3 hours
Task D takes 3 hours
Task E takes 3 hours
The following constraints have to met:
A before B
A before D
C before E

A solution to this example is to assign ABD to one worker, and CE to the other. This
solution is straightforward, since the constraints are satisfied by the order within a
single worker. So ÒA before BÓ and ÒA before DÓ are satisfied by assigning ABD to
a worker, and ÒC before EÓ is satisfied by assigning CE to the second worker. A
solution in which the constraints are ÒcrossedÓ is to assign ABE to one worker and
CD to the other. In that case the ÒA before DÓ and ÒC before EÓ constraints span both
workers. Problems can be made more difficult by increasing the number of tasks and
workers, but also by creating problems in which the constraints span multiple
workers for any solution.

Although there are many NP-complete problems that might be used as the task in
an experiment, not all of them are equally suitable. PCS has the following attractive
properties:

1. The task is easy to explain, since it corresponds to a task participants may be
familiar with (scheduling in general).

2. It is improbable that participants have any relevant task-speciÞc knowledge.

3. It is relatively easy to create challenging instances.

4. The task can be presented in several different ways, one of which requires
participants to solve problems completely by heart.

The version of the problem I will use in the experiment uses instances in which the
tasks always take up all available time of the workers. So, the duration of all the tasks
together is equal to the number of workers multiplied by the number of hours each
worker has. This sub-problem will be called fully-filled precedence constrained

Experiment

61

scheduling (FF-PCS). Restricting the selection of instances to a sub-problem is in a
sense dangerous, because a sub-problem of an NP-complete problem is not
necessarily NP-complete itself. Fortunately, FF-PCS is also NP-complete. A proof of
this fact is given in an appendix to this chapter.

3.2 Experiment

The goal of the experiment is exploration. The general expectation is that if
participants have to solve a series of scheduling problems, their performance will
generally improve due to learning. But what causes these improvements? Is it a
matter of gradual speed-up, or do participants make discoveries that enable them to
use a more effective approach to the problem? Analysis of verbal protocols will
hopefully shed some light on this issue.

To serve as experimental stimuli, a set of instances with varying difficulty was
created. The main determiner for difficulty is the number of workers (m), which
ranged from 1 to 3 in the experiment. The stimuli were presented to participants
using two different interfaces (figure 3.1), implemented in HyperCard on the
Macintosh. The direct-manipulation interface, shown in the top panel of figure 3.1,
shows both a propositional representation and a visual representation of the task.
The propositional representation lists the constraints of the schedule using short
sentences such as ÒA before BÓ. In the visual representation, tasks are represented by
the white boxes with letters in them. The length of each box represents the duration
of a task. Workers are represented by grey rectangles. As with the tasks, the length
of the rectangle represents the number of hours a worker has. Participants can create
a schedule by dragging the task boxes onto the worker rectangles. In the figure task F
has already been dragged onto the bottom rectangle. In the propositional interface
participants had to perform the planning process entirely by heart. The only thing
the interface allows participants to do is to enter the solution by clicking on the
rectangles containing the letters (A-F in the example) representing the tasks, the
Ònext workerÓ-button to end the task list of a worker and move on to the next one,
and a ÒClearÓ-button to start over again. Both interfaces contain a ÒReadyÓ button
which the participant has to click after entering the solution. If the answer is correct
the program will move on to the next scheduling problem, else feedback will be
provided and the participant has to try again.

To see whether participants develop specialized strategies for specific types of
instances, approximately half of the instances has a solution that conforms to a
common pattern. This pattern is outlined in figure 3.2 for instances with two and
three workers. A representation similar to the direct-manipulation interface is used
(the two worker example is the solution to the instance in figure 3.1). These instances

3: Scheduling

62

are particularly hard due to the fact that many of the precedence constraints in this
pattern cross workers in the solution.

Although this experiment is primarily exploratory, a number of expectations can be
formulated. A first expectation is that performance will increase due to experience:
a learning effect. A second expectation is that there will be an effect of the type of
interface: the direct-manipulation interface is easier, so will lead to better
performance. A third expectation is that instances conforming to the pattern in
figure 3.2 will be harder to solve than other instances. A final expectation is that
participants will discover some new strategies to solve the scheduling problem.
Evidence for new strategies has to found by protocol analysis, or by sudden jumps
in performance.

Figure 3.1. Two interfaces used in the experiment. The top panel shows the direct-manipulation
interface in which participants can drag around boxes representing the tasks, while the bottom
panel shows the propositional interface in which participants have to solve the problem by
heart.

Experiment

63

Method

Participants. Eighteen undergraduate students of the University of Groningen were
recruited to participate in this experiment. The experiment lasted 2 hours, including
instructions and a small break. Participants were paid Fl. 20 for their efforts.

Materials. Sixteen FF-PCS instances were created of the following types:

• R1 (2 instances): a single worker with four or Þve tasks

• A2 (10 instances): two workers, conforming to the pattern in Þgure 3.2

• R2 (8 instances): two workers, not conforming to any speciÞc pattern

• A3 (3 instances): three workers, conforming to the pattern in Þgure 3.2

• R3 (3 instances): three workers, not conforming to any speciÞc pattern

Procedure. Participants were randomly assigned to two groups. Group 1 started the
experiment with the direct-manipulation interface, and switched to the
propositional interface for the second half of the experiment. Group 2 started with
the propositional interface and switched to the direct-manipulation interface for the
second half. Figure 3.3 shows the exact experimental procedure for each of the two
groups. At the start of the experiment, participants were instructed about the task
and the particular interface they started with. To ensure participants properly
understood how to handle the interface, they were given an example problem with
its solution, after which they had to enter the solution. After the break participants
were told the task would remain the same, but the way in which they had to enter
the answer had changed. They then again had to enter the solution of an example

Figure 3.2. Schematic diagrams of the solutions to half of the instances presented to the participants
(an example for two and for three workers is shown). The representation is similar to the direct-
manipulation interface: boxes represent tasks and the length of a box represents its duration.
The arrows represent precedence constraints. Note that the letters in the boxes are just examples
and differ between instances.

B

A

D

F C

Eworker 1

worker 2

A

B

C

D

E

F G

H

I

worker 1

worker 2

worker 3

C before A
E before B
F before B
D before C

A before D
E before G
F before A
G before C
H before B
I before B

3: Scheduling

64

using the new interface. Participants were asked to think aloud during the
experiment, which was recorded using an audio cassette recorder. The software
registered and time-tagged all actions participants performed during the
experiment.

Analysis of the results
To analyze the results of the experiment, a number of methods will be used. First,
we will examine the solution times, and see if participants become faster, and
whether or not there is transfer between the Þrst and the second interface. Secondly,
we will do a protocol analysis on the verbal protocols in order to get a deeper
insight into what strategies participants learn during the experiment.

3.3 Analysis of solution times

An informal analysis
There are a number of potential factors that inßuence the solution time for each
instance:

Group 1 Group 2

Start of experiment Start of experiment

Direct
manipulation
interface

one R1 problem Propositional
interface

one R1 problem

one R2 problem one R2 problem

Þve A2 and three R2
problems, in
random order

Þve A2 and three R2
problems, in
random order

Break Break

Propositional
interface

one R1 problem Direct
manipulation
interface

one R1 problem

one R2 problem one R2 problem

Þve A2 and three R2
problems, in
random order

Þve A2 and three R2
problems, in
random order

three A3 and three
R3 problems, in
random order

three A3 and three
R3 problems, in
random order

End of experiment End of experiment

Figure 3.3. Experimental procedure

Analysis of solution times

65

1. Individual differences

2. The difÞculty of the instance

3. The interface (direct-manipulation or propositional)

4. Learning

To get some impression of the learning factor, which is the main factor of interest, we
will first do some quick calculations. To remove the difficulty factor of items, all
solution times were divided by the average solution time for that particular item.
Since participants occasionally Ògot stuckÓ at a particular instance, solution times
that were longer than 2.5 times the average time were removed (8 cases out of 288).
Finally, the scores were averaged and plotted in figure 3.4. Only the five A2
problems and three R2 instances are plotted, since the first R1 and first R2 instance
are the same for all participants, so average to 1 all the time, and the A3 and R3
instances at the end of the experiment were completed by too few participants, so
were also omitted in the analysis. In the first part for each of the two groups there is
a clear learning effect, since on average participants start at around 1.3 times the

First part Second part

Group 1

Direct manipulation

Average solution time = 143 sec

Propositional

Average solution time = 292 sec

Group 2

Propositional

Average solution time = 287 sec

Direct manipulation

Average solution time = 150 sec

Figure 3.4. Relative time to solve each instance for the two groups and the two parts of the
experiment

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

1 2 3 4 5 6 7 8

Instance

Re
la

tiv
e

tim
e

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

1 2 3 4 5 6 7 8

Instance

Re
la

tiv
e

tim
e

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

1 2 3 4 5 6 7 8

Instance

Re
la

tiv
e

tim
e

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

1 2 3 4 5 6 7 8

Instance

Re
la

tiv
e

tim
e

3: Scheduling

66

average time to solve an instance, and improve to around 0.8 times the average time.
In the second part of the experiment, there is no effect of learning. This cannot be
explained by the fact that the learning curve has flattened out due to the fact that
there is nothing left to learn, since the average solution time is not better than in the
first part, but even slightly worse (average solution times are below each of the
graphs.) So, there is evidence for a time-on-task effect. This effect has several possible
explanations, like boredom and a decrease in motivation or mental fatigue.

An analysis using multilevel statistics
A more thorough method to analyze the data that gives an impression of the impact
of the different factors on the solution time, is to make a statistical model using
multilevel analysis (Bryk & Raudenbush, 1992). A model in the sense of multilevel
analysis is a set of regression equations that predicts the dependent variable, the
solution time in our case. The basic regression equation is as follows:

(3.1)

The solution time for participant i and trial t is predicted by an intercept for
participant i, plus the inßuence of a number of factors. Factors, in this equation
represented by , , etc., are in our case the type of interface, the difÞculty of an
instance and the trial number. These factors are scaled by , , etc. The Þnal part
of the equation, , represents the random variance for each trial.

Each of the β scaling factors may vary between participants, as indicated by the i
index. Each of these scaling factors has its own equation:

(3.2)

(3.3)

Multilevel analysis in general also allows us to add factors to these equations,
comparable to the and in (3.1). These factors represent characteristics of
individual participants. They are omitted here, since no such information is
available. The γ-coefficients are called the fixed effects in terms of multilevel analysis,
since they do not change between either participants or trials. The u-coefficients are
called random effects, since they vary between participants. Not all factors have a
significant random effect on differences between individuals, so sometimes the βÕs
are just equal to the γÕs. An advantage of this method is that between-participant
variance and within-participant variance can be discerned. A random effect on
means that individuals have different starting points on the learning curve, so a
random intercept. If we take the trial number as a factor, the β-coefficient that serves
as its multiplication factor will become the slope of the learning curve. A random
effect on this coefficient means individuals have different learning rates, so a random

yti β0i β1i Ati β2iBti … rti+ + + +=

yti β0i

Ati Bti
β1i β2i

rti

β0i γ00 u0i+=

β1i γ10 u1i+=

Ati Bti

β0i

Analysis of solution times

67

slope. Figure 3.5 illustrates the difference between a random intercept and a random
slope.

The general method to find the most appropriate model for a certain set of data is to
use a multilevel analysis program to estimate the coefficients in the model. In this
case MLn (Rasbash & Woodhouse, 1995) is used. The analysis starts with a very
simple model, after which additional factors are added incrementally. After each
additional factor, the deviance (- 2 log likelihood) between the model and the data is
checked, to see if the additional factor provides for a significant improvement.

Analysis of the Þrst part of the experiment
One of the constraints on multilevel analysis is that the dependent variable has to
have a normal distribution. The solution times in the scheduling experiment,
however, are skewed. In order to Þx this, the logarithm of solution times is used
instead of plain solution times. One of the factors will be the trial number itself, in
order to estimate the learning effect. The actual version of (3.1) now becomes:

(3.4)

In this equation t is the trial number, ranging from 1 to 9, equals 1 if the trial
involves a type A instance (the difÞcult ones) and 0 otherwise, equals 1 if the
item is presented in the propositional interface, and 0 if it is presented in the direct-
manipulation interface. The term represents the interaction between interface
and instance type. Note that most of the βÕs have been replaced by γÕs, indicating
that no random effect on the level of individual differences has been investigated.
Both β-parameters are calculated according to (3.2) and (3.3). The data used in the
analysis are all the A2 and R2 instances in the Þrst part of the experiment, nine in
all. Three data points with excessively long solution times were removed (each from
a different participant).

trial number

solution
time

trial number

solution
time

Figure 3.5. The difference between a random intercept (left), and a random slope (right). Each line
represents an individual participant.

ylog ti β0i β1it γ20 Ati γ30V ti γ40 AtiV ti rti+ + + + +=

Ati
V ti

AtiV ti

3: Scheduling

68

Although (3.4) represents the most elaborate model, it is not necessarily the best
model. The procedure to Þnd the best model is as follows. We start with the most
simple model, in this case the model that just states that the solution time is a Þxed
value, and all variation is random noise. This model will leave some unexplained
variance, as expressed in the -2 log likelihood estimate. The next step is to add some
factor that may improve the model. Adding a factor reduces the degrees of freedom,
so this reduction must be warranted by a signiÞcant decrease in unexplained
variance. In this analysis, the signiÞcance threshold will be 5%. Figure 3.6 shows the
search tree to Þnd the most appropriate model. At the top of the tree the most simple
model is shown. Adding the factor of time considerably improves the model, as
shown by the second box. Now there are two choices: adding a random intercept or
a random slope. The search tree explores both possibilities. Note that the
introduction of random effects implies replacing a Þxed γ in the formula by a β that
has a different value for each participant. Although both new models improve the
previous model, the random intercept model reduces unexplained variance most.
Moreover, if a random slope is consequently added, this does not improve the
model. Apparently the individual differences can be captured by just a random
intercept. The next three steps add the factors of interface type, problem type and the
interaction between the two. Each of these steps improve the model. Finally, a last
attempt is made to add a random slope, but this still does not improve the model.

The final model is presented in figure 3.7. It turns out that the effect of trial number
is very significant, so there is a clear learning effect. The type of interface also has a
significant impact on the solution time: the propositional interface, not surprisingly,

Fixed effects

Effect Parameter Estimate S.E. p<

Intercept γ00 5.030 0.130 .000

Trial no. γ10 -0.074 0.014 .000

Propositional interface γ30 0.549 0.163 .000

Type A problem γ20 0.104 0.104 .159

Propositional * Type A γ40 0.298 0.145 .020

Random effects

var(intercept) u0i 0.067 0.030

var(residual) rti 0.207 0.025

-2 log likelihood: 224.9

Figure 3.7. Statistical model of the log solution times

Analysis of solution times

69

ylog ti γ00 rti+=

-2 log likelihood= 321.8

ylog ti β0i β1it γ20 Ati γ30V ti γ40 AtiV ti rti+ + + + +=

-2 log likelihood= 220.6

ylog ti γ00 γ10t r+ ti+=

-2 log likelihood= 312.7

ylog ti β0i γ10t r+ ti+=

-2 log likelihood= 255.3

ylog ti γ00 β1it r+ ti+=

-2 log likelihood= 274.6

ylog ti β0i β1it r+ ti+=

-2 log likelihood= 252.5

ylog ti β0i γ10t γ30V ti r+ + ti+=

-2 log likelihood= 239.4

ylog ti β0i γ10t γ20 Ati γ30V ti rti+ + + +=

-2 log likelihood= 229.0

ylog ti β0i γ10t γ20 Ati γ30V ti γ40 AtiV ti rti+ + + + +=

-2 log likelihood= 224.9

add the factor of trial number
p=0.00

add random intercept
p=0.00

add random slope
p=0.00

add interface type
p=0.00

add random slope
p=0.25 (not significant)

add problem type
p=0.00

add interaction between interface and problem type
p=0.04

add random slope
p=0.12 (not significant)

Final model

Figure 3.6. Search tree to Þnd the best model. Each box represents a model, with the equation at the
top and the -2 log likelihood at the bottom. The thick arrows and boxes indicate the optimal
search path.

3: Scheduling

70

requires more time. Whether or not an instance is of type A is mainly significant in
interaction with the type of interface. If the instance is of type A and the interface is
propositional, there is an extra increase in solution time. This interaction can be
explained by pointing at the difficulty of type A problems. The hard part of solving
type A problems is to coordinate precedence constraints that span multiple workers.
The fact that this type of instances is especially hard in the propositional interface
condition is evidence for the fact that participants do not use a visual image to
represent the schedule, but rather a linear string of tasks. If participants used a visual
image, the type A problems would not have any additional difficulty associated
with them in the propositional interface condition. If a schedule is represented as a
linear string, it is easy to check constraints within a worker, but very hard to check
constraints between workers.

It turns out that the best fitting model only has a random intercept and no random
slope. So, the main source of individual differences is the starting point of the
learning curve. Individual differences in learning rate were not large enough to
provide for a better fitting model.

Analysis of the second part of the experiment
Although the informal analysis already showed that there is probably no learning
effect in the second half the experiment, a multilevel analysis was conducted for
that part as well. Before the analysis, Þve datapoints with excessively long solution
times were removed from the set. Figure 3.8 shows an abbreviated version of the
search tree: only -2 log likelihoods are shown and the additions to the model. What
is immediately apparent is that the trial number has no impact on the solution time,
whether it is added to the simple model or to the Þnal model. Although the
interaction between interface and problem type is not signiÞcant in the second part
of the experiment, the other effects are quite similar to effects in the Þrst part of the
experiment. The bottom part of Þgure 3.8 shows the Þnal model.

Conclusions
The statistical model of the solution times conÞrms the expectations stated in the
previous section, at least with respect to the Þrst part of the experiment. There are
strong effects of learning, interface type and problem type. None of these effects are
particularly surprising. Oddly enough there is no learning effect in the second part
of the experiment. An explanation for this has to be sought in the area of motivation
or fatigue: perhaps participants no longer seek strategies that improve their
performance. In chapter 5, I will show learning may indeed be partly dependent on
motivation, because a low motivation makes learning strategies less attractive than
just trying a simple strategy over and over again.

Analysis of verbal protocols

71

3.4 Analysis of verbal protocols

Inspection of the verbal protocol recordings reveals that only protocols of the
propositional interface condition can be interpreted easily. The recordings of the
direct-manipulation interface contain little information, and are difÞcult to correlate
with actions of the participants in the interface. This was to be expected, since
verbal protocol analysis tends to be a poor research instrument in assessing tasks
with a large visual component. Since the learning effects are largest in the Þrst half
of the experiment, participants from group 2 are used primarily in the analysis. One
of the recordings was unusable due to problems with the cassette recorder, and
another participant did not verbalize enough in order to be intelligible. So seven

297.4

281.8

add random intercept

296.9

add trial number

275.8

add interface type

252.1

add problem type

249.9

252.1

add interaction between interface and problem

add trial
final model

Fixed effects

Effect Parameter Estimate S.E. p<

Intercept γ00 4.516 0.116 .000

Propositional interface γ30 0.403 0.152 .004

Type A problem γ20 0.427 0.084 .000

Random effects

var(intercept) u0i 0.072 0.035

var(residual) rti 0.264 0.032

-2 log likelihood: 252.1

Figure 3.8. Abbreviated search tree for the model of the second part of the experiment and the Þnal
model

number

3: Scheduling

72

protocols were available from group 2. To get an impression of group 1 as well, two
protocols from the second half of the experiment are added, giving a set of nine
protocols.

We will proceed with the analysis in two steps. First, we will do a detailed analysis
of a single participant. This analysis will show what kinds of processing are going on
during problem solving. Secondly, a more quantitative analysis will be done on the
set of nine protocols.

Analysis of participant 2
Participant 2 shows a learning curve that is similar in shape to the average learning
curve (Þgure 3.9). The relative time to solve an instance improves from 2.3 for the
Þrst instance to 0.5 for the last, a learning effect that is even larger than the average
participant. The following excerpt is from the protocol of participant 2, while she is
solving problem A21 (Þgure 3.1). This problem is interesting, since it is followed by
a large jump in performance. A possible explanation, which we will now examine in
detail by protocol analysis, is that the participant discovers some new means to
solve scheduling problems. The problem and the protocol are translated from
Dutch, as are all other excerpts discussed. First I will repeat the problem:

There are two workers with 6 hours each
Task A takes 1 hour
Task B takes 1 hour
Task C takes 2 hours
Task D takes 2 hours
Task E takes 3 hours
Task F takes 3 hours
The schedule has to satisfy the following constraints:
C before A
E before B
F before B
D before C

0

0.5

1

1.5

2

2.5

A21 D A25 R24 A23 R22 A29 A27

Instance

Re
la

tiv
e

tim
e

Figure 3.9. Relative solution times (similar to Þgure 3.4) for participant 2. Note that A21 is the third
instance the participant has to solve, since the two training problems are not in the graph.

Analysis of verbal protocols

73

The protocol is as follows:

Yes. There are two workers with each six hours. Two. Task A, task B, task C. The schedule has to
satisfy the following constraints... Task C before A, C before A, E before B, F before B and D before C.
[..unintelligible..] First now D. D.. D..C..A..B.., D..C..A..B.., D.C.A.B., DCAB, and then, DCAB, [keys
in DCAB] and then E... E..F, E..F. [keys in EF] [Receives feedback] Oh, task F is not before B. C.., D has
to be before C. D.. No, C..D.., D has to be before C. C.. D.., C.. D.., A...B [keys in CDAB] thatÕs one
worker. E..F..., [keys in EF]. [receives feedback] Huh?! Task F is not before B and task D is not before
C? Oh wait. D has to be before C, so Þrst D... D...C..AB..AB [keys in DCAB]. Next worker, F.. yes,
F..E.., ready. [keys in FE]. [receives feedback] Task E is not before B? IsnÕt it? Yes? [Emphasizing, keys
in] D..C..A..B..E..E..F...ready. [receives feedback]. Well! Ehmm.. Task D takes two hours. [Silence]
Task F is not before B, so F should be before B. Task E before... E should be before B, so E and F
shouldnÕt be done by.... by the same worker. So we will, letÕs see. Task C before A, so we will Þrst.... E
before B, so we will Þrst E..E..E..B..C. E...E..B..C.., EBC, no thatÕs not right. EBC..F..A..B.. Ah.. start
again. The D should be before C. [silence]. E... Ehm... The D should be before the C, so we put the D
with worker one, and C with worker two. So we start with E with worker one... E..C..A.. E.C.A.
ECA.. E.C.A. No, I donÕt get it... E..C..A..D..F.. Oh.. wrong again.

This is about half of the total protocol for problem A21. Participant 2 needed 793
seconds to solve the whole problem. It is obvious that the written protocol doesnÕt
reveal much in the presentation given above. Nevertheless, we can already infer
some categories into which we can classify the various elements in the protocol. First
there are reading actions, in which the participant reads parts of the problem. It is
also obvious that the participant incrementally builds a schedule by adding tasks
one by one. So adding a task to the current schedule is also a possible action. The
interesting parts of the protocol are the parts in which the participant makes complex
inferences. There is one obvious example in the above excerpts, where the
participants remarks Òso E and F shouldnÕt be done by.... by the same worker.Ó In
order to reach this conclusion, five constraints of the problem need to be combined:
the fact that each worker has six hours that both E and F take three hours, and the
fact that both E and F must be before B. Identification of the simple steps in the
problem solving process enables us to keep track of the information the participant
has in working memory at a particular time. In order to analyze the above fragment,
and the rest of the protocol, the following categories will be used.

Notational primitives:

• c:a denotes the constraint ÒC before AÓ. Participants can connect these
constraints to more advanced schemas like b:c:a (b is before c is before a) or b;c:a
(b and c are both before a).

• sched(acd|bef) denotes a schedule or a schedule fragment, the vertical bar
separates workers.

• a5 denotes the number of hours a task takes (in this case: task a takes 5 hours).

• work2 denotes the number of workers (in this case 2 workers).

• time7 denotes the number of hours each worker has (in this case 7 hours).

• diff(a,b) denotes the fact that task a and b must be done by different workers

3: Scheduling

74

• same(a,b) denotes the fact that task a and b must be done by the same worker.

• last(a) denotes the fact that task a must be done last by a worker.

• Þrst(a) denotes the fact that task a must be done Þrst by a worker.

• middle(a) denotes the fact that task a must be somewhere in the middle of the
schedule of a worker.

Reading
When the participant reads something from the screen, this is denoted by the Read()
action. The argument is the item read. For example, Read(c:a) corresponds to the
participant reading Òc before aÓ. The result of a reading action is that the item read
is in working memory.

Adding tasks to the schedule
When a participant adds new items to the current schedule this is represented by
the Add() action. The argument is the task added to the schedule. The result of an
add action is that the task is added to the current schedule in working memory.

Rehearsing working-memory items
Any items in working memory (WM) can be rehearsed, which is denoted by the
Reh() action. The argument is the item rehearsed.

Inference
In general inference is denoted by Inf(p1; p2 → q), meaning q is inferred from p1
and p2. Precondition for such an inference is that p1 and p2 are available in
memory. The result is that q will be in working memory.

Evaluation

• Eval+ denotes that the participant concludes the schedule is correct.

• Eval-() denotes that the participant concludes that the schedule is incorrect. If a
violated constraint is mentioned, it is given as the argument, for example Eval-
(c:a): the schedule is incorrect because c is not before a

• IEval+ denotes that the program accepts the solution

• IEval-() denotes that the program rejects the solution, the violated constraint(s)
are again between parentheses

Other actions

• Restart denotes that the participant starts again

• Inkey() denotes that the participant keys a (possibly partial) solution into the
computer

• Fill denotes miscellaneous remarks

Analysis of verbal protocols

75

• Meta denotes remarks about the difÞculty or other aspects of the task

• Q denotes a question of the participant to the experimenter

Using this scheme, the following analysis can be made of the protocol fragment. The
analysis column shows an interpretation of the fragment listed in the protocol
column. The WM column shows the possible contents of working memory based on
this interpretation.

Problem A21. Time 793 seconds

Protocol Analysis WM

1. Yes. There are two workers with
each six hours.

Read(work2);
Read(time6)

work2; time6

2. Two. Task A, task B, task C. Reh(work2); Read(a);
Read(b); Read(c)

work2

3. The schedule has to satisfy the
following constraints...

Fill

4. Task C before A, C before A, E
before B, F before B and D before
C.

Read(c:a); Reh(c:a);
Read(e:b); Read(f:b);
Read(d:c)

c:a; e:b; f:b; d:c

5. [unintelligible] ?

6. Þrst now D. D.. Add(d) sched(d)

7. D..C..A..B.., Reh(d); Add(c); Add(a);
Add(b)

sched(dcab)

8. D..C..A..B.., Reh(dcab) sched(dcab)

9. D.C.A.B, Reh(dcab) sched(dcab)

10. DCAB, Reh(dcab) sched(dcab)

11. and then, Add(|) sched(dcab|)

12. DCAB, [keys in DCAB] Reh(dcab|); KeyIn(dcab|) sched(dcab|)

13. and then E... Add(e) sched(e)

14. E..F.. Reh(e); Add(f) sched(ef)

15. E..F.. [keys in EF] Reh(ef); KeyIn(ef) sched(ef)

16. [receives feedback] Oh, task F is
not before B.

IEval-(f:b); Restart

17. C.., Read(c)

18. D has to be before C. Read(d:c) d:c

19. D Read(d)

20. No, C..D.., Add(c); Add(d) sched(cd)

There are two
workers with each
6 hours
Task A 1 hour
Task B 1 hour
Task C 2 hours
Task D 2 hours
Task E 3 hours
Task F 3 hours
The schedule has
to satisfy the
following
constraints:
C before A
E before B
F before B
D before C
Solution:
ECA
DFB

3: Scheduling

76

21. D has to be before C. Read(d:c) sched(cd); c:d

22. C..D.. Reh(cd) sched(cd)

23. C..D.., Reh(cd) sched(cd)

24. A..B.. [keys in CDAB] Add(a); Add(b);
KeyIn(cdab)

sched(cdab)

25. ThatÕs one worker Add(|); KeyIn(|) sched(cdab|)

26. E..F..., [keys in EF]. Add(e); Add(f); KeyIn(ef) sched(cdab|ef)

27. [receives feedback] Huh?! Task F
is not before B and task D is not
before C?

IEval-(f:b;d:c); Restart

28. Oh wait. Fill

29. D has to be before C, Read(d:c) d:c

30. so Þrst D... D...C..AB..AB [keys
in DCAB].

Add(d); Reh(d); Add(c);
Add(a); Add(b); Reh(ab);
KeyIn(dcab)

sched(dcab)

31. Next worker, Add(|); KeyIn(|) sched(dcab|)

32. F.. yes, F..E.., ready. [keys in FE]. Add(f); Reh(f); Add(e);
KeyIn(fe)

sched(dcab|fe)

33. [receives feedback] Task E is not
before B?

IEval-(e:b) sched(dcab|fe)

34. IsnÕt it? Yes? ? Fill sched(dcab|ef)

35. [Emphasizing, keys in]
D..C..A..B..E..E..F...ready.

KeyIn(dcab|ef) sched(dcab|ef)

36. [receives feedback]. Well! IEval- sched(dcab|ef)

37. Ehmm.. Task D takes two hours. Read(d2) sched(dcab|ef);
d2

38. [Silence] Fill sched(dcab|ef)

39. Task F is not before B, Eval-(f:b) sched(dcab|ef);
f:b

40. so F should be before B. Reh(f:b) sched(dcab|ef);
f:b

41. Task E before... E should be
before B,

Read(e:b) sched(dcab|ef);
f:b; e:b

42. so E and F shouldnÕt be done
by.... by the same worker..,

Inf(f:b; e:b; e3; f3; time6
→ diff(e,f))

diff(e,f)

Problem A21. Time 793 seconds

Protocol Analysis WM

Analysis of verbal protocols

77

A dissection of the protocol in terms of the analysis above reveals a bit more of what
is going on during the problem solving process. Figure 3.10 shows a summary of the
analysis in the form of the search tree that is traversed in the episode above.

The participant starts with reading the problem (1-4, not shown in the figure). After
that, there are four episodes in which she tries to find a solution (5-16, 17-27, 28-33
and 34-36). Each of these episodes consists of a number of alternating processes:
incrementally increasing the current schedule, rehearsing the current schedule, and

43. So we will, letÕs see. Task C
before A,

Restart; Read(c:a) diff(e,f); c:a

44. so we will Þrst.... Fill diff(e,f)

45. E before B, Read(e:b)

46. so we will Þrst E..E..E..B..C. Add(e); Reh(e); Reh(e);
Add(b); Add(c)

sched(ebc)

47. E...E..B..C.., Reh(e); Reh(ebc) sched(ebc)

48. EBC, Reh(ebc) sched(ebc)

49. no thatÕs not right. Eval- sched(ebc)

50. EBC..F..A..B.. Add(|); Add(f); Add(a);
Add(b)

sched(ebc|fab)

51. Ah.. start again. Restart

52. The D should be before C. Read(d:c) d:c

53. [silence]. Fill d:c

54. E... Ehm... Read(e) d:c

55. The D should be before the C, so
we put the D with worker one,

Inf(d:c → diff(c,d))

56. and C with worker two.

57. So we start with E with worker
one...

Add(e) sched(e)

58. E..C..A.. Reh(e); Add(c); Add(a) sched(eca)

59. E.C.A. Reh(eca) sched(eca)

60. ECA.. Reh(eca) sched(eca)

61. E.C.A. Reh(eca) sched(eca)

62. No, I donÕt get it... Fill

63. E..C..A..D..F.. Oh.. wrong again. Reh(eca); Add(d); Add(f);
Eval-

Problem A21. Time 793 seconds

Protocol Analysis WM

3: Scheduling

78

evaluating the current schedule. At the end of each episode, the resulting schedule
is either rejected by the interface or by the participant. Although the participant does
not reveal on what basis she selects tasks to add to the plan, the precedence
constraints seem to be an obvious lead. The DCAB sequence, which recurs in three
of the four episodes, directly reflects the ÒD before CÓ and ÒC before AÓ constraints.
A possible strategy underlying this type of sequencing is to look for two constraints
in which the second task in the first constraint equals the first task in the second
constraint, and distill a three-task sequence out of it.

Up to line 36 in the protocol, the problem-solving process seems to follow a straight
forward search pattern, although the participant only backtracks once, but rather
starts again after a dead end in the search tree. Furthermore, the participant tries the
same solution twice. After four unsuccessful tries, however, the participant reaches
an impasse (37-38). After this impasse, a complex inference is used to infer a new
constraint, the fact that task E and F should be assigned to different workers (39-42).
As mentioned before, this inference is quite complex, since it involves five
constraints. Using this newly inferred constraint, search is resumed, and a new
unsuccessful episode follows (43-51). The solution reached in this episode differs
from the previous episodes, however, in the sense that the newly derived constraint

Figure 3.10. Search tree corresponding to the analysis of instance A21. Numbers in parentheses refer
to line numbers in the protocol.

D DCAB DCAB
EF

feedback from interface: F not before B
(5-16)

C CD CDAB CDAB
EF

feedback interface: F not before B, D not before C
(17-27)

D DCAB DCAB
FE

feedback interface: E not before B
(28-33)

DCAB
EF

feedback interface: F not before B

impasse (37-38)

inference that E and F should be assigned to different workers (39-42)

E EBC

(34-36)

EBC
FAB

restart on own initiative
(43-51)

impasse

inference that C and D should be assigned to different workers

E ECA ECA
DF

(52-56)

restart on own initiative
(57-63)

Analysis of verbal protocols

79

is satisfied. Another interesting change is that the participant evaluates the solution
herself, instead of relying on the interface. In the next episode the participant derives
another new constraint, the fact that task D and C should also be assigned to
different workers (52-56). In the final episode (57-63), the participant nearly reaches
the solution. Although she only needs to add task B to her schedule, she somehow
decides the solution is incorrect and starts anew. Examination of the complete
protocol reveals that the participant needs several more search episodes before she
solves the problem.

The problem solving fragment discussed above shows aspects of two theories of
problem solving. Processing within search episodes concurs with the theory that
problem solving is problem-space search, which we have discussed in chapter 1. On
a more global scale, however, the fragment shows aspects of insight theory
(Davidson, 1995). According to insight theory, which is rooted in Gestalt
psychology, the interesting moment in problem solving is when the problem solver
suddenly ÒseesÓ the solution, in a moment when an Òunconscious leap in thinkingÓ
takes place. Instead of describing problem solving as a gradual approach of the goal,
insight theory predicts the following pattern: exploration, impasse, insight and
execution. The nine-dots problem is a typical example (see figure 1.3 in chapter 1):
the exploration phase consists of fruitless search within the boundaries of the nine
dots, after which an impasse occurs followed by the insight that lines may go beyond
the boundaries of the grid. This insight allows for a final resolution in terms of a
solution.

This insight problem-solving pattern can be found in the problem-solving fragment,
since the four unsuccessful search attempts (5-36) can be seen as the exploration
phase, after which an impasse occurs (37-38), followed by an insight (39-42).
Unfortunately, the insight is only an important step in the direction of the solution,
so the execution phase actually involves some more exploration. Furthermore, the
insight episode isnÕt really an Òunconscious leap in thinkingÓ, but rather an episode
of solid rational reasoning. Although the fragment shows the pattern of insight
problem solving, it does not share the more mystical aspects associated with some
versions of insight theory.

Learning the different-worker strategy
From the viewpoint of learning problem solving it is interesting to investigate
whether something is learned during an insight episode. Although it is hard to
actually prove something new is learned, it is possible to Þnd some evidence that
this is the case. One way to do this is to see if the same pattern of reasoning can be
found again in later instances. After problem R25, a problem in which the pattern
cannot be used, it recurs in problem A25, as the following fragment shows:

3: Scheduling

80

Again, the complex inference is made after two unsuccessful search attempts. In this
case, however, there is no impasse: the participant immediately makes the inference.
Later in the experiment, in problem A29, the same strategy is used:

The only difference with problem A25 is that the participant seems to recognize the
fact that this pattern has occurred before. In the final type A problem, problem A27,
the participant immediately uses the newly learned strategy without resorting to
fruitless search first:

Summarizing, the four protocol fragments show how a new strategy, the Òdifferent-
worker strategyÓ, comes into existence. In A21, the strategy is discovered in a classic

Problem A25 Time 300 seconds

Protocol Analysis WM

20. task A should be before D Read(a:d) sched(adcb);
a:d

21. A..D..C..B..E..F..ready.. Inkey(adcb); Add(|);
Add(e); Add(f);
Inkey(adcb|ef)

sched(adcb|ef)

22. task F is not before B. IEval-(f:b) f:b

23. so E and F cannot be done by the
same worker...

Inf(e2; f2; time4; f:b; e:b
→ diff(e,f))

diff(e,f)

Problem A29 Time:128 seconds

Protocol Analysis WM

15. B..A..D..C, next worker.. Reh(badc); Add(|) sched(badc|)

16. E..F, ready. Add(ef); Inkey sched(badc|ef)

17. Oh, task F is not before C, so E
and F again canÕt go together.

IEval-(f:c); Inf(f:c; ? →
diff(e,f))

diff(e,f)

Problem A27 Time:140 seconds

Protocol Analysis WM

8. So then it is eeh, A before C and
D before A, E beforeB and F
before B

Read(a:c); Read(d:a);
Read(e:b); Read(f:b)

a:c; d:a; e:b; f:b

9. E and F can probably not go
together, since then they will not
be before B

Inf(e:b; f:b → diff(e,f)) diff(e,f)

Analysis of verbal protocols

81

insight problem-solving pattern. In A25, the pattern recurs, except that there is no
impasse period. In A29, the pattern again recurs, but the participant shows evidence
of recognizing the strategy. Finally, in A27, the strategy is incorporated in the normal
search process.

Learning the Þt-the-hours strategy
The different-worker strategy is not the only strategy the participant discovers
during problem solving. The Þrst indication of a second strategy is in problem R25,
the fourth problem.

After an unsuccessful search episode, the participant mentions that F, A and B
belong together, and should be assigned to the first worker. Inspection of the
particular problem shows why this may be inferred. For each worker, the sum of the
tasks assigned must add up to nine hours. Only 2+2+5 and 3+3+3 add up to nine in
this given instance, so A, B and F should go together, and C, D and E. Although this
particular piece of protocol is only weak evidence for this strategy, stronger evidence
for the new strategy can be found in problem R24, two problems later.

Problem R25 Time 200 seconds

Protocol Analysis WM

15. ABF...D..E..C.. Reh(abf|d); Add(e);
Add(c); Inkey(abf|dec)

sched(abf|dec)

16. Oh, no, thatÕs not right. task C is
not before B,

Eval-(c:b) sched(abf|dec)

17. OK, one more time. Restart

18. F, A and B belong together, so
the Þrst worker...

Inf(f5; a2; b2; time9 →
same(a,b,f))

same(a,b,f)

Problem R24 Time 93 seconds

Protocol Analysis WM

1. two workers with each nine
hours,

Read(work2);
Read(time9)

work2; time9

2. letÕs look at the hours... Meta

3. seven plus two can again be
nine,

Read(e7); Read(a2);
Read(b2); Inf(e7; a2; b2
→ same(2,7))

same(2,7)

2 workers
9 hours
A 2 hours
B 2 hours
C 3 hours
D 3 hours
E 3 hours
F 5 hours

A before E
C before B
E before D

Solution:
AFB
CED

2 workers
9 hours
A 2 hours
B 2 hours
C 3 hours
D 4 hours
E 7 hours

A before B
C before D
C before B

Solution:
EB
ACD

3: Scheduling

82

After problem R24, the participant uses this strategy at the start of every new
problem, a clear indication that this new strategy has been incorporated in the
general problem solving method. In the problem A29, the strategy has become
routine, and the participant can even recognize whether or not the strategy is useful.

Summary of the qualitative analysis
The most interesting aspect that can be found in the protocol of participant 2 is the
fact that she learns two new strategies to solve scheduling problems. The Þrst time
these strategies surface is after one or more unsuccessful search attempts. It is quite
probable that the participant discovers the strategy at this point. Later on, they are
incorporated in the problem solving process. Since scheduling is intractable, these
strategies do not provide an effective procedure to solve the general scheduling
problem. Nevertheless, they are useful for a large number of instances of the
problem.

Another aspect of the problem solving process is that the participant hardly uses
backtracking: she just starts all over again. On the other hand, she does keep track of
what she does somehow, since a renewed search attempt is almost always a
variation on the previous attempt. A final very obvious aspect is the role of rehearsal.

4. Four, three and two equals nine, Read(d4); Read(c4);
Read(b2); Read(a2);
Inf(d4; c3; b2; a2 →
same(2,3,4))

same(2,7);
same(2,3,4)

5. So that seven has to go with A or
B.

Inf(same(2,7); e7 →
same(2,e7))

same(2,e7)

Problem A29 Time:128 seconds

Protocol Analysis WM

1. eehm, there are two workers
with each six hours.

Read(work2; time6) work2; time6

2. It may be the case that E and F
go together, because three plus
three,

Inf(e3; f3; time6 →
same(e,f))

same(e,f)

3. And DCBA, two, two, two, one
hour.

Inf(d2; c3; b1; a1; time6
→ same(a,b,c,d))

same(e,f);
same(a,b,c,d)

4. It can also be the case that...
Well, anything can be the case.

Meta

Problem R24 Time 93 seconds

Protocol Analysis WM

2 workers
6 hours
A 1 hour
B 1 hour
C 2 hours
D 2 hours
E 3 hours
F 3 hours

A before D
B before A
E before C
F before C

Solution:
EAD
BFC

Analysis of verbal protocols

83

The participant uses rehearsal quite extensively to keep partial solutions active in
memory. Interleaving rehearsal with other aspects of processing requires planning
as well. The participant not only has to create a schedule for the workers in the
scheduling problem, she has to schedule her own activities as well.

Quantitative analysis
To get a more reliable picture of the ideas outlined in the previous section, a
simpliÞed version of the analysis has been carried out for all protocols. All main
analyses have been done on the seven interpretable protocols from group 2.
Occasionally we will also look at the two protocols from group 1. Two observers, a
professor in computer science and a graduate student in psychology, were asked to
score the protocols according to the following categories:

• Simple inferences, deÞned by the fact that two or less constraints are involved.
Constraints are all aspects of the task, e.g. ÒA before CÓ constraints, the fact that
task C takes two hours, and any constraints the participants themselves have
derived.

• Complex inferences that resemble the Þt-the-hours strategy

• Complex inferences that derive the fact that two tasks should be assigned to
different workers

• Complex inferences that derive the fact that two or more tasks should be
assigned to the same worker

• Complex inferences that derive the fact that some task should be at the
beginning of the schedule, at the end of the schedule, or somewhere in the
middle

• Complex inferences that do not Þt in with any of the previous categories

• Counting, if the participant uses counting to do addition

The last category requires some more explanation. It turned out some of the
participants sometimes used counting as a strategy to do addition. This strategy is
normally found only in children who have not yet memorized all addition facts. A
possible explanation is that in situations where working memory demands are high,
counting is a procedure that is less likely to disrupt the contents of working memory
than retrieving a fact.

After the observers had scored the protocols, the correspondence was calculated.
Correspondence is expressed using the kappa-measure (van Someren, Barnard &
Sandberg, 1994), which corrects for the expected correspondence. The kappa
measure turned out to be 0.61. According to van Someren et al., kappa should at least
be 0.70. Closer inspection of the categories, however, revealed that simple inferences
and miscellaneous complex inferences were scored very unreliably. Furthermore,
the fit-the-hours strategy and inferences that two or more tasks should be assigned

3: Scheduling

84

to the same worker were hard to distinguish. So, the simple inferences and the
miscellaneous complex inferences were removed from the analysis, and inferences
that tasks should be done by the same worker were collapsed with the fit-the-hours
category. This resulted in the correspondence table in figure 3.11, and a kappa of
0.72, which is an acceptable value. The entry in the Blnk/Blnk cell (2114) of the figure
is high due to the fact that most entries in the protocol were not classified, since they
contained no apparent inferences (or counting events). Figure 3.11 also shows that
the fit-the-hours and the different-worker strategies are most prominent among the
complex inference strategies. So, the two strategies we found in participant 2 are also
the main strategies found in the rest of the participants. The analyses of both
observers were combined into a single analysis using only the complex inferences
both observers agreed on. If both observers agreed on a complex inference, but used
different categories (5 cases), the experimenter chose the most appropriate category.

One would expect that if participants learn new strategies during problem solving,
the number of complex inferences increases with practice. Figure 3.12 shows this is
indeed the case: in the first problem the participants use 0.5 complex inferences on
average to reach the solution, which increases to more than 2 inferences in instance 8,
dropping back slightly in the last two instances.

Figure 3.13 shows how the two most prominent strategies are distributed over the
individual participants. The black boxes mark the use of the fit-the-hours strategy for
a certain instance, while the grey boxes indicate the use of the different-worker
strategy. As is evident in the figure, some of the aspects witnessed in the analysis of
participant 2 are also evident in other participants. Some of the participants also
integrate the fit-the-hours strategy in their standard search strategy, notably
participants 2, 6, 7 and 11. The same is true for the different-worker strategy. This is
less evident in the figure, since the different-worker strategy cannot be used

Observer 1

Observer 2 Blnk Ch Cdiff CÞrst Clast Cmid Cnt

No score or removed (Blnk) 2114 8 5 6 3 2 1

Fit-the-hours strategy (Ch) 11 32 1

Different worker (Cdiff) 5 27

Assign Þrst (CÞrst) 24 1 3 15

Assign last (Clast) 9 16

Assign middle (Cmid) 1 2

Use counting to add (Cnt) 1 14

Figure 3.11. Correspondence between the two observers

Conclusions

85

successfully for every instance. Participants 1, 2, 4, 6 and 7, however, show consistent
use of it.

The use of counting to add numbers was use extensively by participant 1, who used
it 13 times to add numbers. Three participants, 6, 11 and 12, only used it once, and
the other participants showed no evidence for the use of counting to do addition.
Although this aspect has no relevance to the rest of the discussion here, I will return
to this matter briefly in chapter 5.

3.5 Conclusions

The analyses presented in this chapter only scratch the surface of all that is going on
during problem solving. But it is a study in the spirit of Alan Newell, in which we
try to learn as much as possible by studying a single complex task. It is clear that
learning in problem solving cannot be accounted for by a simple, one-principle
theory. Nevertheless many of the aspects found in the analysis support the general
outline discussed in chapter 1. There is evidence for the use of problem-space
search, but also for qualitative insight-like changes in problem-solving approach.
Participants discover and reÞne new strategies as the experiment proceeds,
enabling them to eventually handle even more complex problems.

The next two chapters will examine details of the aspects of learning in problem
solving that have been found in this chapter. The strategy is to formulate a model
based on intuitions gained from the scheduling experiment, and test these models
on more simple experiments and data from the literature.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

Instance number

Nu
m

be
r o

f c
om

pl
ex

 in
fe

re
nc

es

Figure 3.12. Number of complex inferences for each instance

3: Scheduling

86

Maintaining the current problem context
One important aspect of problem solving, which becomes most apparent if problem
solving has to be done entirely by heart, is to maintain the current problem context
in memory. Protocols show participants have great difÞculty with this aspect of
problem solving, since they give a lot of attention to rehearsing their current
schedule, but nevertheless make many mistakes with it. Clearly there is more going
on than just pure rational search. But participants have to do more than just
rehearsal, they also have to keep track of other dynamic aspects of problem solving,
such as what they have already tried and what new constraints they have already
derived. Coordinating knowledge in the current problem context has aspects of
implicit and explicit learning. Rehearsal is clearly an intentional, explicit aspect, but

1 2 3 4 5 6 7 8 9 10

participant 1

participant 2

participant 3

participant 4

participant 5

participant 6

participant 7

participant 11
from condition 1

participant 12
from condition 1

Figure 3.13. Strategy use plotted for individual participants. Black boxes indicate the Þt-the-hours
strategy was used for that particular trial, and grey boxes indicate the use of the different-
worker strategy.

Appendix: Proof of NP-completeness of fully-filled precedence constrained scheduling

87

a growing sense of the inadequacy of search given the current knowledge, is more
implicit. Chapter 4 will elaborate on this topic, and will discuss a model of
rehearsal.

The role of insight and rule learning
Protocol analysis showed clear evidence for the emergence of two distinct problem-
solving strategies, the Þt-the-hours strategy and the different-worker strategy. The
single protocol that was analyzed in detail also showed a learning pattern that
resembled the exploration-impasse-insight-resolution scheme posed by insight
theory. In chapter 5, a rational basis for this pattern of problem solving will be
sought. Additionally, the problem of how new rules can be learned during an
insight episode will be discussed.

3.6 Appendix: Proof of NP-completeness of fully-Þlled precedence
constrained scheduling

A proof of NP-completeness consists of two steps. First, the problem must be in NP,
and secondly it must be possible to polynomially reduce any NP problem to the
candidate NP-complete problem. Reducing a problem A to problem B means that
there exists a transformation function T that takes an arbitrary instance of problem
A and returns an instance of problem B, satisfying the condition that the solutions
to both instances are the same. To polynomially reduce A to B means that the
transformation function T must have a polynomial time complexity.

To prove that any NP problem can be reduced to a candidate NP-complete problem
is very hard. Fortunately, there is a much easier method. It is sufficient to prove that
an arbitrary other NP-complete problem can be reduced to the candidate NP-
complete problem. Since all NP problems can be reduced to this other NP-complete
problem, any NP problem can be reduced to the candidate NP-complete problem in
two steps (figure 3.14).

The original definition of PCS assumes all tasks have a duration of one hour. So FF-
PCS also differs in this respect, since tasks can have an arbitrary duration. The NP-
completeness proof will have to take this into account as well. The formal definition
of PCS is as follows (from Garey & Johnson, 1979).

DeÞnition of PCS
An instance is a set T of tasks, each having length , a number of
workers, a partial order < on T, and an overall deadline . The question to be
answered for each instance is: is there an m-worker schedule for T that meets the
overall deadline D, i.e., a function such that, for all , the number of

l t() 1= m IN
+∈

D IN
+∈

σ:T IN→ u 0≥

3: Scheduling

88

tasks for which is no more than m and such that, for all
, , and obeys the precedence constraints, i.e., such that

implies ?

DeÞnition of FF-PCS

FF-PCS differs from PCS with respect to the following two points: it allows arbitrary

lengths of tasks, so , and it requires the schedule to be filled, so

.

Theorem
FF-PCS is NP-complete.

Proof
First, we have to prove that FF-PCS is NP. The problem is NP, if there is an
algorithm consisting of two parts: a non-deterministic part that ÒguessesÓ a
schedule, and a deterministic algorithm of polynomial time complexity that checks
whether this schedule meets all the constraints. Both parts of this algorithm are
easy: guessing a schedule is just Þlling with arbitrary values, and checking the
schedule means checking the precedence constraints (one check for each
constraint), whether all tasks end before the deadline (one check for each task), and
whether there are no overlapping tasks (no more checks required than the
multiplication of the number of tasks and the deadline D).

The second part of the proof involves the reduction of PCS, a known NP-complete
problem, to FF-PCS. So, given an instance I of PCS, we have to show how this

NP problems

candidate
NP-complete
problem

To prove a problem is NP-complete,
one has to prove any NP problem can
be reduced to it.

NP problems

other NP-complete
problem

The easiest way to do this is through
another NP-complete problem, since
it requires only a single reduction.

Figure 3.14. How to prove any problem can be reduced to an NP-complete problem

candidate NP-complete
problem

t T∈ σ t() u σ t() l t()+<≤
t T∈ σ t() l t()+ D≤ t t'<

σ t'() σ t() l t()+≥

l t() IN
+∈

l t()
t T∈
∑ mD=

σ t()

Appendix: Proof of NP-completeness of fully-filled precedence constrained scheduling

89

instance can be transformed into an instance IÕ of FF-PCS, and have to prove that if
there is a schedule for I, there is a schedule for IÕ, and if there is no schedule for I,
there is no schedule for IÕ either.

The best way to understand this transformation is to think of a PCS schedule as a
schedule in which some of the workers have time left in which they have nothing to
do. Now suppose we also want to schedule this Òfree timeÓ. This will not increase or
decrease the difficulty of the process, since there are no constraints on free time, it is
just that any time that is left over is now officially called a Òfree-timeÓ task.

For the transformation function we will distinguish three possible cases, two of

which are trivial. The first is the case in which , so the total duration of

all tasks exceeds the total time workers have. In that case there can never be a
solution. So we can just transform all instances to a single FF-PCS instance for which
we know no schedule is possible. This transformation satisfies the condition, since

for all instances there is no schedule. The second trivial case is when :

the total duration equals the total time the workers have. In this case the PCS
instance already is a FF-PCS instance, so we can just use identity as the

transformation function. The third case is when , the case in which there

is more available time than it takes to do all the tasks. The idea is to Òfill upÓ the rest
of the schedule with tasks of length one (Òfree-timeÓ tasks), on which we do not
impose any precedence constraints. These extra tasks can fill in the rest of the

schedule. So given an instance I of PCS, we create IÕ by adding tasks to

T, each of which has . No precedence constraints are imposed on these new
tasks. If there is no schedule for I, neither will there be one for IÕ, since it only has

more tasks to schedule. If there is a schedule for I, it has exactly points

in time left for which the schedule has less than m scheduled tasks that can be filled
with the added tasks in IÕ. Since no precedence constraints are imposed on these
tasks, they can be scheduled anywhere.

l t() mD>
t T∈
∑

l t()
t T∈
∑ mD=

l t() mD<
t T∈
∑

mD l t()
t T∈
∑–

l t() 1=

mD l t()
t T∈
∑–

3: Scheduling

90

CHAPTER 4 Implicit versus Explicit
Learning

4: Implicit versus Explicit Learning

92

The goal of this chapter is to arrive at a theory of implicit and explicit learning
without introducing new theoretical entities. The basis for this theory will be the
ACT-R architecture. The ACT-R theory, of course, also uses multiple theoretical
entities. As we will see, none of these correspond directly to the notions of implicit
and explicit learning, but together they can provide an explanation. This chapter will
start with a general discussion about implicit and explicit learning. One experiment
that is often quoted in the context of implicit learning is a dissociation experiment by
Tulving, Schacter and Stark (1982). An ACT-R model is presented that can be used
to explain their results. The model also serves as a basis for a more general discussion
on how implicit learning and explicit learning can be understood in terms of ACT-
R. The remainder of the chapter is used to discuss a particular example of explicit
learning: rehearsal. Rehearsal is often studied using the free-recall task. By
examining free-recall in several different situations, we may conclude that the
primacy effect is mainly an effect of explicit learning, while the recency effect can be
explained by implicit learning.

4.1 Introduction

In chapter 1 I have discussed Alan NewellÕs criticism of psychological research, in
which he mocked the simplistic conceptualization of the complexity of human
cognition in terms of binary oppositions. Since 1973 a new opposition has become
popular in cognitive psychology: the distinction between implicit and explicit
learning or implicit and explicit memory. Although the term implicit memory was
already proposed by Reber in 1967, the topic became popular by the end of the
eighties. Before implicit learning research became popular, most memory research
paradigms were based on either recognition or recall. Both in recognition and recall,
participants Þrst have to study some materials, and are tested later on. These types
of experiments offer many insights into the nature of human memory, but tend to
bias theories of memory. For example, in the famous dual-store memory theory by
Atkinson and Shiffrin (1968), a major role for storing information in long-term
memory is attributed to rehearsal, the mental process of sub-vocally repeating
information. The dual-store theory was able to explain many of the recognition and
recall experiments. A very powerful but false prediction was however neglected:
the fact that no rehearsal implies no storage in long-term memory. As we will see
shortly, learning may even take place without awareness. The dual-store theory
overestimated the importance of rehearsal as a memory process, because it used
recognition and recall as a basis. In both types of experiments, participants were
told explicitly they had to memorize certain items.

ReberÕs 1967 experiments departed from this experimental paradigm, and
investigated what people learn without being aware of what they have to learn. The
experiment he introduced, and which has been replicated many times in many

Introduction

93

variations, is artificial grammar learning. In this experiment participants first study a
list of strings that has been generated by a finite-state automaton based on an
artificial grammar. After this study phase, participants were told the strings they had
studied were words generated by a grammar. In the following test phase, they were
presented with new strings generated using the same grammar, mixed with random
strings and strings with subtle errors in them. Participants had to figure out which
new strings were generated by the grammar, and which were not. It turned out that
participants are surprisingly good at this task, and classify the new strings not
perfectly, but well above chance level. Since none of the strings that were originally
memorized were presented in the test phase, and participants were not aware of the
fact that there was any systematicity in the learned strings, they somehow must have
learned more than just the literal strings. Reber coined the term implicit learning to
describe this additional, unintentional aspect of learning. Additional studies show
that although participants perform well on this task, they can not explicitly state the
rules of the grammar.

The idea that participants must learn to predict the behavior of a final-state
automaton has been used in several other research paradigms. An example of one of
these paradigms is dynamic system control, in which participants have to learn to
control a complex system. An example is an experiment by Berry and Broadbent
(1984), which involves a scenario in which participants have to learn to control a
sugar factory. The Sugar Factory computer simulation they used is a dynamic
system in which participants have to control sugar production by setting the number
of workers. Since the relationship between input and output is highly non-linear, it
is almost impossible for participants to discover the rule that governs the system.
Nevertheless participants learn adequate control quite quickly, although they are
not able to state the underlying rules of the system. A model of this experiment will
be discussed in chapter 6.

Another type of research that deviates from traditional memory research is the
dissociation paradigm. An example of this type of research is an experiment reported
by Tulving, Schacter, and Stark (1982). In this experiment participants first had to
study a list of 96 words. They were subsequently tested using two different tests, an
implicit and an explicit test. The first, explicit, test was a simple recognition test, in
which the participant was asked whether or not a certain word was in the study list
or not. The second, implicit, test was a word-completion task. In this case
participants were presented with a word fragment which they had to complete, for
example A_ _ A _ _ IN (answer: ASSASSIN). Some of the fragments originated from
the studied list, and others were from words not previously studied. Each
participant had to do each test twice: an hour after the study phase and a week after
the study phase. Figure 4.1 shows the results. One hour after studying the words,
participants recognize 58% of the items correctly (this percentage is corrected for
guessing). After a week, performance has dropped considerably to 24%. The implicit
word-completion task, however, shows a totally different picture. Studying words

4: Implicit versus Explicit Learning

94

improves performance on this test: after one hour word-completion was accurate for
studied words in 49% of the cases, while new words were only completed
successfully in 30% of the cases. This advantage does not degrade with time, since
after a week performance on the word-completion task is still the same. The
discrepancy between the two tasks is called a dissociation: while one type of
information, the fact that a word has been studied in the context of the experiment,
degrades over time, other, subtly different, information seems not to suffer from any
decay in time at all.

In the example above the dissociation is caused by time: one type of performance did
suffer due to the passage of time, while another did not. There are other types of
dissociations, for example due to brain damage. A study by Warrington and
Weiskrantz (1970) reveals that patients suffering from amnesia perform much worse
compared to healthy people on explicit tests like recognition and recall. On implicit
tests like word completion, their performance equals control participants.

What do experiments such as artificial-grammar learning and dissociation learning
exactly prove? At least they show the inadequacy of the classical recognition/recall
paradigms, and also show that the Òno rehearsal no learningÓ prediction of the dual-
store model does not hold. But, probably to Alan NewellÕs horror, psychologists
turned the new phenomena into a new binary opposition, and, even worse, posed
two binary opposite theories (the systems and the processing theory) to explain the
distinction. Implicit and explicit learning were proposed as two distinct types of
learning, each having its own mechanisms and needing its own theoretical
framework. Explicit learning was associated with all the old memory research, but
implicit learning, the new kid on the block, promised to be a new unexplored
domain of countless experiments.

What makes implicit learning different from explicit learning? The dissociation
experiments show that implicit learning is somehow more robust than explicit
learning, since neither brain damage nor the passage of time seems to affect it.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 hour 1 week

%
 c

or
re

ct

recognition

completion studied
words
completion new words

Figure 4.1. Results of the Tulving, Schacter & Stark experiment: performance on the explicit
recognition test degrades in a week, while performance on the implicit word completion task
remains constant.

Introduction

95

Implicit learning is more robust in other aspects as well. McGeorge, Crawford and
Kelly (1997) have shown that explicit learning is dependent on age and intelligence,
while implicit learning is not. Participants that score higher on an IQ-test also
perform better on explicit memory tests, and performance of older participants on
the explicit test is worse than the performance of younger participants. Implicit
learning on the other hand is hardly affected, either by IQ or age.

Another aspect of implicit learning, even used by some researchers as the defining
quality, is that consciousness or awareness does not seem to play a role in it. Implicit
learning is therefore sometimes called unconscious learning, as evidenced by the fact
that although the participants can not verbalize any knowledge about the task, their
performance increases nevertheless. In ReberÕs artificial grammar participants were
not able to state any of the grammar rules, but could categorize the strings anyway.
In the Tulving experiment, participants had forgotten that they had studied a
particular word after a week, but managed to use them for word-completion
anyway. The notion of consciousness is, however, not unproblematic, as pointed out
by Shanks and St. John (1994). In the artificial grammar experiments participants
were not able to express any of the rules of the grammar. But they were aware of the
fact that certain combinations of letters were more likely in grammatical than in
ungrammatical strings, something that could at least explain some of their increased
performance. A ÒsaferÓ version of the unconsciousness aspect of implicit learning is
to define implicit learning as unintentional learning, learning that is not tied to goals.
In artificial grammar learning and in the Tulving experiment, participants had to
memorize words or strings for later recall or recognition, not with the intention to do
word-completion or to figure out a grammar. In this sense implicit learning can be
seen as a Òby-productÓ of normal information processing, while in explicit learning
information processing is aimed at learning, comprehending or memorizing
something.

There are two opposing theories that attempt to explain the differences between
implicit and explicit learning: the systems theory and the processing theory.
According to the systems theory, put forward by Squire (Squire & Knowlton, 1995),
there are two different memory systems, an implicit and an explicit memory system,
represented in separate structures in the brain. The fact that amnesiacs perform
worse than controls on explicit tasks but not on implicit tasks can simply be
explained by the fact that their explicit memory is damaged but their implicit
memory is intact. Explicit memory is conscious memory, implicit memory is
unconscious. Information in explicit memory decays with time, while information in
implicit memory stays put. This also corresponds well with the folk-psychology idea
that all our experiences are stored in unconscious memory.

The processing theory of implicit learning by Roediger (1990) assumes that there is
a distinction between two types of processes: data-driven processes and
conceptually driven processes. Data-driven processes are triggered by external

4: Implicit versus Explicit Learning

96

stimuli and can be associated with tests of implicit memory. For example, in the
word-completion task part of the pattern is given. This part of the data actively
facilitates the retrieval of the whole pattern. In the recognition test on the other hand,
a connection between a word and an episodic event must be verified, so has a more
conceptual nature. Conceptually driven processes are initiated by the participant
and lead to explicit learning. According to the processes theory, memory
performance will be best if the processing required on the test is the same as the
processing required in the learning phase.

The problem with both the systems and the processing theory is that a distinction
found in empirical data is explained by proposing two different theoretical entities,
either two systems or two types of processing. From a scientific point of view this is
a weak explanation that furthermore offers no insights in what the difference is
between implicit and explicit learning. The evidence for separate entities is not final
either. There are many examples of dissociations in which explicit learning is
impaired while implicit learning is intact. If each type of learning is associated with
its own theoretical entity, however, a so-called crossed double dissociation has to be
found. In a crossed double dissociation, two experimental variables have to be found
that have opposite effects on the implicit and the explicit test. A dissociation like this
has never been found (Cleeremans, Destrebecqz & Boyer, 1998). To quote
Cleeremans (1997, page 215):

With the exception of Hayes and Broadbent (1988) that has failed to be replicated
so far, such a [crossed double dissociation] has never been observed in implicit
learning situations. [...] the fact that no crossed double dissociation has ever been
satisfactorily obtained in implicit learning research has often been used by other
authors (e.g. Shanks and St John, 1994) as an argument to deny the existence of
implicit learning as an independent and autonomous process.

Evidence from studies with patients isnÕt strong either: both patients of
HuntingtonÕs disease (Heindel, Butters & Salmon, 1988) and ParkinsonÕs disease
(Saint-Cyr, Taylor & Lang, 1988) have severe difficulty in learning motor skills, while
showing intact performance on recall and recognition. Motor skills are usually
considered procedural skills. Since people do not have conscious access to their
procedural skills the associated learning process can be considered implicit. The
problems these particular patients have, however, seem to limit themselves to the
motor domain, so a generalization to implicit learning in general is unwarranted.

4.2 A model of the dissociation experiment

TulvingÕs dissociation experiment consists of three separate activities, each of which
is modeled by a small set of production rules: studying the list of words, the
recognition test and the word-completion test. First, the list of words has to be

A model of the dissociation experiment

97

studied. In the experiment, every 5 seconds a word is presented. Since participants
were only told they were involved in a memory experiment, they had no direct clue
on what they had to do exactly with the words. It is therefore a safe assumption that
participants will just rehearse the word and the fact that they have seen the word in
the current context. This is easily accomplished in ACT-R: a Þrst production rule
creates a declarative recognition chunk that points to the word to be studied and to
the current context. The recognition chunk can be considered as an episodic
memory trace. A second rule keeps retrieving the chunk that represents the word
and the recognition chunk until the next word is presented. Due to ACT-RÕs base-
level learning, the activation of a chunk is increased each time it is retrieved. The
base-level activation at a certain time t can be calculated using the following
equation:

(4.1)

In this formula, n is the number of times a chunk has been retrieved from memory,
and represents the time of each retrieval. The longer ago a retrieval was, the less
it contributes to the activation. B and d are constants. Figure 4.2 shows an example
of the behavior of this function, in which the activation of a chunk is plotted that is
accessed at time 1, 4 and 7.

When the rehearsal production rule retrieves the recognition chunk and the chunk
that represents the word itself, activations of both chunks are increased
considerably, because n is increased in the formula, and the new Õs are all still close
to t. There is, however, a difference between the activation of the recognition chunk

Bi t() t t– j() d– B+
j 1=

n

∑log=

t j

2 4 6 8 10 12 14

0.5

1

1.5

Figure 4.2. Example of the activation for a chunk accessed at time 1, 4 and 7.

t j

4: Implicit versus Explicit Learning

98

and the word chunk. The recognition chunk has just been added to declarative
memory, so has no previous history of activations. This means that the activation of
the recognition chunk is based solely on the few rehearsals in the context of the
experiment. The word chunk, however, was already present in declarative memory,
and already has a history of past use. In the model, this is simulated by assuming that
words have been accessed on average 150 times, spread evenly over the past ten
years, producing a low, but stable activation value. Some fixed activation noise in the
model assures that all words have slightly different activation values. The difference
between recognition and word chunks means that activations will also develop
differently in the time period after studying the words. As figure 4.3 shows, both the
word chunks and the recognition chunks start at a high level of activation. The
activation of recognition chunks, however, decays faster due to the fact that they
have no previous history.

In the recognition test the question must be answered whether or not a particular
word has been studied in the study phase. In terms of the model this means that
given a particular word chunk and a particular context chunk, a recognition chunk
must be retrieved that connects the two. This is handled by two production rules.
The first rule tries to retrieve the recognition chunk and answers ÒyesÓ when it
succeeds. The second rule, which may fire if the first rule fails, just answers ÒnoÓ.
This model is not entirely faithful, since it does not model the event in which a word
that has not been studied is mistaken for one that has been studied. This can be
modeled in ACT-R using partial matching, but this has not been done in the current
model (partial matching has briefly been introduced in chapter 2, but will used in the
Sugar-Factory model in chapter 6). Failure to recognize a word that has been studied
is due to the fact that the activation of the recognition chunk has become too low,
since ACT-R cannot retrieve chunks with activations below the retrieval threshold.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 154 159 164

Time after study (hours)

Ac
tiv

at
io

n
Recognition chunk
Primed word
Non-primed word

Figure 4.3. Development of activation values for recognition chunks, primed words and non-primed
words in the course of the week after the study phase of the experiment.

A model of the dissociation experiment

99

In a recognition test, the indices to retrieve the right chunk are clear enough: the
word and the study event. This is not the case in the word-completion task, where
only a part of the word is given and the rest has to be retrieved. In order to retrieve
the word that fits the pattern A _ _ A _ _ IN, ideally a production rule is needed that
matches the first, fourth, seventh and eighth letter, and tries to retrieve a word that
fits. The problem with this solution is that a production rule is needed for any
combination of letters, which would mean 256 production rules if we would restrict
ourselves to just 8 letter words. A solution that only requires a few production rules
is to retrieve a word using only one or two letters, and compare if the retrieved word
matches the rest of the letters. If it does, a solution has been found, if it does not, the
model gives up. Alternatively, the model might have a few tries before giving up,
but that aspect has not been modeled. One of the matching rules is as follows:

IF
the goal is to complete a word fragment AND
the first letter of the fragment is l1 AND
the second letter of the fragment is l2 AND
there is a word w that has l1 as its first letter AND
has l2 as its second letter

THEN
mark w as a candidate solution in the goal

This rule tries to find a word that matches at least the first two letters of the pattern.
This rule will not work for the A _ _ A _ _ IN, because the second letter is unknown,
but it will work if the first two letters are given.

Although both recognition and word completion require some declarative retrieval,
they differ with respect to the source of errors. In the recognition test, it may be the
case that a recognition chunk is no longer retrievable due to low activation. In the
word-completion test interference with other words is the major source of errors.
Words that are primed in the learning phase of the experiment get an activation
advantage over words that are not primed. This advantage may persist over longer
periods of time, as is indicated in figure 4.3. This difference between the two tasks
may well be the real explanation for the dissociation. Figure 4.4a demonstrates that
the model indeed behaves in a way that is comparable to human data. The main
parameter that was manipulated to achieve the fit is the base-level learning decay
(parameter d in equation 4.1). The recommended value for this parameter is 0.5, but
this turned out to be a poor choice to explain long-term learning, since in a week
ACT-R had forgotten everything. Instead the value of 0.3 has been used. Other
parameters that have been manipulated, such as the retrieval threshold and the
activation noise, did have small effects on the actual values of data points, but did
not change the main dissociation effect.

4: Implicit versus Explicit Learning

100

The interesting aspect of this model is the fact that although it exhibits a dissociation,
it nevertheless has no separate theoretical constructs to explain this difference. Both
types of information are represented in the same memory system by the same
memory process. The dissociation can be explained by the characteristics of the tasks
themselves, rather than by hypothesized constructs. What is the difference between
recognition and word-completion? To get a broader view on this question, we first
have to review the notion of activation. Activation in ACT-R is an estimate of the log
odds that a certain chunk is needed in the current context. This estimate is used in
ACT-R for two purposes:

• If there are two or more possible candidates for retrieval by the production rule
that is currently matched, the candidate with the highest odds is chosen.

• If the odds of needing a certain chunk are too low, the potential gain of
retrieving it is not worth the effort.

If we look at the study task the participants have to do, we have to compare it to the
situation in which people normally read words. In normal situations, it is not useful
to remember in which particular context a word has been read. It is, however, useful
to keep track of how often a word is used or encountered, since high-frequency
words are more important than low-frequency words. So, if someone read low-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 hour 1 week

%
 c

or
re

ct

recognition

completion studied
words
completion new words

(a) model

(b) data

Figure 4.4. Results of the model of the dissociation experiment (a). The data are repeated in (b).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 hour 1 week

%
 c

or
re

ct

recognition

completion studied
words
completion new words

An ACT-R theory of implicit and explicit learning

101

frequency words in a normal setting, he would typically not remember the event of
reading the word itself, and would probably only update the frequency information
of that word. The Tulving experiment is not a normal situation, it is a memory
experiment. In order to meet the, at that point, unknown criteria of the memory
experiment, the participant intentionally influences the normal learning scheme by
rehearsing information. Rehearsal in this context means: intentionally increasing the
number of retrievals of certain chunks, thereby artificially increasing the odds-of-
being-needed of the chunk. As a consequence, the recognition chunk that stores the
information that the word has been studied can still be recovered one hour after the
study phase. A unintended by-product of rehearsal is that the frequency information
of the studied words is increased as well. Since low-frequency words are used, the
extra retrievals due to rehearsal have a significant impact on this estimate. It is this
frequency information that the word-completion production rules need in order to
select candidates, and which can be used as an explanation why studied words are
completed better than words that are not studied, even after a week.

In the previous discussion the important difference between normal situations and
a memory experiment is intentionality. In the introduction I have already noted that
intentionality might be a key notion in the discussion. In the next section I will
explain how this idea can be worked out in terms of the ACT-R theory.

4.3 An ACT-R theory of implicit and explicit learning

In the introduction I mentioned intentionality might be a good starting point to
understand the nature of the difference between implicit and explicit learning. An
advantage of using intentionality is that it can easily be operationalized in terms of
ACT-R. Intentionality in terms of ACT-R means: tied to a goal. In the case of
learning words for later recognition, as in the Tulving experiment, the intention of
the participant is to memorize the words. If we look at the learning mechanisms in
ACT-R, none of them is principally tied to intentions. Although the base-level
learning mechanism may be used in the context of a memorization goal, it is not its
basic function. Its basic function is to keep track of the odds that chunks are needed,
a function that is normally performed unintentionally and unconsciously. The same
can be said about all learning mechanisms in ACT-R: they are at work all the time,
and are basically not tied to intentions. In a sense all learning in ACT-R is implicit
learning. This idea is consistent with other properties of implicit learning. Implicit
learning does not change much by ageing, and individual differences are small.
This is exactly what we want for basic mechanisms in an architecture for cognition,
since it is a theory about what people have in common and not about what sets
them apart. The fact that implicit learning is not easily impaired due to brain
damage also favors the architectural mechanism view: the basic way the brain
works shouldnÕt change due to damage.

4: Implicit versus Explicit Learning

102

What is explicit learning? The position I would like to defend is that explicit learning
is a form of implicit learning. But while implicit learning is a by-product of normal
processing, explicit learning is the by-product of specific learning goals. Where
normal processing would retrieve a chunk representing a word only once, an explicit
learning goal may retrieve it a number of times, not because it is necessary for
processing, but just to put the implicit learning mechanisms to work. Although we
have no direct conscious access to the base-level learning mechanisms itself, we may
have found out, due to experience that repeating a word helps remembering it.
Instead of being another type of learning, explicit learning is just a set of strategies to
make the best possible use of the implicit mechanisms. Explicit learning is therefore
not a part of the architecture of cognition, but is rather produced by knowledge that
is represented in the memory systems of that architecture. This idea also corresponds
well with properties of explicit learning: since the knowledge corresponding to it has
to be learned itself, one can expect large individual differences due to intelligence
and development. Similar observations can be made with respect to brain damage.
If implicit learning is a fundamental property of the brain, it will not be easy to
damage it. Explicit learning, on the other hand, consists of knowledge. Brain damage
may cause this knowledge to be lost, or disrupt successful usage of this knowledge.

In the case of the Tulving experiment, the recognition task is an explicit task only
because participants suspect either recognition or recall if they are told they are
involved in a memory experiment. If one explained the word-completion task to
participants at the start of the experiment, and told them they were supposed to do
this task after the study phase, it would turn into an explicit task. The participant has
several options: she can either stick to a rehearsal strategy, or attempt some more
clever memory strategy, for example by explicitly memorizing characteristic
fragments of words. The choice of strategy will have a large impact on performance.
The original rehearsal strategy will of course still exhibit the assumed characteristics
of implicit learning, while the fragment-memorization strategy, if it works at all, will
probably suffer from the same fast decay that is supposed to characterize explicit
learning. We might even be able to find a dissociation within the same task in healthy
participants.

In ReberÕs artificial grammar and Berry and BroadbentÕs sugar factory, participantsÕ
performance increases, although they are not capable of formulating any explicit
rule-like knowledge about the task. In both cases, it is very hard to find the real rules:
deriving grammars from examples is a very difficult task, and the non-linear
character, the randomness and the limited means of control in the sugar factory
make it almost impossible for participants to derive rules within the limited time of
the experiment. As a consequence, explicit strategies that are usually successful in
detecting regularities will fail. Nevertheless there is also implicit learning going on.
For example in the sugar factory task, which I will discuss in detail in chapter 6, each
time the participant sets the controls of the factory and perceives an outcome, a
chunk recording this information is added to declarative memory. This is not done

A model of rehearsal and free recall

103

intentionally, but rather because all popped goals are stored. It will turn out that this
information alone can account for the improvement participants show on the task.

In the remainder of this chapter and in the next two chapters, I will explore the
implicit/explicit distinction based on the idea that implicit learning is based on
mechanisms of the architecture, and explicit learning is the application of learning
strategies. In chapter 5, I will discuss explicit strategies that learn new production
rules, and how an increase in the number of strategies can explain the difference
between small children and adults on a classification task. In chapter 6, I will
describe how the implicit/explicit learning debate can be related to another debate
in the learning literature: whether new skills are learned by accumulating examples,
or by deriving general rules. The remainder of this chapter is devoted to one of the
issues stated in the previous chapter: a model of rehearsal. This model will be
discussed in the context of the free-recall task, a classical paradigm to study
rehearsal.

4.4 A model of rehearsal and free recall

The model discussed in this section is the Þrst model I made in ACT-R. As a
consequence, the model is based on an old version of ACT-R (2.0), which on the one
hand included features that have since been removed, but on the other hand did not
include all that is currently part of ACT-R. I further chose to implement verbal
rehearsal using a separate phonological loop, based on BaddeleyÕs evidence for this
kind of structure. If I were to model rehearsal again, I probably would be more
hesitant to add extra structures to the architecture. Recently, the CMU group
(Anderson, Bothell, Lebiere & Matessa, 1998) has also modeled free recall as part of
a broader project on list learning. Their model did not use an explicit phonological
loop. They, however, implemented a phonological-loop-style memory structure
within declarative memory that did the same job.

As we have seen in the introduction, rehearsal has been studied extensively in the
seventies in the context of the dual-store memory theory by Atkinson and Shiffrin
(1968). One of the experimental tasks used for studying rehearsal is the free-recall
task. In this task a list of words, typically containing fifteen to twenty items, is
presented at a constant rate to a participant. After presentation, the participant has
to recall as many words as possible from the list. Two effects emerge from the results,
the primacy effect and the recency effect, respectively referring to the fact that the
first and the last few items of the list are recalled better than the rest. The dual-store
memory theory can explain both effects: the primacy effect is due to the fact that the
first few items in the list are rehearsed more often because they initially donÕt have
to compete for space in short-term memory (STM), and the recency effect is due to
the fact that the last few items are still in STM at the moment they have to be recalled.

4: Implicit versus Explicit Learning

104

This explanation is confirmed by Rundus (1971), who asked participants to rehearse
aloud. The data show that there is a relation between the number of rehearsals and
the chance of recall (figure 4.5), at least with respect to the primacy effect.

Since the popularity of the dual-store theory declined, partly because rehearsal
turned out to be not the sole mechanism to store information in long-term memory
(LTM), less research effort has been put into it. A theory that does involve rehearsal
is BaddeleyÕs theory of working memory (Baddeley, 1986). In BaddeleyÕs theory,
working memory has a central executive and two rehearsal subsystems: the
phonological loop and the visuo-spatial sketch pad (figure 4.6). Both subsystems are used
to temporarily store small amounts of phonological and spatial information. The
phonological loop is a system that stores up to two seconds of phonological code in
a serial fashion. The visuo-spatial sketch pad uses a quasi-visual representation of
objects that can be used for spatial reasoning. The visuo-spatial sketch pad can be
used to answer questions like: if the triangle is below the square, and the circle is to
the right of the square, and the circle is above the cross, is the cross left or right from
the triangle?

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

serial position

pr
ob

ab
ilit

y
of

 re
ca

ll

0

2

4

6

8

10

12

Nu
m

be
r o

f r
eh

ea
rs

al
s

% recall
rehearsals

Figure 4.5. The percentage of correctly recalled items and the number of rehearsals (Rundus, 1971).

Figure 4.6. BaddeleyÕs theory of working memory

Central
Executive

Visuo-spatial sketch padPhonological loop

one

tw
o

fivese
ve

n

A model of rehearsal and free recall

105

The phonological loop is the relevant structure for retention in free recall, at least in
the overt-rehearsal version by Rundus. Instead of being the process that transfers
information from STM to LTM, rehearsal has become a process necessary to
maintain items in STM. Whether or not information will also be stored in LTM is not
specified by BaddeleyÕs theory, because it is a theory of working memory only. Work
by Craik and Lockhart indicates that the extent to which rehearsed information is
stored in LTM depends on the amount of processing that needs to be done on
individual items (Craik & Lockhart, 1972). This led to the distinction between
maintenance rehearsal and elaborate rehearsal. Maintenance rehearsal is used just to
retain information for a short time, for example a telephone number that needs to be
dialled. During elaborate rehearsal on the other hand further processing is done on
the rehearsed information.

Baddeley has gathered extensive empirical evidence for the phonological loop and
the visuo-spatial sketch pad. The central executive, however, is a weak point in the
theory. It is supposed to be able to contain two or three items, and to control what
goes into both subsystems, but it is unclear what representation it uses, and why and
when it puts something in either subsystem. The central executive is almost a
reference to the rest of information processing, because it not only stores
information, it also makes important decisions on what to memorize in what
subsystem. Some of these decisions must be deliberately planned, involving
knowledge stored in LTM. The problems with the central executive have an obvious
reason: somehow the theory of working memory must be tied to the rest of
information processing, and the central executive is responsible for this.

The ACT-R theory can be seen as a specification of central information processing
that can serve as a means to create models of rehearsal using BaddeleyÕs
phonological loop. The role of the central executive is taken care of by the ACT-R
architecture.

A model of free recall in ACT-R
To be able to model free recall in ACT-R, we Þrst need some way to do rehearsal. In
order to use BaddeleyÕs phonological loop, some assumptions have to be made
about the representation of the loop and the interaction with ACT-R. According to
Baddeley, the phonological loop has a phonological representation. To be able to
interact with the memory of ACT-R, we must assume it is possible to activate a
phonological representation given a chunk-like symbolic representation in
declarative memory and vice-versa. To simplify matters, we will assume the
phonological loop has the following properties:

• The phonological loop is a linear storage buffer with a capacity of 2 seconds of
phonologically coded words.

• References to declarative chunks representing pronounceable words can be
added to the loop. New references are added to the end of the loop.

4: Implicit versus Explicit Learning

106

• If the capacity of the loop is exceeded, a random word is dropped.

• At any moment the contents of the loop can be rehearsed, which involves
entering a subgoal to do this.

• In the rehearsal subgoal the words can just be rehearsed (maintenance
rehearsal), or further reasoning can be done with them (elaborate rehearsal).

Implementing a separate structure for rehearsal is at odds with the idea that
rehearsal is just a learned strategy. But what if the phonological loop is not primarily
a structure of working memory, but rather a buffer to store perceived speech in, or
speech that is about to be pronounced? In that case, rehearsal would be a clever
strategy of reusing a structure whose original purpose is different.

Once rehearsal is taken care of, a model of free recall is straightforward. During the
study phase of the experiment words are read and added to the phonological loop
one at a time. In the time between presentations the phonological loop is rehearsed.
At the time of recall, words are recalled in order of activation until there are no
words left above the retrieval threshold. No attempt is being made to first ÒemptyÓ
the phonological loop at the time of recall, only the last item of the list is retained.

The explanation this model offers for the two prominent effects in free recall, the
primacy and the recency effects can now be made clear. The primacy effect can be
explained in the same manner as RundusÕ explanation: the first few words are
rehearsed more often, on average, so are retrieved more often. The recency effect can
be explained by the fact that the retrievals are relatively recent, so their impact on the
activation is larger.

A positive recency effect can be considered as an implicit learning effect, since its
presence is not influenced by strategy. This finding concurs with developmental
data. Hagen and Kail (1973) compared free-recall behavior of 7 and 11 year-old
children. Although both groups show a recency effect in recall, in the group of
younger children the primacy effect is absent. Cuvo (1975) found that this difference
can be attributed to strategy: younger children tend to just repeat the last item
presented, while older children adhere to the adult pattern of rehearsal. These
studies demonstrate that implicit learning, as witnessed in the recency effect, is not
affected by age, while explicit learning is, as witnessed in the primacy effect.

Simulation 1
The goal of the Þrst simulation was to reproduce the results of RundusÕ experiment.
Rundus used 25 participants, to whom 11 lists of 20 words were presented on cards
with a 5 second interval. Participants were instructed to rehearse aloud.

A model of rehearsal and free recall

107

In the experiment the mean number of words correctly recalled was 11.12 and the
mean number of rehearsals 88.3. The simulation recalls 11.15 words correctly on
average, using 116.0 rehearsals. The serial position curve and the mean number of
rehearsals for each item in the list are shown in figure 4.7. The fit between the data
and the model is reasonably good for the probabilities of recall (R2=0.82), and not too
good for the number of rehearsals (R2=0.57). As can been seen in the figure, the
model overestimates the number of rehearsals, although the curve has the right
shape.

Simulation 2
In the standard experiment, participants have to rehearse aloud, but are free in
choosing which words to rehearse. Participants can be constrained in this aspect, for
example if they may only rehearse the word that has just been presented. Figure 4.8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

serial position

pr
ob

ab
ilit

y
of

 re
ca

ll

Data
Model

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

serial position

nu
m

be
r o

f r
eh

ea
rs

al
s

Data
Model

Figure 4.7. Results of the simulation compared to RundusÕ data.

4: Implicit versus Explicit Learning

108

shows the data (from Fischler, Rundus & Atkinson, 1970) and the results of the
model (R2=0.65). The interesting aspect is that the primacy effect largely disappears,
but the recency effect remains. This Þnding is consistent with Hagen and Kail (1973)
(no primacy effect in young children) and Cuvo (1975) (young children only
rehearse the last word presented) studies.

Simulation 3
To see whether the model holds its ground in other variants of the task, a data set
collected by Murdock (1962) is a good basis for comparison, since he used different
list lengths (from 10 to 40 words) and different rates of presentation (1 or 2 seconds
per word). Murdock did not require overt rehearsal, so only the probabilities of
recall can be compared. Figure 4.9 shows the data and the results of the model. The
main deviation between model and data is that the model overestimates the
primacy effect. The overall explained variance is nevertheless quite high (R2=0.91).

Simulation 4
In the standard free-recall experiment, recall starts immediately after the
presentation of the words. If there is a delay between recall and presentation in
which further rehearsal is prevented, the recency effect disappears. An experiment
by Postman and Phillips (1965) demonstrates this effect: 18 participants were given
lists of 20 words, 6 lists for which recall immediately followed the presentation, and
6 lists where participants had to count backwards for 15 seconds before recall.
Words were presented at a rate of one word per second, and rehearsal was covert.
The mean number of words recalled correctly was 6.20 if there was no delay after
presentation, and 5.05 if there was a 15 second distraction. The serial position
curves for both conditions are depicted in Þgure 4.10, together with the simulation
data. The simulation recalls 8.6 words correct on average in the condition without

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

serial position

pr
ob

ab
ilit

y
of

 re
ca

ll

Data
Model

Figure 4.8. Data and model of the restricted version of free recall

A model of rehearsal and free recall

109

delay, and 4.6 words in the 15 sec delay condition. The most interesting aspect,
however, is that the recency effect has largely disappeared. This is normally
explained by the fact that participants cannot use the contents of their rehearsal
buffer in their answers, but the model shows that an explanation based on decay of
activation is sufÞcient. It also predicts that due to the fact that the last few items are
rehearsed fewer times than items in the middle of the experiment, the recency effect
will eventually turn into a negative recency effect, as we will see in simulation 5.
The primacy effect is much less affected by the delay, since it is caused by the fact
that items have been rehearsed more often. The explained variance is only average:
the overall R2 has a value of 0.58.

Simulation 5
Craik (1970) discovered that the disappearance of the recency effect after a delay
can even turn into a negative recency: in some situations recall for items at the end
of the list is worse than for items in the middle part. In a free-recall experiment 20
participants were presented with 40 lists of 15 words at a rate of 2 seconds per

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

serial position

pr
ob

ab
ilit

y
of

 re
ca

ll

10-2
15-2
20-1
20-2
40-1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

serial position

pr
ob

ab
ilit

y
of

 re
ca

ll

10-2
15-2
20-1
20-2
40-1

(a)

(b)

Figure 4.9. Data (a) and model results (b) for different versions of free recall. The Þrst number is the
list length and the second number the presentation rate.

4: Implicit versus Explicit Learning

110

word. After each 10 lists, participants were asked to recall as many words as
possible from the previous 10 lists, giving a Þnal-recall score. The results of this
experiment are shown in Þgure 4.11a. To obtain a smooth curve Craik averaged
each data-point with its successor and predecessor, except for the Þrst and the last.

The free-recall model also produces negative recency, as can be seen in figure 4.11b.
The same averaging technique as Craik used is used on the data. In the simulation
the model has to produce as many items as possible after presentation, after which a
60 second break follows and another, final, recall session. Although the results of the
model cannot directly be compared to CraikÕs data, since the experimental setup is
different, a negative recency effect that is similar to Craik can be seen in the model.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

serial position

pr
ob

ab
ilit

y
of

 re
ca

ll

Data
Model

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

serial position

pr
ob

ab
ilit

y
of

 re
ca

ll

Data
Model

Figure 4.10. Data and model results of free recall without pause (a) and with a 15 second pause
(b) after presentation.

(a)

(b)

A model of rehearsal and free recall

111

Discussion
The results of the simulations show that the classical effects of primacy and recency
in free recall can be reproduced using a theory of rehearsal based on the ACT-R
architecture and BaddeleyÕs phonological loop. The primacy effect can be explained
by the fact that items early in the list are rehearsed more often on average than other
items in the list, the same explanation that was used in the dual-store theory of
memory. The recency effect can be explained by the base-level activation
mechanism of ACT-R: the last few items of the list have a higher activation because
they have been accessed more recently.

Simulations 2, 4 and 5 show that both the primacy and the recency effect can be
manipulated by changing aspects of the task. It is interesting to examine the nature

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

serial position

pr
ob

ab
ilit

y
of

 re
ca

ll

Direct
60 sec delay

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

serial position

pr
ob

ab
ilit

y
of

 re
ca

ll

Direct
Final

Figure 4.11. Negative recency in data by Craik (1970) (a), and in the model (b).

(a) data

(b) model

4: Implicit versus Explicit Learning

112

of these manipulations. In simulation 2, participants were instructed to use a certain
type of rehearsal strategy, which resulted in the disappearance of the primacy effect.
The learning strategy thus determines the presence or absence of the primacy effect,
and can be considered as an effect of explicit learning. In simulations 4 and 5, the
circumstances of the experiment were changed. Instead of changing the strategy, a
time delay was used, resulting in an effect on the recency effect.

The various models presented in this section also illustrate the inadequacy of the R2
measure to express the quality of fit between the data and the model. Although the
fit with the original Rundus data is clearly the best, the model of the Murdock
experiment achieves the best fit, although it overestimates the primacy effect.

The parameters in the models discussed above were set to their recommended
default settings, except for the activation noise and activation threshold, which were
estimated to optimize the fit to the Rundus model. The same settings were used for
all the other simulations. The base-level learning decay parameter used was the
recommended value of 0.5. In the Tulving model this parameter had to be set to 0.3,
meaning there is an issue to be resolved here. We will return to this issue in
chapter 6.

CHAPTER 5 Strategies of learning

5: Strategies of learning

114

5.1 Introduction

In the previous chapter we saw that learning is a concept with two layers. The
bottom layer consists of the learning mechanisms of the architecture, while the
upper layer is a set of learning strategies that manipulate the mechanisms of the
bottom layer. We have already seen an example of a learning strategy in the form of
rehearsal. In this chapter, the focus will be on learning strategies that try to infer
new knowledge, a phenomenon that we have witnessed in the protocols of the
participants in the scheduling problem. There are several questions to be answered
with respect to learning strategies.

The first question is: when are learning strategies used. A learning strategy is tied to
an explicit learning goal. This means that at some point during reasoning, a learning
goal must be posed in favor of other processing. The protocols in chapter 3
demonstrate that several episodes can be distinguished in the problem solving
process, some of which involve search, and some of which involve reflection. In the
reflection episodes, participants discover new strategies, and the recurrence of these
strategies in later episodes indicates that they have been learned during the first
episode. But when, and for what reasons, does a participant decide to stop search
and start reflection? This is a question of meta-cognition, often portrayed as a
monitoring process that prevents unbounded search. An alternative, which I will
pursue in sections 5.2 and 5.3, is to incorporate the function of meta-cognition
without the need for a separate monitoring process. A separate process would
require its own monitor, leading to endless regress.

A second question one might ask is how learning strategies themselves are learned,
and what their nature is. Learning learning strategies is probably a long-term
process, so it will be hard to investigate this process in a standard experimental
setting. A better setting to investigate the nature of learning strategies is
development. During development, a lot of learning strategies are acquired.
Probably many differences between adults and children with respect to their
reasoning capabilities can be explained in terms of what type of information they can
represent, and what learning strategies they have available to learn this information.
In section 5.4, three theories of development will be discussed, and what can be
learned from them.

The third and final question is how to model strategy learning in ACT-R. New
production rules have to be represented in memory. Some learning scheme has to be
developed that is independent of the current task. In sections 5.5 and 5.6, I will
propose some example learning strategies, and show how they can learn task-
specific knowledge in two different domains. To emulate some of the developmental
aspects of these strategies, I will do some Òreverse developmentÓ by impoverishing
the learning strategies. As we will see, this leads to behavior associated with an
earlier stage of development.

Search vs. Insight

115

5.2 Search vs. Insight

In chapter 1, I criticized the traditional approach of problem solving, in which
solving a problem means no more and no less than Þnding an appropriate sequence
of operators that transforms a certain initial state into a state that satisÞes some goal
criterion. The difÞculty of problem solving is determined by factors as the length of
the sequence needed, the number of possible operators, and the amount of
knowledge available on how to choose the right operator.

The alternative insight theory stresses the moment at which the crucial step towards
the solution is found. Insight can be viewed in two ways: as a special process, or as
a result of ordinary perception, recognition and learning processes (Davidson, 1995).
Despite the intuitive appeal of a special process, the latter view is more consistent
with the modern information-processing paradigm of cognitive psychology, and is
much more open to both empirical study and computational modeling. One way to
look at insights from an information-processing viewpoint is that an insight involves
the relaxation of constraints (see, for example, Knoblich & Ohlson, 1996). In the nine-
dots problem mentioned in chapter 1, for example, the initial assumption that all
lines should remain within the 3x3 square is a constraint that needs to be relaxed.

Another famous insight problem is the box-candle problem, in which a candle has to
be affixed to a door, using a box of candles, a box of matches, and a box of tacks (see,
for example, Mayer, 1983). The crucial constraint to be relaxed is the fact that the
boxes are not just containers, but can also be used to support the candle. Knoblich &
Ohlsson (1996) have shown in an experiment involving matchstick problems that
once a constraint is relaxed, it stays relaxed.

Looking at insights as removing constraints is a rather negative approach:
something that is there needs to be removed. A slightly different view on insight is
to assume some new knowledge is gained at the moment of insight. This
corresponds well with the idea that a constraint stays relaxed. Another advantage of
this view on insight is that not all insights can be described as relaxing constraints.
The fact that participants in the scheduling problem start using complex inferences
during a reflection episode can of course be called Òthe relaxation of the constraint
not to use complex inferencesÓ, but this stretches the original idea so much it
becomes almost meaningless: it is like defining the creation of a statue as removing
marble.

Both the search and the insight theory select the problems to be studied in
accordance with their own view. Typical ÒsearchÓ-problems involve finding long
strings of clearly defined operators, as in the eight puzzle, the towers-of-hanoi task
and other puzzles, often adapted from artificial intelligence toy domains. ÒInsightÓ-
problems, on the other hand, can be solved in only a few steps, often only one.
Possible operations are often defined unclearly, or misleadingly, or are not defined

5: Strategies of learning

116

at all, as the nine-dots and candle problems illustrate. Due to this choice of problems,
both evidence from insight and search experiments tend to support their respective
theories. Both theories ignore some aspects of problem solving. The search theory
seems to assume that participants create clear-cut operators based on instructions
alone, and fails to assign a significant role to reflection. Insight theory on the other
hand offers no explanation of the role of processing that happens before the
ÒinsightÓ occurs. An obvious alternative is to think of both search and insight as
aspects of problem solving, and to try to find a theory of problem solving that
combines the two (Ohlsson, 1984).

One such view sees insight as representational change, which is a more general term
that includes constraint relaxation and gaining new knowledge about the task.
Search is needed to explore the current representation of the problem, and insight is
needed if the current representation appears not to be sufficient to solve the problem.
In this view, search and insight correspond to what Norman (1993) calls experiential
and reflective cognition. If someone is in experiential mode, behavior is largely
determined by the task at hand and the task-specific knowledge the person already
has. In reflective mode on the other hand, comparisons between problems are made,
possibly relevant knowledge is retrieved from memory, and new hypotheses are
created. If reflection is successful, new task-specific knowledge is gained, which may
be more general and on a higher level than the existing knowledge. All these
theories, however, fail to specify at what time a certain mode of thinking will be
used, and due to what influences the mode of thinking changes.

In the protocol analysis of the scheduling problem in chapter 3, we saw that all
participants start with an experiential search strategy, and only later on switch to a
reflective strategy. As we have observed, the process reflects the explore-impasse-
insight-execute pattern described in the literature about insight (Ohlsson, 1984;
Davidson, 1995). Some, but not all, of the participants show some sort of impasse,
during which they stop searching, just stare at the screen for a minute, and then try
a new approach. Furthermore, there is no difference between the explore and the
execute stage: the participant just searches on, using the knowledge gained by
reflection. Sometimes further reflection is needed to reach a solution.

5.3 A dynamic growth model

In this section a model is proposed that explores the distinction between search and
reßection. The model is based on AndersonÕs theory of rational analysis, the
theoretical basis of ACT-R (Anderson, 1990). According to rational analysis,
participants choose strategies based on a cost-beneÞt analysis: the strategy that has
the lowest expected cost and the highest probability of success is selected in favor of
others. The model is not an actual ACT-R model, but a dynamic growth model, in

A dynamic growth model

117

which the trade-off between search and reßection is modeled in a coarse-grained
way. Dynamic models are used in developmental psychology to describe
developmental paths, for instance a model that describes stage-wise increases in
knowledge (Van Geert, 1994; 1998). In section 5.6, the coarse-grained model will be
applied in actual ACT-R models.

In order to give a rational account of insight learning, the first question is: why
would participants initially prefer a search strategy in the scheduling problem? The
reflective strategy seems to be much more powerful. There are several reasons for
this. A first reason is that reflective reasoning has a high cost. To be successful,
several aspects of the task must be combined and kept in memory. Additional
knowledge must be retrieved from memory and it may be necessary to seek
analogies with other problems. A second reason is that it is not immediately evident
that search will be unsuccessful. In the nine-dots problem, but also in the scheduling
problem, naive search alone does not work, but people generally do not know this
when they start on these problems. Why not try the strategy which takes the least
effort first? A third reason is that as a participant starts with a new type of problem,
he has only read instructions and has seen an example problem. He first has to learn
the basic rules and operators by experience, before he can attempt any higher level
strategies.

Considerations like these are the basic ingredients for the model. In the model,
search and reflection are two competing strategies, whose evaluations depend on
expected gain. Estimates on these gains change in time, due to increasing knowledge
and the successes and failures due to this knowledge.

The model
According to rational analysis (Anderson, 1990), strategies are chosen with respect
to their expected outcome, according to the following equation:

(5.1)

In this equation, Ps is the estimated probability of reaching the goal using strategy s,
G is the expected value of the goal, and Cs is the estimated cost of reaching the goal
using strategy s.

The model will attempt to describe how search and reflection will alternate while
solving a problem. The model is coarse-grained in the sense that the knowledge of
the system with respect to a certain task is summarized in two variables and .

 is a measure for the amount of basic task-knowledge, for example, in the case of
the scheduling task, knowledge about adding a task to an existing plan and
knowledge to judge whether a solution is correct. corresponds to the amount of
higher-level knowledge in the system, for example the fact that it is a good idea to
see how the tasks add up to the amount of time the workers have available. If a

Expected outcome of strategys PsG Cs–=

L1 L2
L1

L2

5: Strategies of learning

118

participant starts with a new problem, we assume that both variables have a small
value. Later on, they increase, since the participant builds up knowledge during
problem solving. The assumption of the model will be that search will increase the
amount of basic knowledge, represented by , and reflection will increase the
amount of higher-level knowledge, represented by . The choice of two knowledge
levels is somewhat arbitrary, as are some of the choices of parameters in the
equations below. The reader should keep in mind that the goal is to produce a
rational account of the alternation between search and reflection.

The following equations show how and grow in time, and are inspired by the
growth equation used by Van Geert (1994):

If the strategy in step i-1 is search, then

(5.2)

else keeps its value, so . is a constant that controls the rate of
growth, and is the maximum possible value for . The fraction at the end of
the equation ensures that doesnÕt exceed its maximum value. Assuming only
search is used, the value of grows gradually and levels off once it approaches the
maximum. Figure 5.1 shows an example of the growth of knowledge if only
search is used, and equals 10.

The equation for is slightly more complicated, because the increase in value
depends on the current value of , reflecting the fact that we can only gain higher-
level knowledge if we have enough basic knowledge.

L1
L2

L1 L2

L1 i() L1 i 1–() R1L1 i 1–() 1
L1 i 1–()

L1max
---------------------–

 +=

L1 L1 i() L1 i 1–()= R1
L1max L1

L1
L1

0
1
2
3
4
5
6
7
8
9

10

0 50 100 150 200 250 300 350

time (sec)

am
ou

nt
 o

f k
no

wl
ed

ge

Figure 5.1. Basic growth function

L1
L1max

L2
L1

A dynamic growth model

119

If the strategy at step i-1 is reflection, then

(5.3)

else . is the maximum possible value for . The parameter
(support) controls the influence of basic knowledge on the increase of higher level
knowledge.

Now that we have described how knowledge grows depending on the type of
strategy, we have to describe the process by which a strategy is chosen. At this point,
AndersonÕs expected gain equations are introduced into the model. Whether the
strategy at step i will be search or reflection is determined by their respective
expected outcomes:

(5.4)

(5.5)

The strategy with the highest expected outcome will be chosen. In these equations
, and are fixed parameters. , the expected value of the goal, is

assumed to be fixed as long as the goal is not reached. , the cost of search, may
change in actual problem-solving situations, for example due to the fact that search
becomes more complicated once more knowledge is involved. But since these
fluctuations are task-dependent, the current model assumes that the costs of search
remain constant. The influence of , the chance of success of reflection, will be
taken into account in the specification of the costs of reflection. and
are variable in time, and rise and fall due to the chosen strategy and the growth in
knowledge.

The probability that search will reach the goal depends on the amount of knowledge
and the current evaluation of this knowledge:

(5.6)

The constant w determines how much more useful higher-order knowledge is than
basic knowledge. is the contribution to the probability of success of
knowledge, and the contribution of knowledge. The probability of success
increases as knowledge increases, but decreases over time if the goal is not reached.
The decrease in knowledge is calculated by multiplying the probability of success by
a decay parameter on each time-step search is used as strategy. New knowledge is
given the benefit of the doubt, and is assigned an initial probability of success of 1.
Both and can be calculated using:

L2 i() L2 i 1–() S12 L1 i 1–()⋅ 1
L2 i 1–()

L2max
---------------------–

 +=

L2 i() L2 i 1–()= L2max L2 S12

Expected outcome of search Psearch i() G⋅ Csearch–=

Expected outcome of reflection Pref G⋅ Cref i()–=

G Csearch Pref G
Csearch

Pref
Psearch i() Cref i()

Psearch i()
L1 i()P1 i() wL2 i()P2 i()+

L1 i() wL2 i()+
---=

P1 i() L1
P2 i() L2

P1 i() P2 i()

5: Strategies of learning

120

(5.7)

 represents the decay in probability of success, and has typical values between
0.95 and 0.99 if the strategy in step i was search and the goal has not been reached.
In the case of reflection in step i, . The part of the equation
takes care of the decay of existing knowledge. However, new knowledge is added to
the model as well, and this new knowledge starts out with the ÒoptimisticÓ
probability of success of 1. The part of the equation takes care of that
aspect. So on each search step, the probability of success decreases due to decay, and
increases due to the addition of ÒfreshÓ knowledge.

The costs of reflection depend on two factors. The first is that the costs are higher if
there is less basic knowledge, since higher level knowledge has to be based on more
primitive knowledge. The second factor is that the costs are higher if there is already
a lot of higher level knowledge. This reflects the idea that there is only a limited
number of good ideas to come up with, and that it will be more difficult to discover
a new idea if there is less to discover.

(5.8)

This equation assumes reßection has a certain base cost () that is increased by

two factors: which decreases as level 1 knowledge increases, and ,

which increases as level 2 knowledge increases.

Finally we have to say something about time, since we have talked about ÒstepsÓ in
the previous discussion. Each step takes an amount of time which can vary. So,
following the ACT-R intuition that cost and time are related to each other, we take
the estimated cost of the strategy at step i as the amount of time step i takes:

(5.9)

where is either or , depending on the strategy at step i.

Results
If the appropriate constants and starting values are chosen for the variables
described above, we can calculate the increase in knowledge over time. The model
is simulated using a spreadsheet program, in this case Microsoft Excel. Note that
the model assumes that the goal is never reached, so the results simulate a
participant that never succeeds in reaching the goal. Figure 5.2 shows the value of

P j i()
pdecayP

j
i 1–() L j i 1–()⋅ L j i() L j i 1–()–()+

L j i()
-- j 1 2,=();=

pdecay

pdecay 1= pdecayP
j

i 1–()

L j i() L j i 1–()–()

Cref i() Cbase c1

L1max

L1 i()

 c2

L2 i()
L2max

 + +=

Cbase

c1

L1max

L1 i()
-------------- c2

L2 i()
L2max

T i() T i 1–() C i()+=

C i() Csearch Cref i()

A dynamic growth model

121

 and with respect to , and the corresponding evaluations for search and
reßection. At the start of the task, search is superior to reßection, but as search fails
to Þnd the goal, and the basic (level 1) knowledge increases, reßection becomes
more and more attractive up to the point (at T=155) where reßection wins from
search. Since reßection leads to an increase of level 2 knowledge, search again
becomes more attractive (using the newly gained knowledge), and since the cost of
reßection increases with the amount of level 2 knowledge already present, reßection
becomes less attractive. As a result search will again dominate for a while, up to
T=262 where reßection wins again. We assume problem solving continues until
both expected outcomes drop below zero, since then neither strategy has a positive
expected outcome. In the example, this is the case at T=533.

As noted, G is the value of the goal. Using a lower value for G corresponds to the fact
that a participant values the goal less, and is less motivated to reach it. If we calculate
the model for G=15 instead of G=20, we get the results as depicted in Þgure 5.3. The

0
1
2
3
4
5
6
7
8
9

10

0 100 200 300 400 500 600

time (sec)

am
ou

nt
 o

f k
no

wl
ed

ge

Level 1 knowledge

Level 2 knowledge

"insight"

-15

-10

-5

0

5

10

15

20

0 100 200 300 400 500 600

time (sec)

ex
pe

ct
ed

 o
ut

co
m

e

expected outcome of search

expected outcome of reflection

"insight"

Figure 5.2. Value of level 1 and level 2 knowledge (top) and the expected gains for search and
reßection (bottom) for G=20

L1 L2 T

5: Strategies of learning

122

result is that reflection occurs only once, and later (at T=239). Furthermore, at T=393
both evaluations drop below zero, so a less motivated individual gives up earlier. If
G is further decreased to 12, no reflection at all takes place, and the give-up point is
at T=277.

5.4 The nature of learning strategies

The dynamic growth model nicely describes the phenomena around insight in the
literature and in the scheduling experiment. Furthermore, it explains why this
behavior is rational. It also predicts changes in strategy due to motivational factors.
It however poses new questions. What is the nature of the basic and higher-level
knowledge? How will the model behave if the goal is reached at some point? What
mechanism is responsible for gaining new knowledge, and how is it represented?

0
1
2
3
4
5
6
7
8
9

10

0 100 200 300 400

time (sec)

am
ou

nt
 o

f k
no

wl
ed

ge

Level 1 knowledge

Level 2 knowledge

"insight"

-10

-5

0

5

10

15

20

0 100 200 300 400

time (sec)

ex
pe

ct
ed

 o
ut

co
m

e

expected outcome of search

expected outcome of reflection

"insight"

Figure 5.3. Value of level 1 and level 2 knowledge (top) and the expected gains for search and
reßection (bottom) for G=15

The nature of learning strategies

123

In the previous chapter, I proposed to define implicit learning in terms of learning
by the mechanisms of the architecture, and to define explicit learning by activity of
explicit learning strategies. In this sense, learning that occurs during search is
implicit, since during search the goal is to solve the problem, not to learn something
new. During reflection, on the other hand, the goal is to find a new way to approach
the problem, so the goal is to discover something new. In this sense, reflection can be
seen as explicit learning. As I have argued, there is no principal distinction between
the knowledge learned by implicit learning and the knowledge learned by explicit
learning, hence there is no real distinction between level 1 and level 2 knowledge in
the dynamic growth model. It is just that level 2 knowledge might be more useful,
because it has been constructed in a more clever way.

How to get more insight into learning strategies? As we have seen, they are a source
of individual differences. On the other hand, there are explicit strategies that at least
all adults share, as we have seen in the case of rehearsal. But even in the area of
rehearsal, some people prefer to memorize items by verbal rehearsal, while others
prefer memorizing information by visualizing it in some fashion. Since learning
strategies that are unique for certain individuals are hard to investigate, I will focus
on strategies that most adults share, and see how they develop in children.

PiagetÕs stage theory
The Þrst to acknowledge the fact that children reason in a different way than adults
do was Jean Piaget (1952). Based on many experiments, among which the famous
conservation experiments, Piaget concluded that children from different ages solve
problems in different ways. He proposed a theory of stages, in which children in
higher stages can reason more abstractly than children in lower stages. An example
is the fact that very young children, who are in the Þrst sensorimotor stage, only
reason about objects that are in their Þeld of perception. Once an object is hidden it
is considered non-existent. In the second, pre-operational stage, children have
mastered the concept of object permanence, and know an object is still there,
although it cannot be seen at the moment. The transition between stages is a
discontinuous jump: a child either has or hasnÕt mastered the concept of object
permanence. PiagetÕs four stages are very strict: if a child moves to a new stage,
they do so for all skills in all domains at once. It turned out that PiagetÕs theory was
too strong. Children can be taught skills that belong to a stage they have not
reached yet, and children may be in different stages in different cognitive domains.
Piaget was well aware of this problem, to which he referred to as Òhorizontal
d�colageÓ.

The mechanism that causes these discontinuous jumps is adaptation, which,
according to Piaget, is a result of assimilation and accommodation. During assimilation
elements from the external world are added to the knowledge of the child.
Accommodation, on the other hand, is an internal process that modifies the
assimilatory scheme on the basis of the assimilated experiences. So accommodation

5: Strategies of learning

124

can be seen as the process that produces ÒnewÓ knowledge, and causes the sudden
jumps. In order to do so, it needs the accumulated knowledge gained by the
assimilation process.

FischerÕs levels
A modern version of PiagetÕs theory by Kurt Fischer (1980) tries to remedy the ßaws
in the original theory. His theory has no less than thirteen stages or levels as he calls
them, grouped into four tiers. He distinguishes between two levels of performance:
the functional level and the optimal level. The functional level is the level a child
performs at in a ÒnormalÓ situation. There may be large variations in this level
across domains. At the functional level, a child is no longer in a single stage, but has
a different level of development for each cognitive domain. The optimal level, on
the other hand, is the highest level that an individual can produce, and is attained

Level Representation Examples Age

S4/Rp1: Single
Representations

[YOUMEAN] or [MENICE] Child pretends that doll is hit-
ting someone.

Child says, ÒDoll mean.Ó

18-24
months

Rp2: Represen-
tational Mappings

[YOUMEANÑMEMEAN] Child makes one dollÕs mean
actions produce reciprocal
mean actions in the other
doll.

Child makes two dolls act as
Mom and Dad in parental
roles.

3.5-4.5
years

Rp3: Represen-
tational Systems

Child makes two dolls inter-
act in reciprocally nice and
mean ways.

Child makes two dolls act as
Mom and Dad as well as doc-
tor and teacher simulta-
neously.

6-7 years

Rp4/A1: Single
Abstractions

= [INTEPOS]

Person explains that inten-
tions matter more than
actions.

Person sees Dad as having
general personality charac-
teristics, such as conformity,
emotionality, or secretiveness

10-12
years

Figure 5.4. Example of stage 7-10 in FischerÕs theory. Adapted from Fischer & Ayoub (1994)

YOU
NICE

MEAN
ME

NICE

MEAN
↔

YOU1
NICE

MEAN
ME

NICE

MEAN
↔

YOU2
NICE

MEAN
ME

NICE

MEAN
↔

The nature of learning strategies

125

when given high levels of support and opportunities for practice. The fact that
levels of development can differ across domains makes FischerÕs theory more
realistic, but weaker than PiagetÕs. A strong point of the theory is however that
Fischer describes the kind of representations that are used at each level, and how
they can be combined to reach a higher level. In that sense, the theory is much more
precise than the original Piaget theory.

From the viewpoint of learning strategies, the optimal level can be associated with
the learning strategies that are available to a child. A skill that is beyond the childÕs
optimal level is a skill for which it lacks the right learning skills. That does not imply
that the child has already learned everything it could possibly learn given its current
learning skills. For each domain, the child has acquired some of the domain-specific
knowledge it can possibly gain given its current learning skills. This level can be
associated with the functional level. To get from the current functional level for a
skill to the optimal level, the child just has to learn additional domain-specific
knowledge using its current learning skills. To go beyond the optimal level, new
learning skills have to be acquired first.

Figure 5.4 is an illustration of some of the levels, in this case the third tier applied to
the topic of what type of behavior agents can carry out. At the level of single
representations, the top level in the table, children can represent that people or
animate objects can carry out concrete actions and have concrete characteristics.
They cannot yet combine these representations. At the next level, simple
combinations of agent-behavior tuples can be made, for example: if you are mean, I
will be mean. These combinations remain isolated, however, so there is no
generalization of relationships between agent-behavior tuples. At the level of
representational systems, combinations of representations are no longer isolated,
but generalized. Instead of having a collection of combinations of representations,
the actual mapping between representations is understood. At the final level of this
example, the level of single abstractions, mappings between representations are
combined, leading to concepts like intentions: the intention of a person influences
the actual behavior they show while interacting. The complex pattern of interactions
between mappings between representations are collapsed into new units:
abstractions. In the next tier, abstractions are combined in the same manner as
representations in this tier: first by simple combinations, later by systems, and finally
by systems of systems.

An important property of FischerÕs theory is that the representations used at a
certain level are combined in the next level, either by forming combinations, as in the
shift from single units to mapping, or by generalization, by combining a set of
mappings into a system. So, the end-products of a level are the building blocks for
the next level. A simple experiment that shows that young children cannot combine
representations in the same way older children can is the discrimination-shift task
by Kendler & Kendler (1959). In this experiment, children are presented with blocks

5: Strategies of learning

126

that are either white or black, and either small or large. The children have to say
either ÒyesÓ or ÒnoÓ to each block. For example, they have to say ÒyesÓ when a white
block is shown, or ÒnoÓ when a black block is shown. The children do not know this,
but have to discover this on the basis of feedback. After a child has made 10
consecutive correct predictions, the criterion is changed, unbeknownst to the child.
Either a reversal shift is made, in which ÒyesÓ has to answered in response to black
blocks, or an extra-dimensional shift is made, in which the dimension is changed,
and the child has to answer ÒyesÓ when a large block is presented (Þgure 5.5). After
the shift, the number of trials the child needs in order to be able to do ten consecutive
correct trials again is counted. Figure 5.6 shows the results of a discrimination-shift
experiment in which participants were children of 6-7 years old (Kendler & Kendler,
1959). Fast-learning children discover reversal shifts quickly, but need a lot more
trials to discover an extra-dimensional shift. Slow-learning children show a pattern
that is entirely opposite: they are faster at an extra-dimensional shift, while needing
much more time for a reversal shift. Similar experiments have shown that adults are
also faster at reversal shifts (for example, Harrow & Friedman, 1958), while small

+
+

-
-

-
-

+
+

+
-

+
-

Reversal

Extra-dimensional

Figure 5.5. Example of a discrimination-shift task. Stimuli indicated by the Ò+Ó-sign are stimuli on
which the participant has to answer with ÒyesÓ.

T
ria

ls
 n

ee
de

d

reversal extra-dimensional

10

25

Fast learning children

Slow learning children

Figure 5.6. Results of the discrimination-shift experiment

The nature of learning strategies

127

children and animals (for example rats in Kelleher, 1956) are faster at extra-
dimensional shifts.

In terms of Fischer, the knowledge needed to successfully do this particular
discrimination-shift task can now be stated. The most compact representation is an
Rp3-system (the third row in figure 5.4), in which the color (or size) of the block has
to be mapped onto the response (yes or no). Before a shift takes place, the following
system has to be learned:

(5.10)

A property of the block, its color, has to be used to select a response. If a child has
not mastered Rp3-representations yet, it has to use representations of one of the
lower stages of development, for instance the S2 stage of sensorimotor mappings.
This stage is not shown in Þgure 5.4, but is two levels below the S4/Rp1-level. At
this stage, it is not yet possible to reason about individual properties of an object,
but just about the object as a whole. The knowledge needed before the shift has to
be represented by a set of four sensorimotor mappings:

{ [SMALL-WHITE-BLOCKÑREPONSE-YES],
[LARGE-WHITE-BLOCKÑRESPONSE-YES],
[SMALL-BLACK-BLOCKÑRESPONSE-NO],

 [LARGE-BLACK-BLOCKÑRESPONSE-NO] } (5.11)

If we now look at the changes required in each of these representations to
accommodate the different types of shift, we can understand why reversal shifts are
easier if you use Rp3 representations, and extra-dimensional shifts are easier if you
use just S2 representations. In the Rp3 case (Þgure 5.7a), the reversal shift is easier,
because the system remains the same: only the mapping within the system changes.
In the S2 case (Þgure 5.7b), the extra-dimensional case is easier, since only two out
of four mappings change, while two mappings remain the same. In the reversal
shift all four mappings change.

In the introduction to this section I remarked that reflection corresponds to the use
of explicit learning strategies. Since learning strategies themselves have to be
acquired as well, it interesting to look at the development of reflection and the
relation with FischerÕs theory. Kitchener, Lynch, Fischer and Wood (1993) have done
a study in which they relate FischerÕs skill levels to reflective judgement. Each level
from Rp1 upwards can be related to an increased capacity of reflection. While
children at the Rp1 level can only reason about concrete propositions, like ÒI know
the cereal is in the boxÓ, children at the Rp3 level can reason about the uncertainty of
knowledge. Kitchener et al. developed the Reflective Judgement Interview to assess
the level of reflection, and used participants who were between 14 and 28 years old.
The results show a steady increase in reflective capacity. Moreover, a specific version
of the test was used to assess the optimal level of performance by giving maximal

COLOR
WHITE

BLACK
RESPONSE

YES

NO
↔

5: Strategies of learning

128

contextual support. In this version of the test the growth curve shows some evidence
for growth spurts, as predicted by FischerÕs theory (figure 5.8).

In summary, FischerÕs theory is weaker than PiagetÕs with respect to the predictions
it makes. This is not a big problem, since PiagetÕs original theory is not completely
accurate. On the other hand, Fischer provides representations that can be used to
analyze skills in different stages of development. These representations can also be

COL
W

B
RESP

Y

N
↔

COL
W

B
RESP

N

Y
↔

SIZ
L

S
RESP

Y

N
↔

{ [S-W-BÑRESP-Y],
[L-W-BÑRESP-Y],
[S-B-BÑRESP-N],
[L-B-BÑRESP-N] }

{ [S-W-BÑRESP-N],
[L-W-BÑRESP-N],
[S-B-BÑRESP-Y],
[L-B-BÑRESP-Y] }

{ [S-W-BÑRESP-N],
[L-W-BÑRESP-Y],
[S-B-BÑRESP-N],

[L-B-BÑRESP-Y] }

Figure 5.7. Changes in representation (indicated in an outlined font) due to reversal and extra-
dimensional shifts using different types of representation. Abbreviated versions of (5.10) and
(5.11) are used.

Reversal

Extra-dimensional

Reversal

Extra-dimensional

(a) Rp3 Systems

(b) S2 Mappings

3.8

4.3

4.8

5.3

5.8

6.3

6.8

14 15 16 17 18 19 20 21 22 23 24

25
-2

6

27
-2

8

Age of participants

M
ea

n
sc

or
e

Figure 5.8. Increase in reßective judgement with age. From Kitchener et al. (1993)

The nature of learning strategies

129

used to describe developmental paths that lead from one stage to the next stage. In
this sense FischerÕs theory is stronger than PiagetÕs theory: it can specify how
knowledge is represented, and how a higher-order representation can be built out of
lower-order representations. It still lacks a real processing component, however, a
specification of the processes that actually change the representations. Furthermore,
FischerÕs representations in their current form are not precise enough to support a
detailed processing theory. This is also the main criticism of stage theories of
development, the fact that they put too much stress on the state of knowledge at a
certain age, thereby neglecting the importance of what some researchers see as the
main issue of interest in development: the process of change.

The dynamics of change in FischerÕs theory can be described by dynamic systems
theory. Van Geert (1994) has developed models of the increase in knowledge on
different levels, using growth equations similar to those presented in section 5.3. An
interesting feature of van GeertÕs model is that it can model the shape of the growth
spurts, such as the slight regression in performance between age 17 and 18 in
figure 5.8, followed by a fast increase between age 18 and 20. As the model is coarse-
grained, it does not describe the changes in representations, nor can it explain by
what changes a new level starts. Nevertheless, a dynamic growth model may be a
good starting point for constructing a fine-grained model that does model
knowledge representations.

Karmiloff-SmithÕs representational redescription
A theory that puts more stress on the process of change than on levels of knowledge
is Annette Karmiloff-SmithÕs (1992) theory of representational redescription (RR). The
RR theory is concerned with mastering skills in speciÞc domains, so it has no global
Piaget-like stages or Fischer-like optimal levels. An interesting feature of the theory
is that it discriminates an implicit learning phase for a new skill, followed by
several explicit learning phases. In each new phase, the representations of the
previous phases are redescribed into a new representation. The phases are called I
(implicit), E1 (explicit 1), E2 (explicit 2) and E3 (explicit 3). The last two phases are
often collapsed into a single E2/3 phase. The difference between a phase and a
stage is that phases are not related to age, and the cycle of four phases recurs for
every domain that has to be mastered during development.

According to the RR theory, the I-phase in learning a new skill involves implicit, data
driven processing. In this phase, the child creates Òrepresentation adjunctionsÓ out
of the external data, which are just stored in memory. No further processing is done
on these representations, but they can contribute to successful performance. If the
child has accumulated enough adjunctions, performance becomes consistently
successful. The RR theory defines this as behavioral mastery. Although the child can
perform the skill, it does not have conscious access to it, since the examples are not
generalized into rules. Generalization takes place in the E1 phase, in which the focus
is moved from external data to internal representations. Features from the

5: Strategies of learning

130

environment are disregarded in favor of the internal generalization process. This
may lead to a decrease in performance, since generalizations may be wrong. In E2/
3, the internal representations are made consistent with the external data, leading to
a representation that supports successful performance, and offers the building
blocks for new skills.

Each phase produces its own type of representations. The Òrepresentational
adjunctionsÓ are stored in procedural form. This procedural form is not the same as
production rules in ACT-R, but shows a strong resemblance to popped goals that are
stored in declarative memory. In the E1 phase, the representational adjunctions are
redescribed into more compact abstractions that can be related to other domains.
These abstractions are recoded in E2/3 into a representation that is available for
conscious manipulation, and that can be verbalized. An important feature of these
representations is that they all remain available, so even if a child has reached phase
E2/3, the representational adjunctions are still available. In chapter 6 we will discuss
some ACT-R models in which the ideas of representational redescription will be
used and made precise in terms of ACT-R representations.

SieglerÕs overlapping-waves theory
Siegler (1996) criticizes the stage, level and phase models by pointing out that the
idea of a stage may well be an artifact of the way developmental psychologists
collect their data. Typical experiments involve studying how two or more age
groups of children perform a certain task, and contrasting their respective
approaches. According to Siegler, however, it is a mistake to think about the way
children think about a certain problem at a certain age. The result of these
approaches are staircase models. For example, several strategies to do simple
additions have been identiÞed in children: small children tend to count both
addends from 1, slightly older children start with the largest addend (the min
strategy), and even older children retrieve the answer from memory (Ashcraft,
1987). A ÒstaircaseÓ interpretation of these differences is depicted in Þgure 5.9: Þrst
children use the sum strategy, then they switch to the min strategy, and Þnally to the
retrieval strategy. Closer inspection of what strategies children use reveals that
children do not use a single strategy to solve addition problems, but instead use
several strategies. What changes with age is the frequency with which they use a
certain strategy. The bottom graph of Þgure 5.9 illustrates this aspect using a study
from Svenson and Sjoberg (1983). In this longitudinal study, the strategy use of 13
children was followed from Þrst to third grade. As can be seen in the graph, at each
point in time children use several strategies, and the frequencies of particular
strategies ßuctuate over time.

The main point Siegler makes is that children do not change strategies overnight.
When a child discovers or learns a new strategy to do addition, it does not
exclusively switch to this strategy but adds it to the set of existing strategies with

The nature of learning strategies

131

which it has to compete. If a strategy proves to be sound in the long run, and has an
edge over other strategies, it will be used more often.

In chapter 3, we saw that some participants in the scheduling experiment sometimes
use counting to do addition, which corresponds to the min strategy. This
corresponds well with the overlapping waves model: even adults have all strategies
available, but most adults just use retrieval as their sole strategy. Some individuals
may however use other strategies occasionally. The fact that addition had to be
performed in a situation where working memory load was already high may also
have contributed to a shift in strategy. The matter of working memory load will
return in chapter 7.

Discussion
The goal of this section was to get some idea of what learning strategies are by
looking at development. Each of the four theories discussed offers some parts of the
puzzle. Unfortunately, all four theories are mainly descriptive, and are not very
speciÞc about exact representations or processes acting on these representations.

0

5

10

15

20

25

30

35

40

45

Early
1st

Late
1st

Early
2nd

Late
2nd

Early
3rd

Late
3rd

Grade

Pe
rc

en
t u

se Min
Retrieval
Count fingers
No answer

Figure 5.9. Staircase model (top) versus data supporting the overlapping-waves model (bottom) of
addition strategies (from Siegler, 1996)

5: Strategies of learning

132

An important topic in development is domain specificity. Although PiagetÕs theory
of pure global development has turned out to be too strong, the presence of some
global factor is still under debate. Fischer and Karmiloff-Smith seem to contradict
each other on this point. Fischer defines a global optimal level of performance at a
certain age. When this level goes up, there is a global increase in development. This
global increase is not witnessed in the way Piaget envisions it, because performance
in specific domains may still be lagging behind. Karmiloff-SmithÕs RR theory only
describes development within a domain, without any need for global development.

One might ask whether it is at all possible to settle this debate on the basis of
empirical evidence. In FischerÕs theory, it is always possible to define an optimal
level: it is just the level of the domain that has progressed most. In order to assert an
optimal level that is really meaningful, it has to offer some additional support to the
learning process. Although it may be very hard to find empirical evidence, a
modeling perspective may offer some sort of support.

One issue a model may resolve is whether it is at all possible to have knowledge that
is useful for all domains. If such knowledge can be defined and represented, for
example in ACT-RÕs representations, the next step is to find a developmental path
through this knowledge, and to specify how a more refined strategy can be learned
from a more primitive one. If a system like this can be developed, and is capable of
offering new explanations for old phenomena, it might offer a new type of evidence
in the discussion. But in order to build such a system, the mechanisms of change
have to be understood. The theories discussed here can offer some clues.

Karmiloff-Smith suggests the first (I) phase in learning a new skill is to store
representational adjunctions. This phase only involves storing, retrieving and
applying these adjunctions. Only when this set is sufficiently stable in the sense that
behavioral mastery is reached, the explicit phases in which the information is
integrated can be entered. This idea closely matches PiagetÕs idea of assimilation and
accommodation: during assimilation external experiences are stored, while during
accommodation these experiences are integrated into a qualitively new behavior.

SieglerÕs theory of overlapping waves shows that the discovery of a new strategy
does not necessarily imply that this strategy will completely dominate behavior. A
new strategy first has to prove it is better than the existing strategies. This illustrates
the need for an evaluation mechanism: any new strategy has to be assessed with
respect to the question whether it really is useful and better than the alternatives.

What have we learned with respect to learning strategies? Take FischerÕs theory as a
starting point. Each new level in the theory involves a type of representation in
which a single representation replaces a combination of representations from the
previous level. Assuming these representations are mainly declarative, one needs
accompanying procedural knowledge in order to handle these representations.

Modeling explicit learning strategies in ACT-R

133

Which of these comes first? In terms of ACT-R, the declarative representations have
to be first, because a declarative example is needed to learn a new production rule.
This also concurs with the RR model in which a set of representations is acquired and
stored in the first phase. Only when a suitable set of knowledge is collected can
generalization be attempted. Probably many generalizations are possible, so sorting
them out may take some time, and may cause the rise and fall of certain strategies as
Siegler has shown. Summarizing,

• learning strategies have to be general, so they can be used in several domains

• it has to be possible to Þnd some developmental path through these learning
strategies

• representing, storing and retrieving examples is an important Þrst step in
acquiring a new strategy

• since several generalizations are possible, an evaluation mechanism is needed to
select the most useful strategies

In the remainder of this chapter, I will show a potential example of a general learning
strategy, thus addressing the first point on the list. This strategy will be explored in
models of two separate tasks. An interesting property of the strategy is that once it
is impoverished by removing some of the production rules, it exhibits behavior
consistent with a lower level of development. This property is important for the
second point: the developmental path through strategies. The models in the
remainder of this chapter will model the discovery of new rules, so accommodation
in terms of Piaget, or the E1-phase of Karmiloff-Smith. The aspect of assimilation or
I-phase, i.e. the use of examples, will be an important topic in the next chapter, as
well as the evaluation mechanism.

5.5 Modeling explicit learning strategies in ACT-R

The goal of an explicit learning strategy is to learn new knowledge that is necessary
for some new task or domain, or to improve the knowledge already available for an
existing task or domain. In order to model this in terms of ACT-R, general learning
goals have to be deÞned, and production rules that operate on these goals. The
starting point for learning goals is the predeÞned dependency chunk-type (see
Þgure 2.9 in chapter 2). Dependency chunks form the basis for new production
rules: once a dependency is popped from the goal stack, it is compiled into a
production rule. Intuitively, the best way to think of a dependency is to consider it
as an example of how to do something. The goal of coming up with such an
example can therefore be seen as an explicit learning goal. Eventually, this learning
goal will produce a new production rule. In ACT-R, the dependency learning goal
needs production rules that matches it. These rules are therefore also part of explicit

5: Strategies of learning

134

learning, and have to be domain independent. So at least the production rules that
operate on dependencies are explicit learning strategies for learning new
procedural knowledge.

When are explicit learning goals needed? As we have seen earlier in this chapter, we
need them if the current approach to the task does not work well. But they are also
needed, in the case of a psychological experiment, when participants have to do a
task they have never done before, as is often the case. Participants in a psychological
experiment need explicit learning strategies to set up initial knowledge structures to
perform the task. These strategies need some domain-specific information to work
with, for example the following types of information:

Task instructions and examples. In the case of an experiment or educational setting, a
task or problem is explained by the experimenter or teacher, and sometimes a few
examples are shown.

Relevant facts and biases of other domains in declarative memory. New tasks often build
on existing knowledge. Knowledge from related domains can therefore be retrieved
and adapted to the task at hand.

Facts and biases in declarative memory from the current domain. As someone gains
experience in a new domain, popped goals are accumulated in declarative memory,
while declarative learning maintains activation levels and associations with other
chunks. This declarative knowledge, similar to the RR modelÕs implicit I-phase
knowledge, may serve as a basis for new production rules.

Feedback. If a wrong answer is given based on the current knowledge, and feedback
is provided on what the right answer is, this may also be used as a basis for new
rules.

Figure 5.10 outlines how a learning strategy works: given initial information in
declarative memory, a set of general production rules creates an example of how to
do something, a dependency. This dependency is compiled into a new production
rule, which has to compete with the rules that have created it. If the task-specific rule
performs too poorly, the explicit learning strategies win the competition, and
propose new rules, taking into account the feedback (if any) received on the faulty
rule. The competition between the task-specific rules and the general learning
strategies is the same competition as the competition between search and reflection
modeled in the dynamic systems model earlier this chapter.

An ACT-R model of a simple explicit strategy

135

5.6 An ACT-R model of a simple explicit strategy

The beam task
The task we will start with is a beam task. It is a simpliÞed version of the balanced-
beam task, a task of used in developmental studies (Siegler, 1981). The problem is
relatively easy: a beam is given, with weights on the left and the right arm. Attached
to the arms of the beam are labels, each with a number on it. The task is to predict
whether the beam will go left, right, or remain in balance. The numbers on the
labels have no inßuence on the outcome. Figure 5.11 shows an example of a beam.
Although the task is easy if we know something about weights and beams, it is
much more difÞcult if we know nothing at all.

The assumption is that the model initially has no task-speciÞc rules about beam-
problems. The only procedural knowledge the model has is a set of general rules.
Later on, we will use the same general rules for other tasks. The general rules used
to learn this task are the following:

Explicit learning
strategies

(ÒreflectionÓ)

Task-specific
rules

(ÒsearchÓ)

Instructions,
biases and facts

Example of how to
do something:
Dependency

Procedural
Memory

Declarative
Memory

Competition

Figure 5.10. General schema of learning strategies in ACT-R

Feedback

2 3

1 4weight

label

Figure 5.11. Example of the beam task

5: Strategies of learning

136

Property-retrieval. If there is a task that has a number of objects, create a dependency
that contains an example of retrieving a certain property of each of the objects. In the
case of the beam task, the objects are the arms of the beam, and weight and label are
possible properties. This rule creates a rule that directs attention to a certain aspect,
attribute or dimension of the task.

Find-fact-on-feedback. If feedback indicates that the answer is incorrect, and also
contains the correct answer, set up a dependency that uses the goal and the answer
as examples. Also, retrieve some fact that serves as a constraint in the dependency.
The resulting rule will, given a goal, try to fill in the answer using some retrieved fact
from declarative memory. To be able to generate correct rules for the beam task, we
need to retrieve the fact that a certain number is greater than another number, in
order to predict correctly whether the beam will go left or right.

Both general rules involve retrieving an arbitrary chunk from declarative memory,
either a property or a fact. Normally the retrieval of arbitrary chunks will not
produce the right rules. The chunks retrieved are however not arbitrary, since ACT-
RÕs activation mechanism ensures that the chunk with the highest activation is
retrieved. Since activation represents the odds that a chunk is needed, the chunk
with the highest odds of being needed is retrieved. This activation can itself again be
manipulated by explicit declarative memory strategies such as rehearsal.

In the model, this is reflected by the fact that both property-retrieval and find-fact-
on-feedback can be influenced by prior knowledge. If there is an association strength
between beam and weight, indicating knowledge that a beam has something to do
with weight, property-retrieval will choose weight in favor of label. If there is an
association strength between beam and greater-than, a greater-than fact will be
retrieved by find-fact-on-feedback. Although this is not part of the model presented
here, a possible source of the relevant associations is an implicit learning phase in the
sense of the RR theory as discussed in section 5.4.

Since the general rules are just production rules, they can be in direct competition
with the task-specific rules they generate. If property-retrieval generates a rule X to
retrieve the label, X will compete with property-retrieval. If X is not performing well,
for example if it retrieves the irrelevant label, its evaluation will decrease, and it will
eventually lose the competition, in which case property-retrieval will create an
example of retrieving weight. Although find-fact-on-feedback is only activated if
feedback indicates an incorrect answer (i.e., when an expectation-failure occurs), the
rules it produces are in competition with each other. The rule with the highest
success rate will eventually win.

Figure 5.12 summarizes the property-retrieval rules, and figure 5.13 summarizes the
find-fact-on-feedback rules. Both are instantiations of figure 5.10. Figure 5.13 shows

An ACT-R model of a simple explicit strategy

137

the case in which a ÒDonÕt knowÓ rule fires. If instead an incorrect answer is
predicted, a dependency is created in the same manner. Apart from the general
rules, the model contains lisp functions to generate random beams, and production
rules to give feedback. When the model produces an incorrect answer, it will try the
same beam again until it can predict the right outcome.

Simulation results
The general rules turn out to be sufÞcient to learn the task. The following rules are
examples of (correct) rules learned by the model. The rule generated by property-
retrieval is a rule that retrieves the weight property for both arms of the beam, and
stores them in the goal:

Figure 5.12. How property-retrieval works

Property-retrieval

Select a property
type

Create a depend-
ency

Dependency
contains an
example of

retrieving the
property

Task-speciÞc rule
Retrieve a certain

property

Competition
If the task-speciÞc rule

behaves too poor, a new
property will be tried

Possible bias:
association

between weight
and beam

Find-fact-on-feedback

3 2
3

2

ÒleftÓ

ÒDonÕt knowÓ
rule Þres

Find-fact-type:
greater-than

Find-fact:
3 greater-than 2

Possible bias
association

between beam and
greater-than

Dependency
Example of answering left if left
arm has a greater weight than

the right arm

Task speciÞc rule
Answer left if left arm has a
greater weight than the right

arm

feedback

Figure 5.13. How Þnd-fact-on-feedback works

5: Strategies of learning

138

IF the goal is of type SOLVE-BEAM and refers to two objects O1 and O2
of which no properties have been retrieved yet
AND there is a property of O1 of type weight and value V1
AND there is a property of O2 of type weight and value V2

THEN add V1 and V2 as properties of type weight to the goal

One of the rules generated by find-fact-on-feedback is a rule that predicts when the
left arm of the beam will go down.

IF the goal is of type SOLVE-BEAM and two properties V1 and V2 of
type weight have been identified
AND there is a fact of type greater-than that specifies V2 is
greater than V1

THEN set the answer slot of the goal to LEFT

The model was tested in several conditions, differing in the bias given for the
properties (P) and the fact-type (F). The following table summarizes the conditions:

P+ Association between beam and weight
P- Association between beam and label, a bias for the wrong property
F+ Association between beam and greater-than
F- Association between both beam and greater-than, and beam and number,

so two possible fact-types were favored.
F-- No associations between beam and fact-types, four fact-types are possible.

Each experiment has both a P condition and an F condition. Each experiment was
run 30 times for 45 trials. Figure 5.14 shows the results. As can be seen in the graph,
in the P+F+ condition ACT-R learns to solve the task quite rapidly, and the fact that
the model does not reach a 100% score within a few trials is only due to the fact that
beams are generated randomly, only occasionally producing a beam in which

Trial number

P
er

ce
nt

ag
e

co
rr

ec
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

P-F+

P-F-

P+F+

P-F--

P+F--

Figure 5.14. Results of the beam model

An ACT-R model of a simple explicit strategy

139

balance is the correct answer. Performance decreases if the model has less initial
information. In the case of the P-F-- condition, the model often fails to find the correct
rules for the task. Success depends heavily on the quality of the declarative
information. This information does not have to be completely accurate, but some
declarative stage before proceduralization is important for success.

The results in figure 5.14 suggest a gradual increase of performance. However, this
impression is misleading, as it is caused by averaging 30 runs. If individual runs are
examined, each has a certain point where performance increases dramatically. To get
a better perspective on this increase, it is necessary to find the exact point at which
the increase in performance starts. In one of the conditions, the P-F+ condition, this
point is the most obvious: the moment the model switches from examining the label
property to examining the weight property. Since this moment is easy to identify in
an individual run of the model, it is possible to average results with respect to this
point in time. An interesting aspect to average is the number of failed predictions the
model makes before it makes the right predictions. Remember the model keeps
trying to predict the right answer until it is successful. The result is shown in
figure 5.15. It shows the average number of incorrect tries for each trial in the P-F+
condition. At x=0 the model creates a production rule that retrieves the weight
properties. As is apparent from the graph, before ACT-R creates this rule, on average
three failed predictions are made. Since this clearly establishes that the current task-
specific rules are not correct, the general rules can take over and propose new task-
specific rules. This process resembles the impasse-insight stages of insight problem
solving, and is based on the same mechanisms of the dynamic growth model.

trial relative to property switch

nu
m

be
r

of
 fa

ilu
re

s

0

0.5

1

1.5

2

2.5

3

3.5
-1

0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Figure 5.15. Average number of failures for trials relative to a property switch

5: Strategies of learning

140

Discrimination-shift learning
One of the advantages of explicit learning strategies compared to implicit learning
is that they can handle change more easily. If something changes that has been
stable for a while, an explicit strategy may react by proposing new knowledge to
replace the old. An example of a task in which the rules change is discrimination-
shift learning, which I have explained in section 5.4. The ACT-R model of adult
behavior uses the same 8 general production rules used in the beam-task,
implementing the property-retrieval and Þnd-fact-on-feedback strategies. It learns
rules that are quite similar to the rules for the beam task: a rule that focuses on one
of the properties of the blocks, either the size or the color, and rules that map
speciÞc colors or sizes onto the answers yes and no. This knowledge is closely
related to the Rp3-representation of FischerÕs theory (Þgure 5.7). The small-child/
animal model uses only 2 of the 8 general production rules, implementing a limited
Þnd-fact-on-feedback strategy. The latter model hardly uses any explicit reasoning
at all, but rather stores regularities in the environment in production rules. This
representation closely resembles FischerÕs S2-representation. The results of both
ACT-R models are shown in Þgure 5.16b, producing results quite similar to the
Kendler & Kendler data in Þgure 5.16a.

Despite the fact that the discrimination-shift task is generally not considered to be an
insight problem, it nevertheless requires the participant to notice that something has
changed, and to discover the new relations. So it can be seen, in a sense, as an
elementary insight problem.

T
ria

ls
 n

ee
de

d

reversal extra-dimensional

10

25

Fast learning children

Slow learning children

T
ria

ls
 n

ee
de

d

reversal extra-dimensional

10

25 “Adult” model

“Child” model

(a) (b)

Figure 5.16. Trials needed to learn the discrimination-shift task, (a) from the Kendler & Kendler
experiment, (b) by the ACT-R model

Discussion

141

5.7 Discussion

The goal of cognitive modeling is to create computer simulations of cognitive
processes. A criterion for a good model is whether the results of the simulation
match the empirical data. A second criterion that becomes increasingly more
important, is the question whether the model can learn the knowledge it needs. A
model that uses a large set of specialized production rules is less convincing than a
model that gathers its own knowledge. The learning mechanisms which are part of
the architecture, are often not capable of doing this job by themselves, so they need
augmentation. In the previous chapter I have argued that these mechanisms
correspond to implicit learning. The mechanisms can be augmented by explicit
learning, that is, implemented by knowledge in memory that directs the implicit
learning mechanisms.

Implicit mechanisms are fixed, but explicit strategies have to be acquired.
Individuals probably differ in their explicit strategies, although they may well have
many in common. Rehearsal, for example, is a strategy used by almost all adults,
though it is clearly not something we were born with. An interesting question is
whether the same property is also true for other learning strategies. Is there a
sequence of rules that unfolds during development? The model of the
discrimination-shift task at least hints in this direction, as does FischerÕs theory. On
the other hand we may well expect large individual differences. Experiments in
which participants have to solve difficult problems often show that every participant
solves a problem in a different way.

An interesting question is, how the issues discussed here can be related to other
architectures. The emphasis on learning models is often attributed to the ascent of
neural network models. A neural network model typically starts out with an
untrained network, gaining knowledge by experience. Neural networks are
powerful in the sense that a three-layer network can learn any function if properly
configured. This power is also a weakness, especially if the time taken to learn
something is taken into account. Neural networks usually do not have any goal
structures, so they lack the mechanisms that are able to focus learning. Karmiloff-
Smith, for example, states that neural networks model implicit I-phase learning very
well, but are not yet capable of modeling the more explicit phases of skill learning.
Raijmakers, van Koten and Molenaar (1996) have shown that a standard feed-
forward neural network always behaves like a small child or animal in the
discrimination-shift task, being faster at the extra-dimensional shift. To summarize:
neural networks do a very good job at implicit learning, but the step towards explicit
learning is difficult to make because of the absence of goals and intentional
structures.

In the Soar architecture (explained in chapter 2), goals and deliberate reasoning are
even more important than in ACT-R (Newell, 1990; see for an extensive comparison

5: Strategies of learning

142

of ACT-R and Soar: Johnson, 1997). The ACT-R models presented in this chapter
only use deliberation when existing simple rules prove to be insufficient and, more
importantly, if there is any knowledge present on how to deliberate. If ACT-R has to
choose between actions A and B, a cost benefit analysis between the rule Òdo AÓ and
the rule Òdo BÓ will decide. Only if both rules prove to perform badly, explicit
learning strategies will try to find a more sophisticated rule. A Soar model on the
other hand will always try to make a deliberate and rational choice between A and
B, a process that may require a lot of processing and specific task knowledge. A Soar
model that has to choose between A and B, and has no particular additional
knowledge, will get into a infinite sequence of impasses. SoarÕs single learning
mechanism is chunking, which summarizes the processing done between an
impasse and its resolution into a new production rule. Although chunking is a
mechanism, it is only activated after an impasse has been resolved, so after a
deliberate problem solving attempt. Since chunking is SoarÕs only learning
mechanism, this may cause trouble. For example, to learn simple facts, Soar needs
the elaborate scheme of data-chunking. Data-chunking eventually produces rules
like ÒIF bird THEN note it has wingsÓ. To be able to learn this, however, a lot of
deliberation has to be done by production rules that are not part of the architecture. In
a sense, Soar walks the reverse way: instead of building explicit learning on top of
implicit learning, it accomplishes typical implicit learning tasks by elaborate explicit
schemes. The critical reader will be able to find more examples of SoarÕs problems
with simple satisficing behavior in Johnson (1997).

Since many other architectures, like EPIC and 3CAPS, currently support no learning
at all, ACT-R presently seems to be the best platform to support explicit learning
strategies on a basis of implicit learning. To be able to fully sustain explicit learning
though, some technical issues in ACT-R must be resolved. Most notably a
mechanism must be included to create new chunk-types. The models discussed in
this chapter circumvent this problem by using a generic goal type for all goals, but
this is hardly a satisfactory solution in the long run.

This chapter may be a starting point for several strands of further research. A more
thorough inventory of possible general rules has to be made. This leads to a further
question: where do the general rules themselves originate? This question is best
studied in a developmental setting. Is it possible to specify a sequence of general
rules that are learned during development that can account for the fact that older
children can handle more abstract concepts? Unfortunately, I will not answer this
question in this thesis: in the next few chapters we will focus on adult problem-
solving behavior only.

CHAPTER 6 Examples versus Rules

6: Examples versus Rules

144

Acknowledgment
This chapter is written in collaboration with Dieter Wallach, who has developed the
model in section 6.3.

An important topic in skill learning is the question of what type of knowledge is
learned. Two explanations dominate the discussion. The rule-learning explanation
assumes rules are learned by generalizing examples. The instance-based explanation
assumes a set of examples is retained. This explanation assumes improved
performance can be explained by the fact that a solution is retrieved from memory
instead of being calculated again. Both types of explanation are compatible with
ACT-R, and this chapter will explore the question of how to choose between the two.
The central idea will be that the type of learning with the best expected gain will
dominate performance. This will be demonstrated using two models. The first of
these models the Sugar Factory task, a task in which performance can be explained
by instance learning alone. The second models the Fincham task, in which the
expected gain of both the use of instances and the use of rules can be examined in
detail.

6.1 Introduction

The models in the previous chapter made an important assumption about learning
new skills, the assumption that they are represented as production rules. An
alternative account of skill learning is that people store examples, and later retrieve
these examples if they encounter the same or a similar situation.

The question whether skills are realized as abstract rule-like entities or as sets of
concrete instances is one of the central distinctions in cognitive science, spreading
across Þelds as diverse as research on memory, problem solving, categorization or
language learning (Logan, 1988; Hahn & Chater, 1998; Redington & Chater, 1996;
Plunkett & Marchman, 1991; Lebiere, Wallach, & Taatgen, 1998). Hahn and Chater
(1998) proposed that the distinction between instance- and rule-based learning
mechanisms cannot be based on different types of representations, but must be seen
within the framework of their use in problem solving. We extend their argument
and emphasize the necessity of an integrated investigation of human skill
acquisition using a comprehensive theory of cognition.

The view of skill acquisition as learning and following abstract rules has dominated
theories of skill acquisition over the last decades, whether encoded in production
systems (Newell & Simon, 1972; Anderson, 1993), stored as logical implications or
represented in classifier systems (Holland, Holyoak, Nisbett & Thagard, 1986).
While these approaches differ in many aspects, they share the assumption that
cognitive skills are realized as abstract rules that are applied to specific facts when

Introduction

145

solving problems. In ACT-R, it is assumed that people start out with concrete
examples of previous problem solving episodes that are generalized to abstract
rules. These rules can be applied in subsequent problem solving and can thus
account for increased performance. Discontinuous improvements in cognitive
performance (Blessing & Anderson, 1996) can be taken as further evidence for the
acquisition of rules. While Anderson (1993) describes the view that cognitive skills
are realized as (production) rules as Óone of the most important discoveriesÓ in
cognitive psychology, Logan (1988) argues for domain-specific instances as the basis
for cognitive skills. According to this instance theory, general-purpose procedures or
algorithms are applied to solve novel problems. Each time such a procedure is used
in problem solving, its solution is retained as a separate instance. For new problems,
the solution can be calculated, or a previous one can be retrieved and applied to the
current problem. The retrieved solution can be used as a whole, in part, or in an
adapted version to obtain the solution of the new problem.

An important source of evidence for the instance-based approach is the fact that
repeating a certain specific example of a problem increases performance on this
example, but not on other ones. The fact that participants cannot verbalize abstract
knowledge about the problems solved is frequently cited as further evidence against
some form of generalization, as implied by rule-based skill theories. ACT-R,
however, assumes that rules themselves cannot consciously be inspected, so this
second source of evidence is not as convincing as the first.

Evidence for the fact that knowledge is represented as production rules comes from
research on the directional asymmetry of rules. A production rule has two parts, a
condition and an action, which we informally denote as ÔIF condition THEN actionÕ.
In a production system, control always flows from the condition to the action. In
many practical cases, the condition and the action are both part of a pattern, for
example the pattern AB. A rule like ÔIF A THEN BÕ can be used to complete the
pattern given A. In an instance approach, the pattern AB can be stored as an instance,
and retrieved given either A or B. If participants are trained to complete some
pattern AB on the basis of A, a rule approach predicts that they learn the rule ÔIF A
THEN BÕ, and the instance approach predicts that they learn the instance AB. If
participants are consequently asked to complete AB on the basis of B, the instance
approach would not predict a decrease in performance. The rule-based approach,
however, suggests that a new rule would have to be learned for the ÔIF B THEN AÕ
case, resulting in worse performance.

Another apparent source of evidence stems from the fact that rules are more general
than instances, which are assumed to be represented in a relatively unprocessed
form (Redington & Chater, 1996). If participants show increased performance on
examples they have not encountered before, some generalized knowledge can be
postulated as the basis of the observed performance. This second source of evidence
is, however, unreliable. It assumes that stored examples can only be used when the

6: Examples versus Rules

146

new example is literally identical to one of the stored examples. If one or more old
examples (or fragments of them) can be used to improve performance on a new
example in a less direct fashion, generalization is also possible in an instance-based
setting. Consequently, if generalization in transfer experiments is used as evidence
against instance theory, it must be made clear that the answer to a certain problem
cannot easily be derived from answers to previous problems. As Redington and
Chater (1996) have pointed out, surprisingly simple models, relying on represented
fragments of observed stimuli, can perform exceedingly well in transfer tasks
without acquiring any abstract knowledge. An example of such a model will be
discussed in section 6.3 when we demonstrate the scope of a purely instance-based
approach in accounting for data that Broadbent and his colleagues (Broadbent, 1989)
have interpreted as evidence against ACT-RÕs claim that production rules are
learned on the basis of examples. Their results on dissociations between knowledge
and performance seem to imply that participants can acquire rules to successfully
operate complex systems without showing an increased performance in answering
questions about the systemÕs behavior. Our instance model will provide a very
simple explanation for this dissociation result.

6.2 Learning strategies

The learning mechanisms in ACT-R are all quite basic, and can be used in several
different ways to achieve different results. In chapter 4, it is argued that the learning
mechanisms of ACT-R correspond to the psychological notion of implicit learning,
since they are always at work, do not change due to development and show few
individual differences. Explicit learning, on the other hand, is tied to intentions Ñ
to goals in ACT-R terms Ñ and can better be explained by a set of learned strategies.

In this chapter we will discuss a paradigm for skill learning that involves both
implicit learning and an explicit strategy. Figure 6.1 shows an overview of this
paradigm. First we assume people have some initial method or algorithm to solve
the problem. Generally this method will be time-consuming or inaccurate. Each time
an example of the problem is solved by this method, an instance is learned. In ACT-R
terms, an instance is just a goal that is popped from the goal stack and is stored in
declarative memory. Since this by-product of performance is unintentional, it can be
considered as implicit learning.

Other types of learning require a more active attitude. If the initial method is too time
consuming, one may try to derive an abstraction to increase efficiency. If the initial
method leads to a large number of errors, new relationships in the task may be
deduced or guessed in order to increase performance. The next step, from
abstraction to production rule, can only be made if the abstraction is simple enough
to convert to a production rule. Since proceduralization is usually not considered

Learning strategies

147

something that is under conscious control, it is a form of implicit learning as well.
This idea is not entirely consistent with ACT-RÕs production compilation
mechanism. We will return to this issue in the discussion at the end of the chapter.
Both the application of abstractions and the firing of new production rules will create
new instances. Regardless of what is going on due to explicit learning, implicit
learning keeps accumulating knowledge.

If we have that many ways of learning, what type of learning will we witness in a
particular experiment? To be able to answer this question we go back to the principle
of rational analysis. According to this principle, the type of learning that will be
principally witnessed is the type that will lead to the largest increase in performance.
If we have a task in which it is very hard to discover relationships or abstractions,
learning will be characterized primarily by implicit instance learning. In tasks where
each instance is different from the others, but where generalization is relatively easy,
the best explanation of performance will probably involve the learning of rules.

Before discussing specific models, both learning instances and production rules will
be examined in more detail. The abstractions used in this chapter are still very simple
structures, and will be elaborated in the next chapter.

Instance-based learning
The last thirty years have seen a number of different experimental paradigms
investigating the concept of implicit learning in domains as diverse as learning
artiÞcial grammars (Reber, 1967), sequence learning (Willingham, Nissen, &
Bullemer, 1989) or learning to control complex systems (Berry & Broadbent, 1984).
All these studies share the claim that participants learn more about structural
properties of the tasks than they are able to verbalize. To explain these Þndings, an
implicit mode of learning has been distinguished from an explicit mode. Berry and
Broadbent (1995) characterize the implicit mode as

[É] a process whereby a person learns about the structure of a fairly complex

Initial method Abstractions Production
rules

Instances

Implicit
learning

Explicit
learning

Figure 6.1. Overview of the proposed skill learning paradigm

6: Examples versus Rules

148

stimulus environment without necessarily intending to do so, and in such a way
that the resulting knowledge is difÞcult to express.

In opposition to this characterization they refer to explicit learning as involving

[É] deliberate attempts to solve problems and to test hypotheses, and people are
usually aware of much of the knowledge that they acquired.

The distinction between two learning modes has not remained unchallenged (c.f.
Perruchet & Amorim, 1992; Perruchet & Pacteau, 1990; Buchner, 1994) but is cited
frequently as evidence against the conception of declarative knowledge as the source
for the acquisition of procedural knowledge as is assumed in the ACT-framework.
Broadbent (1989) argues that the study of Berry and Broadbent (1984) contradicts the
ACT claim since participants seem to learn rules for successfully operating a
complex system without being able to consciously state these rules. Berry and
Broadbent (1984) even found negative correlations between task performance and
the ability to answer specific questions about the systemÕs behavior.

In section 6.3 we propose an explanation for the reported dissociation between
knowledge and performance by analyzing instance-based learning in an ACT-R
model and comparing it to LoganÕs instance theory.

Learning production rules
In the previous chapter some strategies for learning task-speciÞc rules were
discussed. We will now extend those methods to a general scheme for procedural
learning in ACT-R. Both the property-retrieval and the Þnd-fact-on-feedback
strategy have the desirable property that they can be used for several different
tasks. The implementation of these strategies in terms of production rules is,
however, rather ad hoc. This becomes an issue if the question of how these
strategies themselves are learned is raised. In this chapter we will, therefore,
propose a more general approach to learning new production rules. The idea is to
have a standard method to construct a dependency, the declarative memory
structure needed for a new production rule. Explicit learning strategies can extend
this standard method. The advantage is that a learning strategy no longer has to
take care of the whole process of creating a dependency, but only modiÞes some of
the details.

It is important to note that the method of learning new productions presented here
has two aspects. On the one hand, some principled decisions are made that have
psychological relevance. On the other hand, there is a ÒprogrammingÓ aspect
involved: the method must produce the right rules. As a consequence, some, but not
all steps in the production learning process are defendable in psychological terms.

Learning strategies

149

The many constraints ACT-R poses on production rules actually simplify the
problem of finding this basic method of production rule learning. Consider the most
common type of production rule: a rule that matches the goal, retrieves a fact from
declarative memory, and modifies the goal:

IF the goal has a certain type and satisifies certain
properties
AND there is a fact in declarative memory that satisfies
certain constraints

THEN modify one or more slots of the goal

The dependency necessary to learn this rule requires four principal components: the
dependency itself, an example goal before the desired rule is executed, an example
solution after the desired rule is executed, and the fact that is retrieved. Let us
examine these four components and investigate how they may be derived.

The easiest component is the example goal. Assuming rules are derived at the point
they are needed, the example goal is actually the current goal at the moment the
assembly of a dependency is started. The next component is the dependency itself.
Since ACT-R requires that all elements in declarative memory are former goals
themselves (apart from chunks acquired through perception), the dependency must
be pushed onto the goal stack at some point. The best time to do this is right at the
beginning, in order to change the context from normal processing to a production
learning setting. Since any goal setting may be appropriate for learning new rules, a
rule is needed that pushes a dependency as a subgoal regardless of the current goal.
As we already mentioned, the current goal is one of the four components needed, so
we immediately stick it into its rightful place: the goal-slot of the dependency:

IF the goal is anything
THEN push as a subgoal a dependency with the original goal in

the goal slot of the dependency

This rule always matches, and can interrupt normal information processing at any
moment. The rule has a high cost associated with it, since it will be followed by extra
processing that is not directly necessary for normal performance. The rate at which
this rule will fire is directly related to the rules it competes with. If competing rules
have high expected gain values, this rule will fire rarely. If competing rules have low
expected gains, due to the fact that they are inaccurate or costly, this rule will fire
more often. So the frequency with which dependencies are produced depends on the
amount and quality of the knowledge that is already available. This is the same
mechanism as the search-reflection trade-off discussed in the previous chapter.

After the dependency-pushing rule has fired, we end up with a dependency on top
of the goal stack. This is illustrated in figure 6.2a: on top of some arbitrary task goal
X, a dependency has been pushed as a subgoal. Only one slot of the dependency is

6: Examples versus Rules

150

Task
goal X

Depen-
dencygoal-slot

push

Task
goal X

Depen-
dencygoal-slot

push

push

Copy of
goal X

modified-slot

retrieved

constraints-slot

learn-flag

Task
goal X

Depen-
dencygoal-slot

push

push

Modified
goal XÕ

modified-slot

retrieved

constraints-slot

Retrieved
fact

Task
goal X

Depen-
dencygoal-slot

Modified
goal XÕ

modified-slot

constraints-slot

Retrieved
fact

(a)

(b)

(c)

(d)

Figure 6.2. General method to create dependencies on the ßy. (a) a dependency is pushed. (b) the a
copy of the original goal is pushed with a place holder for the retrieved fact. (c) the goal is
modiÞed using some retrieved fact. (d) both the modiÞed goal and the dependency are popped,
leaving a completed dependency structure.

slotname

Indicates the chunk
at the left of the
arrow has the chunk
on the right side in
slot slotname

push
Represents the
goal stack

true

Learning strategies

151

filled: the goal slot. The next step is to fill in the remaining slots of the dependency,
as far as necessary. The main two slots to fill are the modified slot and the constraints
slot. Some way has to be found to propose some modified goal. At this point we need
some explicit learning strategy that can reason out the next step, take a guess or
whatever. In order to take this next step, however, we need to restore the original
goal context. This is accomplished by pushing a copy of the original goal as a new
subgoal, and creating a placeholder for the retrieved fact in that subgoal.

IF the goal is a dependency and the modified slot is nil
and G is in the goal slot of the dependency

THEN push a copy GC of G as a subgoal, set the learn flag of GC
to true, and create a place holder in the retrieved
slot of GC
AND put GC in the modified slot of the dependency
and set the constraints slot of the dependency to the
place holder

After this rule has fired, the goal stack contains three items: the original goal, a
dependency, and a copy of the original goal (figure 6.2b). The copy of the original
goal has its learn flag set to true, so rules that implement explicit learning strategies
are allowed to fire. The next step is that the copy of the goal is modified. This may be
due to explicit learning strategies, but may also be ÔregularÕ problem-solving steps
(figure 6.2c). Once the goal is modified using some fact that is retained in the
retrieved slot, it is popped while removing the learn flag:

IF the goal is has its learn-flag set to true
and the retrieved slot the goal is not nil

THEN set the learn-flag to nil and pop the goal

At that point, further slots of the dependency may be filled, the dependency itself is
popped, and ACT-RÕs production compilation mechanism creates a new production
rule. Now we are back in the original situation in the original goal (figure 6.2d), but
with a new production rule that can modify it.

The advantage of the method outlined above is that learning strategies do not have
to handle dependencies themselves, which is a big hassle. A learning strategy now
only needs to recognize the learn-flag, and modify the goal while putting some fact
in the retrieved slot of the goal. The method can also be modified slightly to produce
production rules that push a subgoal instead of retrieving a fact. This is
accomplished by simply using the stack slot of the dependency instead of the
constraints slot.

The important thing to note in the method above is that procedural learning is part
of normal processing, in the sense that it can be initiated at any moment. The fact that
the goal needs to be copied in the subgoal, and some of the manipulations in this
subgoal, are a bit awkward from a cognitive perspective. In the next chapter we will

6: Examples versus Rules

152

pull out all knowledge-based processing from the dependency subgoal. In that way,
the actual process of learning a production rule becomes more like an implicit-
learning mechanism.

6.3 Sugar Factory

In contrast to rule-based approaches that conceptualize skill acquisition as learning
of abstract rules, theories of instance-based learning argue that the formation of
skills can be understood in terms of the storage and deployment of speciÞc episodes
or instances (Logan, 1988; 1990). According to this view, abstraction is not an active
process that results in the acquisition of generalized rules, but rule-like behavior
emerges from the way speciÞc instances are encoded, retrieved and deployed in
problem solving. While ACT-R has traditionally been associated with a view of
learning as the acquisition of abstract production rules (Anderson, 1983; 1993), we
present a simple ACT-R model that learns to operate a dynamic system based on
the retrieval and deployment of speciÞc instances (i.e. chunks) which encode
episodes experienced during system control. The ACT-R model will be compared to
a model by Dienes and Fahey (1995). This comparison will involve both the
accuracy of the predictions and the assumptions made by each of the models.

The Task
Berry & Broadbent (1984) used the computer-simulated scenario Sugar Factory to
investigate how subjects learn to operate complex systems. Sugar Factory is a
dynamic system in which participants are supposed to control the sugar production
sp by determining the number of workers w employed in a Þctional factory. The
behavior of Sugar Factory is governed by the following equation:

(6.1)

The number entered for the workers w can be varied in 12 discrete steps 1 ≤ w ≤ 12,
while the sugar production changes discretely between 1 ≤ sp ≤ 12. To allow for a
more realistic interpretation of w as the number of workers and sp as tons of sugar,
these values are multiplied in the actual computer simulation by 100 and 1000,
respectively. If the result according to the equation is less than 1, sp is simply set to
1. Similarly, a result greater than 12 leads to an output of 12. Participants are given
the goal to produce a target value of 9000 tons of sugar (so sp=9) on each of a number
of trials. They are given no information at all about the relationship between present
output, number of workers and previous output.

spt 2wt spt 1––= random component (-1, 0, or 1)+

Sugar Factory

153

The models
Based on LoganÕs instance theory (1988; 1990) Dienes & Fahey (1995) developed a
computational model (the D&F model) to account for the data they gathered in an
experiment using the Sugar Factory scenario. According to instance theory,
encoding and retrieval are intimately linked through attention: encoding a stimulus
is an unavoidable consequence of attention, and retrieving what is known about a
stimulus is also an obligatory consequence of attention. LoganÕs theory postulates
that each encounter of a stimulus is encoded, stored and retrieved using a separate
memory trace. These separate memory traces accumulate with experience and lead
to a Ògradual transition from algorithmic processing to memory-based processingÒ
(Logan, 1988, p. 493). The ACT-R model is also based on LoganÕs ideas, but differs in
the way they are worked out.

Both models assume some algorithmic knowledge prior to the availability of
instances that could be retrieved to solve a problem. Dienes & Fahey (1995, p. 862)
observed that 86% of the Þrst ten input values that subjects enter into Sugar Factory
can be explained by the following rules:

1. If the sugar production is below (above) target, then increase (decrease) the
amount of workers with 0, 100, or 200.

2. For the very Þrst trial, enter a work force of 700, 800 or 900.

3. If the sugar production is on target, then respond with a workforce that is
different from the previous one by an amount of -100, 0, or +100 with equal
probability.

While this algorithmic knowledge is encoded in the D&F model by a constant
number of prior instances that could be retrieved in any situation, ACT-R uses
simple production rules to represent this rule-like knowledge. The number of prior
instances encoded is a free parameter in the D&F model that was fixed to give a good
fit to the data reported below. There is no equivalent parameter in the ACT-R model.

LoganÕs instance theory predicts that every encounter of a stimulus is stored. The
D&F model, however, only stores instances for those situations in which an action
successfully leads to the target. All other situations are postulated to be forgotten
immediately by the model. ACT-R, on the other hand, encodes every situation,
irrespective of its result. The following chunk is an example of an instance stored by
the ACT-R model:

transition1239
ISA transition
STATE 3000
WORKER 800
PRODUCTION 12000

The chunk encodes a situation in which an input of 800 workers, given a current
production of 3000 tons, led to subsequent sugar production of 12000 tons.

6: Examples versus Rules

154

The assumption that only successful instances are stored is not problematic in itself.
The problem is that the D&F model uses a ÒlooseÓ deÞnition of what is successful.
Due to the random component in the equation the outcome may be 1000 more or less
than expected. Therefore an output of between 8000 and 10000 was considered
successful by the model. This generous scheme of success was not available to
participants: for them only an outcome of 9000 meant success.

Retrieving instances
In the D&F model each stored instance ÒrelevantÓ to a current situation races
against others and against prior instances representing algorithmic knowledge. The
fastest instance determines the action of the model. An instance encoding a
situation is regarded to be ÒrelevantÒ, if it either matches the current situation
exactly, or does not differ from it by more than 1000 tons of sugar in either the
current output or the desired output, analogous to the loose range discussed above.
Retrieval in the ACT-R model, on the other hand, is governed by similarity matches
between a situation currently present and encodings of others experienced in the
past (see Buchner, Funke & Berry, 1995 for a similar position in explaining the
performance of subjects operating Sugar Factory). On each trial, a memory search is
initiated based on the current situation and the target state Ô9000 tonsÕ as cues in
order to retrieve an appropriate intervention or an intervention that belongs to a
similar situation. The following production rule is used to model the memory
retrieval of chunks based on their activation level:

IF the goal is to find a transition from the current state with
output current to a state with new output desired
AND there is a transition in declarative memory, with
current output current and new output desired and a number
of workers equal to number

THEN set the number of workers in the goal to number

This rule will normally only retrieve an old situation that exactly matches the current
situation. However, ACT-R can also match chunks that do not exactly match the rule
by a process called partial matching, which was mentioned briefly in chapter 2. This
means that an old situation may also be retrieved if it is slightly different from the
current situation. Instances which only partially match the retrieval pattern, i.e.
which do not correspond exactly to the current situation will be penalized by
lowering their activation proportional to the degree of mismatch. Activation noise is
introduced to allow for some stochasticity in memory retrieval.

As figure 6.3 shows, the use of instances instead of the initial algorithmic knowledge
increases over time, resulting in the gradual transition from algorithmic to memory-
based processing as postulated by Logan (1988, p. 493).

Sugar Factory

155

Theoretical Evaluation
While the two models of instance-based learning share some striking similarities,
the D&F-model makes unrealistic assumptions with respect to the storage and the
retrieval of instances. Dienes & Fahey (1995) found out that these critical
assumptions are essential to the performance of the D&F model (p. 856f):

The importance to the modeling of assuming that only correct situations were
stored was tested by determining the performance of the model when it stored
all instances. (É) This model could not perform the task as well as participants:
the irrelevant workforce situations provided too much noise by proscribing
responses that were in fact inappropriate (É) If instances entered the race only if
they exactly matched the current situation, then for the same level of learning as
participants, concordances were signiÞcantly greater than those of participants.

Since the ACT-R model does not need to postulate these assumptions, this model can
be regarded as the more parsimonious one, demonstrating how instance-based
learning can be captured by the mechanisms provided by a unified theory of
cognition.

Empirical Evaluation
While the theoretical analysis of the assumptions underlying the two models favors
the ACT-R approach, we will brießy discuss the empirical success of the models
with respect to empirical data reported by Dienes and Fahey (1995). Figure 6.4
shows the trials on target when controlling Sugar Factory over two phases,
consisting of 40 trials each. ACT-R slightly overpredicts the performance found in

806040200
0.0

0.2

0.4

0.6

0.8

1.0

Trials

us
e

of
 in

st
an

ce
s

(%
)

Figure 6.3. Relative use of instance retrieval per trial by the ACT-R model

6: Examples versus Rules

156

the Þrst phase, while the D&F model slightly underpredicts the performance of the
subjects in the second phase. Since both models seem to explain the data equally
well, we cannot favor one over the other.

After the participants had controlled the Sugar Factory for 80 trials, they had to do a
slightly different task. Again they had to determine the work force in 80 situations,
but now they did not receive feedback, but just moved on to a new, unrelated
situation. The 80 situations presented were the last 40 situations from the first part
of the experiment mixed with 40 new situations.

Figure 6.5 shows how the percentage of times (concordance) participants chose the
same work force in this second task as they did in the first. The baseline level

0

5

10

15

20

25

ACT-R Experiment Dienes &
Fahey

Tr
ia

ls
 o

n
ta

rg
et

Trial 40-80
Trial 1-40

Figure 6.4. Number of trials on target in the experiment, the ACT-R model and the D&F model for
the Þrst and second half of the experiment conducted by Dienes & Fahey (1995)

0

0.1

0.2

0.3

0.4

0.5

Baseline Correct Wrong

Co
nc

or
da

nc
e

ACT-R
Experiment
Dienes & Fahey

Figure 6.5. Concordances for the experiment and both models

The Fincham task

157

represents the chance that both choices are equal due to random choice. This chance
is higher than 1/12, because some choices are made more often during the
experiment than others. The correct column shows how often the same work force is
chosen if this leads to a correct output, and the wrong column shows the same for
the incorrect outputs. Again, both models seem to do a similarly good job in
explaining the data, with neither model being clearly superior.

Conclusion
We discussed and compared a simple ACT-R model to an approach based on
LoganÕs instance theory with respect to their ability to model the control of a
dynamic system. While both models were similar in their empirical predictions, the
ACT-R model was found to require fewer assumptions and is thus preferred over
the model proposed by Dienes & Fahey (1995). Generally, ACT-RÕs integration of an
activation-based retrieval process with a partial matcher seems to be a very
promising starting point for the development of an ACT-R theory of instance-based
learning and problem solving.

6.4 The Fincham task

An example of a task in which both rule learning and instance learning are viable
strategies is described by Anderson & Fincham (1994). In this task, participants first
have to memorize a number of facts. These facts look like this:

ÒHockey was played on Saturday at 3 and then on Monday at 1.Ó

We will refer to these facts as Òsports-factsÓ to prevent confusion with facts and rules
in the model. A sports-fact contains a unique sport and two events, each of which
consists of a day of the week and a time. After having memorized these facts,
participants were told they really are rules about the time relationships between the
two events. So in this case ÒHockeyÓ means you have to add two to the day, and
subtract two from the time. In the subsequent experiment, participants were asked
to predict the second event, given a sport and a first event, or predict the first event,
given the sport and the second event. So participants had to answer questions like:
ÒIf the first game of hockey was Wednesday at 8, when was the second game?Ó
Figure 6.6 shows an example of the interface used in the experiment. In this
paradigm, it is possible to investigate evidence for both rule-based learning and
instance-based learning.

Directional asymmetry, evidence for rule-based learning, can be tested for by first
training participants to predict events in one direction for a certain sports-fact, and
then reverse the direction and look how performance in the reverse direction relates
to performance on the trained direction. Evidence for instance learning can be

6: Examples versus Rules

158

gained by presenting specific examples more often than other examples. Better
performance on these specific examples would indicate instance learning. Anderson
& Fincham (1994), and later Anderson, Fincham & Douglass (1997) performed five
variations on this basic experiment, three of which we will discuss here. But before
discussing the specific experiments, we will first take a look at the ACT-R model we
have developed.

The ACT-R model
The central assumption of our model of the Fincham task is that the data can only
be explained by multiple strategies. We will use the four strategies discussed by
Anderson, Fincham & Douglass (1997): analogy, abstraction, rule and instance. These
strategies have different cost-success proÞles (summarized in Þgure 6.9), which
determine at what stage of the learning process they will be most prominent.
Figure 6.7 shows schematic representations of each of the strategies. Since each
problem involves calculating a day and a time, two separate sub-problems have to
be solved. Each of these strategies corresponds to one of the boxes in Þgure 6.1.

The analogy strategy (figure 6.7a) has the highest cost, but only needs the sports-
facts learned initially. Starting at the top goal, a subgoal is pushed onto the goal stack
to either find the day or the time. To be able to do this, the original example must first
be retrieved, and the appropriate elements (days or times) must be extracted.
Another subgoal takes care of this stage. After retrieving the example, this second
subgoal is popped, and a new subgoal is pushed to make an analogy between the
example and the current problem. First the relation in the example is determined, for
example the fact that two has to be subtracted from the day. Most of the time, this

Figure 6.6. Example of the interface used in Anderson & Fincham (1994) and Anderson, Fincham &
Douglass (1997). From Anderson, Fincham & Douglass (1997).

The Fincham task

159

top goal

 calculate
day (or time)

 retrieve the
sports-fact

 make the
analogy

determine
relation

 apply
relation
(direct)

 determine
relation by
counting

apply
relation by
counting

retrieve all the
words in the
sports-fact and
pick the ones
needed

top goal

 calculate
day (or time)

calculate day
(or time) rule
(direct)

calculate day
(or time) rule by
counting

top goal

retrieve
example

(a) Analogy strategy

(c) Rule strategy

(d) Instance strategy

top goal

 calculate
day (or time)

apply
relation
(direct)

apply relation
by counting

(b) Abstraction strategy

retrieve
abstraction

Figure 6.7. Schematic representation of the four possible strategies used in the model. Note that two
strategies (possibly the same) are needed to solve the whole problem: one for the day of the
week and one for the time of the day

6: Examples versus Rules

160

relationship can be determined directly by retrieval, for example the relationship
between four and six. But sometimes, as in the case of days of the week, this has to
be done by counting. To determine the relationship between Sunday and Friday, one
has to count two steps back from Sunday. Counting is taken care of by an additional
subgoal, with the advantage that this subgoal is added to declarative memory and
can be retrieved during later trials to determine the relation directly. After
determining the relationship in the example, this relation is applied to the current
problem. This can again be direct, or through a counting subgoal.

The analogy strategy requires prior knowledge. The model assumes that people
already know how to make simple analogies, how to memorize and recall strings of
words, and that they know relationships between numbers and days of the week,
and are able to calculate these relations if they cannot be retrieved from memory. The
rest of the necessary knowledge, mainly involving perceptual-motor operations like
reading the information on the screen and entering the answers, has to be learned by
the participants during the instructions. This aspect of the task is not modeled.

The abstraction strategy (figure 6.7b) assumes knowledge about the relation
between the two days or two times for a certain sport. For example, ÒHockeyÓ means
Òadd two to the daysÓ. An abstraction in the model is a declarative fact that stores
this information, for example:

ABSTRACTION234
ISA ABSTRACTION
SPORT HOCKEY
TYPE DAY
RELATION PLUS2

Using an abstraction to find the answer only requires two steps: retrieve the
abstraction and apply it to the current problem. The second step, application, may
involve another counting subgoal, similar to the analogy strategy. Although the
abstraction strategy is more efficient than the analogy strategy, it requires
knowledge participants initially do not have: abstractions.

The rule strategy (figure 6.7c) uses production rules to find the answer. Each of the
rules has two versions, one that retrieves the answer, and one that calculates the
answer. An example of a retrieve rule is:

IF the goal is to find the day of the second event, the sport
is hockey and the day of the first event is day1
AND day1 plus two days equals day2

THEN put day2 in the second event slot of the goal

The calculate version pushes this calculation as a subgoal, which is handled by the
same production rules that determine and apply the relations in the analogy
strategy. An example of this second version is:

The Fincham task

161

IF the goal is to find the day of the second event, the sport
is hockey and the day of the first event is day1

THEN push as a subgoal to find the answer to day1 plus two days
AND put the answer in the second event slot of the goal

The advantage of the rule strategy is that its costs are much lower than those of the
analogy strategy, and also slightly lower than the costs of the abstraction strategy,
since the answer can be found in a single step. However, in order to use it, the
necessary production rules must be learned. Furthermore, the two example rules
given only calculate the second event given the first. To calculate the first event given
the second, two additional rules are needed.

The strategy with the lowest costs is the instance strategy (figure 6.7d). It can be
applied to the top-goal, since it retrieves the answer from past subgoals directly. This
strategy will only work if the appropriate instance is available. An example of an
instance is:

ITEM434
ISA ITEM
SPORT HOCKEY
TYPE DAY
LEFT SUNDAY
RIGHT TUESDAY

To be able to fully depend on this strategy, all possible examples have to be learned.
For each sports-fact, seven to nine examples are needed.

The abstraction, rule and instance strategy are actually short-cuts for the original
analogy strategy. The abstraction and rule strategy make short-cuts at the subgoal
level of the analogy strategy, and the instance strategy directly at the top level. The
knowledge needed for the instance short-cut is gained automatically, since the
popped subgoals serve as examples. To be able to use an example, its activation must
be high enough, so it has to be repeated a number of times before it can successfully
be retrieved. Abstractions and rules, on the other hand, have to be learned more
explicitly.

To create an abstraction and use it for later problems, information from different
levels of the goal stack has to be used. The relation is determined in the analogy
subgoal, while the name of the sport is stored higher in the goal stack. As a
consequence, old goals created by the analogy strategy cannot be used as
abstractions. An explicit goal is necessary to assemble it. An appropriate moment to
do this is at the end of the analogy strategy, as illustrated in figure 6.8a. The goal is
not popped, but is replaced by a goal to build an abstraction. Alternatively, the
abstraction could be derived first and be subsequently applied. Since this alternative
will produce the same predictions, it is not further investigated.

6: Examples versus Rules

162

Learning a new production rule presupposes a dependency that must be created
explicitly. As discussed earlier in this chapter, a dependency and a copy of the goal
may be pushed as a subgoal to accomplish this (figure 6.8b). The subgoal that
calculates a day or a time is replaced by a dependency. Further processing is done
on a copy of the original subgoal. Assuming some other strategy has found the
answer, the subgoal is popped and the dependency is completed. After the
dependency has been popped from the goal stack, ACT-RÕs production compilation
mechanism will compile the dependency into a production rule. In this particular
model, pushing a dependency can only be successfully completed if it is followed by
the abstraction strategy, since only the abstraction strategy can provide for the
necessary constraint (for example, the appropriate plus2 fact in the hockey case). In
the case of the analogy strategy, this constraint is buried deeper in the goal-structure,
and cannot easily be recovered.

For both abstraction and rule learning, additional steps in the reasoning process are
necessary that are irrelevant to the immediate solution. The production rule that
proposes to create an additional abstraction goal has to compete with the rule that
proposes to just pop the goal and be done. Similarly, the rule that proposes to replace
the original goal with a dependency has to compete with rules that try to solve the
problem immediately. Since the rules that propose additional processing imply

top goal

 calculate
day (or time)

 calculate
day (or time)

dependency

etc. (same as
abstraction
strategy)retrieve

abstraction

 apply
relation
(direct)

apply relation
by counting

(a) Abstraction learning

 create
abstraction

(b) Dependency (rule)
learning

Figure 6.8. Explicit learning used by the model. (a) Learning abstractions: an additional goal in the
analogy strategy (Þgure shows the right-hand side of Þgure 6.7a). (b) Learning dependencies
that are compiled into production rules, as outlined in Þgure 6.7 (Þgure shows the left-hand side
of Þgure 6.7b).

The Fincham task

163

additional costs, they will only occasionally win the competition. Building up
abstractions and production rules may therefore be a slow process, and may well be
a source of individual differences. Figure 6.9 summarizes cost and learning aspects
of the four strategies.

In the Fincham task, learning of abstractions, instance learning and rule learning are
all viable strategies from the viewpoint of rational analysis. Abstraction and rule
learning will lead to quicker results but need more effort initially, since rules are not
learned automatically. Instance learning is eventually the best strategy, but requires
much more training to be fully effective.

Empirical evaluation of the model
In order to test the predictive power of the model, three experiments conducted by
Anderson, Fincham and Douglass have been modeled. The Þrst experiment was
used to determine all the parameters, so the second and the third experiment can be
considered as predictions based on the Þrst. Each of the experiments tries to gain
insights into the learning process by seeking evidence for the use of rules and the
use of instances. The data discussed in the experiments all come from Anderson,
Fincham and Douglass (Anderson & Fincham, 1994; Anderson, Fincham &
Douglass, 1997), the model outputs are produced by 100 runs of our model.

Experiment 1
In the Þrst experiment (experiment 2 in Anderson & Fincham, 1994), participants
had to learn eight sports-facts. In the Þrst three days of the experiment, four of these
sports-facts were tested in a single direction: two from left to right and two from
right to left. On each day 40 blocks of trials were presented. In each block, each of

Strategy Cost Additional
knowledge
needed for
each rule

Is knowledge
necessary for this
strategy gained
implicitly?

Uses
knowledge
gained from

Analogy High None No Instructions

Abstraction Medium 1 instance No Analogy

Rule Low 2 rules for each
direction

OfÞcially no, but
see discussion at the
end of chapter

Abstraction

Instance Very low 7-9 instances Yes Analogy,
Abstraction or
Rule

Figure 6.9. Summary of cost and learning aspects of the four strategies

6: Examples versus Rules

164

the four sports-facts was tested once. On the fourth day all eight sports-facts were
tested in both directions. On this day 10 blocks of trials were presented, in which
each of the eight sports-facts was tested twice, once for each direction.

The model uses the following parameters: base-level decay is set to 0.3, in accordance
with the findings in the Tulving-model in chapter 4, both permanent activation noise
and normal activation noise are set to 0.05, the expected gain noise is set to 0.2, the
retrieval threshold is set to 0.3 and both the latency factor and latency component are
set to their default values of 1.0. Except for the base-level decay, all these values are
close to their recommended values. Furthermore, the same parameter values will
also be used for experiment 2 and 3.

Figure 6.10 shows the latencies in the first three days of the experiment, both the data
from the experiment and from the model. Although the results of the model are the
product of four interacting strategies, this produces no discontinuities: the learning
curve of the model resembles a power-function, except for a slight decrease in
performance at the beginning of each new day. The fit between the model and data
is quite good: R2=0.94. Figure 6.11 shows the results for day 4. Both in the data and
in the experiment there is a clear directional asymmetry, since items in the practiced
direction are solved faster than reversed items. Items that are completely new and
have been practiced in neither direction, however, are performed even more slowly
than the reversed items, indicating rule learning cannot be the whole explanation for
all of the learning in the first three days of the experiment.

Figure 6.12 shows how the model uses the four strategies in the course of the
experiment. At the start of the experiment, analogy is used most of the time, but both
the abstraction and the instance strategy gain in importance after a few blocks of
trials. The rule strategy appears later, and only plays a minor role during the first
day. At the start of the second day, there is a large shift toward using rules at the
expense of instances. This can be explained by the fact that the activation of a large
portion of the instances has decayed between the two days, so that they cannot be
retrieved anymore. Since only a few rules are needed for successful performance,
they receive more training on average and are less susceptible to decay. Note that the
abstraction strategy remains relatively stable between the days since it also less
susceptible to decay than the instance strategy. This pattern is repeated at the start
of the third day, although the instance strategy loses less ground due to more
extended training of the examples. At the start of the fourth day, the frequency of use
of the analogy strategy goes up again, since there are no production rules for the new
four sports-facts. The abstraction strategy can take care of the reversed items though,
so in that case the expensive analogy strategy is not needed. This explains the fact
that reversed items are still faster than completely new items.

The Fincham task

165

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

Block

La
te

nc
y

Data

Model

Day 1 Day 2 Day 3

Figure 6.10. Latencies for day 1 to 3 in experiment 1

Figure 6.12. Proportion of the trials a certain strategy is used by the model in experiment 1

Data Model

Same direction, practised 8.9 8.4

Reverse direction, practised 10.9 9.3

Not practised 13 16

Figure 6.11. Effect of direction of practice and whether a rule has been trained on time to respond
(in seconds) from day 4 of experiment 1.

0%

25%

50%

75%

100%

da
y

1

da
y

2

da
y

3

da
y

4

P
ro

po
rt

io
n

Instance
Rule
Abstraction
Analogy

6: Examples versus Rules

166

Experiment 2
In experiment 2 (experiment 1 in Anderson, Fincham & Douglass, 1997) the
directional asymmetry was explored further. Instead of having only a single
transfer day, two rules were reversed each day of the experiment. This requires
quite a complicated experiment, since on each day a rule has to be presented in two
directions that was presented in one direction previously. So, on day 1 of the
experiment, two out of eight rules were presented in two directions, while the
remainder was only tested in one direction, on day 2 four out of eight rules, up to
day 4 where all rules were presented in both directions. On each day participants
had to do sixteen blocks of ten to sixteen trials, ten trials on day 1, twelve trials on
day 2, fourteen trials on day 3, and sixteen trials on day 4. To further investigate the
difference between rule and instance based performance, participants were asked
after each trial whether they solved it using a rule or an example. Finally, on each
day one of the sports-facts studied originally was offered as a trial somewhere
between block 7 and 10. If performance on this original sports-fact is better than on
other sports-facts, this indicates the participant retrieves the answer instead of
calculating it.

The latencies for day 1 to 4 are shown in figure 6.13 for both the data and the model.
Although the model is slightly slower than the participants, the learning curves are
parallel. Directional asymmetries are calculated using the two rules that are
presented in two directions for the first time that day. The solution time for the
practised direction is subtracted from the solution time for the reversed direction.
The result is the extra time needed for the reversal, and is shown in figure 6.14. Both
the data and the model show a gradual increase in asymmetry over the days,
although asymmetry for the model is slightly larger than for the data. To be able to
map the participantsÕ reports of using either a rule or an example onto the model, we
first have to decide when the model uses a rule or an example. The most logical
choice is to assume that both the analogy and the instance strategy are strategies that
use examples, and that the abstraction and the rule strategy are strategies that use
rules. Figure 6.15 shows the results of both the model and the data on this aspect of
the task. Since the Òsolve by exampleÓ-category includes both the slowest (analogy)
and the fastest (instance) strategy, it eventually becomes faster than the rule strategy

0

5

10

15

20

1 2 3 4

Day

La
te

nc
y

Data

Model

Figure 6.13. Latencies for experiment 2

The Fincham task

167

as analogy is not used anymore. Both the data and the model show this
phenomenon.

The latencies for the original sports-fact that was presented between block 7 and 10
are shown in figure 6.16, and are compared with the average latencies between block
7 to 10. Performance on original examples is clearly superior to other examples,
indicating instance learning. Figure 6.17, finally, shows the strategies that were used
by the model in the course of the experiment. It shows a pattern that is similar to the
pattern in experiment 1.

Experiment 3
In experiment 3 (experiment 3 in Anderson, Fincham & Douglass, 1997), the effect
of repeated examples is further explored. The same experimental setup as in
experiment 2 was used, except that the experiment now took Þve days and each day
consisted of 32 blocks of trials. On the Þrst day eight rules were tested in only one
direction. On each subsequent day, a new pair of rules was also tested in the
reversed direction. So, on day 2 eight rules were tested in the practiced direction,

-1

-0.5

0

0.5

1

1.5

1 2 3 4

Day

La
te

nc
y

di
ffe

re
nc

e

-1

-0.5

0

0.5

1

1.5

1 2 3 4

Day

La
te

nc
y

di
ffe

re
nc

e

(a) (b)

Figure 6.14. Directional asymmetry in experiment 2, (a) data (b) model

0

5

10

15

20

25

1 2 3 4

Day

La
te

nc
y

Data
example
Data rule

0

5

10

15

20

25

1 2 3 4

Day

La
te

nc
y

Model
example

Model rule

(a) (b)

Figure 6.15. Time to respond as a function of whether a rule or example is reported, (a) data
(b) model

6: Examples versus Rules

168

and two rules in the reverse direction, on day 3 eight rules were tested in the
practiced direction and four rules in the reverse direction, etcetera. To see if
instances that are repeated more often than others are solved faster, half of the
instances presented for a certain sport were identical, while the other half were
generated in the usual way.

Figure 6.18 shows the results for both the data and the model. Repeated instances
have a clear advantage over unique instances, further evidence for instance-based
learning. Figure 6.19 shows the directional asymmetry results. After a steady
increase between day 2 and 4, it decreases on day 5, both in the model and the data.
On day 5 however, both the data and the model show a decline in asymmetry,
indicating that instance-based reasoning, which has no asymmetry, takes over from
rule-based reasoning.

0

5

10

15

20

1 2 3 4

Day

La
te

nc
y

Data study
Data other

0

5

10

15

20

1 2 3 4

Day

La
te

nc
y

Model study

Model other

(a) (b)

Figure 6.16. Time to respond for the studied example and other example, (a) data (b) model

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4

Day

P
ro

po
rt

io
n Analogy

Abstraction

Rule

Instance

Figure 6.17. Proportion of the trials a certain strategy is used in experiment 2 by the model

Discussion

169

6.5 Discussion

The two models discussed in this chapter demonstrate that understanding skill
acquisition is not just a matter of answering the question whether skills are
represented by rules or examples. People apparently have the capacity to store
previous results and the capacity to generalize rules. Whether or not both types of
learning show up in the results of experiments depends on their successfulness. In
the Sugar Factory experiment, rules were very hard to generalize, so behavior can
be explained by learning examples only. The Fincham experiment, on the other
hand, shows clear evidence for both types of learning, since there is a balance
between the usefulness of learning rules and examples.

7

8

9

10

R
ep

ea
t-

pr
ac

tic
ed

R
ep

ea
t-

re
ve

rs
ed

U
ni

qu
e-

pr
ac

tic
ed

U
ni

qu
e-

re
ve

rs
ed

La
te

nc
y

Data

Model

Figure 6.18. Latency (in seconds) in experiment 3 as function of condition. Only items that are
reversed that day are used for these results

0

0.1

0.2

0.3

0.4

2 3 4 5

Day

La
te

nc
y

di
ffe

re
nc

e

0

0.5

1

2 3 4 5

Day

La
te

nc
y

di
ffe

re
nc

e

Figure 6.19. Directional asymmetry in experiment 3, (a) data (b) model

(a) (b)

6: Examples versus Rules

170

A theory that just states that skill learning is a matter of both instance learning and
rule learning is rather weak, and will certainly not end the debate. That is why
cognitive modeling is so useful: the theory proposed in this chapter is not just the
conjunction of two existing theories, but adds the constraint that the structure of the
task is a main determinant of which types of learning will have an impact on
performance.

The subject of the previous chapter, implicit versus explicit learning, is also tied to
the discussion of rule versus instance learning. If we consider a rule as a
generalization of one or more examples, creating abstractions is the most important
step of rule learning. Proceduralizing this abstraction later on is just an efficiency
improvement. This brings up another issue, namely whether the proceduralization
of abstractions is a form of explicit or implicit learning. Technically, it is explicit in
ACT-R, since a dependency has to be pushed on the top of the goal stack, so is the
focus of attention for a while. But is learning a production rule really an intentional
act? This is at odds with our intuitions about production rules, especially since we
have no conscious access to production rules. How can we intentionally learn things
we cannot directly access?

An alternative is to suppose production learning is a more or less automatic
mechanism, along the lines sketched in section 6.2. The assumption that production-
rule learning is an implicit learning mechanism implicates another stance towards
explicit learning strategies. Instead of depicting explicit knowledge as dependency
manipulators, explicit strategies are clever abstraction builders and interpreters.
Although the Fincham model needs an abstraction before a production rule can be
compiled, we might imagine more simple situations in which a rule can be learned
without explicit declarative intervention (for example as in the child model of
discrimination-shift learning in chapter 5). Eventually it may be possible to develop
a learning mechanism that does not need the dependency structure at all. It must be
noted that ACT-RÕs developers still consider production compilation as a tentative
proposal (Anderson & Lebiere, 1998, pp. 109-110)

If learning a production rule is an implicit learning process, the explicit part of
learning rules lies in constructing abstractions, which can be considered declarative
rules. Now that rules and instances are both declarative representations in ACT-R,
we might ask the question whether there really is a distinction between the two.
Instances in the Sugar Factory model are used for situations that are different from
the situation in which they were created, so some sort of generalization occurs at the
moment an instance is applied. Abstractions in the Fincham model are used as rules,
but are just declarative facts in memory. The main difference is not their
representation, but the way in which they were learned, either implicitly or
explicitly.

Discussion

171

Again a traditional distinction in cognitive psychology is not what it seems when
analyzed in detail within a cognitive architecture. The mapping from implicit
memory to procedural memory and explicit memory to declarative memory turned
out to be invalid, and now the mapping from procedural memory to rules and
declarative memory to examples is not valid either. Although the concepts
themselves are quite meaningful, we have to learn to live with the fact that there are
no direct mappings between them and the underlying cognitive architecture. But
this may just make them more interesting.

6: Examples versus Rules

172

CHAPTER 7 Models of Scheduling

7: Models of Scheduling

174

7.1 Introduction

When I Þrst started thinking about a model of a problem as complicated as the
scheduling problem, I didnÕt have a clue where to start. One option, which I quickly
dismissed, was to specify a set of production rules that implemented a scheduling
algorithm. Such a model might display some expert-like behavior on scheduling,
but would not expose any learning. It would also contradict the ideas I started out
with in chapter 1, namely that the process of learning is more interesting than the
actual problem-solving behavior itself. While carrying out the projects discussed in
chapters 4 though 6, however, the contours of a scheduling model started to take
shape. In this chapter, I will present a model of scheduling that integrates many of
the aspects of learning discussed in the last few chapters.

The starting point for the model of scheduling will be the learning paradigm
presented in chapter 6 (figure 6.1). The central idea is that problem solving on a new
task starts with some initial method. This method produces instances, examples of
how the task is solved that can be retrieved later on. Another possible product of the
initial method are abstractions, declarative representations of how the problem can
be solved. Abstractions can be retrieved and applied to new cases of the problem,
and during this application, production rules can be compiled. In the model of the
Fincham task in chapter 6, abstractions used a representation that was specific to the
task, and always involved the same kind of operation: adding or subtracting days or
times. In this chapter, I will develop a generalized abstraction representation, to be
used for any type of operation. This is necessary, since the strategies for the
scheduling task are not fixed in advance. Another advantage of generalized
abstractions is that explicit learning strategies can now operate on these abstractions.
As a consequence, production rules themselves are no longer a product of explicit
learning, and production compilation can be seen as a truly implicit learning
mechanism.

Besides learning, there is another important aspect of the data discussed in chapter 3
that I will investigate in the model, the issue of individual differences. Individual
differences have many sources. One source is differences in knowledge. If an
individual does not know all the addition facts, they have to do addition by
counting. This slows down the problem solving process, or may even disrupt it if
working-memory capacity is exceeded. Or an individual may use a particular trick
to solve a certain problem, which is not available to other individuals. I will not
explore this source of individual differences in this chapter, although the reader
might want to refer to the discussion of discrimination-shift learning in chapter 5 for
an example. Another source of individual differences is the ability to retain elements
in working memory. Although ACT-R does not model working memory explicitly,
what is normally referred to as working-memory capacity is closely related to the
source activation parameter in ACT-R (Lovett, Reder, & Lebiere, 1997). Source
activation is the amount of activation that spreads from the chunks that are part of

Generalized abstractions

175

the goal context to other chunks (figure 2.8). Lovett et al. have shown that varying
the parameter between 0.7 and 1.4 with a mean of 1.0 can explain individual
differences in the digit working memory task (Yuill, Oakhill, & Parkin, 1989). In this
task, participants have to read aloud a number of strings of digits that appear on the
screen. Their goal is to memorize the last digit in each string, and reproduce them
after all strings have been read. Both the number and the length of the strings can be
varied. Working-memory capacity is quite relevant in the scheduling task, since
many aspects of the task have to be retained in memory at the same time. We will
therefore look at changes in performance in the model when the source activation
parameter is varied.

A final factor that has to be taken into consideration is randomness in choice. In
ACT-R, noise is involved in almost any choice that is made. This means that ACT-R
predicts that even if participants could be brought into exactly the same situation
twice, they would not necessarily make the same choice twice.

7.2 Generalized abstractions

Abstractions in the Fincham model consist of two parts: a speciÞcation of what the
goal has to be like, for example the sport is hockey and we are looking at the day of
the week, and the operation that has to be performed, for example plus2. This
operation has two aspects: on the one hand the plus2 operation has to be
performed, involving either retrieval or subgoaling, and the answer has to be stored
in the goal. The generalized version of abstractions will have the same components,
but will separate out the two aspects of the operation. Furthermore, in the Fincham
model abstractions relied on task-speciÞc rules to retrieve and apply them.
Generalized abstractions will need no task-speciÞc knowledge, but are retrieved
and applied by general purpose productions only. In this section, I will describe the
representation and use of abstractions in general terms. A more elaborate
discussion, which will take care of all the details, can be found in section 7.8.

Representation of an abstraction
The main four components of a generalized abstraction are the following:

1. The type of goal the abstraction can be used for

2. The type of fact that needs to be retrieved

3. A test that is performed on the goal and the retrieved fact

4. An action, which speciÞes what to do with the retrieved fact and the goal

A generalized version of a Fincham abstraction may therefore look like this:

7: Models of Scheduling

176

EXAMPLE-ABSTRACTION
ISA ABSTRACTION
GOAL FINCHAM-HOCKEY-DAY-GOAL
RETRIEVE Òx PLUS2 equals yÓ
TEST Òthe day of the first event must be equal xÓ
ACTION Òset the day of the second event to yÓ

In order to use an abstraction, it has to be interpreted by production rules. This
involves a number of steps, the main ones of which are depicted in figure 7.1. The
first step is to retrieve an abstraction that is applicable to the current goal. This
abstraction is stored in the current goal. The second step is to retrieve a fact as
specified in the abstraction, satisfying the test in the abstraction. In the example
Fincham abstraction, a fact of type plus2 is needed in which the argument matches
the day in the goal. Finally, the action is carried out: the retrieved fact has to be used
to modify the current goal. In the Fincham example, the answer of the plus2 fact
needs to be stored in the second-day slot of the goal.

This description looks conspicuously like a description of a production rule, but this
is intentional. An abstraction is more or less the declarative counterpart of a
production. But since it is declarative, it can be inspected, reasoned with explicitly,
and manipulated. On the other hand it has to be interpreted by production rules in
order to be executed. While abstractions offer flexibility, production rules offer
speed: the whole cycle in figure 7.1 can be done in one step by a task-specific
production rule. If both speed and flexibility are needed, both representations can be
retained, but if flexibility is no longer necessary, the abstraction may be forgotten.

Using this dual representation of knowledge corresponds directly with theories
about skill learning. For example Fitts (1964, cited in Anderson, 1995) discerns three
stages in skill learning: a cognitive stage, an associative stage and an autonomous
stage. In the cognitive stage, declarative representations (in our case abstractions),

goal retrieve goal

abstractionan abstraction

goal abstraction
retrieve a fact

satisfying test fact

perform action

(changes goal)

goalÕ abstraction

fact

clean upgoalÕ

Figure 7.1. Diagram that illustrates retrieval and application of an abstraction.

Generalized abstractions

177

acquired through instructions or examples, are interpreted. In the associative stage,
the skill is in transition between a declarative and a procedural representation
(abstractions are available, productions only partially). In the autonomous stage the
skill is proceduralized completely, and sometimes the ability to verbally describe the
skill is lost (all productions are learned, abstractions are forgotten). Anderson has
also adapted FittsÕ general skill learning theory for the ACT theories when he
developed ACT* (Anderson, 1983). In the chapter about procedural learning in The
Architecture of Cognition he already discusses the need for general interpretive
productions in a description of how skill learning in ACT* can be accomplished. This
skill acquisition aspect has, however, not been elaborated yet in terms of the ACT-R
theory.

Chaining abstractions
An abstraction can be considered as a sort of plan for what to do. The example in
the previous section was a simple one-step plan. But sometimes a number of steps
have to be carried out in a certain order. To allow multi-abstraction plans, two extra
slots have been added to the abstraction: a prev slot and a fail slot. These two slots
are used to link abstractions into lists of abstractions. Each time an abstraction is
completed successfully, a next abstraction is retrieved following the prev links. If an
abstraction somehow fails, the next abstraction is retrieved following the fail links.

Figure 7.2 shows an example of a plan that a participant might have in a standard
Sternberg memory experiment (Sternberg, 1969). In this type of experiments, the
participant first has to memorize a set of letters, the memory set. Subsequently, new
letters are presented to the participant, and they have to decide as quickly as possible
whether or not the letter is in the memory set. Figure 7.2 shows the plan for this
decision process. Each circle represents an abstraction, and the arrows show how
they have been linked. In the first abstraction, the letter is read and stored in the goal.
In the next step, the second abstraction from the left, a letter from the memory set is
retrieved (hopefully the right one). If this already fails, a response of ÒnoÓ is given,

Figure 7.2. Example of chaining abstractions, in which the participant has to decide whether a letter
presented on the screen is part of a previously memorized memory set. Each circle represents an
abstraction.

prev prev prev

fail

read
letter

retrieve
a letter from

memory
set

respond

ÒnoÓ

respond
ÒyesÓ

are both
letters
equal?

fail

respond

ÒnoÓ

7: Models of Scheduling

178

following the ÒfailÓ-link. If a letter is retrieved, the third abstraction checks whether
both letters are equal. If this succeeds, the response is ÒyesÓ, else it is ÒnoÓ.

Proceduralizing abstractions
Since an abstraction has a function that is quite similar to a production rule, it is not
so hard to proceduralize. The same method is used as discussed in the previous
chapter (Þgure 6.2). Each time an abstraction is retrieved, there is a possibility that a
dependency will be pushed as a subgoal, and the four steps in which the
abstractions are carried out will be compiled into a single production rule. Due to
the use of generalized abstractions, it is no longer necessary to have explicit
learning strategies that are activated when a dependency goal has been pushed. The
explicit strategies can now operate at the level of abstractions, independently of the
production-compilation process. By pulling explicit learning strategies out of the
dependency subgoal, the actual process of building dependencies can be carried out
by a Þxed set of production rules, more or less as a mechanism of the architecture.

7.3 A Þrst model

A Þrst approximation of a model of scheduling has the following components:

1. Production rules that interpret and proceduralize abstractions as outlined in the
previous section

2. A top-goal that reads the constraints for the current problem from the screen and
pushes a task subgoal upon the goal stack. After the subgoal has successfully
terminated, it outputs the answer found in the subgoal.

3. Productions that store elements in a list, and implement rehearsal, both
maintenance rehearsal and elaborate rehearsal.

4. A set of abstractions that implements a simple strategy for scheduling.

5. Productions that produce some sort of verbal protocol.

The first item on the list has already been discussed, and the top-goal productions
are quite trivial, so I will only elaborate on the last three items of the list.

Storing elements in a list and doing rehearsal
In chapter 4, I discussed a model of rehearsal based on BaddeleyÕs phonological
loop. As we have seen in the protocols of scheduling, participants maintain a list of
the partial solution, which they rehearse from time to time. Rehearsal can have two
functions: maintenance rehearsal to keep the activation of the list high enough, and
elaborate rehearsal to do additional processing on the items in the list. The Þrst
model will use elaborate rehearsal to calculate the total duration of the tasks in the

A first model

179

list. Instead of using an explicit phonological loop, as in chapter 4, ordinary ACT-R
chunks are used to represent the list. Details of the implementation can be found in
section 7.8.

Abstractions that implement a simple strategy
The Þrst model uses a simple, one shot strategy that involves the following steps:

1. A Þrst task for the schedule is selected by retrieving an order-constraint and
picking the Þrst task in this constraint. For example, if ÔD before CÕ is a
constraint, D is picked as a possible Þrst task. It is then checked if there is no
earlier task, indicated by a constraint like ÔA before DÕ. If that is the case, the
earlier task is substituted as candidate Þrst task, else D is accepted as Þrst task.

2. The next task is determined by Þnding an order constraint that speciÞes a fact
that is later than the task we have just added to the schedule. So if the schedule
starts with D, and ÔD before CÕ is a constraint, we add C. Repeat this step until no
more tasks can be added using this method.

3. Now count how many hours the tasks in the current schedule take (using
elaborate rehearsal, as explained above).

4. Calculate how many hours are left for one worker. So, if the tasks currently in
the schedule take four hours, and each worker has six hours, two hours are left.
If the number of hours left is greater than zero, Þnd a task that has a duration of
exactly that number of hours and add it to the schedule.

5. Move to the next worker.

6. Go through the list of all the tasks, and add those to the schedule that are not
already allocated to the Þrst worker.

Verbal protocol
An assumption about abstractions is that they can be reasoned about, so they are
available to verbalization in a think-aloud experiment. To avoid writing a language-
production model, a ÒverbalizationÓ string is added to each abstraction that
describes the action performed by the expression. Whenever an abstraction is
executed, this string is added to the verbal protocol. Rehearsal actions also produce
verbal protocol, as do reading actions. The verbal protocol not only enables
producing ÒTuring TestÓ-like results, but is also very useful in debugging the
model. Although a fully-ßedged language production module will probably require
a formidable modeling effort, it may be a very useful tool in a continued research
effort on declarative rules.

Results of the model
The model was tested using a set of ten example problems, all of which consisted of
two workers and six or seven tasks. Although the problems are not particularly
hard, this is not yet important since the answer given by the model is not checked.

7: Models of Scheduling

180

The model uses only symbolic learning, and has all subsymbolic learning turned
off. New chunks in declarative memory do not have a role in the problem solving
process yet. Improvements in performance can therefore be attributed to
production compilation. Figure 7.3 shows the learning curve of the model. The
graph also shows the data from chapter 3 in comparison (actually the lower-left
panel of Þgure 3.4 multiplied by the average solution time; the data start at
problem 2, because participants have already solved one two-worker example
problem). Although the data from the model and the experiment cannot be
compared properly because different problems have been used, the graph shows
the same logarithmic curve for both the model and the data. To get some idea of the
rate of learning, the growth in the number of productions is plotted in Þgure 7.4.
The more interesting part is the pseudo verbal protocol produced by the model. To
see the impact of proceduralization, examples of the output of the Þrst and the tenth
problem have been printed in Þgure 7.5. Clearly, the protocol of the Þrst problem is
a protocol analystÕs dream, because participants are hardly ever that precise. But the
tenth protocol looks more familiar: many steps in the process are omitted, and we

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Problem number

So
lu

tio
n

tim
e

Data
Model

Figure 7.3. Learning curve of the Þrst model. The data are plotted on an idealized curve based on
the data discussed in chapter 3.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Problem number

Nu
m

be
r o

f p
ro

du
ct

io
ns

Figure 7.4. Growth in the number of production rules

A first model

181

can only guess why some decisions have been made. This concurs with the general
idea that proceduralized skills produce no verbal protocol (Ericsson & Simon, 1984;
van Someren, Barnard & Sandberg, 1994).

Although this first model shows some interesting properties similar to real problem-
solving behavior, it is far from complete. The current model just takes a single shot
at the solution, and does not retry if it is incorrect. Only production compilation had
been turned on, so the model will never forget any intermediate results it has found.
And finally, the model starts out with a set of task-specific abstractions. One of the
desired properties of the model was to start without any task-specific knowledge.
These issues will be addressed in the second version of the model. But first the most
important of these issues will be discussed separately: where do abstractions
themselves come from?

Protocol of Þrst problem
There are two workers. Each of the workers has seven hours. Task A takes two hours. Task B takes
two hours. Task C takes two hours. Task D takes two hours. Task E takes three hours. Task F takes
three hours. Task B before F. Task F before A. First I will Þnd a task to begin with. Let's look at an
order constraint. B before F. Let's see if there is no earlier task. There is no earlier task. Begin with B.
B Can we Þnd a next task just by looking at the order? B before F. B.. F.. Can we Þnd a next task just
by looking at the order? F before A. B.. F.. A.. Can we Þnd a next task just by looking at the order? Is
this a schedule for one worker or for more? Now I am going to count how many hours we already
have B.. How long does this one take? Task B takes two hours. Add this to what we have. nothing
plus two equals two. F.. How long does this one take? Task F takes three hours. Add this to what we
have. Two plus three equals Þve. A.. How long does this one take? Task A takes two hours. Do we
have enough for one worker? Each worker has seven hours. We can move to the next worker.. B.. F..
A.. next.. Let's do the rest Now we are going to look at all the tasks, and see which ones are not yet
in the schedule. Let's start with A. Task A takes two hours. Let's try to put it in the schedule. A is
already in the schedule. OK, what is the next letter? B comes after A. Task B takes two hours. Let's
try to put it in the schedule. B comes after A. B is already in the schedule. OK, what is the next
letter? C comes after B. Task C takes two hours. Let's try to put it in the schedule. C comes after B.
B.. F.. A.. next.. C.. OK, what is the next letter? D comes after C. Task D takes two hours. Let's try to
put it in the schedule. D comes after C. B.. F.. A.. next.. C.. D.. OK, what is the next letter? E comes
after D. Task E takes three hours. Let's try to put it in the schedule. E comes after D. B.. F.. A.. next..
C.. D.. E. Task F takes three hours. Let's try to put it in the schedule. F comes after E. F is already in
the schedule. OK, that was the last task, we're done! The answer is B F A next C D E

Protocol of tenth problem:
There are two workers. Each of the workers has six hours. Task A takes one hours. Task B takes one
hours. Task C takes two hours. Task D takes two hours. Task E takes three hours. Task F takes three
hours. Task D before E. Task E before A. First I will Þnd a task to begin with. Let's see if there is no
earlier task. Begin with D. D.. D.. E.. D.. E.. A.. Can we Þnd a next task just by looking at the order?
Is this a schedule for one worker or for more? Now I am going to count how many hours we
already have D..E..A.. D..E..A.. next Now we are going to look at all the tasks, and see which ones
are not yet in the schedule. Let's start with A. A is already in the schedule. D..E..A.. next.. B
D..E..A..next..B..C D is already in the schedule. E is already in the schedule. D..E..A.. next.. B..C..F.
OK, that was the last task, we're done! The answer is D E A next B C F

Figure 7.5. ACT-R protocol of the Þrst and the tenth problem of a sample run

7: Models of Scheduling

182

7.4 Learning new abstractions

Figure 6.1 specifies the first step of learning a new skill as the Ôinitial methodÕ. In the
Fincham task the initial method was analogy, because this method had been
explained as part of the experiment. In general, analogy is a strategy that takes
knowledge from another domain, and modifies this knowledge to suit the current
task.

Work by Sander and Richard (1997) indicates that people use the analogy strategy in
discovering knowledge for a new domain. In their experiment, participants without
any computer experience had to learn to operate a word processor. Since
participants did not get any instructions on how to operate the word processor, they
had discover the functions by themselves. The tasks participants had to do was to
modify a given text so that it would be identical to another text. The total set of
possible operations to change text was classified into four levels. Level 1 consists of
operations that are also possible on a standard typewriter, a device participants were
all familiar with, for example typing new letters, and deleting the last character
typed. Level 2 operations are operations that are not possible on a typewriter, but
can be considered as normal in the domain of writing, for example inserting a word
in a sentence. Level 3 operations come from the even more general domain of object
manipulation, for example copying a word and pasting it somewhere else. Finally,
level 4 operations are operations not related to any domain. An example of a level 4
operation is to copy strings of spaces. A space is not an object in the real world, so
the specific knowledge that a space in a word processor is like any other character is
required.

In the experiment participants were strongly encouraged to discover new methods,
since each time they tried a method they used before, they were prompted to attempt
another method to solve that particular problem. As it turned out, all participants
used level 1 operations immediately from the start of the experiment. As the
experiment progressed, they gradually discovered level 2 operations, followed by
level 3 operations. Level 4 operations were only discovered by a minority of the
participants, and only in the last few sessions of the experiment.

The results of this experiment support the idea that when people are in a new
situation, they adapt knowledge from a similar domain to initially guide their
actions. In word processing, knowledge of a typewriter is the most immediate
source. If that source of knowledge is exhausted, knowledge of writing in general
can be used, followed by the even more general knowledge source of object
manipulation.

In the scheduling task, analogy is also a good starting point. People may not know
anything about schedules, but they do know something about lists, and how to
construct them. Suppose we need to make a schedule. We may use knowledge about

The second model

183

lists to start with. How do we make a list? First we have to find a first item for the
list, a beginning. Once we have a beginning, we find a next task until we are done.
But how do we find something to begin with, and how do we find a next task? We
may choose to handle these problems by making them subgoals, or we may try to
find mappings between ÔbeginningÕ and ÔnextÕ and terms in the scheduling problem.
For example, a mapping can be made between ÔnextÕ and an order-constraint in the
scheduling problem. The result is a modified version of the list-building
abstractions, with ÔlistÕ substituted by ÔscheduleÕ and ÔnextÕ substituted by ÔorderÕ.
Note that for sake of the explanation, the terms ÔlistÕ, ÔbeginningÕ, ÔbeforeÕ and ÔnextÕ
will be used to refer to general terms, and ÔscheduleÕ and ÔorderÕ to refer to task-
specific terms. Except for knowledge on how to build a list, the analogy between a
schedule and a list may also offer knowledge on how to retain a list in memory by
rehearsal.

Although these new abstractions may find a start for a schedule, they are not
sufficient to build a complete schedule, mainly because the mapping between ÔnextÕ
and ÔorderÕ is inadequate. When this abstraction fails to make a complete schedule,
another plan may take over and contribute to the schedule.

An idea that may take over if the list-building plan fails to add any more tasks to the
schedule is the plan that tries to complete the first worker. A useful general plan may
state that whenever something has to be completed, the difference between the
desired size and the current size has to be calculated, after which an object has to be
found with a size equal to this difference.

The central emerging idea is therefore that several strategies from similar domains
are adopted and patched together. This method of adapting old strategies to new
purposes is similar to the script and schema theories, as proposed by Schank (Schank
& Abelson, 1977). Traditional script and schema theories assume that a complete
script is first adapted to fit the current task, and then carried out. The ACT-R model
uses a more on-demand style of adaptation: a new abstraction is created at the
moment it is needed. Again, the details may be found in section 7.8.

7.5 The second model

The second model solves some of the shortcomings of the Þrst. It learns new
abstractions as outlined in the previous section. Furthermore, the following aspects
have been added to the model:

1. After a solution has been produced by the model, it receives feedback from the
interface. If the solution is incorrect, the model has the opportunity of reading
the violated constraint, and has to attempt a new solution. If no solution has
been found after 300 seconds, the model has to move on to the next problem.

7: Models of Scheduling

184

This 300 second boundary is somewhat arbitrary, but gives an opportunity to
assess the accuracy of the model: if the model cannot solve it within the allotted
time, it is counted as a failure.

2. Base-level learning is turned on. As a consequence, the model can forget all
kinds of partial results it derives, most notably the list that contains the partial
solution, but also read constraints (which have to be reread in that case), newly
derived abstractions, etc. To recover gracefully from all kinds of errors that can
occur due to forgetting, the robustness of the model had to be increased. The
result of an error is often that a subgoal is popped in failure. This means that if a
goal pushes a subgoal, it sometimes has to check whether or not this subgoal has
actually succeeded. This is especially important if production compilation is
involved, since this may result in learning a faulty production rule that gets
ACT-R into endless loops. A base-level decay of 0.5 is used, the recommended
value, from which I diverged in the Tulving and Fincham model. No long-term
effects of learning were investigated in this model, so there was no need for a
smaller decay.

3. The model uses the order in which constraints are presented on the screen. For
example, if a task has to be found that takes 3 hours and is not yet present in the
current schedule, the list on the screen is used to Þnd the Þrst task taking 3
hours. If that task is already in the schedule, the next 3 hour task is looked for on
the screen, etc.

4. Several extra abstractions have been added to ensure that correct solutions are
eventually found by the model. The model now tries to satisfy the order
constraints for the second worker as well, and uses the feedback it gets when it
makes an error as a starting constraint for the next try.

Example verbal protocol
The following protocol fragment, produced by the model, gives an impression of
the additional aspects of the model:

There are two workers. Each of the workers has six hours. Task A takes one hours. Task B takes one
hours. Task C takes two hours. Task D takes two hours. Task E takes three hours. Task F takes three
hours. Task B before C. Task F before A. I have to think of some new way to Þnd a schedule. Let's use
what I know about lists. First I will Þnd something to begin with. Let's look at a before constraint. I
have to think of some new way to Þnd a before. Let's use what I know about order. Let's use a order
fact as a before fact. F before A. I have to think of some new way to Þnd a before following a fail-
abs12. F before A. I have to think of some new way to Þnd a before following abstraction12. Let's
look at a before constraint. Let's see if there is no earlier element. Let's use a order fact as a before fact.
There is no earlier element.

This doesn't work. Let's start again. First I will Þnd something to begin with. Let's look at a before
constraint. Let's see if there is no earlier element. Let's use a order fact as a before fact. There is no
earlier element. Begin with F. F.. I have to think of some new way to Þnd a schedule following
abstraction10. Now I have to Þnd the next thing. F before A. A.. I have to think of some new way to
Þnd a schedule following abstraction17. Now I have to Þnd the next thing. No more items for the list,
let's check whether we're done. F.. A.. Is this a schedule for one worker or for more? Now I am going

The second model

185

to count how many hours we already have F.. How long does this one take? Task F takes three hours.
Add this to what we have. nothing plus three equals three. A.. Add this to what we have. Three plus
one equals four. Do we have enough for one worker? No, the schedule is not full, yet. I have to think
of some new way to Þnd a total. Let's use what I know about hours. Let's use a hours fact as a total
fact. Each worker has six hours. I have to think of some new way to Þnd a total following fail-abs23.
Each worker has six hours. I have to think of some new way to Þnd a Þnd-remain following a failure.
This doesn't work. Let's start again.

First I will Þnd something to begin with. Let's look at a before constraint. Let's see if there is no
earlier element. Let's use a order fact as a before fact. Let's see if there is no earlier element. Let's use
a order fact as a before fact. There is no earlier element. Begin with F. F.. Now I have to Þnd the next
thing. F before A. A.. Now I have to Þnd the next thing. Now I have to Þnd the next thing. No more
items for the list, let's check whether we're done. F.. A.. Is this a schedule for one worker or for more?
Now I am going to count how many hours we already have F.. Add this to what we have. Nothing
plus three equals three. A.. Add this to what we have. Three plus one equals four. Do we have
enough for one worker? No, the schedule is not full, yet. Let's use a hours fact as a total fact. Each
worker has six hours. Each worker has six hours. How many hours are there left? Two plus four
equals six. F.. A.. Now Þnd the task that Þts in. Task C takes two hours. C.. We can move to the next
worker.. NEXT-WORKER Let's do the rest.. F.. A.. C.. NEXT-WORKER.. I now try to Þnd any unused
order constraints. B before C. This one hasn't been used, so the constraint has been found. B.. Now
we are going to look at all the tasks, and see which ones are not yet in the schedule. Let's start with A.
A is already in the schedule. B is already in the schedule. Let's move on to the next task. C is already
in the schedule. Task D takes two hours. D.. Task E takes three hours. E.. Task F takes three hours.
OK, what is the next task? OK, that was the last task, we're done! This doesn't work. Let's start again.

[one more failed search episode]

First I will Þnd something to begin with. Begin with F. F.. Now I have to Þnd the next thing. F before
A. A.. Now I have to Þnd the next thing. No more items for the list, let's check whether we're done. F..
A.. Is this a schedule for one worker or for more? Now I am going to count how many hours we
already have F.. Add this to what we have. Nothing plus three equals three. A.. Add this to what we
have. Three plus one equals four. Do we have enough for one worker? No, the schedule is not full,
yet. F.. A.. Now Þnd the task that Þts in. Task C takes two hours. C.. We can move to the next worker..
NEXT-WORKER Let's do the rest F.. A.. C.. NEXT-WORKER.. I now try to Þnd any unused order
constraints. B before C. B before C. This one hasn't been used, so the constraint has been found. B
before C. B before C. B.. Now we are going to look at all the tasks, and see which ones are not yet in
the schedule. Let's start with A. Task A takes one hours. A is already in the schedule. OK, what is the
next task? Task B takes one hours. B is already in the schedule. Let's move on to the next task. OK,
what is the next task? Task C takes two hours. C is already in the schedule. Let's move on to the next
task. OK, what is the next task? Task D takes two hours. D.. Let's move on to the next task. OK, what
is the next task? Task E takes three hours. E.. Let's move on to the next task. OK, what is the next
task? Task F takes three hours. F is already in the schedule. Let's move on to the next task. OK, what
is the next task? OK, that was the last task, we're done! F.. A.. C.. NEXT-WORKER.. B.. D.. E.. The
answer is F A C NEXT-WORKER B D E

The particular fragment contains five search episodes, only four of which are shown:
the first three and the final, successful episode. In the first two fragments, the model
is busy figuring out how aspects of the problem can be mapped onto things it knows
something about. Unfortunately, the primitive protocol generating part of the model
produces some awkward sentences with references to internal symbols. Somewhere
along the line the model gets stuck, because it can not keep track of all the constraints

7: Models of Scheduling

186

in the task and all the newly derived abstractions. The third search episode is slightly
more successful: it can use the abstractions derived in the first two episodes.
Unfortunately, it fails just when it is done, because it cannot retrieve the start of the
list anymore for typing in the answer. In the fifth, successful episode some of the
earlier derived results can be retrieved. For example, the model immediately starts
with ÒBegin with FÓ instead of deriving this fact.

The separate search episodes are similar to the episodes participants showed in the
experiment (see chapter 3). Once the model gets stuck, it often does not have
knowledge to repair the situation other than starting again. In the new search
episode knowledge derived in the earlier episode is sometimes retrieved, so failed
episodes do contribute to eventual success. This concurs with the behavior of
participants, since they also are hardly ever able to recover from an error in their
reasoning process.

Results of the model
Figure 7.6 shows the basic, averaged, results of the model. The solution times and
the number of learned production rules are similar to the results of the Þrst model.
The improvement in solution time is accompanied by an improvement in the
proportion of the problems that is solved correctly within 300 seconds, which I will
refer to as ÔaccuracyÕ in the rest of the chapter.

100

120

140

160

180

200

220

240

1 2 3 4 5 6 7 8 9 10

Problem number

So
lu

tio
n

tim
e

0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

1 2 3 4 5 6 7 8 9 10

Problem number

Pr
op

or
tio

n
co

rr
ec

t

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

Problem number

Nu
m

be
r o

f p
ro

du
ct

io
ns

Figure 7.6. Solution times (top left), proportion solved (top right) and number of learned production
rules (bottom) for the second model

The second model

187

Individual differences
Figure 7.6 shows a gradually improving learning curve. But as we have seen in
chapter 5, the averaging process may smooth out discontinuities that may be
present in the data of individuals. Figure 7.7 shows solution times of six individual
runs of the model, and the results of six participants from the experiment in
chapter 3. Neither the model nor the data shows a smooth improvement of
performance, only after averaging results is such a result obtained. Again, the
comparison between model and data is only an approximation, since different
problems were used.

As mentioned in the introduction of this chapter, the source activation (W)
parameter is associated with individual differences in working-memory capacity.
Since the scheduling task requires participants to keep many aspects of the task in
memory at the same time, it should be quite sensitive to changes in this parameter.
Working-memory capacity, as modeled by source activation in ACT-R, is not a

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Problem number

So
lu

tio
n

tim
e

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

Problem number

So
lu

tio
n

tim
e

Figure 7.7. Examples of individual data: (a) six runs of the model, (b) six subjects from the
experiment.

(a)

(b)

7: Models of Scheduling

188

buffer of limited size, but rather the capacity to increase activation of currently
relevant memory chunks. As the number of relevant chunks increases, the potential
for errors increases. Sometimes it is possible to recover from an error, by
recalculating the lost fact, but sometimes the information is lost. The number of
errors is a non-linear function of the number of currently relevant chunks. Figure 7.8
illustrates this aspect: it shows the results of a small ACT-R model that stores
between three and twelve items and then tries to retrieve them. The graph shows the
proportion of correct retrievals for three different values of W. The model is allowed
a single rehearsal for each item. As can be seen in the graph, at some point the
probability of correct retrieval decreases dramatically. For the average W=1 case, this
point is around the Òmagical number sevenÓ, and the low and high W cases roughly
represent Òplus or minus two.Ó This decrease in performance is not caused by the
fact that some activation resource must be distributed over a number of chunks Òin
working memoryÓ, but is rather an emergent fact of several aspects of processing at
the same time. The real limited resource is time: as more chunks are relevant, less
time can be spent on each of them individually. A higher source activation just
makes it possible to retrieve chunks that were accessed longer ago. The result is a
model of a limited capacity without resources.

The following metaphor may clarify this issue. Suppose you are a baby-sitter and
you look after number of small children. To prevent children from getting up to
mischief, you have to pay attention to them. You can only pay attention to one child
at a time. As long as a child has had your attention not too long ago, it will behave
properly. But if ignore a child too long, it will start misbehaving. If you only have a
few children too look after, you will have no problems. Any mischief can be
corrected easily by giving a little more attention to the particular rascal. But as the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7 8 9 10 11 12

number of items

pr
op

or
tio

n
co

rr
ec

t

0.7
1
1.4

Figure 7.8. The proportion of items retrieved correctly decreases non-linearly with the number of
items currently relevant. Three values for the W parameter are shown: low (0.7), average (1)
and high (1.4)

The second model

189

number of children rises, giving more attention to one child means neglecting the
others, causing more and more trouble. So, at a certain number of children, it
becomes almost impossible to keep them all happy. Now if you are a particular good
baby-sitter, you can give them impressive talkings-to, so they will keep from
mischief just a little longer. Or, if you know the particular children, you might know
a few tricks to keep a particular child happy.

In the baby-sitter example, baby-sitters have no particular hard limit or capacity of
children they can keep happy. Neither do they spread attention to all children at the
same time. They just go from child to child and hope for the best. Individual
differences between baby-sitters are reflected by the impact their attention has on the
children: better baby-sitters donÕt have more time, they just use it more effectively.

To see the impact of the W parameter, the model was run several times with source
activations ranging from 0.7 to 1.4, the range that covers all subjects in the Lovett et
al. experiment. Figure 7.9 shows that source activation has indeed a high impact on
performance. A low source activation implies longer solution times and a lower
accuracy. The interesting thing about the accuracy is, however, that the differences
are initially very large: for the first problem, the accuracy of the high source
activations is almost perfect, as opposed to the very poor accuracies for low source
activations. But as learning progresses, these poor accuracies improve dramatically
and by the tenth problem are almost as good as the higher source activations. This
corresponds well with the experiment, in which almost every participant eventually
managed to solve the problems, although the time they needed to do this (so the
number of opportunities for learning), differed tremendously. A tentative
conclusion of this model may therefore be that practice eventually overcomes poor
working-memory capacity.

Is proceduralization necessary for mastering complex skills?
In chapter 1, the hypothesis was posed that mastering a complex skill is a gradual
process, in which some cases of a problem can be solved directly, some need
additional search, and some cannot be solved due to the fact that this would take
too much time. In the scheduling model, a similar issue turns up: if part of a skill is
not proceduralized, it puts extra demands on working-memory capacity, and limits
the amount of other non-proceduralized activity. As a consequence, as working-
memory capacity is lower, more proceduralization (i.e., practice) is needed before a
task can be performed successfully. Working-memory capacity more or less deÞnes
how broad the small grey band in Þgure 1.4 is. The results in Þgure 7.9 show that
the accuracy for the higher source activations is close to 1 for the very Þrst problem.
If source activation is lower, practice is needed before a high accuracy is reached.

Figure 7.10 shows a graphical impression of the consequences of limited working-
memory capacity for the scheduling task, analogous to figure 1.4. The rectangle

7: Models of Scheduling

190

represents all skills involved in scheduling. At the bottom of the rectangle is a black
region which represents the some basic skills that even novices in scheduling already
possess, such as reading the screen, building lists and doing rehearsal. Using these
skills does not require any extra working-memory capacity. Skills in the light grey
area do require working-memory capacity. In terms of the model, these skills use
chunks that represent the list, but also abstractions that are used in the reasoning

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Problem number

So
lu

tio
n

tim
e

0.7
0.8
0.9
1
1.1
1.2
1.3
1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Problem number

Pr
op

or
tio

n
co

rr
ec

t

0.7
0.8
0.9
1
1.1
1.2
1.3
1.4

Figure 7.9. Solution time and proportion solved correctly for source activations ranging from 0.7
to 1.4

The second model

191

process. The white area represents skills, or groups of skills that take too much
working-memory capacity. The dark grey circles, finally, represent the skills of
doing the scheduling problems the model has to solve. The top part of the figure
shows a case of high working-memory capacity (W=1.4). The scheduling problems
are already within the grey area, so can immediately be solved by the model. The
only advantage of procedural learning is that the solution time decreases. When
source activation is low, on the other hand, the skill of solving the scheduling
problems is still in the white area, as shown in the bottom-left part of the figure
(W=0.7). In order to be able to solve the problem at all, procedural learning is
necessary to reach to get the dark grey circles within the grey band.

To examine more closely whether this is the case in the model, a comparison is made
between runs with production compilation turned on and turned off. Figure 7.11
shows the results for source activations 0.6, 0.65, 0.7 and 1.4. Clearly for the lower
source activations, production learning is essential for successfully mastering the
skill. For W=1.4, on the other hand, procedural learning does not contribute to
accuracy at all.

Figure 7.10. Graphical impression of the role of source activation in solving scheduling problems

W=1.4

W=1.4

W=0.7

W=0.7

Before (procedural) learning After (procedural) learning

Fully proceduralized skills

Skills within available WM capacity

Skills demanding too much WM capacity

Skill to solve particular
 scheduling problems

Direction of learning

7: Models of Scheduling

192

7.6 Some empirical evidence for the scheduling model

Although the models of scheduling presented in this chapter address most of the
issues raised in chapter 3, the predictions made by the model have not actually been
tested yet. Fortunately, Linda Jongman has recently performed an experiment that
provides some experimental support for the model. In a study on mental fatigue,
she used the scheduling task as discussed in chapter 3, and the digit working
memory task that has been modeled in ACT-R by Lovett, Reder and Lebiere (1997).

The digit working memory task was used to make an estimate of the working-
memory capacity of a participant, expressed in the ACT-R source activation
parameter. This working-memory capacity was related to the performance on the
scheduling task. Unfortunately, the scheduling task as it was used in this particular
experiment was a mixture of problems with two and three workers with varying
difficulty and varying time limitations. It is therefore hard to compare the results
directly to the model predictions. Nevertheless some of the more qualitative
predictions of the model can be tested with respect to individual differences.

W=0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10

Problem number

Pr
op

or
tio

n
co

rr
ec

t

Learning
No learning

W=0.65

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 2 3 4 5 6 7 8 9 10

Problem number

Pr
op

or
tio

n
co

rr
ec

t

Learning
No learning

W=0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Problem number

Pr
op

or
tio

n
co

rr
ec

t

Learning
No learning

W=1.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Problem number

Pr
op

or
tio

n
co

rr
ec

t

Learning
No learning

Figure 7.11. Comparison between procedural learning turned on and off, for different values of
source activation

Discussion

193

The model predicts a strong correlation between working-memory capacity and the
performance on the scheduling task. This proved to be the case in the experiment:
the correlation between the estimated source activation and the number of
successfully solved schedules is 0.56 (with n=16). This correlation increases to 0.66 if
the analysis is restricted to the three-worker schedules, the schedules that require
most working-memory capacity. Figure 7.12 shows the scatter plot for this latter
relation. A more specific prediction of the model is that the effect of working-
memory capacity on performance will diminish due to proceduralization. To
investigate this prediction, the group of participants is split into eight low source-
activation participants (W<0.95) and eight high source-activation participants
(W>0.95). The proportion of correct solutions for each of the groups is plotted in
figure 7.13. In this graph only three-workers problems are shown, and to average out
part of the noise each data point is averaged with its predecessor and its successor.
There is a clear convergence between the two curves, as can be seen in the bottom
graph that depicts the difference.

7.7 Discussion

At the end of the previous chapter it seemed that production compilation was an
uninteresting optimization of declarative knowledge. The scheduling model shows
that this was a false impression. Complex reasoning processes in declarative
memory can only become more complex because production compilation decreases
demands on working-memory capacity.

0
2
4
6
8

10
12
14

0.8 0.9 1 1.1 1.2

Source activation

Nu
m

be
r o

f c
or

re
ct

 s
ch

ed
ul

es

Figure 7.12. Relationship between estimated source activation and the number of correctly solved
three-worker schedules. Each diamond represents one participant. The dashed line indicates the
regression line.

7: Models of Scheduling

194

The scheduling model also reveals insights into a part of the problem-solving
process that is usually not part of cognitive models: the acquisition of task-specific
rules from instructions. Although the model does not encompass a natural language
parser, it is easier to imagine translating an instruction into a list of abstractions than
into a set of production rules.

The abstraction representation chosen for this model is not the only possibility:
probably a more general and efficient representation is possible. Optimizing the
representation might be a good topic to study in conjunction with a more extensive
system for creating new plans using old plans. A more general issue of
representation that has become clear in this model is the fact that the degree of
freedom ACT-R provides in choosing different types of chunks is probably too great.
When general rules have to reason with declarative facts, having too many distinct
types is a hindrance. The scheduling model uses only a few chunk types. The

0

0.2

0.4

0.6

0.8

1

5 10 15 20

Trial number

Ac
cu

ra
cy

Low W
High W

0

0.1

0.2

0.3

0.4

5 10 15 20

Trial number

Ac
cu

ra
cy

 h
ig

h
- l

ow

Figure 7.13. Proportion of correctly solved schedules for the 8 highest source activations and the 8
lowest source activations. Only three worker schedules are shown, and each point represents
the average of three problems. The top graph shows the accuracy curves for both groups, the
bottom graph shows the difference between the two.

Appendix: Implementation of abstractions in ACT-R

195

downside of a chunk type that can be used for many purposes is that the number of
slots becomes very large. Many of the slots are only needed at the moment that the
chunk is the current goal, and are irrelevant for retrieval later on. For example, the
generic goal type contains slots to store the current abstraction and the retrieved fact,
and other bookkeeping slots. These slots are not needed anymore once the goal is
popped.

Unfortunately, the model cannot yet solve the hard problems that participants had
to solve in the experiment. The current model, however, shows many aspects also
found in the experiment:

• Separate search episodes

• Elaborate and maintenance rehearsal

• Errors due to limited working-memory capacity

• Large individual differences

• Deliberate reasoning about the task

• Proceduralization of declarative knowledge

A number of issues are still unresolved. The way in which new abstractions are
learned is a good starting point for discovering new strategies, but it is not yet clear
whether that is sufficient to discover complicated strategies like the different-worker
and fit-the-hours strategies in chapter 3. Another issue is the fact that ACT-R only
maintains expected gains of production rules, and that it has no mechanisms to keep
track of the quality of declarative knowledge. Some way has to be found to represent
that, for example, a particular abstraction does not work most of the time.

Although these issues may involve even more explicit strategies, there is no
fundamental problem in resolving them within the current framework. The main
problem lies in the fact that people have a lot of relevant knowledge, even for an
abstract task like the scheduling problem, and it is hard to specify all this knowledge
and put it in a model.

7.8 Appendix: Implementation of abstractions in ACT-R

In this section I will discuss in detail how abstractions work. Readers not interested
in the technical details may skip this section.

The basic generalized abstraction
The basic structure of a generalized abstraction is as follows:

7: Models of Scheduling

196

GENERALIZED-ABSTRACTION
ISA ABSTRACTION
GOAL the type of goal this abstraction applies to
RETRIEVE the type of fact that needs to be retrieved from declarative memory
TEST constraints the retrieved fact has to satisfy
ACTION how the goal is modified using the retrieved fact

The generalized abstractions have many properties of a typical production rule in
ACT-R: the goal has to be of a certain type (GOAL), some fact is retrieved from
declarative memory (RETRIEVE) satisfying some condition (TEST), and this fact is
used to modify the goal (ACTION). Note that tests on the goal itself are part of the
condition in the TEST slot. Suppose the goal of the Fincham task looks like:

EXAMPLE-FINCHAM-GOAL
ISA HOCKEY-DAY-GOAL
DAY1 WEDNESDAY
DAY2 NIL

Further assume there are plus2 facts available of the following form:

EXAMPLE-PLUS2-FACT
ISA PLUS2
ARGUMENT WEDNESDAY
ANSWER FRIDAY

An abstraction that specifies that plus2 facts are needed for the hockey-day-goal
looks as follows:

EXAMPLE-FINCHAM-ABSTRACTION
ISA ABSTRACTION
GOAL HOCKEY-DAY-GOAL
RETRIEVE PLUS2
TEST DAY1=ARGUMENT
ACTION DAY2:=ANSWER

In English, the interpretation of this abstraction is:

If the goal is of type hockey-day-goal, retrieve a plus2 fact, so that the content of
the day1 slot of the goal is equal to the argument slot of the plus2 fact, and put
the contents of the answer slot of the plus2 fact in the day2 slot of the hockey-
day-goal.

The representation presented above cannot be used directly. It needs to be
interpreted, and this interpretation has to be done by production rules. Production
rules, however, cannot inspect the names of slots, nor can the type of the goal (i.e.,
the contents of the ISA-slot) be variabilized. In order to circumvent this problem,
some generalized goal representation is necessary with a fixed amount of slots. The
representation I will use is as follows:

Appendix: Implementation of abstractions in ACT-R

197

EXAMPLE-GENERAL-GOAL
ISA GENERIC
TYPE the type of the goal
SLOT1 a general purpose slot to store results, arguments etc
SLOT2 another general purpose slot
SLOT3 a third general purpose slot
ANSWER the answer, or true to indicate a goal that has succeeded
ABSTRACTION slot to store a retrieved abstraction
RETRIEVE slot to store the retrieved fact
TEST slot to store the test
ACTION slot to store the action

Unfortunately, the general purpose goal has many slots. Especially the abstraction,
retrieve, test and action slots are necessary for processing purposes and are useless
once the goal is popped.

The generic goal makes it possible to interpret abstractions using ordinary
production rules. LetÕs look at our Fincham example again, and translate the goals
into the generic goal:

EXAMPLE-FINCHAM-GOAL
ISA GENERIC
TYPE HOCKEY-DAY-GOAL
SLOT1 WEDNESDAY
ANSWER NIL

(all other slots are nil)

EXAMPLE-PLUS2-FACT
ISA GENERIC
TYPE PLUS2
SLOT1 WEDNESDAY
ANSWER FRIDAY

(all other slots are nil)

The example abstraction now becomes:

EXAMPLE-FINCHAM-ABSTRACTION
ISA ABSTRACTION
GOAL HOCKEY-DAY-GOAL
RETRIEVE PLUS2
TEST SLOT1=SLOT1
ACTION ANSWER:=ANSWER

As we can see, slot names no longer label what is in a slot, making it slightly harder
for us (but not for ACT-R) to interpret the meaning of abstractions and rules. The
convention for tests and actions is that in a slotx=sloty or slotx:=sloty construction
the slotx part refers to the goal, and the sloty part to the retrieved fact. When used in
the test slot of the abstraction, it means that slotx of the goal has to match sloty of the

7: Models of Scheduling

198

fact, and in the action slot of the abstraction, it means the contents of sloty of the
retrieved fact have to be copied to slotx of the goal. It is important to note that ACT-
R does not interpret these test and action instructions: they are just labels that are
matched by the appropriate production rules.

Interpretation of an abstraction can be handled by four consecutive production
firings. I will present the rules, and step through the Fincham example to illustrate
it. First, an abstraction needs to be retrieved:

RETRIEVE-ABSTRACTION
IF the goal is a generic goal of type type, and the abstraction

slot of the goal is nil
AND there is an abstraction with goal type

THEN put the abstraction in the abstraction slot of the goal

This rule will be competing with ordinary task-specific rules, so it should have an
expected gain that is not too high. In that case, when task-specific rules perform well
and have a high expected gain, they will win most of the time, but when the task-
specific rules have a low expected gain, abstraction retrieval will be preferred. This
competition is comparable to the competition between search and reflection, as
discussed in chapter 5. After the abstraction has been retrieved, the contents of its
slots are copied to the goal.

COPY-ABSTRACTION-TO-GOAL
IF the goal is a generic goal and some abstraction is in the

abstraction slot of the goal
THEN copy the contents of the retrieve, test and actions slots of

the abstraction to their respective slots in the goal

In the Fincham example, these two rules will retrieve the example-fincham-
abstraction and store it in the goal, so the goal will now become:

EXAMPLE-FINCHAM-GOAL
ISA GENERIC
TYPE HOCKEY-DAY-GOAL
SLOT1 WEDNESDAY
ANSWER NIL
ABSTRACTION EXAMPLE-FINCHAM-ABSTRACTION
RETRIEVE PLUS2
TEST SLOT1=SLOT1
ACTION ANSWER:=ANSWER

Now that the abstraction has been selected, the retrieval specified in its ÒretrieveÓ
slot has to be carried out:

Appendix: Implementation of abstractions in ACT-R

199

APPLY-ABSTRACTION-RETRIEVE-SLOT1-SLOT1
IF the goal is a generic goal with an abstraction in the

abstraction slot, and the retrieve slot has type retrieve
and the test slot equals slot1=slot1 and slot1 has value slot1
AND there is a fact of type retrieve and value slot1 in slot1

THEN put this fact in the retrieved slot of the goal

This rule is specific to the slot1=slot1 test, so a similar rule is necessary for every
possible test. In the Fincham example, this rule will look for a plus2 fact with
wednesday as slot1 value, and will find our example-plus-fact, transforming the
goal to:

EXAMPLE-FINCHAM-GOAL
ISA GENERIC
TYPE HOCKEY-DAY-GOAL
SLOT1 WEDNESDAY
ANSWER NIL
ABSTRACTION EXAMPLE-FINCHAM-ABSTRACTION
RETRIEVE EXAMPLE-PLUS2-FACT
TEST SLOT1=SLOT1
ACTION ANSWER:=ANSWER

Sometimes the fact that needs to be retrieved is not available in declarative memory.
An alternative method to get a fact is to push it as a subgoal. The following rule
accomplishes this for the slot1=slot1 case:

APPLY-ABSTRACTION-SUBGOAL-SLOT1-SLOT1
IF the goal is a generic goal with an abstraction in the

abstraction slot, and the retrieve slot has type retrieve
and the test slot equals slot1=slot1 and slot1 has value slot1

THEN push as a subgoal a goal of type retrieve and set slot1
to slot1
AND store this subgoal in the retrieved slot of the goal

In the Fincham example, this rule would create the following subgoal:

EXAMPLE-SUBGOAL-PLUS2
ISA GENERIC
TYPE PLUS2
SLOT1 WEDNESDAY
ANSWER NIL

(the rest of the slots also nil)

Resolving this subgoal of course needs knowledge in the form of other abstractions
or productions to find the answer.

The final step is to carry out the action and remove the abstraction:

7: Models of Scheduling

200

ABSTRACTION-DO-ANSWER-ANSWER
IF the goal is a generic goal and fact retrieved is in the

retrieve slot of the goal and the action slot equals
answer:=answer
AND retrieved has answer in the answer slot

THEN put answer in the answer slot of the goal, set the
abstraction, action and retrieved slots to nil, and put the
original abstraction in the test slot

This production rule takes the answer from the retrieved slot and puts it in the
answer slot of the goal, and resets the rest of the slots:

EXAMPLE-FINCHAM-GOAL
ISA GENERIC
TYPE HOCKEY-DAY-GOAL
SLOT1 WEDNESDAY
ANSWER FRIDAY
ABSTRACTION NIL
RETRIEVE NIL
TEST EXAMPLE-FINCHAM-ABSTRACTION
ACTION NIL

The abstraction that has just been used is retained in the test slot. Although this has
a specific purpose that I will discuss in the next section, it also allows access to the
abstraction even when the abstraction is proceduralized. The proceduralized version
of the example is:

IF the goal is of type hockey-day-goal and slot1 equals day1
and the answer is nil
AND there is a fact that day1 plus2 equals day2

THEN put day2 in the answer slot of the goal and put
example-fincham-abstraction in the test slot of the goal

This rule does exactly what we expect it to do, an leaves behind a reference to the
example-fincham-abstraction. Even when the proceduralized version of the
abstraction is fired, the declarative version is still available for retrieval, provided
that the abstraction still has an activation that is high enough for retrieval. If the
activation of an abstraction drops below the retrieval threshold, it becomes a
meaningless symbol in the production rule and declarative conscious access is lost.
Although the symbol has become meaningless, it still has a function, as we will see
in the next section.

Chaining abstractions
In order to implement the chaining of abstractions, a few more production rules are
needed. The following rule implements handling the prev-links:

Appendix: Implementation of abstractions in ACT-R

201

ABSTRACTION-DO-NEXT
IF the goal is a generic goal of type type, and the abstraction

slot of the goal is nil and the test slot has value prev-abs
AND there is an abstraction with goal type and prev prev-abs

THEN put the abstraction in the abstraction slot of the goal

The rule for handling fail links is slightly different, since it has to fire whenever the
current abstraction somehow gets stuck. The rule has to remove the current
abstraction, and replace it by an abstraction that points to it using a fail link:

ABSTRACTION-REPLACE-FAIL
IF the goal is a generic goal of type type and the abstraction

slot contains some abstraction abs1
AND there is an abstraction with goal type and fail abs1

THEN put this abstraction in the abstraction slot of the goal

This production may of course only fire if we are really stuck, so we give it a low
expected gain.

Proceduralizing abstractions
To proceduralize an abstraction, the same method is used as outlined in chapter 6.
After an abstraction has been retrieved, but before its contents have been copied to
the goal (so in between retrieve-abstraction and copy-abstraction-to-goal), a push-
dependency rule may Þre that pushes a dependency onto the goal-stack. The
remaining steps are exactly the same as outlined in Þgure 6.2. The resulting
production rules use the test slot of the goal to make sure steps are carried out in the
right order. For example, the rule that results from proceduralizing abs 2 in
Þgure 7.2 checks in its condition part whether abs 1 is in the test slot, and puts abs 2
in the test slot in the action part.

Building lists and doing rehearsal
Each item in a list is represented by a separate chunk, using the following chunk
type:

EXAMPLE-LIST-ITEM
ISA LIST-ITEM
LIST-ID Reference to the first item in the list (to itself if it is the first item)
VALUE The item that is stored in the list
PREV Reference to the previous item in the list (nil if it is the first item)

In the scheduling goal, slot3 points to the last item of the current list. Tasks that are
put in slot1 of the goal are added to the list by a production rule that creates a new
list-item that replaces the current last item in slot3. As an example, figure 7.14 shows
how the list ÒABDÓ is represented.

7: Models of Scheduling

202

Rehearsal is implemented by a subgoal that retrieves the list-items one at a time. If
additional processing on items is required, in the case of elaborate rehearsal, a
further subgoal is pushed in which the elaboration is carried out. Figure 7.15 shows
a schematic representation of both types of rehearsal. In the case of maintenance
rehearsal the content of the goal-tp slot in the rehearse-goal is ÔnothingÕ, and the list-
items are retrieved one at a time without further processing. In elaborative rehearsal,
the goal-tp slot of the rehearsal goal stores the goal type of the goal that has to do the
elaboration (Ôcount-hoursÕ in the figure). For each item in the list a subgoal of that
type is created and pushed onto the goal stack. Results of this processing are passed
on from subgoal to subgoal, and are eventually passed on to the main goal.

Rehearsal is initiated by abstractions that have ÔrehearsalÕ in their retrieve slot, and
the type of the elaboration subgoal in the test slot (or ÔnothingÕ in the case of
maintenance rehearsal). The action slot specifies what has to be done with the results

Figure 7.14. Example of the representation of the partial solution ÒABDÓ

list-id

prev

list-id

prev

A B D

valuevaluevalue

slot3

scheduletypegoal

list-id

prev

list-id

prev

A B D

valuevaluevalue

scheduletypegoal

push

rehearse
goal-tp nothing

retrieve

scheduletypegoal

push

rehearse
goal-tp count-hours

push

list-id

prev

list-id

prev

A B D

valuevaluevalue

count-hours count-hours count-hours

Figure 7.15. Schematic representation of maintenance rehearsal (left) and elaborate rehearsal (right)

Appendix: Implementation of abstractions in ACT-R

203

of the elaboration. The following set of abstractions implements the strategy that
calculates the total duration of the tasks already in the list. To do this, the durations
of individual tasks in the list have to be retrieved and added. The first abstraction
initiates elaborate rehearsal:

START-COUNT-REHEARSAL
ISA ABSTRACTION
GOAL SCHEDULE
RETRIEVE REHEARSE
TEST COUNT-STEP
ACTION SLOT2:=ANSWER

When this abstraction is retrieved, a rehearsal subgoal (retrieve=rehearsal) is pushed
with its goal-tp set to count-step (test count-step). The final result will be stored in
slot2 of the goal (action slot2:=answer). Although the rehearse subgoal is
implemented by production rules, the processing in the count-step goal still has to
be specified:

The rehearse subgoal puts the currently rehearsed item in slot1, and the current
results of elaboration in slot2. It expects the result of the elaboration step in the
answer slot. So, at the moment the subgoal of type count-step is pushed, slot1
contains a task, and slot2 contains the running total of the duration. The first step is
to retrieve the duration of the task that is currently rehearsed. These durations are
stored in chunks of type time, which have the task in slot1, and the duration of the
task in slot2. Count-get-time retrieves a fact of type time which matches the task in
slot1 (test slot1=slot2). It then stores the duration of the task in slot3 (slot3:=slot2).
The next step is to add this duration to the running total in slot2. Count-add-time
retrieves an addition fact with the first addend (which is in slot1 of the addition
fact) equal to the running total and the second addend (in slot2) equal to the
duration of the current task (slot2=slot1*slot3=slot2, a conjunction of two tests:
slot2=slot1 and slot3=slot2), and stores the sum in the answer slot of the subgoal
(answer:=answer). Whenever something is put in the answer slot of a goal it is
automatically popped, so the elaboration subgoal is popped after count-add-time
has finished.

COUNT-GET-TIME
ISA ABSTRACTION
GOAL COUNT-STEP
RETRIEVE TIME
TEST SLOT1=SLOT1
ACTION SLOT3:=SLOT2
PREV NIL

COUNT-ADD-TIME
ISA ABSTRACTION
GOAL COUNT-STEP
RETRIEVE ADDITION
TEST SLOT2=SLOT1*SLOT3=SLOT2

ACTION ANSWER:=ANSWER
PREV COUNT-GET-TIME

7: Models of Scheduling

204

Learning new abstractions
Suppose we need to make a schedule. We may use knowledge about lists to start
with. How do we make a list? First we have to find a beginning. Once we have a
beginning, we find a next task until we are done. A general set of abstractions to
create a list might look like:

This representation assumes that the list is stored in slot3 of the goal (as illustrated
in figure 7.14), and that items in slot1 are added to the list and copied to slot2. Find-
beginning specifies that if there is no list yet (test slot3=nil), a beginning has to be
found, and this beginning has to be stored in slot1 (action slot1:=slot1). Once list-
building productions have added the item in slot1 to a new list in slot3, and have
transferred this item to slot2, the find-next abstraction specifies that a next relation
has to be found between the item in slot2 (test slot2=slot1), the item we have just
added to the list, and some new item, which will be stored in slot1 (action
slot1:=slot2).

In the ACT-R model, the process of adaptation does not precede the rest of
processing, but rather is part of it. A new strategy is initiated by a production rule
that pushes an abstraction as a subgoal. This subgoal only produces the first step in
the solution plan: later parts of the plan are generated when needed later on. The rule
that pushes an abstraction goal is the subgoaling version of the rule that retrieves
abstractions:

SUBGOAL-ABSTRACTION
IF the goal is a generic goal of type type, and the abstraction

slot of the goal is nil
THEN set as a subgoal an abstraction with goal type

AND put this abstraction in the abstraction slot of the goal

This rule has to compete with the retrieve-abstraction rule, but since it has a higher
cost, it will only occasionally win the competition if an abstraction is already
available in the current situation (or, it will almost never win if there is a task-specific
production rule available with a high expected gain). If there is no abstraction
available, the retrieve version of the rule will fail, and subgoal-abstraction will be
chosen automatically. Once an abstraction has become the goal, the first step is to
find a goal that is similar to the desired goal-type in the goal slot of the abstraction.
For example, in the case of scheduling, the abstraction subgoal becomes:

FIND-BEGINNING
ISA ABSTRACTION
GOAL LIST
RETRIEVE BEGINNING
TEST SLOT3=NIL
ACTION SLOT1:=SLOT1
PREV NIL

FIND-NEXT
ISA ABSTRACTION
GOAL LIST
RETRIEVE NEXT
TEST SLOT2=SLOT1
ACTION SLOT1:=SLOT2
PREV FIND-BEGIN

Appendix: Implementation of abstractions in ACT-R

205

EXAMPLE-ABSTRACTION-SUBGOAL
ISA ABSTRACTION
GOAL SCHEDULE
RETRIEVE NIL
TEST NIL
ACTION NIL

etc.

The current model uses an explicit representation to store relations between goal
types, for example, it represents that schedule is related to list, and next is related to
order. An alternative, but less reliable, option is to use implicit association strengths
to find related goals. The following rule implements the explicit version:

FIND-ASSOCIATED-GOAL-TYPE
IF the goal is an abstraction for goal type goal-tp1 and no

associated goal-type has been found yet.
AND goal-tp1 is related to goal-tp2

THEN put goal-tp2 in the test slot of the goal

In our example, this rule stores ÔlistÕ in the test slot of the abstraction. In the next few
steps (for reasons of brevity, I will omit the production rules), an abstraction of the
associated type is retrieved and its slots are copied to the abstraction, producing
(assuming find-beginning is retrieved):

EXAMPLE-ABSTRACTION-SUBGOAL
ISA ABSTRACTION
GOAL SCHEDULE
RETRIEVE BEGINNING
TEST SLOT3=NIL
ACTION SLOT1:=SLOT1
PREV NIL

No more adaptations are possible for this abstraction, since the beginning type in the
retrieve slot cannot be related to any task-specific aspect. As a consequence,
applying this abstraction will lead to a subgoal of type beginning. Once the next step
in the plan, the find-next abstraction, has been adapted to the schedule goal, the
retrieve type can be filled with a task-specific term. The situation is as follows:

EXAMPLE-FOLLOW-UP-ABSTRACTION
ISA ABSTRACTION
GOAL SCHEDULE
RETRIEVE NEXT
TEST SLOT2=SLOT1
ACTION SLOT1:=SLOT2
PREV EXAMPLE-ABSTRACTION-SUBGOAL

In this case a fact of type next has to be retrieved. But since next facts are related to
order constraints, next can be substituted by order, producing:

7: Models of Scheduling

206

EXAMPLE-FOLLOW-UP-ABSTRACTION
ISA ABSTRACTION
GOAL SCHEDULE
RETRIEVE ORDER
TEST SLOT2=SLOT1
ACTION SLOT1:=SLOT2
PREV EXAMPLE-ABSTRACTION-SUBGOAL

Although there are probably more ways to adapt abstractions, this are sufficient for
the second model.

CHAPTER 8 Concluding remarks

8: Concluding remarks

208

The goal of this thesis, as stated in chapter 1, is the development of a theory of
problem solving that is psychologically plausible, and does justice to its complexity.
The weak-method theory that stems from artificial intelligence acknowledges this
complexity, but shows only very limited correspondence with human data. Theories
from experimental psychology, on the other hand, neglect the complexity of
problem solving, and theorize about how complex skills can be explained in terms
of memory systems and basic information processing. In the course of this thesis, the
subject of problem solving has been broadened to cognitive skills in general, since
there is no principled distinction between the two. The approach I have chosen is to
focus on learning cognitive skills. In chapters 5 to 7, a view of skill learning has taken
shape, which I will try to explicate in this final chapter. This view is built upon the
foundation the ACT-R architecture offers, ensuring a plausible system of learning
and memory, and it exhibits the complexity of behavior that artificial intelligence is
interested in. The theory of skill learning that emerges has a number of areas that
need more investigation, and a number of possible applications. Both topics will be
discussed in the final sections of this chapter.

Have I solved the problem of NP-completeness? The answer to this question is of
course ÒnoÓ. But I have tried to draw a picture of how humans can acquire the
knowledge to at least partially solve hard problems. This is not a simple picture, and
cannot be summarized in a clear-cut algorithm. When people start with a new task,
they do not use a general machine learning algorithm to acquire knowledge about
this task. Rather, they use a set of strategies, knowledge about other domains and
tasks, instructions about the current task to start with, and keep adapting and
refining their knowledge while they are working on the task. A better understanding
of these processes is the key to understanding complex human problem solving.

8.1 The skill of learning

Skills are not separate entities, they almost always rely on other skills. In order to
learn multiplication, one has to master addition Þrst. In order to be able to add
numbers, one has to be able to count, etc. The diagram I used in chapter 1 to outline
the growth of knowledge for a certain problem (Þgure 1.4) is useful to intuitively
sketch skill learning in general. LetÕs visualize the space of possible tasks in a two-
dimensional diagram (Þgure 8.1). Again, the idea is that tasks that are similar are
close to each other in the diagram. The vertical axis is used to indicate complexity. A
task is higher in the diagram if the skill to perform this task relies on skills
associated with a task lower in the diagram. The result is a partial ordering. Each
task can be instantiated in numerous ways, so each of them is shown as a small set
(a box). Now, if the set boundaries are dissolved, weÕre back at Þgure 1.4, except
that the diagram now represents the set of instances of all possible tasks.

The skill of learning

209

Figure 1.4 gave the impression of a gradual learning process, in which the
boundaries between the black, grey and white areas slowly move upwards. On the
basis of chapter 5 to 7, it is possible to revise this picture, and to show how
discontinuous learning can occur. Suppose a new skill is being learned. To be able to
start at all, the prerequisite skills have to be mastered Þrst (i.e., the have to be in the
black area). This means that the task itself has to be in the grey area (Þgure 8.2a).
Experience with the task will produce examples of solutions. These examples can be
retrieved later on, producing Òspecks of blackÓ in the grey area that represents the
new skill (Þgure 8.2b). This process is similar to instance learning, PiagetÕs
assimilation, implicit learning and the I-phase of the RR-theory. Although it seems
that the black specks will eventually Þll up the whole set, this is only true for tasks
with a Þnite number of instantiations. Mastery of an inÞnite set of instantiations

Set of possible tasks

grey: tasks for which some
combinatoric search or
deliberation is needed

black: tasks that can be performed in a direct
fashion (retrieval, simple procedure)

white: tasks that cannot be done yet

Tasks higher on the vertical
axis prerequire skills related to
tasks lower on the axis

Tasks close to one another on the horizontal
axis are closely related

Figure 8.1. The set of possible tasks

Figure 8.2. Summary of the skill acquisition process. The Þgure shows a detail of Þgure 8.1. (a) The
rectangle in the middle represents the task to be learned. The two black rectangles at the bottom
represent prerequisite skills, which already have been mastered. Experience with the task
produces examples or instances (b). Once there are enough examples, generalization can be
successful (rule learning), producing situation (c).

(a) (b) (c)

continuous
process

discontinuous
process

8: Concluding remarks

210

would require an inÞnite number of examples. To master an inÞnite set as a whole,
one or more generalization steps are necessary. Once a successful generalization is
made (possibly after several unsuccessful ones), it is suddenly possible to efÞciently
solve the set as a whole (Þgure 8.2c). The process of generalization is similar to rule
learning, PiagetÕs accommodation, explicit learning and the E1-phase of the RR-
theory. A side effect of successful mastery of a skill is that it is now possible to learn
skills that were previously unreachable. This means a sudden shift in the border
between the grey and the white area (Þgure 8.2c).

An important aspect of this process is that the generalization step is a skill itself. As
we have seen in chapter 5, adults use a more elaborate form of generalization than
children do. It is this aspect of learning that makes human learning virtually
limitless. Understanding this particular set of skills may well be the key to
understanding many aspects of individual differences and cognitive development.
In the next section, an ACT-R implementation of this idea will be outlined, based on
the models from chapter 6 and 7. In section 8.3, I will elaborate on the issue of
individual differences.

8.2 Processes involved in skill learning

In chapter 6, I proposed a first version of a general schema of skill learning
(figure 6.1). Although this schema offered a good description for the two models
discussed, the Sugar Factory and the Fincham task, it did have a problem: the vague
notion of the initial method. In both the Sugar Factory model and the Fincham
model these initial methods were hard-coded into the model. The origin of this
knowledge was left unspecified. The scheduling model in chapter 7 showed how
this problem can be solved. In this section, I will update figure 6.1 according to the
modifications introduced in chapter 7. The final skill learning theory I propose
encompasses two currently dominant theories, the theory of rule learning, rooted in
the original ideas by Fitts (1964) and further extended by Anderson (1982), and the
idea of instance learning, as posed by Logan (1988).

Now how can this theory produce the kind of learning discussed in the previous
section? Suppose we have a task in the grey area (as in Þgure 8.2a). This means some
way of doing this task is available, although it is inefficient. This initial method may
involve a set of declarative rules that has been adapted through analogy to suit the
current task, or is the result of interpreting instructions. Doing the task using these
initial rules produces examples that are stored as instances. At some point, the
explicit learning strategies will attempt some generalization (in terms of chapter 5: a
reflection episode). As soon as the generalization is successful, and the new, efficient
declarative rules are subsequently proceduralized, the skill is mastered.

Processes involved in skill learning

211

Figure 8.3 shows a revised overview of the theory, an expansion of figure 6.1. Each
of the boxes in the diagram represents a type of knowledge. The dashed boundary
indicates which of these knowledge types are task specific. Each rectangle represents
a type of knowledge that is associated with a certain strategy. Each of these strategies
needs knowledge associated with it to function properly. Within the task-specific
knowledge, there are three possible strategies, each of which represents a possible
way to perform the task: using a declarative rule, using a production rule, or
retrieving an instance. According to ACT-R, the strategy with the highest expected
outcome will win the competition. The instance strategy is generally the best
strategy, followed by production rules, declarative rules and using an explicit
learning strategy.

Using one type of knowledge to perform the task results in learning: not only is the
knowledge itself reinforced, but it may also produce knowledge necessary for other
strategies as a by-product. This implicit learning is represented by the dashed
arrows. The strategy outside the task-specific knowledge represents explicit-
learning strategies. The goal of this strategy is to produce task-specific knowledge in
the form of declarative rules. In order to do this, it can use different knowledge
sources, both within and without the task domain. The use of these sources is
represented by the grey arrows.

Instructions,
biases, feedback

Production
rules

Figure 8.3. Overview of the proposed skill-learning theory

Task specific knowledge

Explicit learning
strategies

Decl. rules from
other domains

B

B

B

A

A If knowledge type A is used to solve an instance of
the problem, knowledge type B is implicitly learned

Knowledge type A explicitly produces knowledge
type B

Knowledge of type B uses type A as a (possible)
source of knowledge

Declarative rules
(abstractions)

Instances

Declarative
knowledge

Procedural
knowledgeA

8: Concluding remarks

212

Explicit learning strategies
There are many possible learning strategies, and they are an important source of
individual differences. Explicit learning strategies themselves can also be
considered skills, and can be learned in the same way as other skills. Eventually,
some bootstrapping problem must be solved, so some initial strategy should
probably be part of the architecture itself.

Some possible strategies are:

• Use analogy to apply declarative rules from other domains to the current
domain

• Generalize instances into declarative rules

• Create a direct representation of the instructions

• ReÞne current declarative rules based on feedback

Both the Fincham model (chapter 6) and the scheduling model (chapter 7) use
analogy initially, although the Fincham model does so in a task-specific fashion (i.e.,
the method of analogy was already part of the instructions). In some cases
instructions provide for an initial method. In that case the main task is to translate
the instructions into declarative rules that can be carried out. But in many cases
instructions will also draw on knowledge people already have.

Declarative rules and Instances
Declarative rules have to be interpreted in order to be carried out. As such, they
require attention and working-memory capacity. Since they are declarative, these
rules can be subjected to deliberate reasoning, which may lead to new declarative
rules. Whether or not learning of declarative rules will contribute to performance in
the long run, not only depends on the available knowledge, but also on the task.
The Sugar Factory experiment in chapter 6 illustrates this: the possibility of control
is limited, the behavior of the system is non-linear, and there is random noise
involved. Therefore, learning of declarative rules will fail for most participants, so
performance can be explained by instance learning alone. In other cases learning of
declarative rules may be successful, but will not prove to be the most cost-efÞcient
strategy. This is the case when the set of instances is small, so that instance retrieval
can dominate performance. In the Fincham task, the use of declarative rules was a
very useful strategy, and in the scheduling task it was crucial, since the instructions
alone are clearly insufÞcient to do the task and examples are not very useful.

Production rules
Production rules serve the same function as their declarative counterparts. But since
they can be executed in one step instead of being interpreted, they are much faster.
Another advantage is that they use less working memory capacity due to the fact
that there is no longer a declarative rule that has to be kept active. Although

Individual differences

213

production rules provide no new knowledge when compared to their declarative
cousins, they make it possible to solve problems that could not be solved before
because of limitations in working memory capacity or available time. This may
even open the way to learning more difÞcult skills.

In ACT-R, production rules are learned through a specific type of goals
(dependencies). In that sense production-rule learning requires deliberate planning.
The encapsulation explained in chapter 6 and 7 turns this goal-directed type of
learning into an implicit learning mechanism. In the current models, each time a
declarative rule is retrieved, there is a chance that a production rule will be learned.
Although this method fits the data quite nicely, there are alternatives, such as a
gradual transfer from the declarative to the procedural version of a rule. This raises
the question whether procedural memory and declarative memory are really distinct
in principle. Is proceduralization not a process of gradually speeding up the process
of interpreting declarative rules while reducing interference?

Implicit and explicit learning
The distinction between implicit and explicit learning follows naturally from this
theory. Implicit learning is a result of normal processing, producing new instances
and proceduralization. Explicit learning is based on strategies. Using these
strategies is also a form a normal processing, except with another goal. Instead of
performing the task, the goal is to generalize new knowledge. Due to this fact,
explicit learning is ÒconsciousÓ, since the episode can be recalled later on by
retrieving the learning goal, while implicit learning is not. Explicit learning is a skill
that has to be learned. This fact can explain the large individual differences in
explicit learning whether due to age, intelligence or brain damage.

8.3 Individual differences

In this thesis two sources of individual differences have been discussed in detail. In
chapters 4 and 5, the idea has been put forward that individual differences stem
from differences in explicit learning strategies. Experiments in discrimination-shift
learning, for example, exhibit a qualitative difference in learning between young
children and adults. The model in chapter 5 shows how this difference can be
explained in terms of different strategies. The scheduling model in chapter 7 further
suggests that these explicit learning strategies can be subdivided into a set of
declarative rules that can be reused, and production rules that adapt these
declarative rules to new situations.

Chapter 7 introduces another source of individual differences: working memory
capacity, which corresponds to source activation in ACT-R. Correlational studies, for
example by Kyllonen and Christal (1990), find correlations of between 0.80 and 0.90

8: Concluding remarks

214

between reasoning ability factors and working-memory capacity. All the tests in
their experiment, however, were relatively short. The model in chapter 7 and the
results in the previous section suggest that the advantage of working-memory
capacity diminishes due to procedural learning. With respect to individual
differences on a larger time scale, explicit learning strategies may become more
important. Nevertheless, a high working-memory capacity may imply more
flexibility, leading to a larger range of problems that can be solved in a declarative
fashion. The evidence up to now is inconclusive with respect to the interaction
between working memory capacity and reasoning ability.

Although the supporting evidence is still scarce, the modeling approach to
individual differences has great advantages over the traditional approach in IQ-
tests. Working-memory capacity and explicit learning strategies are information
processing notions. The exact impact of these aspects on performance can be
predicted by an ACT-R model. For example, Kyllonen and Christal classify a
particular test as a working-memory test on the basis of intuition alone. In that case,
working-memory capacity is just a factor that is defined as Òwhat all the working-
memory tests measureÓ. In the case of the digit-working memory task, on the other
hand, working-memory capacity is a parameter in the model that can be separated
out from, for example, the effect of learning. A further advantage of a parameter is
that it leads to precise predictions about individual differences in other tasks. As a
result, research in individual differences may move from a descriptive to a
predictive stance.

BinetÕs (1962; originally published in 1911) original IQ concept was based on ideas
about development, in the sense that IQ represents the Òmental ageÓ divided by the
real age of a child. This idea is, however, no longer valid in modern IQ tests. As was
argued in chapter 5, individual differences due to development can best be
explained by differences in available explicit strategies. I do not believe that the
source activation parameter in ACT-R, the main determinant of individual
differences in working-memory capacity, is susceptible to development. Anyone
who has played the game of memory with children may attest this. Tests of working-
memory span do not measure working-memory capacity only, but also
memorization strategies like rehearsal.

The skill-learning theory presented in this thesis may also be useful in the study of
cognitive development. Explicit learning strategies are themselves skills, and their
development may resemble the development of skills, but on a larger time scale. The
table in figure 8.4 shows how we may think about this issue in terms of a time scale
of human learning. This table is analogous to the time scale of human action, as
originally conceived by Alan Newell (1990). Individual skills are learned and
proceduralized in terms of minutes and hours, while general intelligence develops
in terms of weeks and years. This is not because a general learning strategy is
fundamentally different from a skill. Skills are based on generalizing knowledge to

Evaluation of ACT-R

215

produce specific facts. To go from a fact to a skill takes two orders of magnitude on
the time scale (from 100 to 102). It takes another two orders of magnitude to
proceduralize this knowledge. An assumption behind these learning steps is that it
includes all aspects that lead to an optimally useful representation, such as learning
parameters, discrediting wrong generalizations, etc. To learn knowledge that is
generally useful, knowledge related to specific skills needs to be generalized, which
takes another two orders of magnitude.

8.4 Evaluation of ACT-R

This thesis could not have been written without the ACT-R cognitive architecture. It
has provided both a theory and a modeling environment with just the right level of
constraints. ACT-RÕs constraints actually help the modeler in designing a proper
model for his data. Too few constraints leave too many choices, while too many
constraints may force the modeler to spend too much time overcoming the
limitations of the architecture. ACT-R offers a solid basic system of learning and
memory, grounded in empirical data. An ideal architecture would be a system in
which it is just sufÞcient to specify some necessary knowledge, after which the
architecture exhibits psychologically plausible behavior. ACT-R comes close to this
ideal.

In the course of the research described in this thesis, I often pushed the envelope of
the capabilities of ACT-R. As a consequence, I have encountered some aspects of
ACT-R that are still underspecified. I think this thesis can contribute to ACT-R by
helping to point out and sometimes fill in some of the gaps.

Time scale of human learning

Scale
(sec)

Time
Units

Type of representation Memory
system used

108 years Learning strategies Procedural
DevelopÐ

mental band106 weeks Generally useful
declarative rules

Declarative

104 hours Task-speciÞc production
rules

Procedural

Skill band
102 minutes Task-speciÞc declarative

rules
Declarative

100 seconds Task-speciÞc facts Declarative Instance band

Figure 8.4. Time scale of human learning, analogous to NewellÕs (1990) time scale of human action

8: Concluding remarks

216

Production compilation
One of the cornerstones of the ACT-R theory is the distinction between declarative
and procedural memory. This distinction has proved to be very useful, not only in
terms of the theory, but also in providing users of the theory with a relatively easy-
to-learn modeling environment. Having two long-term memory stores, however,
also produces additional complications. More speciÞcally: ACT-RÕs current
procedural learning is not yet completely adequate. Using dependencies in ACT-R
is still too much like programming, and some of the productions that Þll slots in a
dependency goal lack any psychological plausibility. The method for creating
dependencies introduced in chapter 6 and extended in chapter 7 abstracts away
from this process by focusing on declarative rules. The actual production rules are
learned more or less automatically if their declarative counterparts are used often
enough. In order to use these declarative rules, and stay consistent with earlier ACT
systems like ACT* (Anderson, 1983), a set of general interpretive productions is
necessary, or at least a framework in which they can be deÞned. The scheduling
model in chapter 7 offers some kind of solution, which may need some more
elaboration to be useful in any setting.

An issue we should keep in mind, in the spirit of Newell, is not to be too dogmatic
about the declarative/procedural distinction. From the fact that declarative
knowledge apparently gradually changes into procedural knowledge we may
deduct that at a deeper level declarative and procedural knowledge are similar after
all. Finding this deeper equivalence not necessarily contradicts the ACT-R theory.
Rather, it may strengthen the theory by pointing out how a conceptually useful
distinction can be grounded in a more parsimonious, but probably less usable,
system.

Chunk types
Another unresolved issue in ACT-R concerns chunk types. There is no mechanism
that can learn new types, neither will it be easy to specify one. In most models, this
problem does not surface, since most models are only concerned with a speciÞc
task. Production rules that implement explicit learning strategies need to be able to
operate on several different types of chunks. The solution I have chosen, to use a
generic goal type, is not entirely satisfactory. It makes chunks and production rules
harder to read and understand. Because the generic chunk type must be multi-
purpose, it contains too many slots. Apart from aesthetic reasons, large chunk-types
have two serious disadvantages: spreading activation is diluted over more chunks,
and collapsing two chunks with the same information is more likely to go wrong
due to the fact that irrelevant bookkeeping slots have different contents.

Ideally, a model uses small production rules and chunks with only a few slots. It is
almost impossible to satisfy both of these constraints at the same time in a model in
which new production rules are learned. There are probably no easy solutions to this

Evaluation of ACT-R

217

problem, but it should be a consideration if one attempts to specify a new production
compilation mechanism.

Base-level decay
The models in this thesis have used either 0.5 or 0.3 as the base-level decay
parameter. A fast decay of 0.5, which is the ofÞcial recommended value of the
parameter, turns out to work best for decay within an experimental session. A slow
decay of 0.3 is necessary for experiments in which an hour, a day or a week passes
between experimental sessions, else ACT-R will forget all it has learned. This
problem has also been noted by Anderson, Fincham and Douglass (submitted). A
decay of 0.25 is even necessary to account for some of their data. Since base-level
decay is a parameter that is supposed to remain constant, this poses a problem that
has to be resolved. A possible solution, explored by Anderson et al., is to change the
decay function, so that it decays fast at the start, but more slowly as time progresses.
Another possible solution is to suppose that base-level decay is slow all the time,
but that the apparently high decay during an experiment is due to interference. This
interference, for which association strength learning in ACT-R can account in
principle, may also be the key to resolving this issue.

Production-strength learning
The learning mechanism I havenÕt used in any of the models in this thesis is
production-strength learning. Strength is a parameter maintained with each
production rule, reßecting its past use in the same manner as base-level activation
for chunks. Strength is a parameter in the equation that determines the time it takes
to retrieve a chunk (equation 2.3). Since strength inßuences the retrieval time of
chunks, production rules that do not retrieve chunks other than the goal are not
affected at all by strength. A second problem is that the strength of the production
and the activation of the chunk are added together in the retrieval time equation. As
a consequence, if the strength of a production rule is high enough, it can retrieve
almost any chunk in almost zero time.

Why would ACT-R need production-strength learning? Generally, strength learning
is used in ACT-R models to account for the fact that there is a speed-up in
performance on new tasks. These models often assume that participants have
already learned the necessary task-specific production rules at the start of an
experiment. Using these rules improves their speed. An alternative account would
be along the lines of the scheduling model: at the start of an experiment, most task-
specific knowledge is still declarative. This declarative knowledge is only gradually
compiled into production rules, providing the speed-up normally explained by
strength learning.

8: Concluding remarks

218

Assessing model Þts
At several points in the thesis, I have criticized the R2 measure as a method to assess
the quality of Þt between the data and the model. This measure is not sensitive to
the spread of the data, and is not suitable if there are only a few data points to
compare. Moreover, the number of free parameters in the model is not taken into
account in the measure. So, if several models are compared with respect to the R2-
measure, the model with the highest value is not necessarily the best model. It
would be very desirable to have a method similar to the multi-level methods
described in chapter 3, in which addition of a parameter to the model has to be
defended by showing it provides for a signiÞcantly better Þt. Of course, this
problem is not speciÞc to ACT-R, but applies to cognitive modeling in general.

A look back at Soar
One of the concerns in the research of cognitive architectures has always been: is it
not possible to implement any model you want in any cognitive architecture? For
example, would it not have been possible to model all the data discussed in this
thesis by Soar models? This is tough to answer, since it is very hard to prove
something cannot possibly exist. But let us take a very simple example, the Tulving
model discussed in chapter 4. The important issue in that model is the notion of
forgetting, and the fact that certain information is forgotten in a week and other
information apparently not. The ACT-R model shows that this dissociation
naturally follows from a rationally organized declarative memory, without the need
to resort to an explanation that assumes separate memory systems for implicit and
explicit memory. If one were to model this experiment in Soar, the process of
forgetting would have to be part of the model. Although it is possible to come up
with such a model eventually, the fact remains that the aspect of forgetting
information is not part of the speciÞc task, so should not be part of a model of that
task.

Nevertheless, Soar has been a source of inspiration for many of the models in this
thesis. The idea, introduced in chapter 5, of pushing a dependency as a subgoal in
situations where no promising other rules apply corresponds closely to the Soar
notion of pushing a subgoal in case of an impasse. The interpretation process of
declarative rules, as discussed in chapter 7, also has close ties to the way Soar
handles operators. There are many good ideas in the Soar architecture, and its failure
to penetrate main-stream psychological research is probably due to the fact that the
area in which it excels, complex problem solving, is a topic that is not as central in
cognitive psychology as it should be.

Practical implications

219

8.5 Practical implications

In this thesis I have shown that problem solving cannot be studied properly without
taking learning into account. Although this idea may not be too controversial in the
domain of problem solving, many practical applications still assume that non-
learning reasoning systems can be built that reason in a human-like fashion. The
main applications of rule-like systems are expert systems, human-computer
interaction and education.

Application in the domain of expert systems
The assumption of expert-system design is that it is possible to specify all the
relevant task-speciÞc knowledge for a certain task. This may be true in the case of
simple tasks, but not of all tasks in general. It is impossible to make a non-learning
expert system for scheduling. For tractable problems, one might also wonder
whether the expert-knowledge approach is the best. Since it is estimated that the
number of rules an expert has on a certain domain is around 50.000, it is highly
impractical to try to specify all of them. Even if it is possible to specify all these
rules, the subsymbolic knowledge associated with these rules also has to be
deÞned. This subsymbolic information is crucial in Þnding the right information at
the right moment. Expert problem-solving behavior is probably not the invocation
of stored knowledge, but an active process of constructing new knowledge for the
current purpose. Apart from this explicit learning aspect of expert behavior, implicit
learning, by means of the ACT-R learning mechanisms, keeps organizing the
subsymbolic aspects of the knowledge.

A promising alternative method for constructing expert systems is to use the skill-
learning theory presented in this thesis. Knowledge the system has to use can be
supplied in a declarative fashion, after which the system is submitted to a training
program. As a result, the system will organize the knowledge in the most profitable
way, either as production rules, or as examples, or it will forget knowledge that does
not prove to be useful altogether. Some issues have to be resolved before this can be
a viable method: the right set of learning strategies has to be found, and a set of
generally useful declarative rules.

Application in the domain of cognitive ergonomics
The same point made about expert-system design can also be made with respect to
task analysis for the purpose of interface design. For difÞcult tasks it will be
impossible to make a complete task-analysis. Task analysis has another drawback:
since it always investigates the knowledge of an expert user, it can only make
approximate predictions about novice users. Instead of trying to identify all the
knowledge an expert user has, a model can be supplied with the instructions a

8: Concluding remarks

220

novice user gets, and be submitted to the same training program novices have to go
through. Again, the skill learning theory, when properly extended, can be very
useful for this purpose.

The theory also allows for the study of the integration of task-specific knowledge
with knowledge about other tasks (the assimilation paradox, see Mulder, Lamain &
Passchier, 1992). A general guideline in interface design is that the interface should
help the user to get an adequate mental model of the system (Norman, 1988).
Although this guideline is considered very useful, the notion of a mental model is
rather vague. Neither is it clear when a mental model is adequate enough, and to
what kinds of mistakes a certain mental model may lead. These kinds of questions
can all be studied in the proposed modeling framework of skill acquisition. The
notion of explicit learning of declarative rules is closely related to the concept of a
mental model. Both are consciously inspectable knowledge structures that can be
used in an interpretive fashion to make decisions about what actions to take. When
used within the skill-learning framework, it is possible to make predictions about
how knowledge from a mental model is proceduralized.

Application in the domain of education
The idea that cognitive development involves explicit learning strategies can also
have implications for education. The goal of education is not just to teach children
speciÞc skills, but also to teach children how to approach problems in general. This
latter goal can only be achieved indirectly, since general strategies can only develop
by learning speciÞc skills. But if we know more about this process of strategy
learning, we might be able to select a set of skills to teach that is optimal for general
strategy development. This is not only applicable to children. One of the main goals
of university education is to teach Òan academic way of thinkingÓ, although this is
not taught in any particular individual course.

8.6 A UniÞed Theory of Learning?

In this Þnal chapter I have outlined a theory of skill learning. This theory uses
existing theories of learning, glued together by elements inspired on the principle of
rational analysis. This theory is supported by several models discussed during the
course of this thesis. These ingredients may eventually be parts of a uniÞed theory
of learning, which is itself a piece of the puzzle for a uniÞed theory of cognition. In
order to specify such a uniÞed theory of learning, a simulation environment is
needed that implements it. It might take the form of an extension to ACT-R, and be
capable of learning its own task-speciÞc knowledge from instructions. This
implementation would strengthen the theory, and enable many new predictions
and applications.

221

Web documents and
Publication list

The following documents are available from the webpage
http://tcw2.ppsw.rug.nl/~niels/thesis/

The ACT-R architecture itself can be obtained from:
http://act.psy.cmu.edu/

Chapter 3

• Verbal protocols of all participants (Dutch)

• The detailed protocol analysis of participant 2 (Dutch)

Chapter 4

• Model of the dissociation experiment

• Models of rehearsal and free recall

Chapter 5

• A Macintosh Microsoft Excel 4.0 Þle with the dynamic growth model

• Model of the beam task

• Model of discrimination-shift learning

Chapter 6

• Model of the Fincham task

Web documents and publication list

222

Chapter 7

• Model that demonstrates the inßuence of W on working memory span

• Two models of scheduling

Publication list

Taatgen, N.A. (1993). Complexiteitsaspecten van leermechanismen. Proceedings of the
Benelearn-93 conference. Artificial Intelligence Laboratory, Vrije Universiteit
Brussel, Belgium.

Taatgen, N.A. (1994a). The study of learning mechanisms in unified theories of
cognition. In F.J.Maarse, A.E. Akkerman, A.N. Brand, L.J.M. Mulder, M.J. v.d.
Stelt, Computers in psychology 5, Lisse, the Netherlands: Swets & Zeitlinger.

Taatgen, N.A. (1996a). A model of free-recall using the ACT-R architecture and the
phonological loop. In H.J van den Herik & T. Weijters (Eds.), Proceedings of
Benelearn-96 (pp. 169-178). Maastricht, the Netherlands: Universiteit
Maastricht, MATRIKS.

Taatgen N.A. (1996b). Learning and revising task-specific rules in ACT-R. In U.
Schmid, J. Krems & F. Wysotzki (Eds.), Proceedings of the First European
Workshop on Cognitive Modeling (report no. 96-39, pp. 31-38). Berlin, Technische
Universitaet Berlin, Fachbereich Informatik.

Taatgen, N.A. (1997a). A rational analysis of alternating search and reflection in
problem solving. Proceedings of the 19th Annual Conference of the Cognitive
Science Society. Hillsdale, NJ: Erlbaum.

Hendriks, P., Taatgen, N.A & Andringa, T.C. (Eds.) (1997b). Breinmakers &
Breinbrekers, inleiding cognitiewetenschap. Amsterdam: Addison-Wesley
Longman.

Lebiere, Christian, Dieter Wallach & Niels Taatgen (1998). Implicit and explicit
learning in ACT-R. In Frank Ritter & Richard Young (eds.), Proceedings of the
Second European Conference on Cognitive Modelling. Nottingham, UK:
Nottingham University Press.

Taatgen, N.A. (1999). Explicit Learning in ACT-R. In U. Schmid, J.F. Krems, F.
Wysotki (Eds.), Mind Modelling: A Cognitive Science Approach to Reasoning,
Learning and Discovery. Berlin: Pabst Science Publishers.

Taatgen, N.A. (1999). Review of 'The atomic components of thought'. Trends in
Cognitive Sciences, 2, 82-82.

Taatgen, N.A. (submitted). A model of learning task-specific knowledge for a new
task. Submitted to the cognitive science conference.

Taatgen, N.A. (submitted). Implicit versus explicit: an ACT-R learning perspective;
Commentary on Dienes & Perner: A theory of implicit and explicit
knowledge. Submitted to Behavioral and Brain Sciences.

Taatgen, N.A. (submitted). Cognitief Modelleren: Een nieuwe kijk op individuele
verschillen. Submitted to Nederlands Tijdschrift voor de Psychologie.

Taatgen, N.A. & Wallach, D. P. Wallach (in preparation). Model of rule and instance-
based skill acquisition in complex task domains.

223

References

Aky�rek, A. (1992). On a computational model of planning. In J. A. Michon & A.
Aky�rek (Eds.), Soar: A cognitive architecture in perspective (pp. 81-108).
Dordrecht, The Netherlands: Kluwer.

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Erlbaum.
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-406.
Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard

university press.
Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence

Erlbaum.
Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum.
Anderson, J. R. (1995). Learning and memory. New York: Wiley.
Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. (1998). List memory. In J. R.

Anderson & C. Lebiere (Eds.), The atomic components of thought (pp. 201-254).
Mahwah, NJ: Erlbaum.

Anderson, J. R. & Fincham, J. M. (1994). Acquisition of procedural skills from
examples. Journal of experimental psychology: learning, memory, and cognition,
20(6), 1322-1340.

Anderson, J. R., Fincham, J. M., & Douglass, S. (1997). The role of examples and rules
in the acquisition of a cognitive skill. Journal of experimental psychology: learning,
memory, and cognition, 23(4), 932-945.

Anderson, J. R., Fincham, J. M., & Douglass, S. (submitted). Practice and Retention:
A Unifying Analysis.

Anderson, J. R., Kushmerick, N., & Lebiere, C. (1993). Navigation and conflict
resolution. In J. R. Anderson (Eds.), Rules of the Mind (pp. 93-116). Hillsdale,
NJ: Erlbaum.

References

224

Anderson, J. R. & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:
Erlbaum.

Ashcraft, M. H. (1987). Children's knowledge of simple arithmetic: a developmental
model and simulation. In J. Bisanz, C. J. Brainerd, & R. Kail (Eds.), Formal
methods in developmental pyschology New York: Springer verlag.

Atkinson, R. C. & Shiffrin, R. M. (1968). Human memory: A proposed system and its
control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of
learning and motivation New York: Academic Press.

Baddeley, A. D. (1986). Working Memory. Oxford: Oxford university press.
Barton, G. E., Berwick, R. C., & Ristad, E. S. (1987). Computational complexity and

natural language. Cambridge, MA: MIT Press.
Berger, J. O. (1985). Statistical decision theory and Bayesian statistics. New York:

Springer-Verlag.
Berry, D. C. (1997). Introduction. In D. C. Berry (Eds.), How implicit is implicit

learning? Oxford: Oxford university press.
Berry, D. C. & Broadbent, D. A. (1984). On the relationship between task

performance and associated verbalisable knowledge. Quarterly journal of
experimental psychology, 36, 209-231.

Berry, D. C. & Broadbent, D. E. (1995). Implicit learning in the control of complex
systems. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The
European perspective (pp. 131-150). Hillsdale, NJ: Erlbaum.

Binet, A. (1962). The nature and measurement of intelligence. In L. Postman (Eds.),
Psychology in the making: histories of selected research programs New York: Knopf.

Blessing, S. B. & Anderson, J. R. (1996). How people learn to skip steps. Journal of
experimental psychology: learning, memory, and cognition, 22(3), 576-598.

Broadbent, D. (1989). Lasting representations and temporary processes. In H. L.
Roediger & F. I. M. Craik (Eds.) Varieties of memory and consciousness: Essays in
honour of Endel Tulving (pp. 211-227). Hillsdale, NJ: Erlbaum.

Bryk, A. S. & Raudenbush, S. W. (1992). Hierarchical linear models: applications and data
analysis methods. Newbury Park, CA: Sage publishers.

Buchner, A. (1994). Indirect effects of synthetic grammar learning in an identification
task. Journal of experimental psychology: learning, memory, and cognition, 20(3),
550-566.

Buchner, A., Funke, J., & Berry, D. C. (1995). Negative correlations between control
performance and verbalizable knowledge: Indicators for implicit learning in
process control tasks? Quarterly journal of experimental psychology: Human
experimental psychology, 48(1), 166-187.

Byrne, R. (1977). Planning meals: Problem-solving on a real data-base. Cognition, 5,
287-332.

Carbonell, J. G. (1990). Introduction: paradigms for machine learning. In J. G.
Carbonell (Eds.), Machine learning, paradigms and methods (pp. 1-9). Cambridge,
MA: MIT Press.

Carpenter, G. A. & Grossberg, S. (1991). Pattern recognition by self-organizing neural
networks. Cambridge, MA: MIT Press.

References

225

Chomsky, N. & Miller, G. (1963). Introduction to the formal analysis of natural
languages. In R. Luce, R. Bush, & E. Galanter (Eds.), Handbook of mathematical
psychology Wiley.

Cleeremans, A. (1997). Principles for implicit learning. In D. C. Berry (Eds.), How
implicit is implicit learning? (pp. 195-234). Oxford, England: Oxford university
press.

Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: news from
the front. Trends in cognitive sciences, 2(10), 406-416.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In 3rd Ann. ACM
Symp. on Theory of Computing (pp. 151-158). New York: Association for
Computing Machinery.

Craik, F. I. M. (1970). The fate of primary memory items in free recall. Journal of verbal
learning and verbal behavior, 9, 143-148.

Craik, F. I. M. & Lockhart, R. S. (1972). Levels of processing: a framework for memory
research. Journal of verbal learning and verbal behavior, 11, 671-684.

Cuvo, A. J. (1975). Developmental differences in rehearsal and free recall. Journal of
experimental child psychology, 19(2), 265-278.

Davidson, J. E. (1995). The suddenness of insight. In R. J. Sternberg & J. E. Davidson
(Eds.), The nature of insight (pp. 125-155). Cambridge, MA: MIT Press.

Dienes, Z. & Fahey, R. (1995). Role of specific instances in controlling a dynamic
system. Journal of experimental psychology: learning, memory, and cognition, 21(4),
848-862.

Elman, J. (1993). Learning and development in neural networks: the importance of
starting small. Cognition, 48, 71-99.

Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett,
K. (1996). Rethinking innateness. A connectionist perspective on development.
Cambridge, MA: MIT Press.

Ericsson, K. A. & Simon, H. A. (1984). Protocol analysis. Verbal reports as data.
Cambridge, MA: The MIT Press.

Fischer, K. W. (1980). A theory of cognitive development: the control and
construction of hierarchies of skills. Psychological Review, 87(6), 477-531.

Fischer, K. W. & Ayoub, C. (1994). Affective splitting and dissociation in normal and
maltreated children: developmental pathways for self in relationships. In D.
Cicchetti & S. L. Toth (Eds.), Disorders and dysfunctions of the self (pp. 149-222).
Rochester, NY: University of Rochester Press.

Fischler, I., Rundus, D., & Atkinson, R. C. (1970). Effects of overt rehearsal
procedures on free recall. Psychonomic Science, 19(4), 249-250.

Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton (Eds.), Categories
of human learning New York: Academic Press.

Garey, M. R. & Johnson, D. S. (1979). Computers and intractibility, a guide to the theory
if NP-completeness. San Fransisco, CA: Freeman.

Hagen, J. W. & Kail, R. V. (1973). Facilitation and distraction in short-term memory.
Child development, 44, 831-836.

Hahn, U. & Chater, N. (1998). Similarity in rules: distinct? exhaustive? empirically
distinguishable? Cognition, 65, 197-230.

References

226

Harrow, M. & Friedman, G. B. (1958). Comparing reversal and nonreversal shifts in
concept formation with partial reinforcement control. Journal of experimental
psychology, 55, 592-598.

Hayes-Roth, B. & Hayes-Roth, F. (1979). A cognitive model of planning. Cognitive
Science, 3, 275-310.

Heindel, W. C., Butters, N., & Salmon, D. P. (1988). Impaired learning of a motor skill
in patients with Huntington's disease. Behavioural Neuroscience, 102, 141-147.

Hofstadter, D. R. (1979). G�del, Escher, Bach: An eternal golden braid. New York: Basic
Books.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI:
University of Michigan Press.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction:
Processes of inference, learning, and discovery. Menlo Park, CA: Addison-Wesley.

Johnson, T. R. (1997). Control in ACT-R and Soar. In M. G. Shafto & P. Langley (Ed.),
Nineteenth annual conference of the cognitive science society (pp. 343-348).
Stanford: Erlbaum.

Jongman, L. (1997). Zoeken in informatiesystemen. University of Groningen, the
Netherlands.

Just, M. A. & Carpenter, P. A. (1992). A capacity theory of comprehension: individual
differences in working memory. Psychological Review, 1, 122-149.

Karmiloff-Smith, A. (1992). Beyond modularity. A developmental perspective on cognitive
science. Cambridge, MA: MIT-Press.

Kelleher, R. T. (1956). Discrimination learning as a function of reversal and
nonreversal shifts. Journal of experimental psychology, 51(6), 379-384.

Kendler, T. S. & Kendler, H. H. (1959). Reversal and nonreversal shifts in
kindergarten children. Journal of experimental psychology, 58, 56-60.

Kitchener, K. S., Lynch, C. L., Fischer, K. W., & Wood, P. K. (1993). Developmental
range of reflective judgment: the effect of contextual support and practice on
developmental stage. Developmental psychology, 29(3), 893-906.

Knoblich, G. & Ohlsson, S. (1996). Can ACT-R have insights? In U. Schmid, J. Krems,
& F. Wysotzki (Ed.), First European Workshop on Cognitive Modeling (pp. 161-
169). Berlin: TU Berlin, fachbereich informatik.

Kuipers, T. A. F. & Mackor, A. R. (1995). Cognitive patterns in science and common sense.
Amsterdam: Rodopi.

Kyllonen, P. C. & Christal, R. E. (1990). Reasoning ability is (little more than)
working-memory capacity. Intelligence, 14(4), 389-433.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general
intelligence. Artificial Intelligence, 33, 1-64.

Lakatos, I. (1970). Falsification and the methodology of scientific research
programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of
knowledge (pp. 91-196). Cambridge, England: Cambridge university press.

Lebiere, C. & Anderson, J. R. (1993). A connectionist implementation of the ACT-R
production system. In Fifteenth Annual Conference of the Cognitive Science Society
(pp. 635-640). Erlbaum.

References

227

Lehman, J. F., Lewis, R., Newell, A., & Pelton, G. (1991). NL-Soar as a cognitive
model. In EuroSoar Workshop-4 . Enschede, the Netherlands:

Logan, G. D. (1988). Toward an instance theory of automization. Psychological Review,
22, 1-35.

Logan, G. D. (1990). Repetition priming and automaticity: Common underlying
mechanisms? Cognitive Psychology, 22(1), 1-35.

Lovett, M. C., Reder, L. M., & Lebiere, C. (1997). Modeling individual differences in
a digit working memory task. In M. G. Shafto & P. Langley (Eds.), Proceedings
of the Nineteenth Annual Conference of the Cognitive Science Society (pp. 460-465).
Hillsdale, NJ: Erlbaum.

Mayer, R. E. (1983). Thinking, problem solving, cognition. New York: Freeman.
McGeorge, P., Crawford, J. R., & Kelly, S. W. (1997). The relationships between

psychometric intelligence and learning in an explicit and an implicit task.
Journal of experimental psychology: learning, memory, and cognition, 23(1), 239-
245.

Meyer, D. E. & Kieras, D. E. (1997). A computational theory of executive cognitive
processes and multiple-task performance: I. Basic mechanisms. Psychological
Review, 104(1), 3-65.

Michon, J. A. & Aky�rek, A. (Ed.). (1992). Soar: A cognitive architecture in pespective.
Dordrecht, the Netherlands: Kluwer.

Morris, P. & Gruneberg, M. (1994). Theoretical aspects of memory (2 ed.). London:
Routledge.

Mulder, G., Lamain, W., & Passchier, P. (1992). De cognitieve interface. In R.J. Jorna
& J.L. Simons (Eds.), Kennis in organizaties: toepassingen en theorie van
kennissystemen. Muiderberg, the Netherlands: Coutinho.

Murdock, B. B. (1962). The serial position effect of free recall. Journal of experimental
psychology, 64(5), 482-488.

Newell, A. (1973). You can't play 20 questions with nature and win. In W. G. Chase
(Eds.), Visual information processing New York: Academic Press.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard university
press.

Newell, A., Rosenbloom, P. S., & Laird, J. E. (1989). Symbolic architectures for
cognition. In M. I. Posner (Eds.), Foundations of cognitive science (pp. 93-131).
Cambridge, MA: MIT Press.

Newell, A. & Simon, H. (1963). GPS, a program that simulates human thought. In E.
A. Feigenbaum & J. Feldman (Eds.), Computers and Thought New York:
McGraw-Hill.

Newell, A. & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:
Prentice-Hall.

Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.
Norman, D. A. (1993). Things that make us smart. Reading, MA: Addison-Wesley.
Numan, H., Pakes, F., Schuurman, J. G., & Taatgen, N. A. (1990). Strategies of human

planning: modelling the organisation of a symposium. University of Groningen,
the Netherlands.

References

228

Ohlsson, S. (1984). Restructuring revisited II. An information processing theory of
restructuring and insight. Scandinavian journal of psychology, 25, 117-129.

Perruchet, P. & Amorim, M. A. (1992). Conscious knowledge and changes in
performance in sequence learning: Evidence against dissociation. Journal of
experimental psychology: learning, memory, and cognition, 18(4), 785-800.

Perruchet, P. & Pacteau, C. (1990). Synthetic grammar learning: Implicit rule
abstraction or explicit fragmentary knowledge? Journal of experimental
psychology: General, 119(3), 264-275.

Piaget, J. (1952). The origins of intelligence in children. New York: International
University Press.

Pinker, S. & Prince, A. (1988). On language and connectionism: Analysis of a
distributed processing model of language acquisition. Cognition, 28, 73-193.

Plunkett, K. & Marchman, V. (1991). U-shaped learning and frequency effects in a
multi-layered perceptron: Implications for child language acquisition.
Cognition, 38, 43-102.

Popper, K. R. (1959). The logic of scientific discovery. New York: Basic Books.
Postman, L. & Phillips, L. W. (1965). Short-term temporal changes in free recall.

Quarterly journal of experimental psychology, 17, 132-138.
Raijmakers, M. E. J., Maas, H. v. d., & Molenaar, P. C. M. (1996). On the validity of

simulating stagewise development by means of PDP-networks: application of
catastrophe analysis and an experimental test for rule-like network
performance. Cognitive Science, 20, 101-136.

Rasbash, J. & Woodhouse, G. (1995). MLn: Command reference. London: Institute of
Education, University of London.

Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of verbal learning
and verbal behavior, 5, 855-863.

Redington, M. & Chater, N. (1996). Transfer in artificial grammar learning: a
reevaluation. Journal of experimental psychology: general, 125(2), 123-138.

Roediger, H. K. (1990). Implicit memory: retention without remembering. American
psychologist, 45, 1043-1056.

Rumelhart, D. E. & McClelland, J. L. (1986). Parallel distributed processing: Explorations
in the microstructure of cognition. Cambridge, MA: MIT Press.

Rundus, D. (1971). Analysis of rehearsal processes in free recall. Journal of
experimental psychology, 89(1), 63-77.

Saint-Cyr, J. A., Taylor, A. E., & Lang, A. E. (1988). Procedural learning and
neostriatal dysfunction in man. Brain, 111, 941-959.

Sander, E. & Richard, J. F. (1997). Analogical transfer as guided by an abstraction
process: The case of learning by doing in text editing. Journal of experimental
psychology: learning, memory, and cognition, 23(6), 1459-1483.

Schacter, D. L. (1987). Implicit memory: history and current status. Journal of
experimental psychology: learning, memory, and cognition, 13(3), 501-518.

Schank, R. C. & Abelson, R. (1977). Scripts, plans, goals, and understanding. Hillsdale,
NJ: Erlbaum.

Shanks, D. R. & John, M. F. S. (1994). Characteristics of dissociable learning systems.
Behavioral and Brain Sciences, 17, 367-395.

References

229

Shastri, L. & Ajjanagadde, V. (1993). From simple associations to systematic
reasoning: A connectionist representation of rules, variables and dynamic
bindings using temporal synchrony. Behavioral and Brain Sciences, 16(3), 417-
494.

Siegler, R. S. (1981). Developmental sequences within and between concepts.
Monographs of the Society for Research in Child Development, 46 (2).

Siegler, R. S. (1996). Emerging minds. The process of change in children's thinking. New
York: Oxford university press.

Squire, L. R. & Knowlton, B. J. (1995). Memory, hippocampus, and brain systems. In
M. S. Gazzaniga (Eds.), The cognitive neurosciences (pp. 825-838). Cambridge,
MA: MIT press.

Sternberg, S. (1969). Memory scanning: Mental processes revealed by reaction time
experiments. American Scientist, 57, 421-457.

Svenson, O. & Sjoberg, K. (1983). Evolution of cognitive processes for solving simple
additions during the first three school years. Scandinavian journal of psychology,
24, 117-124.

Taatgen, N. A. & Andringa, T. C. (1997). De computer. In P. Hendriks, N. A. Taatgen,
& T. C. Anderinga (Eds.), Breinmakers & Breinbrekers (pp. 65-91). Amsterdam:
Addison-Wesley Longman.

Tulving, E., Schacter, D. L., & Stark, H. A. (1982). Priming effects in word-fragment
completion are independent of recognition memory. Journal of experimental
psychology: learning, memory, and cognition, 8(4), 336-342.

Turing, A. M. (1936). On computabel numbers, with an application to the
Entscheidungsproblem. Proc. Lond. Math. Soc. (ser. 2)(42), 230-265.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433-460.
van den Berg, A. E. (1990). Aspects of case-based reasoning in planning meals. University

of Groningen, the Netherlands.
van Geert, P. (1994). Dynamic systems of development: Change between complexity and

chaos. London: Harvester Wheatsheaf.
van Geert, P. (1998). A dynamic systems model of basic developmental mechanisms:

Piaget, Vygotsky, and beyond. Pychological Review, 105, 634-677.
van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994). The think aloud

method. London: Academic Press.
Warrington, E. K. & Weiskrantz, L. (1970). Amnesia: consolidation or retrieval?

Nature, 228, 628-630.
Willingham, D. B., Nisen, M. J., & Bullemer, P. (1989). On the development of

procedural knowledge. Journal of experimental psychology: learning, memory, and
cognition, 15, 1047-1060.

Yuill, N., Oakhill, J., & Parkin, A. (1989). Working memory, comprehension ability
and the resolution of text anomaly. British journal of psychology, 80, 351-361.

References

230

231

Samenvatting

Hoe denken mensen?
Een van de nog grotendeels onbeantwoorde vragen
in de wetenschap is hoe het komt dat mensen zo slim
zijn als ze zijn. Hoe is het mogelijk dat mensen zich
kunnen handhaven in alle ingewikkelde situaties die
het dagelijks leven aan ze voorschotelt? Tegenwoor-
dig wordt deze vraag bestudeerd door de cognitiewe-
tenschap, een inter-disciplinaire wetenschap die
voortgekomen is uit psychologie, ÞlosoÞe, kunstma-
tige intelligentie, neurowetenschap en taalkunde. Elk
van deze disciplines heeft een eigen beginpunt voor
de beantwoording van deze vraag. In dit proefschrift

staan de benaderingen van de psychologie en de kunstmatige intelligentie centraal,
met hier en daar wat verwijzingen naar de andere drie.

De invalshoek van de kunstmatige intelligentie is die van het oplossen van complexe
problemen. Aanname is, dat menselijke intelligentie hierin maximaal tot uitdruk-
king komt. De nadruk van het onderzoek naar de aard van de intelligente processen
ligt hierbij vooral op het resultaat: het vinden van een computerprogramma dat een
bepaald probleem zo efficient mogelijk kan oplossen. De kunstmatige intelligentie
ziet denken als een combinatie van zoeken en kennis. Een probleem is als het ware een
soort doolhof. Ergens in het doolhof ligt de oplossing van het probleem. Om deze
oplossing te bereiken, moet telkens gekozen worden tussen verschillende paden. Dit
is het zoek-aspect van probleemoplossen. De kennis die iemand over een probleem
heeft bepaalt hoe het doolhof er precies uitziet. Iemand met weinig kennis moet door

Samenvatting

232

een ingewikkeld doolhof, terwijl iemand met veel kennis slechts een eenvoudig
doolhof hoeft te bewandelen. Dit komt doordat voor degene met veel kennis veel
van de doodlopende wegen niet bestaan.

Als theorie van menselijke cognitie heeft de zoeken-en-kennis benadering een pro-
bleem. Aangezien mensen leren, is hun kennis niet statisch, maar continu aan veran-
dering onderhevig. Het doolhof verandert als het ware terwijl iemand er door heen
loopt. Op zich hoeft dit niet zo erg te zijn: de wetenschap kan niet alles tegelijk
onderzoeken. Een mogelijkheid is, om eerst het zoeken-en-kennis aspect goed in
kaart te brengen, en later het aspect van leren toe te voegen. Een voorbeeld van een
dergelijke benadering is de benadering van de expert-systemen. Expert-systemen
hebben de pretentie het redeneren van een expert na te bootsen. Aangezien experts
mensen zijn met al heel veel kennis, is de aanname dat leren geen invloed meer heeft
op het redeneren van een expert. Het tot nu toe geringe succes van expert-systemen
doet de vraag rijzen of deze aanpak wel klopt. Is het wel zo dat experts niet meer
leren, en dat menselijk redeneren los van leren bestudeerd kan worden? Het ant-
woord op deze vraag is ontkennend. Voor complexe problemen geldt, dat ze in het
algemeen niet efficient oplosbaar zijn met een computerprogramma, hetgeen met
behulp van de complexiteitstheorie kan worden aangetoond. Complexe problemen
maken deel uit van het dagelijks leven: niet alleen het maken van ingewikkelde roos-
ters is een complex probleem, maar ook het kunnen interpreteren van alledaagse
taal. De conclusie is, dat redeneren en leren onlosmakelijk met elkaar verbonden
zijn, en dat ze niet goed los te bestuderen zijn.

In de psychologie is het onderzoek naar leren lange tijd gedomineerd door experi-
menten, waarbij proefpersonen een lijst woorden of andere dingen moesten ont-
houden, die ze later in het experiment weer moesten reproduceren of herkennen.
Hoewel dit belangrijke inzichten verschafte in de werking van het geheugen, pre-
senteerde deze manier van onderzoek ook het beeld van een leerproces dat los staat
van het redeneren. Pas de afgelopen vijftien jaar is er belangstelling onstaan voor
leren tijdens het uitvoeren van een taak, het zogenaamde impliciete leren. In de expe-
rimenten die in het kader van dit soort onderzoek worden uitgevoerd verbetert de
prestatie van proefpersonen zonder dat ze kunnen aangeven welke kennis ze heb-
ben geleerd. Leren blijkt ook vanuit psychologisch oogpunt een continu proces te
zijn, dat niet ophoudt als de leerfase voorbij is.

Samenvatting

233

Een theorie over menselijk redeneren
Om tot een theorie over menselijk redeneren te kun-
nen komen, is meer nodig dan de zoeken-en-kennis
theorie van de kunstmatige intelligentie. De ontbre-
kende component, het leren, moet ge�ntegreerd zijn
in de theorie, en niet als component later toegevoegd
zijn. Het onderzoek naar architecturen voor cognitie
probeert zoÕn ge�ntegreerde theorie te formuleren.
Een architectuur voor cognitie is een theorie die tege-
lijk ook een simulatieprogramma is.

In dit proefschrift staat de ACT-R (Adaptive Control
of Thought, Rational) architectuur centraal. Als theorie stelt het, dat menselijk den-
ken een rationele grond heeft. Rationeel in de ACT-R visie is een soort economische
rationaliteit: de hersenen zijn zo georganiseerd dat bij het maken van elke keuze een
kosten-baten analyse gemaakt wordt. Welke keuze levert het meeste op bij zo min
mogelijk risico en zo laag mogelijke kosten? Verder stelt de ACT-R theorie dat men-
sen over twee soorten geheugen beschikken: een geheugen voor feitenkennis (het
z.g. declaratief geheugen) en een geheugen voor procedures (het z.g. procedureel
geheugen), met kennis over hoe dingen gedaan moeten worden. De inhoud van deze
geheugens is continu aan verandering onderhevig: niet alleen worden er dingen toe-
gevoegd, maar ook wordt de waardering en ordening van de kennis telkens veran-
derd onder invloed van ervaring en context.

Behalve een theorie is ACT-R ook een simulatieprogramma. Voor een gegeven psy-
chologische taak is het mogelijk beginkennis in de simulatie te brengen, en het pro-
gramma voorspellingen te laten maken over menselijk gedrag. In die zin is het dus
een theorie die niet alleen achteraf verklaringen kan geven voor bepaalde verschijn-
selen, maar ook voorspellingen kan doen. Wat we dus eigenlijk doen is aspecten van
menselijk denken nabootsen op een computer, om ze zo beter te begrijpen. Hierbij
moet niet meteen gedacht worden aan een Òdenkende computerÓ maar meer aan een
programma dat voorspellingen kan doen over hoe snel mensen dingen kunnen
doen, wat voor soort fouten ze maken, en welke keuzes in welke omstandigheden
worden gemaakt. Voor een echt denkende computer zou het nodig zijn om alle ken-
nis van een bepaald individu in ACT-R te brengen, niet alleen feitenkennis, maar ook
kennis over hoe je dingen moet doen (procedures).

In praktijk maken we zogenaamde modellen in ACT-R, hetgeen simulaties zijn van
hoe mensen zich gedragen in een specifieke context, namelijk de context van een
bepaald psychologisch experiment. Dit proefschrift bevat een groot aantal voorbeel-
den van dergelijke modellen. Een voorbeeld van zoÕn taak is Òfree-recallÓ, waarbij
proefpersonen een lijstje woorden moeten leren, waarvan ze er later zo veel mogelijk
moeten herinneren. Het model van free-recall bevat kennis over het lezen van woor-
den, het mentaal repeteren van deze woorden, en het reproduceren ervan. Ook bevat

Samenvatting

234

het uiteraard de woorden zelf. Dit model kan een aantal zaken verklaren die in expe-
rimenten gevonden zijn. Zo is bekend uit de literatuur dat de eerste woorden uit de
lijst en de laatste woorden uit de lijst beter herinnerd worden dan de woorden uit het
midden van de lijst. Dit worden het primacy-effect en het recency-effect genoemd.
Beide effecten zijn normaal aanwezig, maar kunnen in bepaalde varianten van het
experiment verdwijnen. Zo verdwijnt het primacy-effect als proefpersonen een
bepaalde instructie krijgen over hoe ze woorden moeten repeteren. Het recency-
effect verdwijnt als er tijd zit tussen het leren van de lijst en het reproduceren. Als
deze tijd lang is, kan het recency effect zelfs negatief worden, wat betekent dat de
laatste woorden uit de lijst zelfs slechter herinnerd worden. Het ACT-R model kan
al deze verschijnselen nabootsen en verklaren.

Bovenstaand voorbeeld illustreert een aantal belangrijke aspecten van een model.
Het feit dat het model een lijstje woorden kan reproduceren is op zich niet zo inte-
ressant. Waar het om gaat is dat de specifieke effecten die gevonden worden in het
experiment, primacy en recency, voorspeld kunnen worden, en dat ook de omstan-
digheden kunnen worden nagebootst waarin beide effecten niet optreden.

Maar hoe zit het dan met echt complexe problemen?
Bij het voorbeeld van free-recall mogen we aanne-
men dat mensen over de kennis beschikken die ze
nodig hebben om het experiment te doen, zoals
woorden lezen, ze mentaal repeteren en later repro-
duceren. Bij echt complexe problemen moeten men-
sen echter nog uitzoeken hoe deze in elkaar zitten, en
wat de methoden zijn om ze op te lossen. Een voor-
beeld van zoÕn complex probleem is roosteren. Roos-
teren is een probleem dat volgens de
complexiteitstheorie in zijn algemeenheid onoplos-
baar is voor computers. Als mensen roosterproble-
men moeten oplossen, dan moeten ze dit eerst leren.

Om beter inzicht in dit proces te krijgen, heb ik een experiment gedaan waarin
proefpersonen roosterproblemen moesten oplossen. Tijdens het oplossen moesten
ze hardop denken. Bij het begin van het experiment krijgen ze instructies, maar
deze zijn onvoldoende om het probleem op te lossen. Dus moeten proefpersonen
een beroep doen op kennis die ze al hebben, en moeten ze door dingen te proberen
het probleem in de vingers krijgen.

Uit het experiment bleek, dat proefpersonen soms heel erg vast kwamen te zitten in
een probleem. Dit wordt wel een impasse genoemd. In een aantal gevallen kwamen
proefpersonen vervolgens met een nieuwe idee, een nieuw inzicht om het probleem
op te lossen. Ook bleek dat als proefpersonen zich eenmaal zoÕn inzicht hadden ver-
worven, ze dit bij latere problemen ook gingen toepassen. Behalve dit verwerven
van inzichten zijn er nog een aantal interessante verschijnselen uit het experiment te

Samenvatting

235

halen. Zo moest in ��n versie van het experiment alles uit het hoofd gedaan worden,
met als gevolg dat proefpersonen hun aandacht moesten verdelen over enerzijds het
repeteren van de al gevonden oplossing, en anderzijds het redeneren hierover.

Al met al wijst het roosterexperiment erop dat er een breed scala van leerverschijn-
selen plaatsvindt bij het verwerven van een complexe vaardigheid. Proefpersonen
interpreteren instructies en stippelen op grond hiervan een strategie uit, tijdens het
experiment ontdekken ze nieuwe strategie�n, en ook worden ze beter in de meer ele-
mentaire stappen van het proces, zoals de co�rdinatie van het repeteren van deelop-
lossingen. De conclusie moet dus zijn, dat prestatieverbeteringen niet aan ��n
leereffect toe te schrijven zijn, maar aan een aantal. Om beter inzicht te krijgen in de
leereffecten die een rol spelen, is het nuttig om deze effecten afzonderlijk te bestude-
ren.

Impliciet en expliciet leren
In de psychologische literatuur wordt vaak het
onderscheid gemaakt tussen impliciet en expliciet
leren. Impliciet leren is het Òleren door te doenÓ. Zon-
der actief bezig zijn met het leerproces, en vaak ook
onbewust, worden mensen beter in het uitvoeren van
een taak. Bij expliciet leren daarentegen zijn mensen
actief bezig met iets te leren, zoals het leren van een
lijst woorden, of het uitdenken van een strategie voor
een moeilijk probleem. Psychologische experimenten
hebben uitgewezen dat er interessante verschillen
zijn tussen beide soorten leren. Zo is impliciet leren
veel robuuster dan expliciet leren: de geleerde kennis

wordt minder snel vergeten, zowel kinderen, ouderen, en minder intelligente indi-
viduen zijn even goed in impliciet leren als ieder ander. Zelfs mensen die leiden aan
geheugenverlies (amnesie) kunnen nog wel impliciet leren. Bij expliciet leren zijn er
wel grote verschillen tussen individuen, en de geleerde kennis wordt soms weer
snel vergeten. Op grond van deze verschillen wordt door een aantal onderzoekers
aangenomen dat impliciet en expliciet leren daarom plaatsvindt in verschillende
hersendelen. Dit wordt de systems-theorie genoemd.

Hoewel deze systems-theorie vrij aannemelijk klinkt, kent hij toch een aantal proble-
men. Zo kan deze theorie niet goed verklaren waarom impliciet leren zoveel robuus-
ter is dan expliciet leren, dus waarom het eigenlijk bijna nooit voorkomt dat mensen
nog wel expliciet kunnen leren, maar niet impliciet. Ook kan de theorie niet verkla-
ren, waarom er zoveel individuele verschillen zijn in expliciet leren, maar niet in
impliciet leren. In dit proefschrift behandel ik een alternatieve theorie. Eerst laat ik
door middel van een model zien, dat het verschil tussen impliciet en expliciet leren
ook prima met behulp van ��n geheugensysteem verklaard kan wordt, namelijk het
declaratief geheugen van ACT-R. Het verschil tussen impliciet en expliciet leren in

Samenvatting

236

dit model is, dat impliciet leren verklaard kan worden vanuit de leermechanismen
die in de ACT-R architectuur verankerd zijn. Je zou ze dus kunnen vergelijken met
de leerprocessen die deel uitmaken van onze hersenen. Expliciet leren kent echter
specifieke leerdoelen. Een eenvoudig voorbeeld van een leerdoel is het onthouden
van een lijstje woorden door ze te repeteren. Door dit repeteren zet je als het ware de
impliciete leermechanismen van de hersenen aan het werk, net als wanneer je door
te trainen je spieren sterker maakt. Leerdoelen kunnen ook complexer zijn, zoals het
bedenken van een nieuwe strategie voor een complex probleem. Al deze leerdoelen
hebben als gemeenschappelijk kenmerk, dat je kennis nodig hebt om ze te kunnen
vervullen. Het blijkt bijvoorbeeld, dat kinderen niet of anders lijsten repeteren dan
volwassenen. Aangezien expliciet leren gebaseerd is op kennis, zijn er daarom ook
veel grotere verschillen tussen individuen. Ook is het daarom minder robuust: als de
kennis om leerdoelen uit te voeren vergeten wordt, of door hersenbeschadiging ver-
loren is gegaan, werkt het expliciet leren niet meer, terwijl de basiseigenschappen
van de hersenen die ten grondslag liggen aan impliciet leren niet zomaar verande-
ren.

Hoe werken dan die leerstrategie�n, en hoe komen we eraan?
Aangezien impliciet leren al onderdeel is van de
architectuur, is het met name interessant om te kijken
naar het expliciete leren, waarvoor kennis nodig is.
Hoe ziet zoÕn leerstrategie er in praktijk uit? En wan-
neer is het nuttig om zoÕn strategie toe te gaan pas-
sen? En hoe leren we de leerstrategie�n zelf? Om een
beter inzicht in deze materie te krijgen is het nuttig
om naar de cognitieve ontwikkeling van kinderen te
kijken. Immers, als expliciet leren bestaat uit aange-
leerde kennis, hebben jonge kinderen minder van
deze kennis dan oudere kinderen en volwassenen.
Een aantal theorie�n over ontwikkeling lijken deze

visie te ondersteunen. Jonge kinderen hebben grote moeite om om te gaan met
abstracte begrippen. Volgens de theorie van Fischer, bijvoorbeeld, gaan kinderen
door een aantal stadia waarin ze over steeds complexere structuren en concepten
kunnen redeneren. Een voorbeeld hiervan is dat jonge kinderen nog niet kunnen
redeneren over een concept als ÒroodÓ. Ze kunnen wel zien dat een bepaald object
rood is, maar ze kunnen nog niet over ÒroodÓ als abstract begrip, dus los van een
object, redeneren. Gevolg hiervan is, dat ze zich anders gedragen dan volwassen in
een experiment waarbij zowel abstraheren als niet-abstraheren tot een oplossing
leidt (het z.g. discrimination-shift experiment). In ACT-R is dit goed te modelleren
door twee leerstrategie�n te deÞni�ren. Met beide leerstrategie�n gedraagt het
model zich als een volwassene, terwijl het zich met een van beide leerstrategie�n als
een kind gedraagt.

Samenvatting

237

Wanneer gebruiken we een leerstrategie eigenlijk? Uiteraard zijn we niet de hele dag
bezig met het stellen van leerdoelen. Deze moeten alleen gesteld worden op momen-
ten dat dat nodig is. Een mogelijke theorie hierover is die van meta-cognitie. Deze
theorie veronderstelt dat we een ÒgewoonÓ redeneersysteem hebben en een systeem
dat over het gewone redeneersysteem waakt, het meta-systeem. Het meta-systeem
houdt het gewone systeem in de gaten en grijpt in wanneer dat nodig is. Het meta-
systeem kan dus bijvoorbeeld een leerdoel stellen op het moment dat het gewone
redeneersysteem vast loopt.

De meta-cognitietheorie heeft echter een aantal problemen. Het toevoegen van een
extra systeem aan een theorie is wetenschappelijk gezien nooit zoÕn aantrekkelijke
optie, omdat het de theorie zwakker maakt. Maar ook is het de vraag waardoor het
meta-systeem dan gecontroleerd wordt. Een meta-meta-systeem? Gelukkig is een
meta-systeem niet echt nodig, hetgeen te zien is aan de hand van een zogenaamd
dynamisch-groeimodel dat gebaseerd is op de kosten-baten analyse uit ACT-R. Het
centrale idee in dit model is dat er een competitie plaatsvindt tussen het denkproces
dat gewoon de taak wil uitvoeren en het denkproces dat een leerdoel wil stellen.
Beide processen hebben kosten en opbrengsten: taakuitvoeringsprocessen hebben
meestal lage kosten en leiden meestal tot de oplossing van een probleem. Leerdoelen
kosten meestal meer tijd op uit te voeren, en leiden slechts indirect tot een oplossing
van een probleem. Normaal gesproken is het uitvoeren van de taak aantrekkelijker.
Als dit proces echter regelmatig fout loopt, doordat de kennis niet klopt of het proces
te omslachtig is, zal de kosten-baten analyse van de taakuitvoeringsprocessen niet
meer zo gunstig uitvallen, en zullen de leerstrategie�n de competitie winnen.

De vraag die blijft liggen is hoe leerstrategie�n zelf geleerd worden. Leerstrategie�n
zelf zijn ook vaardigheden. Een mogelijkheid is dat leerstrategie�n net zo geleerd
worden als andere vaardigheden, maar dan op een langere tijdschaal. In dit proef-
schrift zal ik hiervan echter geen concrete voorbeelden behandelen.

De rol van het formuleren van regels en het onthouden van voorbeelden
Wat is precies nieuwe kennis voor een nieuw pro-
bleem? Het gebruikelijke idee is, dat mensen alge-
meen geldige regels proberen af te leiden. Een
algemene regel zou bijvoorbeeld kunnen zijn: Òals je
een voorwerp in de lucht houdt en het loslaat, dan
valt het op de grondÓ. Deze regel is algemeen, omdat
deze voor elk voorwerp geldig is. Je zou een dergelijk
regel kunnen aßeiden op grond van het feit dat je al
een aantal voorbeelden hebt gezien van voorwerpen
die op de grond vallen, en nog (bijna) nooit een, die
in de lucht blijft hangen. Er is echter ook een alterna-

tieve theorie, die stelt dat we helemaal geen algemene regels leren, maar voorname-
lijk voorbeelden onthouden. Deze voorbeelden kunnen we gebruiken voor nieuwe

Samenvatting

238

voorspellingen. Als je dus moet voorspellen of een bal valt als je hem loslaat, zou je
je een voorbeeld kunnen herinneren van het vallen van een steen. Deze strategie
van het onthouden van voorbeelden is zeer krachtig. Uit een experiment waarin
proefpersonen een suikerfabriek moeten besturen blijkt bijvoorbeeld, dat hun
gedrag volledig verklaard kan worden door het feit dat ze voorbeelden onthouden.
Dit blijkt uit een ACT-R model van deze taak, dat uitsluitend voorbeelden onthoudt
en weer terughaalt, en hetzelfde gedrag vertoont als proefpersonen. Een mogelijke
verklaring voor het feit dat de prestaties zo aan voorbeelden toe te schrijven zijn, is
dat de suikerfabriek zo in elkaar zit dat het bijna onmogelijk is om de echte regel
achter de fabriek te ontdekken.

Om een betere afweging te maken tussen de regel- en de voorbeeldtheorie, is een
taak nodig waarbij zowel het afleiden van regels als het onthouden van voorbeelden
een mogelijke strategie is, en waarbij de keuze in de resultaten terug te vinden is. De
Fincham-taak voldoet aan deze criteria. In deze taak krijgen proefpersonen een
gebeurtenis en een tijdstip, en moeten ze voorspellen wanneer de gebeurtenis nog
een keer plaatsvindt. Dit kan zowel geleerd worden door het onthouden van voor-
beelden (ÒAls hockey of maandag is, dan is het de tweede keer op woensdag.Ó) als
het afleiden van regels. (ÒDe tweede keer hockey is altijd twee dagen na de eerste
keer.Ó) Uit de resultaten van de experimenten met deze taak en het ACT-R model is
af te leiden, dat mensen van beide strategie�n gebruik maken, dus zowel van regels
als van voorbeelden. De keuze van strategie hangt wederom af van een kosten-baten
analyse: als een bepaald voorbeeld vaker voorkomt, zal de voorbeeld-strategie vaker
worden gekozen. Voorbeelden worden echter ook weer snel vergeten, dus als er een
dag tussen de testafnames zit, dan wordt het gedrag aan het begin van de volgende
dag gedomineerd door de regel-strategie. Ook hier blijkt, net als bij de keuze tussen
gewoon redeneren en het stellen van leerdoelen, dat de kosten-baten analyse die in
ACT-R is ingebouwd een goede voorspeller is van gedrag.

Alle puzzelstukjes weer bij elkaar
De verschillende modellen van verschillende aspec-
ten van leren kunnen worden samengebracht in ��n
model, dat gebruikt kan worden voor een model van
roosteren. Dit model is weliswaar nog niet zo slim als
mensen in het oplossen van roosterproblemen, maar
vertoont wel een groot aantal kenmerken die ook in
menselijk leren worden aangetroffen. Zo probeert het
model in eerste instantie om regels te formuleren die
het probleem oplossen (zie figuur bovenaan de
pagina). Deze regels worden in eerste instantie
gewoon opgeslagen als feiten in het declaratief

geheugen. Hierbij wordt gebruikt gemaakt van een expliciete leerstrategie, die pro-
beert analogie�n te vinden tussen de gezochte kennis en andere kennis waarover

Samenvatting

239

het model al beschikt. Het model weet bijvoorbeeld niet zoveel af van roosters,
maar wel van het maken van lijsten. Een mogelijkheid is dus om kennis over lijsten
te gebruiken voor het maken van roosters. Declaratieve regels zijn heel ßexibel,
maar hebben als nadeel dat ze de volle aandacht vereisen om ze te kunnen gebrui-
ken. Bovendien kunnen ze ook makkelijk weer vergeten worden. Daarom worden
deze regels langzaam omgezet in procedures in het procedureel geheugen. Daar-
door worden ze veel sneller, en worden minder snel fouten gemaakt. Naast regels
onthoudt het model ook voorbeelden van hoe iets is opgelost, die later weer
gebruikt kunnen worden. Tussen de bedrijven door moet het model ook nog de tus-
senresultaten repeteren die het tot dan toe heeft afgeleid.

Het moge duidelijk zijn dat er nogal wat mis kan gaan in dit proces, en dit gebeurt
ook in het model. Het aardige hiervan is, dat de fouten die het model maakt, overeen
komen met het soort fouten dat proefpersonen maken. Tevens is het v��rkomen van
fouten een bron van individuele verschillen: sommige individuen hebben veel pro-
blemen met het onthouden van tussenresultaten, en andere veel minder. Deze ver-
schillen kunnen gerelateerd worden aan verschillen in de capaciteit van het
werkgeheugen. Het model laat echter zien, dat deze verschillen slechts tijdelijk zijn:
na voldoende oefening zijn de prestaties van individuen met een klein werkgeheu-
gen bijna net zo goed als die van individuen met een groot werkgeheugen.

Hoewel het model van roosteren nogal uitgebreid is, biedt het veel aanknopings-
punten voor generalisatie. In tegenstelling tot veel cognitieve modellen is de kennis
niet echt voorgeprogrammeerd, en slechts indirect beschikbaar in de vorm van fei-
tenkennis. Het model leert dus zelf de benodigde regels. Door de feitenkennis van
het model te veranderen wordt ook het gedrag veranderd, en kan hetzelfde model
ook heel andere taken uitvoeren.

Procedures

Voorbeelden

Kennis voor een specifieke taak

Declaratieve
regels (feiten)

expliciete
leerstrategie�n

Kennis over andere
problemen

expliciet
leren

impliciet
leren

Samenvatting

240

Conclusies
Menselijk leren van nieuwe vaardigheden is een
complex cognitief fenomeen, dat niet met een enkel-
voudige theorie in kaart te brengen is. Niettemin is
het mogelijk op grond van de modellen uit dit proef-
schrift een redelijk consistent totaalbeeld te schep-
pen, dat goed aansluit op bestaande idee�n in de
cognitiewetenschap. Ook maakt deze theorie
bepaalde constructies overbodig, zoals meta-cogni-
tie en aparte impliciete en expliciete geheugensyste-
men. Wel is duidelijk dat het menselijk leervermogen
geen gesloten systeem is: het is altijd mogelijk

nieuwe leerstrategie�n te ontdekken of van iemand anders te leren. Het precies in
kaart brengen van hoe leerstrategie�n zelf geleerd worden is een uitdaging voor
met name de ontwikkelingspsychologie.

De gepresenteerde theorie van het leren van nieuwe vaardigheden kent ook ruime
mogelijkheden voor het in kaart brengen van individuele verschillen. Niet alleen
verschillen individuen in beschikbare leerstrategie�n, maar ook in eigenschappen
die betrekking hebben op de onderliggende architectuur, zoals de capaciteit van het
werkgeheugen. Het is daarom niet zo verwonderlijk dat elke proefpersoon com-
plexe problemen als roosteren weer anders oplost.

Hoewel het onderzoek in dit proefschrift voornamelijk theoretisch van aard is, zijn
er een aantal toepassingsvelden mogelijk. In de cognitieve ergonomie kan het inzicht
van hoe nieuwe vaardigheden worden geleerd gebruikt worden in het ontwerp van
computerprogrammaÕs. Deze inzichten zijn om dezelfde reden van belang in het
ontwikkelen van computer-ondersteund onderwijs.

Een ge�niÞceerde theorie van leren?
In dit proefschrift heb ik een theorie van leren
geschetst, die bestaat uit delen van bestaande theo-
rie�n, aangevuld met verbindende elementen die met
name ge�nspireerd zijn door de rationele theorie ach-
ter ACT-R. Vooralsnog bestaat deze theorie uit een
algemeen verhaal en een verzameling computermo-
dellen die deelaspecten illustreren. Het roostermodel
levert daarnaast een voorbeeld van de theorie in zijn
geheel. Een echte ge�niÞceerde theorie van leren is
echter nog wat concreter: daarvoor is een simulatie-

programma nodig dat alle elementen uit de theorie bevat. Een dergelijk programma
zou een uitbreiding op ACT-R moeten zijn, en zou in staat moeten zijn uit instruc-
ties zelf de kennis te leren die nodig is voor het uitvoeren van een taak.Wellicht kan
dit proefschrift een eerste stap zijn in de ontwikkeling van zoÕn theorie.

Index

Numerics
3CAPS 47, 55, 142

comparison with other arch
48

A
abstraction 146, 152, 174

generalized
See generalized abstractio

See also declarative rule
itectures 47–

ns

subsymbolic level 41–43
symbolic level 40–41
utility 51

ACT-R/PM 48
adaptation 123
agreement 19
amnesia 94
analogy 44, 212

as a learning strategy 212
as initial method 182
241

abstraction strategy 158–163
accommodation 123, 132
accuracy 184, 186, 189
ACT* 12, 177, 216
action-part of a production 41
activation

consequences of 42
equation 42
in 3CAPS 47

ACT-R 12, 32, 39–45, 50, 55, 116, 130, 133,
144, 148, 152, 170, 175, 192

abbreviation 39
an evaluation 215–218
comparison with other architectures 47–

48
comparison with Soar 141
equations

See equation
learning 43–45
neural network implementation 49

analogy strategy 158–163
analytic paradigm 51
Anderson 12, 29, 33, 39, 49, 103, 116–117,

144–145, 152, 158, 176–177, 210, 216
architecture of cognition 12, 23

as a theory 27
comparison between ACT-R, Soar, 3CAPS

and EPIC 47–48
comparison with a computer

architecture 26
judging its success 30–34
neural networks 49–50
overview of 34–48

artiÞcial grammar learning 93, 95, 102, 147
ART-networks 49
Ashcraft 130
assimilation 123, 132–133
association strength 41–42
associative stage 176–177
asymmetry

Index

See directional asymmetry
Atkinson 92, 103
autonomous stage 176–177
awareness

in implicit learning 95

B
Baddeley 103–104
Barton 19
base-level activation 41–42, 111

research paradigm 29
See also free recall, dissociation

experiments, dynamic-growth
model, scheduling 26

the problem of an incorrect 31
cognitive stage 176
combinatorial search 7
complexity 10
complexity function 14
complexity theory 14
242

base-level learning 44, 184
equation 45, 97
parameter value 0.5 or 0.3 99, 217

BayesÕ Theorem 44
beam task, a model 135–139
behavioral mastery 129
Berry 93, 102, 147, 152
binary oppositions 11, 94
binding problem 49
Binet 214
Blessing 145
blind search 3, 7
blocks world 2
Broadbent 93, 102, 146–147, 152
Bryk 66
Buchner 148, 154

C
Carbonell 51
Carpenter 47, 49
central executive 104–105
choice

according to rational analysis 39
between productions 43

Chomsky 18
Chomsky hierarchy 18
chunk 40

learning 43
chunk types

problems with 142, 194, 216
chunking 37, 142

data-chunking 142
Church-Turing thesis 26, 31
Cleeremans 96
cognitive architecture

See architecture of cognition
cognitive ergonomics 219–220
cognitive model

beam task 135–139
comparison with programs 26
criteria 141
discrimination-shift learning 140
matching with data 32–34, 218

computational resources 14
condition-part of a production 41
connectionism 27–28
connectionist paradigm 52
consciousness

in implicit learning 95
constraints 48
context activation 41
Cook 21
counting

as a strategy to do addition 85, 131
Craik 105, 109
criterion, of a problem 13

D
Davidson 79, 115
decision mechanism in Soar 37
declarative memory 40

vs. procedural memory 39, 216
declarative rule 211–212

See also abstraction
declarative rules 212
deliberate choice 38, 142
deliberate reasoning 195
dependency 43, 149–150, 162, 213

as a learning goal 133
rule that pushes one 149

development 114, 214
comparison of different theories 131–133

developmental path 133
developmental psychology 10
Dienes 152–157
different-worker strategy 84

learning 79
digit working memory task 175, 192
directional asymmetry 145, 157, 164, 166,

168
discrimination-shift learning 11, 125, 213

a model of 140
in adults 126
in rats 127
neural-network model 141

dissociation experiments

Index

an ACT-R model of a 96
by Broadbent 146

dissociation paradigm 93
crossed double dissociation 96

dual-store memory theory 92, 103
dynamic growth model of search vs.

reßection 116–122
dynamic system control 93

E

Fincham task 157–168, 174, 184, 210, 212
Þnd-fact-on-feedback strategy 136–138, 148
Fischer 124–129, 132, 140–141
Fischler 108
Þt-the-hours strategy 84

learning 81
Fitts 176–177, 210
Þxed effects 66
focus of attention 40
forgetting 41
243

education 220
Elman 50
EPIC 45–47, 55, 142

comparison with other architectures 47–
48

equation
activation 42
base-level learning 45, 97
expected gain 43, 117
latency 42

Ericsson 181
errors

in ACT-R 41
in Soar 38

examples 134
repeated examples 167
See also instance
vs. rules 144–171

expected gain 39
equation 43, 117

experiential cognition 116
expert 21

ultimate scheduling 22
expert systems 219
explanation-based learning 54
explicit learning 6, 141, 146–148, 211

as a result of learning goals 102
as a set of strategies 102
in the RR theory 129

explicit memory 9
explicit vs. implicit learning 92–112

See also implicit vs. explicit learning
explicit vs. implicit tests 93
exploration 79
exploration-performance dimension in

machine learning 53
exponential time complexity 14–15

F
feedback 134, 183

learning strategies to use 212
Fincham

See Fincham task

free recall 92
a model of 103–112
delayed 108
of children 106

fully-Þlled precedence constrained
scheduling

See scheduling
functional level 124

G
games 20–21
Garey 16, 21
Geert, van 117–118, 129
General Problem Solver 34
generalization 146

as a learning strategy 212
generalized abstractions 174–178

chaining 177–178, 200
implementation in ACT-R 195–206
learning 182–183, 204–206
proceduralization 178, 201
representation 175–177

generic goal type 142
genetic algorithm 51
Gestalt psychology 79
grain-size of cognition 27
Grossberg 49
growth, basic curve 118

H
Hahn 144
Harrow 126
Hayes-Roth 16–17
hill-climbing 3
hippocampus 49
Holland 52, 144
hybrid architecture 49
HyperCard 61

I
impasse 55, 116, 139

in Soar 35, 37
inÞnite sequences of 142

Index

implicit learning 6, 141, 146–147, 152, 211
in neural networks 141
in the RR theory 129
robustness 94

implicit memory 9
implicit vs. explicit learning 6, 86, 92–112,

213
ageing 95
an ACT-R theory 101–103
awareness 95

J
Johnson 16, 21, 142
Jongman 4, 192
Just 47

K
kappa-measure 83
Karmiloff-Smith 129–130, 132–133, 141
Kelleher 127
Kendler 125–126, 140
244

individual differences 101
relation to rules and instances 170
relation to search and reßection 123

implicit vs. explicit memory 9, 95
implicit vs. explicit tests 93
incorrect models 31
individual differences 33, 65, 141, 192, 195,

213–215
in 3CAPS 47
in implicit and explicit learning 101, 123
in knowledge 174
in learning strategies 212
in scheduling 187–189
in working-memory capacity 174–175,

187
IQ 214

inductive paradigm 51
inferences

in scheduling 83–85
initial method 146, 174

analogy 182
insight 5, 139–140

as a representational change 116
as a special process 115
as gaining knowledge 115
as ordinary cognition 115
as relaxation of constraints 115

insight theory 79, 85, 115
instance 145–147, 152, 174, 211

in the Sugar Factory 153
of a problem 13

instance strategy 158–163, 211
instance theory 153, 210

evidence for 145
instance-based learning 147, 152, 157
instructions 134, 194

learning strategies to interpret 212
intentionality 101, 170
intractable 14
intractable problems 15
IQ 214

and explicit learning 95

Kieras 45
Kitchener 127
Knoblich 115
knowledge from other domains 134
knowledge system 34
Kuipers 30
Kyllonen 213

L
Laird 34
Lakatos 31
language 18–20
language comprehension

Soar model of 35
latency equation 42
learning

algorithm 22
generalized abstractions 182–183, 204–206
in ACT-R 43–45
in scheduling 68
in Soar 37
instances 146
machine learning 50–54
new chunks 43
new productions 43, 162, 214
of past tenses 10
production parameters 45
production-rule strength 217
rules 210
See also skill learning
subsymbolic 44
the different-worker strategy 79
the Þt-the-hours strategy 81
time scale of 214
unconscious 95
uniÞed theory of learning 220

learning strategies 114–142, 146–152, 212–
213

an example 133
an example model 135–140
Þnd-fact-on-feedback 136–138, 148
general schema 135
in the Fincham task 158–163

Index

learning them 114, 148
lessons from development 132
operating on abstractions 174
property-retrieval 136–138, 148
rehearsal 114

Lebiere 12, 33, 39, 49, 144
lexical ambiguity 19
likelihood a chunk is needed 41
Logan 144–145, 148, 152–157, 210
Lovett 33, 174, 189, 192

NP-complete problems 12–21, 208
examples of 16–21
proof that FF-PCS is NP-complete 87–89
scheduling 60

O
optimal level 124

association with learning strategies 125
optimality 39
overlapping-waves theory 130–131
245

M
machine learning 10, 50–54

exploration-performance dimension 53
rational-empirical dimension 52

Macintosh 61
magical number seven 188
matching 41
matchstick problems 115
Mayer 115
McClelland 12, 49
McGeorge 95
means-ends analysis 3
meta-cognition 114
meta-reasoning 5
methods

blind search 3
for problem solving 2

Meyer 45
mismatches 42
MLn 67
model

See cognitive model
motivation

role in dynamic growth model 121
motor processors 45
Mulder 220
multilevel statistics 66
Murdock 108

N
neural networks 29

and implicit learning 141
as architectures 49–50
emphasis on learning 141
model of discrimination-shift

learning 141
Newell 2, 11–12, 34, 53, 85, 92, 141, 144, 214,

216
nine-dots problem 5, 115
non-linear aspect of cognition 27
Norman 116, 220
NP 15

P
Parallel Distributed Processing 12
parallel Þring of productions 45
parallel vs. serial matching 49
parsimony 216

in EPIC 46
in Soar 38

partial matching 42, 154
past tense

learning of 10
perceptual processors 45
performance theory 19
peripheral cognition 45
Perruchet 148
phonological loop 103–105

modeled in ACT-R 105
Piaget 6, 123, 128, 132–133
planning 16–18
Plunkett 144
polynomial time complexity 14–15
Popper 31
Postman 108
power law of practice 9
precedence constrained scheduling

See scheduling
preferences in Soar 37
primacy 103, 111

disappearance of 108
prior knowledge 28, 160
problem solving 115

formal deÞnition of 13
the Soar view of 35

problem space 2
problem-space computational model 35
problem-space search 79, 85
procedural memory 40–41

in Soar 35
vs. declarative memory 39, 216

proceduralization 146, 195, 213
decreases need for working-memory

capacity 193
impact on verbal protocol 180

Index

necessity for mastering complex
skills 189–191

of abstractions 178, 201
processing theory

of implicit and explicit learning 95
production compilation 40, 44, 147, 151, 162,

180, 184, 193, 216
as implicit learning 174

production rules 41, 146, 174, 211–213
ACT-R vs. RR 130

elaborate 105, 195
in the dissociation model 97
maintenance 105, 195
using abstractions 201

representation adjunctions 129
representational redescription 129–130
retrieval threshold 43
reversal learning 11

See also discrimination-shift learning
Roediger 95
246

general interprative productions 177
learning 43, 162, 214
strength learning 217

property-retrieval strategy 136–138, 148
protocol analysis

of a single participant 72–83
of scheduling 71–85

puzzles 20–21

R

R2 measure 32–33, 112, 218
Raijmakers 141
random effects 66
randomness 175
Rasbash 67
rational analysis 39, 116–117

applied to task knowledge 39
in choosing between skill-learning

strategies 147
rational-empirical dimension in machine

learning 52
rationality

ACT-R vs. Soar 39
Reber 92–93, 102, 147
recall 92, 94
recency 11, 103, 111

disappearance of 108
negative 109

recognition 92–94, 96, 102
recurrent networks 50
Reder 33
Redington 144–146
reßection

expected gain equation 119
model of 116–122
vs. search 114–122

reßective cognition 116
reßective judgement

relation to age 127
rehearsal 11, 86, 92, 141, 178

a model of 103–112
as a learning strategy 114
depth of processing 105

Rosenbloom 34
rule learning 157, 210
rule strategy 158–163
rules

See production rules or examples vs. rules
Rumelhart 12
Rundus 104, 106

S
Sander 182
satisÞability problem 21
Schacter 9, 92–94
Schank 183
scheduling 17–18, 21

complex inferences 83–85
counting for addition 131
deÞnition of PCS 87
difÞculty of the instances 65
experiment 61–64
fully-Þlled precedence constrained

scheduling 60
individual differences 65
interface type 65, 68
learning 65, 68
models of 174–195, 210, 212

emperical evidence 192–193
precedence constrained scheduling 60
proof that FF-PCS is NP-complete 87–89
protocol analysis 71–85
the role of reßection 116

schema 183
script 183
search 2

expected gain equation 119
model of 116–122
problem-space 79
unbounded 114
vs. reßection 114–122

search episode 186, 195
search tree

in multi-level statistics 68
of solving a scheduling instance 78

self-monitoring 5

Index

serial behavior 50
serial vs. parallel matching 49
Shanks 95
Shastri 49
Shiffrin 92, 103
Siegler 130–132
Simon 2, 144, 181
skill learning 6–7, 169

an ACT-R theory of 210–213
paradigm for 146–147

T
Taatgen 144
task analysis 21, 219
task model 28–29
task-speciÞc knowledge 28, 114, 148, 211

from instructions 194
time, SoarÕs predictions 38
toy problems 20
travelling-salesman problem 17
Tulving 9, 92–94, 96, 102, 164, 184, 218
247

stages in 176
two explanations 144

skills
as abstract rules 144
as instances 145

Soar 32, 34–39, 50, 55, 218
chunking 54
comparison with ACT-R 141
comparison with other architectures 47–

48
making errors 38
predictions about time 38

Someren, van 83, 181
source activation 187, 191

correlation with scheduling
performance 193

relation to working-memory capacity 174
spreading activation 42
Squire 95
stability in neural networks 49
stage theory 123
staircase models 130
Stark 9, 92–94
Sternberg 177
strength of production rules 217
subsymbolic level in ACT-R 41–43
Sugar Factory 93, 98, 102, 144, 170, 210, 212

a model of 152–157
empirical evaluation 155
equation 152
initial method 153
theoretical evaluation 155

Svenson 130
symbolic architecture 49
symbolic level in ACT-R 40–41
symbolism 27
systems theory

of implicit and explicit memory 95

Turing 26
Turing Machine 26, 31
Turing Test 179
twenty questions 11

U
ultimate scheduling expert 22
uniÞed theory of cognition 12, 28
uniÞed theory of learning 220
utility of knowledge 51

V
verbal protocol

in the scheduling experiment
See protocol analysis

produced by the scheduling model 178–
179, 181, 184–185

visuo-spatial sketch pad 104–105

W
Wallach 144
Warrington 94
weak method theory 2
Willingham 147
word-completion task 93, 96
working memory 33, 39, 131

BaddeleyÕs theory 104
in Soar 35

working-memory capacity 187, 189–190,
195, 214

baby-sitter metaphor 188
can be overcome by practice 189, 193
in 3CAPS 47
individual differences 174–175
relation to source activation 174

W-parameter 42

Y
Yuill 175

Index
248

	index.pdf
	Voorwoord
	Contents
	CHAPTER 1 Introduction
	1.1 The weak method theory of problem solving
	Problems of the weak-method theory
	Problem solving from the viewpoint of skill learning

	1.2 How to study learning in complex problem solving?
	1.3 NP-complete problems
	The consequences of intractability

	1.4 Examples of NP-complete problems
	Examples in Planning
	Language
	Puzzles and games
	Mathematics

	1.5 The limits of task analysis, or: why is learning necessary for problem solving?
	1.6 Overview of the rest of the thesis

	CHAPTER 2 Architectures of Cognition
	2.1 What is an architecture of cognition?
	An architecture as a theory
	Judging the success of an architecture
	Matching model predictions with experimental data

	2.2 An overview of current architectures
	Soar
	ACT�R
	EPIC
	3CAPS
	A summary of the four architectures

	2.3 Neural network architectures
	2.4 Machine learning
	2.5 Conclusions
	2.6 Appendix: The ACT-R simulation system

	CHAPTER 3 Scheduling
	3.1 Introduction
	3.2 Experiment
	Method
	Analysis of the results

	3.3 Analysis of solution times
	An informal analysis
	An analysis using multilevel statistics
	Analysis of the first part of the experiment
	Analysis of the second part of the experiment
	Conclusions

	3.4 Analysis of verbal protocols
	Analysis of participant�2
	Quantitative analysis

	3.5 Conclusions
	Maintaining the current problem context
	The role of insight and rule learning

	3.6 Appendix: Proof of NP-completeness of fully-filled precedence constrained scheduling

	CHAPTER 4 Implicit versus Explicit Learning
	4.1 Introduction
	4.2 A model of the dissociation experiment
	4.3 An ACT-R theory of implicit and explicit learning
	4.4 A model of rehearsal and free recall
	A model of free recall in ACT-R
	Simulation 1
	Simulation 2
	Simulation 3
	Simulation 4
	Simulation 5
	Discussion

	CHAPTER 5 Strategies of learning
	5.1 Introduction
	5.2 Search vs. Insight
	5.3 A dynamic growth model
	The model
	Results

	5.4 The nature of learning strategies
	Piaget’s stage theory
	Fischer’s levels
	Karmiloff-Smith’s representational redescription
	Siegler’s overlapping-waves theory
	Discussion

	5.5 Modeling explicit learning strategies in ACT-R
	5.6 An ACT-R model of a simple explicit strategy
	The beam task
	Simulation results
	Discrimination-shift learning

	5.7 Discussion

	CHAPTER 6 Examples versus Rules
	6.1 Introduction
	6.2 Learning strategies
	Instance-based learning
	Learning production rules

	6.3 Sugar Factory
	The Task
	The models
	Retrieving instances
	Theoretical Evaluation
	Empirical Evaluation
	Conclusion

	6.4 The Fincham task
	The ACT-R model
	Empirical evaluation of the model
	Experiment 1
	Experiment 2
	Experiment 3

	6.5 Discussion

	CHAPTER 7 Models of Scheduling
	7.1 Introduction
	7.2 Generalized abstractions
	Representation of an abstraction
	Chaining abstractions
	Proceduralizing abstractions

	7.3 A first model
	Storing elements in a list and doing rehearsal
	Abstractions that implement a simple strategy
	Verbal protocol
	Results of the model
	Protocol of first problem

	7.4 Learning new abstractions
	7.5 The second model
	Example verbal protocol
	Results of the model
	Individual differences
	Is proceduralization necessary for mastering complex skills?

	7.6 Some empirical evidence for the scheduling model
	7.7 Discussion
	7.8 Appendix: Implementation of abstractions in ACT�R
	The basic generalized abstraction
	Chaining abstractions
	Proceduralizing abstractions
	Building lists and doing rehearsal
	Learning new abstractions

	CHAPTER 8 Concluding remarks
	8.1 The skill of learning
	8.2 Processes involved in skill learning
	8.3 Individual differences
	8.4 Evaluation of ACT-R
	Production compilation
	Chunk types
	Base-level decay
	Production-strength learning
	Assessing model fits
	A look back at Soar

	8.5 Practical implications
	Application in the domain of expert systems
	Application in the domain of cognitive ergonomics
	Application in the domain of education

	8.6 A Unified Theory of Learning?

	Web documents and Publication list
	References
	Samenvatting
	Hoe denken mensen?
	Een theorie over menselijk redeneren
	Maar hoe zit het dan met echt complexe problemen?
	Impliciet en expliciet leren
	Hoe werken dan die leerstrategieën, en hoe komen we eraan?
	De rol van het formuleren van regels en het onthouden van voorbeelden
	Alle puzzelstukjes weer bij elkaar
	Conclusies
	Een geünificeerde theorie van leren?

	Index

