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Voorwoord

 

Een van de momenten die ik me nog kan herinneren van toen ik nog heel klein was, 
is het moment waarop ik heb leren lezen. Ik moet een jaar of vijf zijn geweest, ik zat 
thuis (we woonden op een boot) en was bezig met het bestuderen van een boek. Ik 
begon uiteraard niet met een blanco lei: ik kende alle letters, en ook kon ik al een 
aantal woorden lezen (die kende ik gewoon uit mijn hoofd). Maar ik kon nog niet 
zomaar een willekeurig woord lezen. Terwijl ik zo bezig met het uitspreken van 
woorden die ik al kende en het uitspreken van klanken bij letters die ik nog niet 
kende, werd mij plotseling duidelijk wat de bedoeling was. Als ik de klanken van 
de letters van een woord snel uitsprak, en tegelijkertijd naar mezelf luisterde, dan 
kon ik het woord dat op papier stond verstaan, en dus lezen! Zo verguld was ik met 
deze ontdekking, dat ik prompt het hele boekje heb uitgelezen (het was een 
kinderboek, dus dat viel nog wel mee). 

Deze herinnering heeft een aantal opmerkelijke kenmerken. Een eerste kenmerk is 
natuurlijk, dat ik me een gebeurtenis van zo lang geleden nog kan herinneren. Maar 
voor mij was het dan ook een belangrijk punt in mijn leven: de mogelijkheid te 
kunnen lezen opent zoveel nieuwe mogelijkheden, dat het beginpunt daarvan 
natuurlijk memorabel is. Maar een tweede, nog opmerkelijker kenmerk is het alles-
of-niets karakter van de gebeurtenis. In luttele minuten beschikte ik over een 
complexe vaardigheid die ik daarvoor nog niet had. Uiteraard was er wel wat 
voorwerk nodig om dit moment te kunnen bereiken: de kennis van de letters, het 
kunnen lezen van enkele woorden, en natuurlijk de vaardigheid om taal te kunnen 
spreken en te kunnen verstaan. Maar het kwam wel samen in dat ene moment.
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Dit proefschrift gaat over dit soort momenten, momenten waarna we opeens veel 
meer kunnen dan ervoor. Het zijn deze momenten die ons mensen in staat stellen om 
bijna alles was maar leerbaar is ook te leren. En dat maakt het onderzoek ernaar zo 
fascinerend, maar tegelijk ook zo moeilijk. 

Mijn interesse voor het begrijpen van menselijk denken heeft een lange geschiedenis. 
Het is allemaal begonnen met Lego, waarmee je alles kon bouwen wat je fantasie je 
ingaf. Geleidelijk kwamen hier motortjes, schakelaars en lichtgevoelige cellen bij, en 
voor ik het wist was mijn interesse verschoven naar electronica. Via electronica 
kwam ik bij de eerste microcomputers terecht, toen nog dingen die uit een printplaat 
bestonden en geprogrammeerd werden door het intypen van getallen. Nadat ik mijn 
eerste computer had gekregen (een Commodore PET 2001), was mijn 
computertijdperk definitief begonnen. Tijdens mijn studie informatica werd mijn 
interesse gevangen door iets dat n�g ingewikkelder is dan de computer: de 
menselijke hersenen. Uiteindelijk heeft mij dit via psychologie bij de oprichting van 
Technische Cognitiewetenschap terecht doen komen, een tak van wetenschap die 
alles combineert wat mij interesseert. 

Vele mensen hebben, direct of indirect, bijgedragen aan het tot stand komen van dit 
proefschrift. John Anderson wil ik bedanken voor wellicht de belangrijkste bijdrage 
aan dit proefschrift, de ACT-R theorie. Ook ben ik erg blij dat hij lid is van de 
beoordelingscommissie en bereid is voor mijn promotie naar Groningen te komen. 
Een ander lid van de beoordelingscommissie, John Michon, heeft niet alleen aan de 
wieg gestaan van de studie Technische Cognitiewetenschap, maar heeft ook in de 
beginperiode van mijn promotieonderzoek en daarvoor mijn afstudeeronderzoek 
een belangrijke invloed gehad om mijn denken over cognitie. Ik ben blij dat hij nu, 
aan het einde van het project, er wederom bij betrokken is. Paul van Geert mag ik in 
dit kader zeker ook niet vergeten te bedanken, met name omdat hij, ondanks zijn 
vele verantwoordelijkheden als onderzoeksdirecteur, de tijd heeft gevonden om met 
name mijn beweringen over de ontwikkelingspsychologie kritisch tegen het licht te 
houden.

Om tot een goed wetenschappelijk product te komen is het belangrijk om regelmatig 
met mensen te discussi�ren die met hetzelfde bezig zijn als jezelf. Alexander van den 
Bosch, ook een Groninger ACT-R-er van het eerste uur, is een belangrijk voorbeeld 
van zo iemand. Daarnaast waren ook anderen uit de ACT-R groep uit Groningen een 
belangrijk klankbord: Mark Dekker, Ritske de Jong, Hedderik van Rijn, Pieter de 
Vries en Alan White. Ook wil ik in deze context Aladin Aky�rek noemen, die in de 
beginperiode van mijn onderzoek een belangrijke discussiepartner was. Aladin was 
vaak zo kritisch dat ik er soms bijna moedeloos van werd. Vooral ook omdat hij 
meestal gelijk had. Dieter Wallach, die ik in het kader van de ACT-R workshop in 
Pittsburgh heb ontmoet, bleek eveneens een goede partner in het onderzoek: delen 
van hoofdstuk 6 zijn mede van zijn hand.
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Niet alleen onderzoeksgenoten hebben belangrijke bijdragen geleverd aan mijn 
onderzoek. Met name ook de andere Technische Cognitiewetenschappers zijn door 
het cre�ren van een goede werksfeer onontbeerlijk gebleken. Tjeerd Andringa en 
Petra Hendriks, collegaÕs van het eerste uur, maar ook Tinie Alma, Rineke 
Verbrugge, Gerard Vreeswijk, Ronald Zwaagstra, Esther Stiekema, Ben Mulder, 
Henk Mastebroek, Frans Zwarts en niet te vergeten Hans van Ditmarsch, die tijdens 
zijn vakantie het hele manuscript doorgelezen en becommentarieerd heeft, een taak 
die vooruitloopt op zijn functie van paranimf. Ook vallen in deze categorie de 
collegaÕs van de sectie Experimentele en Arbeidspsychologie.

Studenten spelen in veel promotieonderzoeken een belangrijke rol. Annelies 
Nijdam, Richard Vos en Thijs Cotteleer hebben elk hun bijdrage geleverd. Daarnaast 
zijn er natuurlijk alle TCW-studenten, die met hun enthousiasme, nieuwsgierigheid 
en motivatie voor een continu positief achtergrondgeluid zorgen.

Niet alleen collegaÕs, maar ook vrienden zijn van belang. Evelyn van de Veen heeft 
op het laatste moment binnen twee weken het hele manuscript op taalfouten 
gecontroleerd, en heeft daarbij een van de laatste hobbels op weg naar de drukker 
weggenomen. Alwin Visser, een van de paranimfen, is al tien jaar lang samen met 
mijn roeiploeg ÒWrakhoutÓ een belangrijke sportieve steun. 

Dan kom ik nu bij Linda Jongman. Linda, je valt eigenlijk in alle categorie�n. Niet 
alleen ben je voor mij persoonlijk heel belangrijk, je hebt ook nog een inhoudelijke 
bijdrage geleverd aan dit proefschrift (het experiment op pagina 192-193). 
Bovendien was jij altijd de eerste die mijn schrijfwerk aan een kritische blik 
onderwierp, en mij waarschuwde als ik met al te onbegrijpelijke schemaÕs dingen 
juist onduidelijker in plaats van duidelijk maakte. 

Tenslotte wil ik mijn promotoren, Bert Mulder en Gerard Renardel de Lavalette 
bedanken voor de tijd die ze in mijn begeleiding hebben gestoken. De gezamenlijke 
gesprekken waren voor mij altijd een bron van inspiratie. Met name voor Bert, die 
ondanks zijn ziekte nog al mijn hoofdstukken nauwkeurig bekeken heeft, heb ik 
grote bewondering.

Mijn taak zit erop, het is nu aan de lezer om mijn voetstappen in onderzoeksland na 
te lopen. Voor degenen die niet de volle tocht willen ondernemen, wil ik de verkorte 
route in de vorm van de Nederlandse samenvatting achter in het proefschrift 
aanbevelen, aangezien ik mijn best heb gedaan daar een zo begrijpelijk mogelijk 
verhaal van te maken.

Groningen, 23 april 1999

Niels Taatgen
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1.1 The weak method theory of problem solving

Since the birth of cognitive science in the Þfties, human problem solving has been 
one of its central topics. The marriage between psychology and computer science 
proved to be especially fruitful, since simulation of cognitive processing allowed 
deeper insights into the empirical data from human participants than was possible 
with the now old-fashioned techniques offered by behaviorists. A landmark in 
problem solving was Newell and Simon's 1972 book Human Problem Solving. 
Newell and Simon show detailed analyses of data collected from human 
participants, along with results from computer simulation. The main conclusion of 
the book is that human problem solving can be characterized by a small set of 
methods. These methods require very little knowledge about a particular problem, 
and are therefore sometimes called weak methods. The tie between psychology and 
computer science was very strong in this enterprise, since most of the weak 
methods were algorithms used in artiÞcial intelligence, the sub-discipline of 
computer science most involved with cognitive science. 

The weak-method theory pictures problem solving as search in a problem space. 
This problem space is a directed graph that has problem states as its nodes, and 
problem operators as its vertices. A state represents the current configuration of the 
problem, and operators manipulate these configurations. In problem-solving terms, 
an operator transforms a current state into a new state. Figure 1.1 shows a simple 
example of a problem space, the example of the blocks world. This world consists of 
a table and three blocks, and the only possible action is to move one uncovered block 
from its current spot to a new spot, either on another block or on the table. Each of 
the possible configurations of blocks is a state, and is represented in the figure by a 
rounded rectangle. There is one possible operator: moving a block. This operator can 
be instantiated in multiple ways, as depicted in the figure by arrows. Suppose the 
problem starts with the configuration depicted in the upper-left corner of the figure, 
and the goal is to build the pile of blocks depicted in the lower-right corner. Solving 
the problem involves selecting a sequence of instantiated operators that transform 
the start state into the goal state, in this case moving block A to the table, moving 
block B onto block C, and finally moving block A onto block B. 

The problem-space view of problem solving transforms the abstract idea of problem 
solving into a concrete, easily depictable problem, the problem of deriving the right 
sequence of operators to transform the start state of a problem into a goal state. To 
actually find this sequence, one of the weak methods can be applied. Which method 
is most appropriate depends on the amount and type of knowledge the problem 
solver has about the problem. The most simple methods are blind-search methods, 
like generate-and-test, depth-first search and breadth-first search. These methods 
only assume knowledge about the set of possible states, allowed operators, and the 
consequences of these operators. Each method systematically searches the problem 
space until it stumbles over a goal state, in which case the problem has been solved. 



The weak method theory of problem solving

3

Blind-search methods assume that the problem solver has no way of knowing 
whether a certain state is close to the goal or which operator can bring it closer to the 
goal. This kind of knowledge is called heuristic knowledge, and methods that use 
heuristic knowledge are called heuristic methods. The most simple heuristic method 
is hill-climbing. Hill-climbing assumes a heuristic function that can estimate the 
distance between a state and the goal state. Using this function, the operator that 
leads to the most promising new state can be selected. For example, in the blocks-
world problem of figure 1.1 the heuristic function might be the number of blocks that 
are in the right place with respect to the goal state.

A more complex method is means-ends analysis. Means-ends analysis involves a 
comparison between the goal state and the current state, and the selection of an 
operator that reduces the difference. If the selected operator is not applicable in the 
current state, a subgoal is created to reach a state in which the desired operator is 
applicable. Figure 1.2 shows an example of means-ends analysis: planning a trip 
from Groningen to Edinburgh. The most notable difference between Groningen and 
Edinburgh is that they are situated in different countries. So an operator is sought 
that reduces this difference, in this case flying from Amsterdam to London. This 
operator is, however, not applicable in Groningen. So getting from Groningen to 
Amsterdam becomes a subgoal, and is solved by taking the train to Amersfoort and 
then to Amsterdam. The difference between London and Edinburgh can be found in 
the same way. An important advantage of means-ends analysis is its divide-and-
conquer strategy. This aspect is especially important if the problem space is large or 
infinite, which is often the case in practice. The disadvantage of means-ends analysis 
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Figure 1.1. The problem space of the blocks world. Rounded rectangles represent states, and arrows 
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is its requirement of additional knowledge. It must be possible to find differences 
between states, differences must be ranked in some way (in the example: a difference 
in country is more important than a difference in city), and operators must be keyed 
to these differences. 

To summarize: for each of the weak methods there is a parallel between the 
knowledge needed and efficiency. One would expect that as participants gain more 
knowledge in a certain problem domain, they will tend to use more efficient 
methods. Jongman (1997) has found some evidence for this hypothesis. In her study, 
participants have to find information on the Internet. While a majority of the 
participants start using a hill-climbing strategy, many of them switch to means-ends 
analysis as they gain experience. 

Problems of the weak-method theory
Despite the fact that the weak-method theory offers a systematic framework for 
studying problem solving and provides explanations for many aspects of human 
problem solving, it leaves a number of questions unanswered. A Þrst problem of the 
weak-method theory is that it assumes precise and unambiguous knowledge about 
problem states, operators and goals, even for the most simple blind-search 
methods. This assumption is correct for many problems used in problem-solving 
research, like the towers-of-hanoi, the eight puzzle and blocks-world puzzles. 
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Figure 1.2. Step-by-step creation of a plan to travel from Groningen to Edinburgh
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Research that stresses the importance of insight in problem solving on the other 
hand, uses problems for which this assumption does not hold. A well-known 
example is the nine-dots problem (Þgure 1.3), in which the problem is to connect all 
nine dots using four connected lines. The difÞcult aspect of this problem is the fact 
that a solution is only possible if lines are used that extend beyond the borders of 
the 3x3 grid of points. In problem-space terms, the problem basically has an inÞnite 
number of possible operators, since there are inÞnitely many ways to draw a line. 
Participants tend to reduce the set of possible operators to operators that just draw 
lines between two points of the 3x3 grid. The crucial step in solving the problem is 
the realization that this reduction is too severe. So problem solving not only 
involves selecting the right sequence of operators, but also Þnding out what the 
operators are, and what they do. The example also shows that re-evaluating the 
operators currently used may be part of the problem-solving process.

A second problem is the fact that in many cases not all the activities of a participant 
can be explained in terms of clear problem-solving methods. Participants use 
multiple strategies for a single problem, skipping between them and inventing new 
ones on the fly. People tend to forget results if they can not be used immediately, or 
have to use memorization techniques to prevent forgetting things. Finally, and that 
is a criticism often quoted, people have the ability to Òstep out of a problemÓ, to 
reason about their own reasoning (see, for example, Hofstadter, 1979, for an 
extensive discussion of this point). Evidence for this kind of meta-reasoning are 
exclamations like ÒThis doesnÕt work at allÓ, and ÒLetÕs try something differentÓ. 
Although it is not at all clear how extensive meta-reasoning can be, people evidently 
use some sort of self-monitoring to prevent them from doing the wrong thing for too 
long. 

The third problem is that the weak-method theory does not explain how people gain 
a higher level of understanding in a certain problem domain. An example of this is 
mathematics. In order to be able to solve simple algebraic equations like , 
one must master simple arithmetic first. Composite concepts from arithmetic form 

Figure 1.3. The nine-dots problem (left) and its solution (right)

2x 3+ 7=
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the basic building blocks of simple algebra. Solving , for example, takes at 
least four simple arithmetic operators. Experience allows people to collapse these 
operators into higher-level operators, so they can solve the equation in just one step. 
Mastering simple equations is a prerequisite for more complex mathematics like 
differential equations. The idea of several levels of understanding is quite common 
in developmental psychology, and stems from the stage theories of Piaget (1952). 

The three problems discussed above, although somewhat different in nature, boil 
down to the same issue: learning. The problem solving process is not a pure search 
process but also includes exploration. Exploration is necessary to learn what the 
possible operators are and what they do or to question the operators if they fail to 
perform well. Exploration can also derive and refine heuristic knowledge, and find 
out what methods and strategies are most suitable for the current problem. To be 
able to do this several strategies must be tried and compared. Learning can also 
result in higher-level operators and an increase the level of abstraction of the 
problem-solving process. Exploration can also attempt to use knowledge from other 
domains for solving the current problem. 

Problem solving from the viewpoint of skill learning
The main topic of this thesis is to study the learning aspect of problem solving. 
While complex problem solving will be the starting and the end point, several tasks 
will be discussed that are not strictly problem-solving tasks, unless one adopts 
NewellÕs claim that any task is a problem-solving task. So the topic is actually 
broader and extends to skill-learning in general, with complex problem solving as 
the main skill to be studied. 

An important theme throughout the thesis will be the distinction between implicit 
and explicit learning (Reber, 1967; Berry, 1997). Implicit learning is often defined as 
unconscious learning: the learner is unaware of the fact that he or she is learning, and 
is unable to recall what is learned afterwards. Increased task performance is the only 
indication something is learned. Explicit learning, on the other hand, supposes a 
more active role of the problem solver. An example of this type of learning is when 
the participant sets explicit exploration goals, or explicitly decides to memorize 
aspects of a certain problem because they may be useful for another problem. Both 
types of learning are important for problem solving. During search the problem 
solver gains information in an implicit fashion, since learning is not the goal but only 
a by-product. Search for the solution may be alternated by setting explicit learning 
goals that try to combine earlier experiences, perform generalizations, explore other 
problem domains, or, on a more mundane level, try to keep partial results active in 
memory. 

One of the core problems of search as a problem solving method is the fact that 
problem spaces are often very large or infinite. The reason for this is that in each state 

2x 3+ 7=
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there are several possible operators leading to new states. In general, the size of the 
problem space grows exponentially with the maximum length of the sequence of 
operators. For human purposes, blind, systematic search in an exponential problem 
space will only be successful if the sequence of operators is relatively short. If longer 
sequences are required, knowledge is needed to offer guidance in the choice of 
operators, to retrieve partial sequences used for other problems, or to collapse 
several operators into one composite operator. Therefore, the maximum capacity for 
solving problems in a certain domain is determined by the knowledge for this 
domain extended by a limited amount of search. Actually solving a problem using 
search, possibly enhanced by explicit learning, may extend the space of solvable 
problems.

Figure 1.4 shows an impression of this idea. The top Þgure represents the set of all 
possible problems, loosely ordered in the sense that more complex problems are at 
the top of the rectangle, and less complex problems at the bottom. The horizontal 
dimension is used to indicate that problems are related to each other. Some of these 
problems can be solved by a particular individual by a relatively simple procedure. 
This portion of the set is indicated by the black area at the bottom of the set. Problems 
in the grey area require more effort, and need some combinatorial search. Problems 
in the white area require so much search that the problem becomes practically 
unsolvable. 

Problems in the black area take relatively little time. As soon as the grey area is 
entered, combinatorial search is needed, which increases the time requirements 
exponentially. At some point these time requirements become unpractically high, 
marking the beginning of the white area. Learning increases the black area in the set, 
sometimes by a single item, sometimes, after generalization, by a substantial area. As 
a consequence the border between the grey and the white area also moves outwards, 
as indicated by the small arrows in the graph. Take for example the left-most peak in 
the Þgure. This might represent the algebra skill of a certain individual. This 
individual is, for example, capable of solving equations without much effort (black 
area), able to solve simple problems of integration by trying out several different 
methods (grey area), but not proÞcient in doing double integrations yet (white area).

The time requirements are shown in the graphs at the bottom of the Þgure. Problems 
that can be solved in a direct fashion usually do not require much time. But once the 
expertise runs out and combinatorial search is needed, the grey area is entered and 
the time requirements increase exponentially with the amount of search needed. Due 
to this increase, the time requirements soon exceed practical limitations (white area). 
This discussion is of course still very informal. A more formal approach will be 
discussed later in this chapter.
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Set of possible problems

problems for which some 
combinatorial search is 
needed

problems solvable in a direct fashion (retrieval, 
simple procedure)

problems that cannot be solved yet

level of 
com- 
plexity

time 
needed 
for a 
solution

searchdirect not solvable

Figure 1.4. Impression of the set possible problems. Some can be solved easily (black area), some 
need combinatorial search to Þnd the solution (grey), and others cannot be solved at all. The top 
Þgure outlines the expertise of a certain arbitrary individual who has three areas of expertise. 
The small arrows in the top Þgure indicate the effects of learning. The ÒpeaksÓ in the Þgure 
indicate areas in which this particular individual is an expert. The two graphs at the bottom 
indicate the time to Þnd the solution given the type of search needed and can be seen as a 
vertical cross-section of the top Þgure. The left graph represents a novice, who has to use search 
for almost everything, and the right graph represents an expert, who can solve many problems 
in a direct way.

time 
needed 
for a 
solution

search not solvable

Novice Expert

level of complexity level of complexity

Problems close to one another on the horizontal 
dimension are closely related
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1.2 How to study learning in complex problem solving?

Within cognitive science there are a number of research paradigms to study 
learning. The main paradigm to study learning is the experimental paradigm used 
in cognitive psychology. A common approach is to present participants with a 
sequence of similar problems, and see how their performance improves with 
respect to reaction time (latency) and rate of errors. One fundamental law found in 
this fashion is the power law of practice, a law that states that regardless what the 
task is, the reaction time can be described by the function:

(1.1)

In this equation  is the reaction time for trial n, and b and α are constants. 

Another method often employed in experimental learning research is the search for 
dissociation effects. Typical experiments Þrst expose participants to some 
information, which is tested at a later time using different types of tests. Typical 
examples of dissociations are:

• If a participant is tested directly after learning, he or she performs equally on test 
A and B. If he or she is tested again after a week, performance on test A is the 
same, but performance on test B has decreased severely (Tulving, Schacter & 
Stark, 1982)

• Performance of a participant suffering from amnesia is equal to a healthy 
participant on test A, but much worse on test B (e.g., Morris & Gruneberg, 1994).

Dissociations are often used as evidence for the existence of different memory 
systems, for example a separate implicit and explicit memory.

Although experimental work offers many insights in the nature of learning and 
memory, the standard experimental paradigm is limited to phenomena that can be 
quantified easily in, for example, the power law of practice, or the hypothesis that 
implicit and explicit information is stored in separate memory systems. Take, for 
example, the power law of practice. The smooth form of the curve suggests learning 
is a continuous process. Although this may well be the case, this is not necessarily so. 
As noted by, amongst others, Siegler (1996), the smooth curve may have resulted 
from averaging several step-functions. Also, a hypothesis about the existence of two 
separate memory systems is rather crude, and offers little insight into the necessity 
of separate memory systems. As we will see later on in chapter 4, dissociations can 
sometimes also be explained using a single memory system. 

Because the pure experimental paradigm can only state rather global hypotheses, it 
often limits itself to experiments where all participants behave roughly the same. 
Participants only tend to behave the same if there is only one way to do things. In 
terms of figure 1.4, only problems in the black area are investigated. The grey area, 

Tn bn α–=

Tn
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however, is the area where interesting learning phenomena with respect to problem 
solving can be found. In that area almost all participants will behave differently due 
to the exponential number of choices. So it will be much more difficult to state 
hypotheses in the usual fashion. As a consequence, participants can no longer be 
studied as a group, but must be studied individually. The challenge is to still be able 
to make generalizations about the population, despite individual differences.

The paradigm that machine learning offers for the study of learning radically differs 
from what is used in experimental psychology. Complexity is the main challenge. 
Although many types of algorithms are used, some of which will be reviewed in 
chapter 2, the common goal in machine learning is to derive generalized knowledge 
from examples, sometimes guided by domain knowledge. The goal is to arrive at an 
accurate generalization using the most efficient algorithm. In a typical machine 
learning study to judge the quality of a new learning algorithm, a set of examples is 
used. For example, in a medical setting, an example contains a number of symptoms 
and a diagnosis. The set of examples is split in two parts, a training set and a test set. 
The training set is first given to the learning algorithm, which tries to generalize rules 
or other representations that can predict a diagnosis from the symptoms. The test set 
is then used to judge the correctness of these representations. A new algorithm is 
judged to be promising, if its performance on the test set exceeds the performance of 
a number of established learning algorithms. Performance is measured by the 
number of correct classifications the algorithm makes on the test set, and by the time 
it needs to learn the training set.

Machine learning algorithms are quite powerful when judged with respect to 
efficiency and quality of classifications. Whether or not the learning of such 
algorithms has any similarity to human learning is not considered important. This 
does not necessarily mean algorithms from machine learning are useless for 
studying human learning, since evolution may well have optimized human learning 
in the same way computer scientists try to optimize machine learning. Nevertheless, 
machine learning algorithms often make computational assumptions that are not 
easy realizable for humans. People can, for example, not learn large databases of 
examples easily. 

A third domain of cognitive science in which learning is studied is developmental 
psychology. Developmental psychology studies changes in behavioral capacities in 
children over time. According to some theories these changes can be characterized 
by transitions between stages, meaning there are periods with little change and 
periods with large changes in capacities. Developmental psychologists are mainly 
interested in these changes and their characteristics, and less in the processes that 
cause these changes. Studying how a complex skill is learned in several steps can 
offer important clues about the nature of the learning processes that cause the 
change in skill. Possibly the most cited example is the learning of past tenses 
(Rumelhart & McClelland, 1986; Pinker & Prince, 1988; Elman, Bates, Johnson, 
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Karmiloff-Smith, Parisi & Plunkett, 1996). The literature often distinguishes three 
stages in this particular skill. In the first stage, all past tenses are learned as separate 
facts. The second stage is characterized by the discovery of a rule for regular verbs. 
This rule is, however, overregularized so that irregular verbs that were used 
correctly in the first stage are now put in the past tense using the regular rule. Only 
in the third stage the irregular words are recognized and used correctly. Although 
this description tells us little about the processes that cause change, it reveals 
nevertheless that an interplay between rules and examples is important. We will 
come back to this issue in a later chapter.

Since one of the goals of this thesis is to approach learning in problem solving from 
an experimental perspective, we have to deal with the problems mentioned earlier. 
Alan Newell already noted the limitations of the classical experimental paradigm in 
1973, when he wrote his famous paper titled ÒYou canÕt play twenty questions with 
nature and winÓ. According to Newell, psychologists investigate cognitive 
phenomena. Examples of these phenomena are:

1. recency effect in free recall

2. reversal learning

3. rehearsal

4. imagery and recall

Although these are just four items from NewellÕs list of 59, they will discussed more 
extensively later in this thesis. All four of them will turn out to be important for 
problem solving. NewellÕs criticism focuses on the fact that despite the fact that all 
these phenomena are researched thoroughly, no clear theory of cognition emerges. 
The main type of structures psychology attempts to establish are binary oppositions. 
Among these oppositions are the following:

1. Continuous versus all-or-none learning

2. Single memory versus dual memory

3. Existence or non-existence of latent learning

4. Stages versus continuous development

5. Conscious versus unconscious

Again these examples are picked from a list of 24, and will become important at some 
point in the discussion later on. The point Newell tries to make is that resolution of 
all these binary oppositions (Ò20 questionsÓ) will not bring us any closer to a grand 
theory of cognition. Fortunately, Newell also proposes three solutions to the 
problem, two of which we will discuss here. 

A first solution is to create a single system, a model of the human information 
processor that can carry out any task. He also proposed a candidate for such a 
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system, namely a production system. If a production system would be given the 
right set of rules, it should, in principle, be able to perform any experimental task. It 
turned out this solution became the main paradigm dominating the rest of NewellÕs 
work. In 1990, he wrote ÒUnified Theories of CognitionÓ, in which he presented his 
final proposal for a grand theory of psychology. At that time, the single system idea 
had already spread, and other people had been thinking about unification as well. 
AndersonÕs 1983 book ÒThe Architecture of CognitionÓ is an example, in which 
Anderson presents his ACT* system. The Rumelhart and McClelland 1986 books 
ÒParallel Distributed ProcessingÓ also attempt to bring all types of cognitive 
phenomena together in a single paradigm. The single-system approach has two 
important aspects: it constrains the researcher in the type of theories he can state, in 
the sense that the theory has to fit in the system, and it forces the researcher to be 
very precise: the theory has to be simulated within the system. In this thesis I will 
also conform to this single-system approach. The system is the ACT-R 4.0 system, a 
descendant of ACT*, as described in Anderson & Lebiere (1998). ACT-R and its 
competitors will be discussed in detail in chapter 2.

A second solution Newell offers is to analyze a single complex task. This addresses 
the problem that psychology often designs its experiments according to the 
phenomenon studied, resulting in simple tasks. The choice for a complex task is less 
common, because it is very hard to relate results of a complex task to a single 
phenomenon. Experiments using complex problems do however offer sufficient 
samples of all human cognitive capacities. A possible complex problem is chess. 
Chess involves planning, means-ends analysis, all types of learning, mental imagery, 
etc. If we were able to know all there is to know how people play chess, would this 
not be a big step towards understanding cognition in general? I will also adopt this 
second recommendation in this thesis. But in stead of focussing on a single task, I 
will focus on a single class of problems: NP-complete problems.

1.3 NP-complete problems

What is a complex problem? There are many ways to give a subjective judgement of 
how difÞcult a problem is. Chess is difÞcult and tic-tac-toe is easy. Fortunately, there 
are more formal ways to categorize problems. A formal approach also requires us to 
be more precise on what a problem is. First we will examine how to formally look at 
problems and problem solving. Then we will look at what complexity is, and by the 
end of the section the class of NP-complete problems will be discussed.

In informal speech, the term problem has two different meanings. We can talk about 
a problem as a general category, for instance the problem of deciding the next move 
in chess. It is not possible to give an answer to this question, because it depends on 
the position on the chessboard. The term problem can also be used in a more specific 



NP-complete problems

13

sense: what move should I make on a chess board with the black king at e1, the white 
king at e3, and a white rook at a8? In this case a specific answer is possible: move the 
white rook to a1, checkmate. A problem in the general sense is a set of problems in 
the specific sense. To avoid confusion, the formal term problem refers to a problem 
in the general sense, and a specific problem is called an instance. This distinction can 
roughly be compared to the terms ÒtaskÓ and ÒtrialÓ in experimental psychology: a 
task is a general description of what a participant must do, a trial is a specific 
instance of the task.

A formal definition of a problem defines it as a set of instances and a criterion. 
ÒSolving a problemÓ means that we decide for a particular instance whether or not 
it satisfies the criterion. For example, a formal description of the informal problem of 
deciding whether there is a forced checkmate for white specifies the set of instances 
as the set of all possible configurations of chess pieces on the board, and the criterion 
is the yes/no-question of whether a forced checkmate is possible for white. This last 
characterization of the criterion is of course still informal: the formal definition 
involves all rules of chess. ÒSolving a problemÓ in formal terms means we have a 
solution for all instances in the set. If the set is finite, the solution may be an 
enumeration of all solutions, but usually a solution for a problem is some algorithm 
that can decide whether the criterion holds or not. In order to formalize an 
informally stated problem, like Òwhat is the best next move in a certain chess 
positionÓ it must be stated as a yes/no-question, for example ÒIs move X in position 
Y the best move?Ó. A solution to this problem is an algorithm that computes this 
answer for any possible move and possible position in chess.

To be able to define the complexity of a problem in a meaningful way, it has to have 
an infinite set of instances and there must be some way to measure the ÒsizeÓ of an 
instance. Unfortunately, the example of chess is not infinite: although the number of 
positions is huge, it is nevertheless finite. The game of checkers, which is played both 
on an 8 x 8 board and a 10 x 10 board, can be generalized to a problem with an 
infinite number of instances by allowing n x n boards. 

Very simple problems, however, can have infinite sets of instances. For example, the 
problem to decide whether a list is sorted or not has an infinite set of instances. The 
size can be defined by the length of the list. Summarizing, a problem can be defined 
in the following terms:

• A set of instances

• A criterion (a yes/no-question about instances)

• A size function on each of the instances

• A solution, i.e. an algorithm that can decide whether the criterion holds for a 
certain instance.
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Now suppose we have some way to find the ÒbestÓ algorithm to solve a problem. 
This ÒbestÓ algorithm will use computational resources. The amount of resources the 
algorithm consumes is an indication of its efficiency. But since it is the best algorithm 
for a certain problem, the efficiency of the best possible algorithm defines the 
complexity of the problem. So what do we mean by Òuse of computational 
resourcesÓ? There are two computational resources, time and (memory) space. Since 
the use of these resources is related, time is often the resource an analysis of 
complexity focuses on.

Complexity theory uses relative time instead of absolute time. The time it takes a 
certain algorithm to solve a problem is expressed in a complexity function, which 
maps the size of the instance on the amount of time it takes to solve the problem. This 
complexity function gives a much clearer indication of the efficiency of the algorithm 
than absolute time can. If a small increase in the size of the instance causes a large 
increase in time, the algorithm is inefficient. So, an algorithm with a linear 
complexity function is more efficient than an algorithm with a square or exponential 
complexity function. Complexity functions can be calculated, if the algorithm is 
known, or approximated empirically when the algorithm is too messy or 
complicated to analyze. 

If we want to know the complexity of a problem, we are looking for an algorithm that 
solves this problem and has the best complexity function. So the complexity of a 
problem is the lower bound of the complexity of all the algorithms that solve it. Some 
problems, like deciding whether an item is in an unsorted list, have only a linear 
complexity. The most efficient algorithm is to examine the items in the list one by one 
and compare them to the item we seek. The average number of items that has to be 
examined is n/2 if the item is in the list, and n if it is not in the list (n is the length of 
the list). Other problems have a higher complexity. Problems that have an 
exponential time complexity are called intractable. The source of complexity is often 
combinatorial: if, for example, n elements must be ordered, the number of possible 
ordenings is n!. If there is no systematic way to weed out the major part of these 
ordenings, the problem is intractable. In the case of checkers on arbitrarily large 
boards (I will not use chess, because it is finite), the number of board positions to be 
examined increases exponentially with the number of moves you want to look 
ahead. The question if white can win from the first move is decidable in principle, 
but not in practice, because there are more possible checkers games than atoms in the 
universe.

Why is exponential time complexity intractable, and polynomial complexity 
tractable? Because exponential functions grow so much faster than polynomial 
functions. This can be illustrated using part of a figure from Garey & Johnson (1979) 
that shows the time it takes to solve an instance of a problem of size n, given the fact 
that a single operation can be carried out in a microsecond (figure 1.5). One might 
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argue that some problems with a polynomial complexity, especially with a high 
exponent (e.g. n200), are also intractable, but in practice these types of complexities 
never occur (only in contrived problems). 

The consequences of intractability
Intractable problems are interesting candidates for NewellÕs idea of a complex 
problem that exposes many aspects of human cognition. Since they have an 
exponential time complexity, it is impossible to use an efÞcient procedure that 
solves all instances of a problem. It is, however, not always necessary to be able to 
solve all instances of a problem, it may be enough to be able to solve a relevant 
subset of them. Relevant in this case means that the system somehow has a use for 
them. So for any particular intractable problem, we may have a situation similar to 
Þgure 1.4: some instances of the problem, particularly instances with a small size, 
can be solved efÞciently, some instances need additional search that may require 
exponential exploration of cases, and some cases are unsolvable within a reasonable 
amount of time. So intractable problems may serve as a miniature but faithful 
representative of the case of learning problem solving. 

To further improve on the representativeness of example problems, we will narrow 
down the set of intractable problems to the set of NP-complete problems, which is in 
itself a subset of NP. ÒNPÓ is an abbreviation for Non-deterministic Polynomial. A 
problem in NP can be solved by a non-deterministic Turing Machine in polynomial 
time. Less technically, given an instance of an NP-problem and a path to its solution, 
(so not only the yes/no-answer, but also the choices that are made to reach it) it is 
possible to check this solution using a tractable algorithm. In summary: finding the 
solution may be intractable, but checking it is tractable.

Complexity 
function
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n 
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n2

polynomial
.0001 
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.0009 
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n5

polynomial
.1 second 3.2 
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24.3 
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1.7 minutes 5.2 minutes 13.0 
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2n

exponential
.001 
second

1.0 second 17.9 
minutes

12.7 days 35.7 years 366 
centuries

Figure 1.5. Comparison between a linear, two polynomial and an exponential time complexity 
function (from Garey & Johnson, 1979)
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Although it has technically not yet been proven that NP-complete problems really 
are intractable, the general consensus is that they are for all practical purposes 
(Garey & Johnson, 1979). In the next section some examples of NP-complete 
problems will be examined, showing the broad range of domains they appear in. 
Nevertheless they form a tight class due to their completeness-property. This 
completeness property means that any NP problem can be transformed into a 
particular NP-complete problem by an algorithm of polynomial complexity. So, take 
for example the travelling salesman problem, a well-known NP-complete problem. 
Due to its completeness property, it is possible to take an instance of another NP-
complete problem, for example resolving a particular ambiguity in a sentence, and 
transform this instance into an instance of the travelling-salesman problem. So if you 
find an efficient solution for one particular NP-complete problem, you have 
automatically found an efficient solution for all of them. Regrettably, this doesnÕt 
mean that a partial solution (in terms of Þgure 1.4) will be at all helpful in this matter. 
Nevertheless, if it is possible to gain insight into how people partially overcome the 
problems of combinatorial explosion with respect to one particular NP-complete 
problem by learning, it carries the promise that this learning scheme may also work 
for other hard problems.

1.4 Examples of NP-complete problems

NP-complete problems may be very interesting problems to study, but this 
endeavor is purely academical if these problems have little to do with real-life 
situations. In this section a number of examples of NP-complete problems will be 
examined to show that NP-complete problems are part of everyday life. For some of 
these problems, for example language, almost everyone is an expert. For other 
problems, for example scheduling problems, extensive skill is normally thought of 
as the competence of an expert.

Most of the problems discussed here have been catalogued by Garey and Johnson 
(1979), together with their basic reference. Most examples explained here require 
some answer, instead of just ÒyesÓ or ÒnoÓ. A problem that requires an answer can 
almost always be converted to a yes/no question, as I have shown in the case of 
chess.

Examples in Planning
A plan is a sequence of actions that achieves a certain goal. Sometimes reaching the 
goal is enough, but in other cases additional requirements must be satisÞed, like 
Þnding the most efÞcient sequence. Planning nearly always involves time and 
optimizing time. People plan every day, for example how to make coffee, a plan that 
requires no search. Other types of planning do require some search, for example to 
plan a route through town to go through a shopping list (Hayes-Roth & Hayes-
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Roth, 1979), or to plan a meal (Byrne, 1977; van den Berg, 1990). Other planning 
tasks involve scheduling, for example school and hospital rosters, or planning 
symposia (Numan, Pakes, Schuurman & Taatgen, 1990). Computer science has 
invested much effort in programs for planning, resulting in different approaches: 
hierarchical, non-hierarchical, opportunistic and script-based planners (See 
Aky�rek, 1992 for an overview).

Most planning problems are intractable unless heavily restricted. We will look at two 
intractable problems that are closely related to planning. In the travelling-salesman 
problem the task is to find the shortest closed route connecting a set of cities. More 
precisely, a number of cities is given and a matrix stating the distance between each 
pair of cities. A route is a sequence of cities, and the length of the route is the sum of 
the distances between successive cities. Figure 1.6 shows a case of the travelling-
salesman problem with four cities. The thick line indicates the shortest route, which 
has a length of 15.

The general problem is NP-complete, but we can imagine a particular salesman, who 
always visits a subset of, say, 25 cities, and who has developed his own private 
strategy for solving the problem. When this salesman is transferred to another part 
of the country, he has only limited use for his experience: he can use some of his old 
knowledge, but must devise some new procedures for his new environment.

The travelling-salesman problem obviously is a planning task, and shows much 
resemblance to other planning tasks, for example the shopping-task from Hayes-
Roth & Hayes-Roth (1979). It is often easy to prove that a certain planning task is 
intractable, using the fact that the travelling-salesman problem is intractable.

A second planning problem is scheduling. In this problem each instance consists of 
a set of tasks, each of which has a certain length, a number of workers, a partial order 
on the tasks, and an overall deadline. The task is to create a schedule for all the tasks, 
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Figure 1.6. Example of the travelling-salesman problem (left)



1: Introduction

18

obeying the precedence constraints as specified in the partial order and the deadline. 
Figure 1.7 shows an example of an instance of this problem.

Again the general problem is intractable, but particular sub-problems may be 
attainable. For example, the timetable of a certain school is always made by a 
particular deputy headmaster. Although it takes him two full weeks every year, he 
is the only one in the school who can do it at all. Previous experience is the key to 
successful problem solving in this case, another indication of the importance of 
learning.

Language
Understanding natural language is generally not considered to be problem solving. 
However, formal theories of language, especially with respect to grammar or 
syntax, use the same terminology as the formal theory of problem solving. For 
example, part of the natural language understanding process is concerned with the 
question whether a sentence is grammatically correct. In problem-solving terms, the 
set of instances is the set of all (Þnite) sequences of words. The criterion is the 
question whether a particular sequence of words is grammatically correct or not.

Part of research in linguistics concerns the construction of grammars and grammar 
systems that describe language. The goal of a grammar of a certain natural language 
is to be able to produce every grammatical sentence in that language, but no other, 
ungrammatical, sentences. A grammar system aims to provide a framework within 
which all grammars of natural languages can be fitted. Chomsky (Chomsky & 
Miller, 1963) has defined the basic types of grammars: finite-state, context-free, 
context-sensitive and unrestricted grammars, called the Chomsky hierarchy. 

Figure 1.7. Screen shot of an instance of the scheduling problem. In this experiment (discussed in 
chapter 3), participants can move around the blocks to create the schedule.
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Grammars can produce language, but to parse natural language, to decide whether 
a certain sentence belongs to the language, an automaton is needed. It can be shown 
that each of the four grammar systems from the Chomsky hierarchy corresponds to 
a certain type of automaton: finite-state grammars to finite-state automatons, 
context-free grammars to push-down automatons, context-sensitive grammars to 
linear-bounded automatons and unrestricted grammars to Turing machines. 
Chomsky has shown that finite-state grammars are too restricted to be able to 
generate a complete natural language. Unrestricted grammars, due to their 
connection with Turing machines, are undecidable. This leaves context-free and 
context-sensitive as possible formalisms, of which context-free is always considered 
a more desirable alternative, because parsing a context-free grammar is tractable. 
The important question is whether the generative power of context-free grammars is 
enough to generate natural languages.

Barton, Berwick & Ristad (1987) argue this discussion has outlived its usefulness, 
and more modern methods must be used. They show that the fact that a grammar is 
context-free is no guarantee for efficiency. The generalized phrase structure 
grammar system (GPSG), for example, has the seemingly attractive property that 
any GPSG can be converted to an equivalent context-free grammar. This suggests 
that since context-free grammars can be parsed efficiently, a GPSG can also be 
recognized easily. Barton et al. show this argument is misleading, because for a 

GPSG G of size m the equivalent context-free grammar has in the order of  
rules.

Barton et al. propose complexity theory as a replacement for the equivalence-to-
context-free-grammar criterion. It is a much more precise and reliable instrument to 
measure the efficiency of a grammar system. They also argue efficiency is an 
important criterion for natural language systems: if we have a formal system of a 
natural language that uses combinatorial search (an intractable algorithm) where it 
is not really necessary, there obviously is some systematic property in the language 
that the formal system fails to account for. For nearly all grammar systems used in 
linguistics, parsing turns out to be an intractable problem. According to Barton et al., 
this is partly due to intractable properties of language itself, but can often also be 
attributed to the formalism: it simply fails to account for certain features of the 
language. The unnatural sources of complexity must of course be expelled from the 
formalism, but the natural intractable properties can not. They must be accounted 
for by what Barton et al. call a performance theory, in which they hint at least some 
combinatorial search takes place.

An example of an intractable property of natural language understanding is the 
combination of agreement and lexical ambiguity. Agreement refers to two or more 
words in a sentence having the same number, gender or other feature, like in 
subject/verb agreement. Lexical ambiguity refers to the fact that a single word can 
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have different functions, as with homonyms. For example, the word ÔwalkÕ can be 
either a noun or a verb. In the case of a verb, it can be either first or second person 
singular or plural. Agreement grammars are simple context-free grammars that can 
account for both agreement and ambiguity. However, Barton et al. prove that the 
problem of parsing an agreement grammar is NP-complete with respect to the 
length of the sentence. 

The conclusion is that although care must be taken to avoid unnecessary 
intractability in language, it cannot be avoided altogether, and what remains must 
be accounted for by a so-called performance theory. This performance aspect is of 
course rather problematic. In ChomskyÕs theory the performance part of language is 
just a degraded version of the ÒidealÓ competence counterpart due to human 
limitations. In the theory of Barton et al. performance has a function that can not be 
formalized but is nevertheless crucial.

So, even understanding everyday language is in itself already an intractable 
problem. Therefore language performance can not be explained purely by a static 
syntactic framework. The learning component, as is the case with other intractable 
problems, has to be part of the explanation of the human capacity of understanding 
language.

Puzzles and games
Research on problem solving is often done on toy problems. Puzzles in which 
letters must be replaced by numbers, missionaries and cannibals must be shipped 
over a river, problems where blocks must be rearranged by a robot arm, or puzzles 
where numbered tiles must be pushed around to get them in sequence. The 
problem with each of these problems is to what extent results, either empirical or by 
simulation, can be generalized to other domains. Especially in the case of computer 
simulation, the fact that a simulation solves a certain problem has no signiÞcance, 
because a conventional algorithm can do the same job. Even when a convincing 
simulation can be made, it is difÞcult to generalize the results. 

Some games are different, however. They go beyond the toy-realm, because they 
keep eluding final solutions. Chess, checkers and Go are examples of games that 
have a long history of gradual improvement, never reaching perfection. The games 
of checkers and Go are intractable when generalized to an n x n board. Although 
chess is highly complex, it is not intractable because it can not easily be generalized 
to an n x n board, and standard chess games are always finite. Complexity theory 
needs some kind of infinity to work with. Other kind of puzzles are also intractable, 
for examples fitting words into an n x n crossword puzzle.

So, studying intractable problems is a far greater challenge than working with toy-
problems. They pose a real challenge to problem solving, but with a larger pay-off. 
Since no conventional algorithms exist, the fact alone that a system simulating 
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human problem solving on an intractable problem can solve certain cases is 
significant. 

Mathematics
The main and original source of intractable problems is mathematics. Many 
problems involving graphs, partitioning, matching, storage, representation, 
sequencing, algebra and number theory are intractable (Garey & Johnson, 1979).

One of the most well-known NP-complete problems stems from logic: the 
satisfiability problem (SAT) (Cook, 1971). The problem is to find, for a propositional 
logic formula, values for the variables so that the formula evaluates to true. A 
straight-forward algorithm used to solve SAT is called truth-table checking, which 
amounts to checking every possible combination of values for the variables. Since in 
propositional logic a variable can have two values, the number of combinations to be 
checked is , where n is the number of variables. This is obviously an exponential 
function, leading to an intractable algorithm. 

Another nice property of the problems mentioned here is the fact that they are (with 
the possible exception of the language problems) knowledge-lean. That is, they are 
already highly complex without needing huge data banks of knowledge to work on. 
This makes simulation a lot easier, and the results easier to interpret.

1.5 The limits of task analysis, or: why is learning necessary for 
problem solving?

The picture sketched in Þgure 1.4 is one of gradual change in mastery of a problem 
due to learning. But how important is this learning aspect? Suppose we want to 
make a task analysis of scheduling. WouldnÕt it be useful to constrain the total set of 
instantiations of scheduling to a manageable subset, and derive a set of rules and 
methods that can account for that subset? More speciÞcally, is it possible to create 
an account of how an expert scheduler works, assuming an expert is someone with 
a set of methods that is broad enough to render learning superßuous?

Suppose we have a scheduling expert. This expert can solve some instances of 
scheduling, but has problems with other instances: these instances take too much 
time to solve. For each expert, we can divide the total set of scheduling instances into 
two subsets: the instances he can solve and the instances he can not solve. This 
boundary is not entirely clear-cut, since the amount of time the expert is willing to 
invest in a solution plays a role, but due to the exponential increase in solution time 
this willingness for extra effort pushes the boundary only very slightly. There are 
many experts of scheduling, each of whom has his own expertise and knowledge of 
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scheduling, so each has his own subset of instances he can do and subset of instances 
he cannot do. Now suppose we want to find the ultimate scheduling expert. If the 
normal expert can solve something, the ultimate expert can do it too, so the set of 
instances that the ultimate expert can solve is the union of all sets of solvable 
instances of all possible experts. 

In order to find the ultimate expert, we now examine a subset of all possible experts, 
the experts that can only solve a single instance. If this expert is presented with its 
instance of expertise, it gives its memorized answer, but if another instance is 
presented, it says it doesnÕt know. So, each of these experts has a set of instances it 
can solve of just one member. Now, if we take the union of the knowledge of all these 
dumb experts, we get the ultimate dumb expert, who happens to know the answer 
to any instance of the problem. This is clearly in contradiction with the fact that the 
problem is intractable, so we must conclude that the assumption that an ultimate 
expert exists must be false.

The conclusion of this formal exercise is that the there are no ultimate experts for 
intractable problems. There is always something left to learn, always a new member, 
or preferably, a set of members that can be added to the set of items that can be 
solved. But, the reply might be, suppose we incorporate this ÒlearningÓ in the 
algorithm. ShouldnÕt this algorithm be capable of solving any instance of the 
problem, clearly contradicting the fact that it is intractable? The answer is that a 
learning algorithm is not an algorithm in the normal sense. A learning algorithm 
changes after each instance it has or hasnÕt solved, so it defies the usual analyses of 
algorithms. A learning algorithm is not a solution to the problem of intractability. 
However, it can offer explanations for the fact why intractable problems are only 
mildly problematic for people. 

The fact that learning is an essential part of problem solving also shows that the 
traditional art of task analysis has its limitations. For many problems a task analysis 
is impossible, because even experts still learn, and use learning to solve problems. 
The usual idea that at some point an expert knows all there is to learn is not true in 
general. The same point can be made with respect to linguistics. Viewing language 
as a static formal structure that must be discovered by linguistic research is like 
trying to make a task analysis of an intractable problem, so it cannot expose the full 
extent of language processing. 

One of the research approaches to task performance is to get a full account of 
performance first, and worry about learning later. The previous analysis shows this 
approach will not work for complex tasks. As models discussed later in this thesis 
show, task performance is an intricate interplay between learning and performance. 
Just focussing on performance will only give a very limited insight into what is going 
on.
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If traditional task analysis is an insufficient formal theory of task performance, what 
should replace it? Architectures of Cognition have the capability. They are formal 
enough to allow general analyses and making predictions, and they incorporate 
learning. Instead of focussing on the knowledge of an expert, the focus will be on the 
learning mechanisms that allow one to become an expert and that allow experts to 
maintain and adapt their knowledge.

1.6 Overview of the rest of the thesis

The goal of this thesis is to gain more insight into skill-learning, in particular 
learning of complex problem solving. The way to accomplish this goal is to use a 
single theory in the form a cognitive architecture, and to start with a single complex 
problem, the scheduling problem. In chapter 2, the discussion is centered around 
the topic of the architecture. There are currently four inßuential architectures of 
cognition, Soar, ACT-R, EPIC and 3CAPS. I will Þrst establish some general criteria 
to compare these architectures, after which all four architectures will be discussed. 

Human problem solving on the scheduling task, discussed in chapter 3, will turn out 
to be a puzzle with many pieces. People tend to rehearse and forget things during 
problem solving. People discover new strategies if old strategies donÕt work. Some 
global statistical analysis using multi-level statistics will chart the outlines of the 
learning process. A detailed protocol analysis will shed some more light on what is 
going on in the reasoning process.

The approach for chapter 4 to 6 will be to study each of the pieces of the puzzle 
offered by the experiment using well-known experiments from cognitive 
psychology. These tasks will be modeled in ACT-R to gain insight into how the 
particular phenomena relate to the cognitive system as a whole. Chapter 4 will pick 
up the issue of implicit and explicit learning in general, and rehearsal in particular. 
ACT-R offers a new type of explanation for the implicit-explicit distinction by 
removing its Newellian binary status and offering a unifying explanation of an 
apparent distinction. The bottom line will be that explicit learning can be explained 
by learning strategies, general knowledge specifically aimed at the acquisition of 
new knowledge. 

Chapter 5 further investigates these learning strategies. It tries to offer a rationale for 
using a learning strategy, and investigates the representation of learning strategies 
in terms of ACT-R. The best domain to study learning strategies is developmental 
psychology. The idea is that learning strategies themselves have to be learned, so the 
best way to find out more about them is to compare children of different ages. The 
chapter ends in modeling two particular learning strategies, and seeing whether 
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they are applicable to multiple problems, and whether any evidence can be found for 
the fact that the strategies themselves are learned.

Chapter 6 focuses on another discussion with respect to skill learning, whether skills 
are learned by generalizing examples into rules, or by just storing and retrieving 
examples. The answer will turn out to be that both methods are used, and that the 
impact of these methods on performance depends on how useful they are. 

In chapter 7, I return to the primary goal of modeling scheduling. Using all of the 
insights gained in the smaller projects of chapter 4 to 6, a model will be presented 
that is able to solve small scheduling problems and learn from this process in a 
human-like fashion. This model can be used to generate verbal protocols of problem 
solving, and is able to make some predictions with respect to individual differences.

Chapter 8, finally, is used to draw some conclusions. An overview will be given of 
the skill-learning theory developed during the thesis, and some applications of this 
theory are discussed. The usefulness and shortcomings of ACT-R will be discussed. 
In a sense, the approach used in this thesis will turn out to show close resemblance 
to the final theory we will arrive at. But this is as it should be, since figuring out how 
learning in complex problem solving works, is in itself also a form of complex 
problem solving. 
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2.1 What is an architecture of cognition?

Chapter 1 discussed the single system approach to understanding cognition. This 
chapter will discuss these systems: architectures of cognition. Cognitive science has 
borrowed the term architecture from computer science. Computer scientists use the 
term architecture to refer to the aspects of a computer that are relatively Þxed: the 
hardware and that part of the software that is Þxed for all applications. 

A typical computer architecture has great flexibility: it is capable of executing an 
infinite variety of programs. However, the architecture can pose constraints on 
programs. For example, if a computer has a certain amount of memory, it can not run 
programs that need more memory than is available. The software part of the 
architecture may also pose constraints. For example, in many time-sharing systems 
it is impossible to guarantee accurate timing. 

Although these limitations may bother many users of computers, they are not 
interesting for theoretical computer science. In principle, any computer has the same 
capabilities with respect to what kind of functions it can calculate. This is due to the 
fact that every computer is equivalent to a universal Turing Machine with respect to 
the functions it can calculate, except for the fact that a Turing Machine has an infinite 
memory. 

According to the famous Church-Turing thesis (Turing, 1936), a universal Turing 
Machine can calculate any function that can be calculated at all. A computer 
architecture is therefore a platform that is ultimately flexible: given the right 
program, it can calculate any function that is computable in principle, given enough 
time and memory. The Church-Turing thesis, together with TuringÕs thought 
experiment called the Turing Test, can be used to argue that human intelligence can 
be simulated on a computer (Turing, 1950; Taatgen & Andringa, 1997).

Human cognition is also very flexible. Given enough time, it is capable of learning to 
perform almost any task that is feasible at all for people. An important distinction 
between computers and people is that people are not programmed in the sense that 
computers are. On the other hand, people cannot learn new things out of the blue: 
they almost always need prior knowledge. For example, one cannot learn to add 
numbers without knowing what numbers are. 

This analogy is the basis for the idea of an architecture of cognition. It is the fixed but 
versatile basis of cognition. The architecture is capable of performing any cognitive 
task, regardless of the domain the task is from. But where is a cognitive architecture 
different from a computer architecture, since a computer architecture is already 
capable of performing any conceivable task? A first difference is that a computer 
runs a program, and a cognitive architecture a model. On the surface, a model is a 
kind of program, written in the language of the cognitive architecture. The difference 



What is an architecture of cognition?

27

is that a program implements an algorithm, an abstract method to solve a problem. 
A model is not an algorithm, however, although in some cases it may behave like 
one. Rather, it specifies the prior knowledge the system has. So, if the model tries to 
explain the behavior of an expert, the knowledge in it may resemble an algorithm, 
because experts have effective ways of solving problems. If the model tries to explain 
novice behavior on the other hand, it can only specify general knowledge. A model 
of a novice has to discover an effective way to do a task itself, by translating 
instructions into procedures it can carry out, or by discovering these procedures by 
itself. 

Another difference concerns the way a cognitive architecture is designed. In 
computer science, the architecture is part of the design of a computer. The 
architecture is the starting point of the computer. Given the architecture, a VLSI-
designer can implement the architecture on a chip, and programmers can write an 
operating system and other software. If you design a better architecture, you get a 
better computer. Human cognition is already there, so designing an architecture of 
cognition serves a different purpose. Designing an architecture of cognition is like 
specifying a theory, a theory of how cognition works. The quality of a cognitive 
architecture is not measured in terms of performance, but in terms of the power of 
the theory it implements. This difference in purpose is the same as the difference 
between artificial and natural languages. An artificial language is defined by its 
grammar, while a grammar for a natural language is a theory of the structure of that 
language.

The starting point for the human cognitive architecture is the brain. But many 
architectures are more abstract than the architecture of the brain. The main point of 
discussion is whether or not the grain size of individual neurons is proper for 
formulating a theory of cognition. According to connectionists, properties of 
individual neurons are crucial for understanding cognitive performance, and an 
understanding of how neurons cooperate and learn in different areas of the brain 
will be the most fruitful route to an understanding of cognition in general. Others, 
often called symbolists, argue that the level of individual neurons is not the right 
level to study cognition, and some higher-level representation should be used. The 
title of Anderson & LebiereÕs 1998 book The Atomic Components of Thought directly 
refers to this issue. But whatever grain-size we choose, we always abstract away 
from the biological level of the brain, even if we model neurons in neural networks. 

An architecture as a theory
What to expect from a cognitive architecture? Since human cognition is complex, a 
cognitive architecture will have to be able to make complicated predictions. 
Analytical methods such as the statistics used by most psychologists can be used to 
make predictions, but are often limited to linear relationships. Cognition is often 
non-linear, making analytical mathematical methods infeasible. If analytical 
methods fail, simulation is the next best method to be able to make predictions. 
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Generally, an architecture is an algorithm that simulates a non-linear theory of 
cognition. This algorithm can be used to make predictions in speciÞc domains and 
for speciÞc tasks (Figure 2.1). 

To be able to make predictions about how people will perform on a specific task, the 
architecture itself is not enough. Analogous to the computer architecture, where a 
program is needed to perform tasks, a task model is needed to enable an architecture 
to simulate something meaningful. Prior knowledge, specified by the model, may be 
specific to the task, or may be more general. For example, many psychological 
experiments require the participants to perform some very specific task, such as 
adding letters as if they were numbers. Such an experiment relies on the fact that 
participants know how to add numbers and know the order of the alphabet. A model 
of adding letters would involve knowledge about adding numbers, numbers 
themselves, letters in the alphabet and knowledge on how to adapt knowledge from 
one domain to another. It should not incorporate knowledge about adding letters, 
since it is unreasonable to suppose an average participant in an experiment already 
has this knowledge. This task-specific knowledge can only be learned during the 
experiment, or, in the case of the model, during the simulation.

The way task knowledge is merged with the architecture depends on the nature of 
the architecture. In connectionist theories, all knowledge often has to be learned by 
a network. To be able to do this, a network has to have a certain topology, some way 
in which input is fed into the network, and some way to communicate the output. 
Some types of networks also need some supervisor to provide the network with 

Figure 2.1. Relationship between theory, architecture, models and cognition
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feedback. In neural networks task knowledge is not easy to identify, but is implicit 
in the environment the network is trained in. In symbolic architectures knowledge is 
readily identifiable, and consists of the contents of the long-term memory systems 
the architecture has. Another problem is that it is very hard to give a network any 
prior knowledge: one always has to start with a system that has no knowledge at all 
yet. In many cases, this is no problem, but it is in learning complex problem solving, 
since solving a problem is based to a large extent on prior knowledge.

Regardless of the details, at some point the general theory is combined with task-
specific elements to create a task model. A task model is a system that can be used to 
generate specific predictions about behavior with respect to a certain task. These 
predictions can be compared to participant data. Figure 2.2 shows the layout of this 
paradigm. The consequence of this type of research is that the general theory cannot 
be tested directly. Only the predictions made by task models are tested. If the 
predictions made by a task model fail to come true, this may be attributed to the 
architecture, but it may also be attributed to inaccurate task knowledge or the way 
task knowledge is implemented in the architecture. To be able to judge the 
achievements of an architecture, there must be some way to generalize over models. 

One way to judge the performance of an architecture with respect to a certain task, 
proposed by Anderson (1993), is to take the best model the architecture can possibly 
produce for that task. Although this is a convenient way, it is not entirely fair. 
Suppose we have two architectures, A and B. Given a set of task knowledge, 
architecture A can only implement a single task model, while architecture B can 
implement ten task models, nine of which are completely off. Although 
architecture B may produce the best model, architecture A provides a stronger 
theory since it only allows for one model.

Architecture 
(Theory)

Task 
knowledge

Task
model

Predictions Comparison Analyzed data

Analysis

Experiment

Figure 2.2. Research paradigm in cognitive modeling. Adapted from van Someren, Barnard and 
Sandberg (1994).
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Judging the success of an architecture
Instead of just focussing on successes, an architecture also has to be judged by its 
failures. Figure 2.3 shows a schematic impression of this idea, based on Kuipers 
(Kuipers & Mackor, 1995). Imagine the set of all conceptually possible cognitive 
phenomena. Not all of these conceivable phenomena can actually be witnessed in 
reality. For example, in chapter 1 we discussed the power law of practice, but we 
might also hypothesize a linear law of practice, or a negative exponential law of 
practice. As a consequence, only a subset of the possible phenomena can actually 
occur in reality. 

When a theory of cognition is proposed, this creates a new subset: the set of 
phenomena that are predicted by the theory. In terms of an architecture of cognition 
this means that the architecture allows an infinite set of models, each of which 
predicts some cognitive phenomena. The union of all these phenomena is the set of 
cognitive phenomena that are possible according to the theory. In order to judge the 
quality of the theory, we first have to look at the intersection of the Òreality-subsetÓ 
and the subset predicted by the theory. This intersection represents phenomena that 
can be predicted by some model, and can actually occur in reality. Although these 
successes are very important, we also have to look at the failures of the theory. 
Failures fall into two categories: counter examples, which are phenomena in reality 
that cannot be predicted, and incorrect models, phenomena predicted by the theory 
that cannot occur in reality. In the discussion about unified theories of cognition the 
emphasis is often on the counter examples: are there any phenomena the theory 
cannot account for? The other category, incorrect models, often gets less attention. 
This is unfortunate, because incorrect models pose a much bigger problem to 
architectures of cognition than counter examples. 

Figure 2.3. Judging an architecture
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The reason why incorrect models are a big problem is due to the Church-Turing 
thesis mentioned earlier. According to this thesis, any computable function can be 
computed by a general purpose machine such as the Turing Machine. This implies 
that, theoretically, any sufficiently powerful computer architecture can implement 
both all possible correct and all possible incorrect models. Figure 2.4 illustrates this 
implication: a general purpose architecture can, in principle, model any cognitive 
phenomenon. In terms of a theory of cognition: an ÒemptyÓ theory can predict 
anything. So, the goal of designing a cognitive architecture is not to give it as much 
features as possible, but rather to constrain a general purpose architecture as much 
as possible so that it can only implement correct cognitive models. In practice, as 
shown in figure 2.4, a typical architecture can produce many incorrect models, but 
generally produces good models. Constraining the general computer architecture 
may have an undesired side-effect in the sense that phenomena that could 
previously be explained are now unreachable. 

A cognitive theory in the form of an architecture is not a theory in the sense of 
Popper (1959), but more like a research program in the sense of Lakatos (1970). 
According to Popper a good theory is a theory that can be refuted. As we have seen, 
only predictions by models can be refuted directly. Only the claim that an 
architecture is an ideal architecture, in the sense of figure 2.4, can be refuted by 
exposing an incorrect model or producing a counter example. In LakatosÕs view of 
science, scientists work in research programs. A research program consists of a set of 

Figure 2.4. Possible instantiations of Þgure 2.3
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core ideas and a paradigm to do research. The core ideas of a research program are 
generally not disputed within the program, and researchers will continue working 
within a certain program as long as the paradigm keeps producing encouraging 
results. In the research program view, the architecture can be viewed as the core idea 
of a research program. Creating models of cognitive phenomena is part of the 
research paradigm. Another part of the research paradigm is a methodology to test 
models. When is a model considered to be a ÒcorrectÓ model? 

Matching model predictions with experimental data
To consider a model of a cognitive task as a faithful model of human performance, it 
is not sufÞcient that it can perform the task. A model has to perform the task in the 
same manner as a participant. In order to be able to make this comparison, we have 
to compare data from an experiment with the output of a model. Ideally, a model 
produces data that can be directly compared to participant data. Measures that are 
used often in psychological experiments are reaction times and accuracies. Models 
should at least be capable of making predictions in terms of these measures. Some 
architectures, like ACT-R, are capable of making direct predictions about reaction 
times. Other architectures only indicate a correspondence between steps or cycles in 
the system and time. In these type of architectures only relative time between 
different types of problems or trials can be compared to the data. Accuracy is often 
measured by the rate of correct responses or by the percentage of items recalled. 
Not all architectures can model all aspects of accuracy. An architecture like Soar, for 
example, is only interested in errors that result from incomplete or inconsistent 
knowledge. So errors due to ÒslipsÓ or forgetting are not considered interesting in 
the view of the Soar theory.

Since cognitive models give a detailed account of how a task is performed, they 
make it possible to do more elaborate testing than just reaction times and accuracies. 
If a trial consists of a number of operations before the response can be given, an 
attempt can be made to determine the individual latencies of the separate 
operations, for example by registering eye movement. Reaction times and accuracies 
tend to change over time, mainly due to learning. The influence of learning can only 
be disregarded in cases where the task is very simple or the participant is trained 
exhaustively. Most architectures can account for learning, so should be able to model 
effects of learning on performance. 

The quality of the predictions of a model is often expressed using the R2 measure, 
the proportion of variance the model can explain. Suppose we have an experiment 
that produces n data points, so for example a free-recall experiment in which 20 
words can be recalled, we have 20 percentages, one for each of the words, so n=20. 
The experiment produces data points (datai) that have an average of . The model 
makes a prediction of these data points (modeli). The explained variance can now be 
calculated using the following equation:

data
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(2.1)

An R2 of 0.90 or higher is generally considered good, while an R2 of 0.80 or lower is 
suspect. In that case there is some source of variance that is left unexplained by the 
model.

Although the R2 measure gives a rough estimate of the quality of the model, it does 
not take into account a number of factors. A first point to consider is the relation 
between the number of predicted values and the number of parameters that a model 
uses to make its predictions. If a model needs to tweak 20 parameters in order to be 
able to predict 20 data points, it is clearly not a good model, regardless of the 
proportion of variance it can explain. A second point is that this measure only 
considers the data points from the experiment as averages. As a consequence, any 
individual differences are discarded. This is no problem if all participants basically 
behave the same and individual differences are only due to noise that cannot be 
accounted for. The R2 measure, however, doesnÕt capture any systematicity within 
the behavior of single participants. 

One way to take into account that participants differ in their choices is to use a 
technique called model tracing. Anderson, Kushmerick and Lebiere (1993) used 
model tracing to assess a model of a route planning task. For each individual 
participant at each point of the problem solving process they compared the choice of 
the participant to the choice of the model at that point. If both choices agreed they 
allowed the model to continue to the next step. If there was no agreement, the model 
was forced to take the same step the participant took. In this particular experiment, 
it turned out that there was an agreement of 67% between the participantÕs choice 
and the modelÕs choice. In 20% of the cases, the participantÕs choice was the second-
best choice of the model. This agreement turned out to be quite good when 
compared to random-choice and hill-climbing strategies, and to be quite similar to 
individual differences between participants.

Although model tracing allows the scoring of models in which participants have to 
make a number of choices in each trial, it still provides no account of individual 
differences. The model of the task is still a generic model. To really account for 
individual differences, a generic model must be made that can be instantiated for 
each individual participant. An example is a model of a working memory task by 
Lovett, Reder and Lebiere (1997). The model can explain individual differences by 
varying a single parameter in the generic model. 
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In summary, a good model is a model that can approximate as many data points as 
possible using as few parameters as possible. In tasks with large individual 
differences, a model that can explain individual differences by varying parameters 
is better than a model that reproduces averages.

2.2 An overview of current architectures

In this section I will review four popular architectures of cognition, all of which 
have been reasonably successful in modeling various cognitive phenomena. The 
four architectures to be discussed, Soar, EPIC, 3CAPS and ACT-R, are all either pure 
symbolic or hybrid architectures. This means all of them share the idea that symbols 
are the right grain-size to study cognition. However, a pure symbolic theory 
assumes the underlying neural structure is irrelevant, while a hybrid theory argues 
that subsymbolic processing plays an important role.

Soar
The Soar (States, Operators, And Reasoning) architecture, developed by Laird, 
Rosenbloom and Newell (1987; Newell, 1990; Michon & Aky�rek, 1992), is a 
descendant of the General Problem Solver (GPS), developed by Newell and Simon 
(1963). Human intelligence, according to the Soar theory, is an approximation of a 
knowledge system. Newell deÞnes a knowledge system as follows (Newell, 1990, 
page 50):

A knowledge system is embedded in an external environment, with which it 
interacts by a set of possible actions. The behavior of the system is the sequence 
of actions taken in the environment over time. The system has goals about how 
the environment should be. Internally, the system processes a medium, called 
knowledge. Its body of knowledge is about its environment, its goals, its actions, 
and the relations between them. It has a single law of behavior: the system takes 
actions to attain its goals, using all the knowledge that it has. This law describes 
the results of how knowledge is processed. The system can obtain new 
knowledge from external knowledge sources via some of its actions (which can 
be called perceptual actions). Once knowledge is acquired it is available forever 
after. The system is a homogeneous body of knowledge, all of which is brought 
to bear on the determination of its actions. There is no loss of knowledge over 
time, though of course knowledge can be communicated to other systems.

According to this definition, the single important aspect of intelligence is the fact that 
a system uses all available knowledge. Errors due to lack of knowledge are no failure 
of intelligence, but errors due to a failure in using available knowledge are. Both 
human cognition and the Soar architecture are approximations of an ideal intelligent 
knowledge system. As a consequence, properties of human cognition that are not 
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part of the knowledge system approach are not interesting, and are not accounted 
for by the Soar architecture. 

The Soar theory views all intelligent behavior as a form of problem solving. The basis 
for a knowledge system is therefore the problem-space computational model (PSCM), a 
framework for problem solving based on the weak-method theory discussed in 
chapter 1. In Soar, all tasks are represented by problem spaces. Performing a certain 
task corresponds to reaching the goal in a certain problem space. As we have seen in 
chapter 1, the problem solving approach has a number of problems. To be able to 
find the goal in a problem space, knowledge is needed about all possible operators, 
about consequences of operators and about how to choose between operators if there 
is more than one available. SoarÕs solution to this problem is to use multiple problem 
spaces. If a problem, ÒimpasseÓ in Soar terms, arises due to the fact that certain 
knowledge is lacking, resolving this impasse automatically becomes the new goal. 
This new goal becomes a subgoal of the original goal, which means that once the 
subgoal is achieved, control is returned to the main goal. The subgoal has its own 
problem space, state and possible set of operators. Whenever the subgoal has been 
achieved it passes its results to the main goal, thereby resolving the impasse. 
Learning is also keyed to the subgoaling process: whenever a subgoal has been 
achieved, new knowledge is added to the knowledge base to prevent the impasse 
that produced the subgoal from occurring again. So, if an impasse occurs because the 
consequences of an operator are unknown, and in the subgoal these consequences 
are subsequently found, knowledge is added to SoarÕs memory about the 
consequences of that operator. 

In the same sense as the PSCM is a refinement of the idea of a knowledge system, the 
PSCM itself is further specified at the symbolic architecture level, the Soar 
architecture itself. Figure 2.5 shows an overview of the architecture, in which buffers 
and memory systems are represented by boxes, and processes that operate on or 
between these systems by arrows. Except for sensory and motor buffers, which are 
not modeled explicitly, Soar has two memory systems: a working memory and a 
production memory. Working memory is used to store all temporary knowledge 
needed in the problem solving process. The primary data structure in working 
memory is the goal stack, which stores all current goals in a hierarchical fashion. 
Tied to each of the goals on the stack is the current state of the problem space related 
to that particular goal, and, if present, the current operator. 

An example of the goal stack at a particular moment in a particular task is shown in 
figure 2.6 (Lehman, Lewis, Newell & Pelton, 1991). The task is language 
comprehension. Each triangle represents a goal with an associated problem space. 
The small squares, diamonds and circles represent states, and the arrows between 
them operators. The impasse-subgoal process is represented by the question mark 
and the dotted arrow to a subgoal. The theory behind this model assumes that 
sentence comprehension involves reading a sentence word-by-word. During the 
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Figure 2.5. Overview of the Soar architecture (from Newell, Rosenbloom & Laird, 1989)

Figure 2.6. Example of the goal stack in Soar in a language comprehension model (from Lehman, 
Lewis, Newell and Pelton, 1991).
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reading process a representation of the meaning of the sentence is assembled. So, at 
the top problem space, the goal is to comprehend a sentence. This goal is 
accomplished by alternating two operators: an attend operator, which reads the next 
word, and a comprehension operator, which augments or updates the current 
interpretation of the sentence. Comprehending a word is generally not possible in a 
single step, so after the comprehend operator is selected, an impasse will occur. This 
impasse generates the language subgoal, which tries to update the current 
interpretation of a sentence given a new word. The language subgoal has several 
operators to do this. A word can simply be linked in the interpretation. Sometimes a 
new word refers to a word read earlier, making it necessary to find the word referred 
to. In other cases the interpretation built earlier is wrong, and has to be 
reconstructed. The language space often offers too many choices to link words to 
each other, so a third subgoal, the constraint goal, is needed to create constraints on 
the possible linkings. This constraint space uses syntactic and semantic constraints 
to help making the choice. To find semantic constraints, it is sometimes necessary to 
use general world knowledge, which is found using the fourth and final subgoal, the 
semantics goal.

All knowledge needed for problem solving is stored in production memory in the 
form of rules. Although all knowledge is stored in production rules, they do not have 
the same active role production rules usually have. A rule in Soar cannot take actions 
by itself, it may only propose actions. So if Soar is working on a certain goal and is 
in a certain state, rules may propose operators that may be applied in the current 
state. Other rules may then evaluate the proposed operators, and may add so-called 
preferences to them, for example stating that operator A is better than operator B. 
The real decisions are made by the decision mechanism. The decision mechanism 
examines the proposals and decides which proposal will be executed. The decision 
mechanism is actually quite simple. If it is possible to make an easy decision, for 
example if there is just one proposal or preferences indicate a clear winner, it makes 
this decision, else it observes an impasse has been reached and creates a subgoal to 
resolve this impasse. So, the problem of choice in Soar is not handled at the level of 
individual production rule firings, which are allowed to occur in parallel, but at the 
level of the proposals of change made by these rules. The learning mechanism in 
Soar is called chunking. 

As mentioned before, learning is keyed to impasses and subgoaling. Whenever a 
subgoal is popped from the goal stack, Soar creates a new production rule with a 
generalization of the state before the impasse occurred as the condition, and the 
results of the subgoal as the action. Dependent on the nature of the impasse, this new 
rule may propose new operators, create preferences between operators, or 
implement operators or do other things. 

In the language comprehension example discussed earlier learning occurs at all 
levels of the model. At the level of the comprehension problem space, Soar may learn 
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a production rule that implements the comprehension operator for a specific word 
in a specific context. But Soar may also learn a production rule in the constraints 
problem space to generate a semantic constraint on possible meanings of a sentence. 

The knowledge system approach of Soar has a number of consequences. Because not 
all aspects of human cognition are part of the knowledge system approximation, 
some aspects will not be part of the Soar theory, although they contribute to human 
behavior as witnessed in empirical data. Another property of the Soar system is that 
all choices are deliberate. Soar will never make an arbitrary choice between 
operators, it either knows which operator is best, or it will try to reason it out. Since 
intelligence, according to the knowledge system definition, can only involve 
choosing the optimal operator based on the current knowledge, it does not say much 
about what the system has to do in the case of insufficient knowledge. 

An aspect of human memory that is not modeled in Soar is forgetting. According to 
the knowledge-system view this is a deviation from ideal intelligence, a weakness of 
the human mind. This rules out the possibility that forgetting has a function, for 
example to purge the memory from useless information, allowing for better access 
to useful information. An error such as choosing a sub-optimal strategy is also 
considered as aberration of rationality, and is therefore not part of Soar. To 
sometimes favor a sub-optimal strategy over the optimal strategy may on the other 
hand have advantages. Maybe one of the sub-optimal strategies has improved due 
to an increase in knowledge or a change in the environment, and has become the 
optimal theory. In many situations, the only way to discover how optimal a strategy 
is, is to just try it sometimes.

Since SoarÕs behavior deviates from human behavior with respect to aspects that are 
not considered rational by the Soar theory, the Soar architecture can only make 
predictions about human behavior in situations where behavior is not too much 
influenced by ÒirrationalÓ aspects. Another consequence of the fact that Soar only 
models rational aspects of behavior is the fact that its predictions are only 
approximate. An example is SoarÕs predictions about time. A decision cycle in Soar 
takes Ò~~100 msÓ, where Ò~~Ó means Òmay be off by a factor of 10Ó. So in a typical 
experiment SoarÕs predictions have to be determined in terms of the number of 
decision cycles needed, while the data from the experiment have to be expressed in 
terms of reaction times. If both types of data show the same characteristics, for 
example if both show the power law of practice, a claim of correspondence can be 
made.

One of the strong points of Soar is its parsimony. Soar has a single long-term 
memory store, the production memory, and a single learning mechanism, chunking. 
Soar also adheres to a strict symbolic representation. The advantage of parsimony is 
that it provides a stronger theory. For example, since chunking is the only learning 
mechanism, and chunking is tied to subgoaling, Soar predicts that no learning will 
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occur if there are no impasses. In a sense Soar sets an example: if one wants to 
propose an architecture with two long-term memory stores, one really has to show 
that it can not be done using just one. 

ACT-R
The ACT-R (Adaptive Control of Thought, Rational) theory (Anderson, 1993; 
Anderson & Lebiere, 1998) rests upon two important components: rational analysis 
(Anderson, 1990) and the distinction between procedural and declarative memory 
(Anderson, 1976). According to rational analysis, each component of the cognitive 
architecture is optimized with respect to demands from the environment, given its 
computational limitations. If we want to know how a particular aspect of the 
architecture should function, we Þrst have to look at how this aspect can function as 
optimal as possible in the environment. Anderson (1990) relates this optimality 
claim to evolution. An example of this principle is the way choice is implemented in 
ACT-R. Whenever there is a choice between what strategy to use or what memory 
element to retrieve, ACT-R will take the one that has the highest expected gain, 
which is the choice that has the lowest expected cost while having the highest 
expected probability of succeeding.

The principle of rational analysis can also be applied to task knowledge. While 
evolution shapes the architecture, learning shapes the knowledge and parts of the 
knowledge acquisition process. Instead of only being focused on acquiring 
knowledge per se, learning should also aim at finding the right representation. This 
may imply that learning has to attempt several different ways to represent 
knowledge, so that the optimal one can be selected. 

Both Soar and ACT-R claim to be based on the principles of rationality, although 
they define rationality differently. In Soar rationality means making optimal use of 
the available knowledge to attain the goal, while in ACT-R rationality means optimal 
adaptation to the environment. Not using all the knowledge available is irrational in 
Soar, although it may be rational in ACT-R if the costs of using all knowledge are too 
high. On the other hand ACT-R takes into account the fact that its knowledge may 
be inaccurate, so additional exploration is rational. Soar cannot handle the need for 
exploration very well, since that would imply that currently available knowledge is 
not used to its full extent.

The distinction between procedural and declarative memory is studied quite 
extensively in psychology. Although one should be careful to map distinctions from 
psychology onto cognitive architectures directly, the best way to explain this 
distinction is to assume different representations and different memory systems. The 
disadvantage of this differentiation is that the architecture becomes less simple than 
an architecture with only a single memory system, like Soar. On the other hand, 
ACT-R has no separate working memory and instead uses declarative memory in 
conjunction with an activation concept to store short-term facts. To keep track of the 
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current context, ACT-R uses a goal stack. The top element of the goal stack is called 
the focus of attention, a pointer to an element in declarative memory that represents 
the current goal. New goals can be pushed onto the goal stack, and the current goal 
can be popped (removed) from the stack. Figure 2.7 shows an overview of the 
processes and memory systems of ACT-R. In an appendix to this chapter, some 
practical aspects of using the ACT-R simulation system will be discussed.

ACT-RÕs symbolic level
ACT-R comprises two levels of description: a symbolic and a subsymbolic level. On 
the symbolic level representations in memory are discrete items. Processing at the 
symbolic level entails the recognize-act cycle typical for production systems, with 
declarative memory fulÞlling the role of working memory. Declarative memory 
uses so-called chunks to represent information. A chunk stores information in a 
propositional fashion, and may contain a certain fact, the current or previous goals, 
as well as perceptual information. An example of a goal chunk, in which two has to 
be added to six and the answer has not yet been found, is:

    GOAL23
ISA ADDITION
ADDEND1 SIX
ADDEND2 TWO
ANSWER NIL

In this example, ADDEND1, ADDEND2 and ANSWER are slots in chunk GOAL23, 
and SIX and TWO are fillers for these slots. SIX and TWO are references to other 

current context

Procedural memory

production 
compilation

Figure 2.7. Overview of the ACT-R architecture
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chunks in declarative memory. The ANSWER slot has a value of NIL, meaning the 
answer is not known yet.

Assume that this chunk is the current goal. If ACT-R manages to fill the ANSWER 
slot and focuses its attention on some other goal, GOAL23 will become part of 
declarative memory and takes the role of the fact that six plus two equals eight. 
Later, this fact may be retrieved for subsequent use.

Procedural information is represented in production memory by production rules. 
A production rule has two main components: the condition-part and the action-part. 
The condition-part contains patterns that match the current goal and possibly other 
elements in declarative memory. The action-part can modify slot-values in the goal 
and can create subgoals (and some other actions we will not discuss in detail here). 
A rule that tries to solve a subtraction problem by retrieving an addition chunk 
might look like:

IF the goal is to subtract num2 from num1 and there is no answer
AND there is a addition chunk num2 plus num3 equals num1

THEN put num3 in the answer-slot of the goal

This example also shows an important aspect of production rules, namely variables. 
Num1, num2 and num3 are all variables that can be instantiated by any value. So this 
rule can find the answer to any subtraction problem, if the necessary addition chunk 
is available. 

ACT-RÕs subsymbolic level
The symbolic level provides the basic building blocks of ACT-R. Using this level 
only already allows for several interesting models for tasks in which a clearly 
deÞned set of rules has to be applied. The symbolic level leaves a number of details 
unspeciÞed, however. The main topic that it delegates to the subsymbolic level is 
choice. Choices must be made when there is more than one production rule that can 
match, or when there is more than one chunk that matches a pattern in a production 
rule. Other matters that are taken care of by the subsymbolic level are accounts for 
errors and forgetting, as well as the prediction of latencies.

At the subsymbolic level each rule or chunk has a number of parameters. In the case 
of chunks, these parameters are used to calculate an estimate of the likelihood that 
the chunk is needed in the current context. This estimate, called the activation of a 
chunk, has two components: a base-level activation that represents the relevance of the 
chunk by itself, and context activation through association strengths with fillers of the 
current goal chunk. Figure 2.8 shows an example in the case of the subtraction 
problem 8-2=?. The fact that eight and two are part of the context increases the 
probability that chunks associated with eight and two are needed. In this case 2+6=8 
will get extra activation through both two and eight. The activation process can be 
summarized by the following equation:



2: Architectures of Cognition

42

(2.2)

In this equation, Ai is the total activation of chunk i. This total activation has two 
parts, a relatively Þxed base-level activation (Bi) and a variable part determined by 
the context (the summation). The summation adds up the inßuences for each of the 
elements in the current context. Whether or not a chunk is part of the current 
context is represented by Wj: if a chunk is part of the context, Wj=W/n, otherwise 
Wj=0. n is the total number of chunks in the context and W is some Þxed ACT-R 
parameter which usually has a value of 1. The Sji values represent the association 
strengths between chunks. 

The activation level of a chunk has a number of consequences for its processing. If 
there is more than one chunk that matches the pattern in a production rule, the 
chunk with the highest activation is chosen. Differences in activation levels can also 
lead to mismatches, in which a chunk with a high activation that does not completely 
match the production rule is selected. Such a chunk can be matched anyway, at an 
activation penalty, by a process called partial matching. Finally activation plays a 
role in latency: the lower the activation of a chunk is, the longer it takes to retrieve it. 
This retrieval time is calculated using the following equation:

(2.3)

Since a chunk is always retrieved by a production rule, this equation expresses the 
time to retrieve chunk i by production rule p. Besides the activation of the chunk, 
the strength of the production rule (Sp) also plays a role. The F and f parameters are 
Þxed ACT-R parameters, both of which default to 1. As the sum of activation and 
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strength decreases, the time to retrieve a chunk grows exponentially. To avoid 
retrieval times that exceed the order of a second, a retrieval threshold is deÞned. 
Chunks with an activation value below the threshold cannot be retrieved.

Choices between production rules are determined by estimates of their expected 
gain. To be able to calculate the expected gain of a certain rule, several parameters 
are used to make an estimate. The main equation that governs this estimate is:

(2.4)

In this equation  is the estimated probability of reaching the goal using 
production rule p, G is the value of the goal, and  the estimated cost of reaching 
the goal using p. The unit of cost in ACT-R is time. Suppose we are willing to spend 
10 seconds on a certain goal (G=10), and suppose there are two production rules p1 
and p2, and p1 reaches the goal 60% of the time ( ) in 2 seconds on average 
( ). Similarly,  and . In that case the expected gain of p1 is 4, 
and the expected gain of p2 is 3. So, p1 is selected in favor of p2, since its expected 
gain is higher. To be able to estimate all these values, ACT-R maintains a number of 
parameters with each production rule. Besides parameters to calculate the expected 
gain, production rules also have a strength parameter, comparable to activation of 
chunks. The strength parameter is another component that determines the latency of 
firing a production: productions with a higher strength take less time to match 
(equation 2.3).

Learning in ACT-R
While ACT-R has two distinct memory systems with two levels of description, 
distinct learning mechanisms are proposed to account for the knowledge that is 
represented as well as for its parameters. At the symbolic level, learning 
mechanisms specify how new chunks and rules are added to declarative and 
procedural memory. At the subsymbolic level, learning mechanisms change the 
values of the parameters. Objects are never removed from memory, although they 
may become virtually irretrievable. 

A new chunk in declarative memory has two possible sources: it either is a 
perceptual object, or a chunk created internally by the goal processing of ACT-R 
itself. ACT-RÕs internally created chunks are always old goals, as exemplified by the 
ADDITION-goal discussed earlier. Any chunk in declarative memory that has not 
originated from perception has once been the current goal in ACT-R. 

Learning new production rules is a more intricate process. Production rules are 
learned from examples. These examples are structured in the form of a dependency 
chunk. A dependency is a special type of chunk, which points to all the necessary 
components needed to assemble a production rule. Figure 2.9 shows the 
dependency structure necessary for the subtraction rule. In this example, three slots 
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of the dependency are filled: the goal slot contains an example of a goal in which the 
answer slot is still empty (nil), and the modified slot has an example of the same goal, 
but now with its answer slot filled. The constraints slot contains the fact that has been 
used to transform the original goal into the modified goal. Since a dependency is a 
chunk that obviously is not a perceptual chunk, it must be an old goal. In order to 
learn a new rule, a dependency goal must be pushed onto the goal-stack. After 
processing, the dependency is popped and the production compilation mechanism 
(in former versions of ACT-R called analogy) generalizes the dependency to a 
production rule. This scheme for production rule learning has two important 
properties: it is dependent on declarative memory, and assembling a rule is a goal-
driven process. 

Since the parameters at the subsymbolic level estimate properties of certain 
knowledge elements, learning at this level is aimed at adjusting the estimates in the 
light of experience. The general principle guiding these estimates is the well known 
BayesÕ Theorem (Berger, 1985). According to this principle, a new estimate for a 
parameter is based on its prior value and the current experience. 

The base-level activation of a chunk estimates the probability that it is needed, 
regardless of the current context. If a chunk was retrieved a number of times in the 
immediate past, the probability that it will be needed again is relatively high. If a 
chunk has not been retrieved for a long time, the probability that it will be needed 
now is only small. So, each time a chunk is retrieved, its base-level activation should 
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Figure 2.9. Example of the declarative structure needed to learn the subtraction production. In this 
case, the dependency has three Þlled slots: the original goal, the modiÞed goal in which the 
answer slot is Þlled, and a constraint, an old addition goal that was used to calculate the answer
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go up, and each time it is not used, it should go down. This is exactly what the base-
level learning mechanism does: it increases the base-level activation of a chunk each 
time it is retrieved, and causes it to decay over time. The following equation 
calculates the base-level activation of a chunk:

(2.5)

In this formula, n is the number of times a chunk has been retrieved from memory, 
and  represents the time at which each of these retrievals took place. So, the longer 
ago a retrieval was, the less it contributes to the activation. d is a fixed ACT-R 
parameter that represents the decay of base-level activation in declarative memory 
(default value=0.5). 

The other parameters are estimated in a similar fashion. For example, the probability 
of success of a production rule goes up each time it leads successfully to a goal, and 
goes down each time the rule leads to failure.

EPIC
Soar and ACT-R focus on central cognition. The EPIC (Executive-Process Interactive 
Control) architecture (Meyer & Kieras, 1997) instead stresses the importance of 
peripheral cognition as a factor that determines task performance. This stress on 
peripheral cognition is immediately apparent in the overview of EPIC in Þgure 2.10. 
Except for the cognitive processor with its associated memory systems, the main 
focus of the other three architectures discussed in this chapter, EPIC provides a set 
of detailed perceptual and motor processors. In order to study the role of perceptual 
and motor processors, it is also necessary to simulate a highly detailed task 
environment. The perceptual modules are capable of processing stimuli from 
simulated sensory organs, sending their outputs to working memory. They operate 
asynchronously, and the time they require to process an input depends on the 
modality, intensity and discriminability of the stimulus. The time requirements of 
the perceptual modules, as well as other modules, are relatively Þxed, and serve as 
an important source of constraints. 

EPICÕs cognitive processor is a parallel matcher: in each cycle, which takes 50 ms, 
production rules are matched to the contents of working memory. Each rule that 
matches is allowed to fire, so there is no conflict resolution. It is up to the modeler to 
prevent this parallel firing scheme from doing the wrong thing. Whereas both Soar 
and ACT-R have a production firing system that involves both parallel and serial 
aspects, EPIC has a pure parallel system of central cognition. As a consequence, EPIC 
predicts that serial aspects of behavior are mainly due to communication between 
central and peripheral processors and structural limitations of sense organs and 
muscles. Corresponding to this idea that processing bottlenecks are located in the 

Bi t( ) t t– j( ) d–

j 1=

n

∑log=

t j



2: Architectures of Cognition

46

periphery, EPIC has no goal stack in the sense of Soar and ACT-R. EPIC can 
represent multiple goals in a non-hierarchical fashion, and these goals can be 
worked on in parallel, provided they do not need the same peripheral resources. If 
they do, as is the case in experiments where participants have to perform multiple 
tasks simultaneously, executive processes are needed to coordinate which of the 
goals belonging to the tasks may access what peripheral processors. Because EPICÕs 
executive processes are implemented by production rules, they do not form a 
separate part of the system. EPICÕs motor processors coordinate muscle commands. 
Movements are carried out in two phases: movement preparations and movement 
execution. During the execution of a movement the next movement can be prepared. 

An important aspect of EPICÕs modular structure is the fact that all processors can 
work in parallel. Once the cognitive processor has issued a command to the ocular 
motor processor to direct attention to a spot, it does not have to wait until the visual 
processor has processed a new image. Instead, it can do something else. In a dual-
task setting the cognitive processor may use this extra time to do processing on the 
secondary task. Although all the possibilities for parallel processing increase the 
flexibility of the architecture, it doesnÕt offer many constraints. The modeler has a 
choice between creating a very clever parallel model and a pure serial model of a task 
by providing other executive production rules. This can only be justified if it can be 
shown that participants exhibit both types of behavior. In a sense, what was one of 
the virtues of Soar is one of the vices of EPIC: its lack of parsimony. Another 
drawback of EPIC as a cognitive modeling tool, is that it does not incorporate 

Figure 2.10. Overview of the EPIC architecture (from Meyer & Kieras, 1997)
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learning. As has been discussed in chapter 1, it can be doubted whether information 
processing and learning can be studied separately.

3CAPS
While EPIC proposes that most constraints posed on the architecture are due to 
structural limitations of sense organs and muscles, 3CAPS (Just & Carpenter, 1992) 
proposes limitations on working-memory capacity as the main source of 
constraints. 3CAPS has a working memory, a declarative memory and a procedural 
memory. As in ACT-R, memory elements have activation values. As long as the 
activation of an element is above a certain threshold, it is considered part of 
working memory and can be accessed by production rules. Capacity theory, 
3CAPSÕs foundation, speciÞes that a certain amount of activation units is available. 
These activation units can be used to either keep elements active in working 
memory or to propagate activation by Þring production rules. If the maximum 
amount is reached, both working memory maintenance and production Þring 
processes get less activation units than they need. The result of activation 
deprivation for working memory is that memory elements may be forgotten 
prematurely. If processing gets less activation than needed, production rules have to 
Þre multiple times to get the activations of target working memory elements above 
the threshold, effectively slowing it down. 

The 3CAPS theory views the limitation in activation units as a source of individual 
differences. It has been successful in explaining individual differences in language 
comprehension, relating performance differences in reading and comprehending 
sentences to working memory span (Just & Carpenter, 1992). A limitation of 3CAPS 
is that it does not incorporate learning.

A summary of the four architectures
Figure 2.11 summarizes the properties of the four architectures discussed in this 
section. Each of the architectures has its own central theory, and its own roots. Most 
of the architectures settle on two long-term memory stores, one for procedures and 
one for facts. All of them have some form of working memory, although in the case 
of ACT-R this is only a goal stack with pointers to declarative memory. Both ACT-R 
and 3CAPS have an activation-based mechanism to represent availability of 
memory elements. Although the mechanisms behind them differ, they share some 
characteristics. 3CAPS poses a strict activation limit. The consequence of exceeding 
the limit is forgetting and longer reaction times. These consequences, however, also 
concur with ACT-RÕs effects of low activation. If the current context in ACT-R 
contains many elements, spreading activation is divided over all these elements, 
resulting in lower activation of associated elements. Although there is no explicit 
activation limit in ACT-R, thinning out activation may lead to a sudden decrease in 
performance when elements drop below the retrieval threshold. At least the 
predictions of both mechanisms are roughly equivalent, although it may turn out 
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that they differ in subtle aspects. Not all architectures encompass learning and 
peripheral cognition. Only ACT-R models both, although peripheral cognition only 
in a recent extension (ACT-R/PM). This extension borrows many ideas from EPIC. 
Architectures tend to seek constraints in an area that is related to the central theory, 
and leave other areas unconstrained. Probably all the architectures still have too few 
constraints. 

Soar ACT-R EPIC CAPS

Central theory Problem solving Rational Analysis Embedded 
cognition

Capacity theory

Roots ArtiÞcial 
Intelligence

Cognitive 
Psychology

Human-Computer 
Interaction

Language 
Processing

Type Symbolic Hybrid Symbolic (central 
cognition)

Hybrid

Learning yes yes no no

LTM systems 1 (Productions) 2 (Productions 
and Facts)

2 (Productions 
and Facts)

2 (Productions 
and Facts)

STM systems Working memory Goal stack Working memory, 
several sensory 
stores

Limited capacity 
working memory

Detailed latency 
predictions

no yes yes yes

Parallel 
production 
Þring

yes no yes yes

Main source of 
constraints

Single LTM, single 
learning 
mechanism

Small production 
rules, principle of 
rationality

Peripheral 
modules

Limited capacity

Parsimony ++ +/- - +/-

Peripheral 
cognition

no extension (ACT-R/
PM)

yes no

Figure 2.11. Comparison between architectures
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2.3 Neural network architectures

As of yet, there are no general neural network architectures. The four architectures 
discussed are either purely symbolic or hybrid. The hybrid architectures borrow 
some ideas from neural networks in order to calculate activation levels and other 
parameters, but have a symbolic production system engine as main processor. 

Lebiere & Anderson (1993) have developed a neural network implementation of 
ACT-R. This implementation proved to be a useful exercise, since it offered 
additional constraints to ACT-R. One of the changes made to ACT-R due to the 
constraints posed by the neural network implementation is the fact that only goals 
are matched in parallel, and any remaining matches have to be done serially. This is 
curious, since other architectures, most notably 3CAPS, claim parallel matching is a 
Òneurally inspiredÓ feature. But a ÒtrueÓ neural network architecture cannot be an 
implementation of a symbolic architecture, since according to connectionists the 
level of subsymbolic elements is the right level of abstraction to study cognition. 
Before a ÒtrueÓ neural network architecture of cognition can be developed, a number 
of problems has to be solved. 

A first problem is the binding problem. In a symbolic architecture it is easy to create a 
temporary binding between a variable in a production rule and elements in working 
memory. In neural networks this is much harder. The simplest way to create a 
temporary link between two structures is to activate a connection between the two. 
But allowing for connections between arbitrary concepts requires an infeasibly large 
number of connections. An alternative to a direct connection is to represent a 
temporary connection between two concepts by a synchronous activation pattern. In 
that way arbitrary concepts can be combined without the need for a physical 
connection between them. The rest of the neural architecture has to be designed to 
handle this kind of representation, of course, producing networks with a totally 
different topology from what is currently used in neural network research. Shastri & 
Ajjanagadde (1993) designed a network based on this idea, which is capable of 
representing both short-term and long-term facts, and which has the ability to reason 
with those facts. 

A second problem is stability. Neural networks are famous for their capacity to learn. 
Maintaining this knowledge is harder though. If a standard three-layer network is 
trained on a certain set of data, and new information is added, the old information is 
forgotten, unless special care is taken to present new information along with old 
information. Since we cannot count on the outside world to orchestrate presentation 
of new and old information in the way the network would like it, McClelland 
hypothesizes this is a function of the hippocampus. Another solution is to design 
networks that are not as susceptible to forgetting as the standard networks. 
GrossbergÕs (Carpenter & Grossberg, 1991) ART-networks are an example of this 
idea. An ART network first matches a new input with stored patterns. If the new 
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input resembles one of the stored patterns closely enough, learning allows the new 
input to interact with the stored pattern, possibly changing it due to learning. If a 
new input does not resemble any stored pattern, a new node is created to accumulate 
knowledge on a new category. In this way, new classes of input patterns do not 
interfere with established concepts.

A third problem is serial behavior. Many cognitive tasks, most notably problem 
solving, require more than one step to be performed. In order to do this, some control 
structure must be set up to store intermediate results. Recurrent networks (see, for 
example, Elman 1993) have this capability in some sense. A recurrent network is a 
three layer network with an additional ÒstateÓ that feeds back to the hidden layer of 
the network. If several inputs are presented in a sequence, for example in processing 
a sentence, this state can be used to store temporary results. 

Although solutions have been found for each of the roadblocks to a fully functional 
neural architecture of cognition, these solutions do not add up (yet). Notably 
solutions to the binding problem demand radical changes in the architecture of a 
neural network, requiring new solutions to the other problems as well. But the fact 
that the brain is built out of neurons promises that there is a solution to all of the 
problems. But the debate on what the right grain-size of studying cognition is, has 
not ended yet.

2.4 Machine learning

All knowledge in the long-term memory stores of an architecture is somehow 
acquired at some point in time, unless it is inborn. Since only Soar and ACT-R 
model learning, the other architectures can not even address this issue. A model of a 
task that fully addresses the issue of learnability starts with a body of knowledge 
that is not speciÞcally tailored for the task, but is a set of general problem solving 
methods and a large database of facts. Given the task instructions, it should be able 
to learn some initial task-speciÞc knowledge, which is reÞned during practice. Both 
Soar and ACT-R provide the tools to do this in the form of learning mechanisms. 
But these mechanisms must be applied within a context of prior knowledge to be 
able to get a complete picture of learning.

The general problem of how to extract knowledge from examples, instruction and 
experience is studied in machine learning, a subdiscipline of artificial intelligence. 
Although machine learning is not primarily aimed at human cognition, it can give 
an overview of available methods. The task a machine learning algorithm has to 
carry out is often described as concept learning: given some examples of a concept 
and sometimes some prior knowledge, derive a knowledge representation of the 
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concept. A representation of a concept can be used to decide whether some new 
example is an example of the concept or not. 

Carbonell (1990) distinguishes four machine learning paradigms: the inductive, 
analytic, genetic and connectionist paradigm. The inductive paradigm assumes a 
concept has to be derived from a set of examples. Examples can be positive (x is an 
example of the concept) or negative (y is not an example of the concept). The goal of 
an inductive machine learning algorithm is to find a generalization that covers all the 
positive examples, but excludes all negative ones. This generalization is based 
purely on the features of the examples themselves, and not on any other knowledge. 
The analytic paradigm has the opposite assumption that there is a rich and complete 
domain theory, from which the concept can be derived in principle. But since 
deriving things from the domain theory must be guided by some utility aspect, 
examples are used as a catalyst. In the analytic paradigm often only a single example 
is needed to create a concept description. 

To take an example, suppose the concept of a swan has to be derived by an inductive 
paradigm. This paradigm would require a set of examples, consisting of swans and 
non-swans. Suppose this set contains three examples, a large white swan with a 
yellow beak, a large white swan with an orange beak, a small white duck with a 
yellow beak. Possible characterizations of a swan in this case are: large, or large and 
white, since both of these characterizations include both swans and exclude the 
duck. An analytic algorithm works in another way. It supposes we show some object 
to a reasoning system and ask it whether or not it is a swan. Suppose the object has 
the following properties: wings, white, large, orange beak, lays eggs, flies. Now the 
reasoning system needs to have knowledge to answer this question. It knows, for 
example that a swan is a large white bird that birds have wings, can fly and lay eggs. 
It also knows that airplanes may be white and large too, and are also able to fly. After 
some deduction, it may conclude that the object is indeed a swan. The analytic 
algorithm may now learn a new rule about swans: if the object is large, white, flies 
and lays eggs, it is a swan. The orange beak is not important, since it has not 
contributed to the decision, and the fact that the swan has wings is ignored because 
it is implied by the fact that it can fly. 

Both the genetic and the connectionist paradigm can be seen as special cases of the 
inductive paradigm, since both try to generalize concepts solely using examples. But 
each of these approaches has grown into a separate research community. The genetic 
paradigm assumes that the choice of whether or not knowledge should be learned is 
based on utility instead of truth. This idea is not unique for the genetic approach, 
since the utility of knowledge is also central in ACT-R. The assumption the genetic 
approach makes, is that the mechanisms for determining the utility of a certain 
knowledge element are the same as the mechanisms nature uses to determine the 
utility of a certain organism that new knowledge is derived in the same fashion as 
new organisms are conceived. In genetic algorithms knowledge is represented by 
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strings of symbols with a fixed length and alphabet. Usually a genetic algorithm 
starts with a set of random strings, the initial population. For each of these strings a 
fitness value is determined, a value that estimates the utility of the knowledge coded 
by the string. Subsequently a new generation is calculated. Candidate member for 
the new generation are selected from the old generation using a randomization 
process that favors strings with a high fitness value. The new candidates are then 
subjected to a mutation process: some pairs of strings are mutated by a cross-over 
operator that randomly snaps each string in two pieces and exchanges the two pieces 
between strings. Other strings are mutated by a point-mutation operator that 
randomly changes a single token in the string. This new generation of strings is 
subjected to the same procedure. The idea is that the average fitness increases with 
each new population. To prove this idea, Holland (1975) derived the schema 
theorem. This theorem shows that fragments of a string (called schemas) that 
contribute to its overall fitness have a higher than average chance to appear in the 
new population, while schemas that do not contribute will gradually disappear. 
Consequently, in the long term the schemas with the highest fitness will survive.

The connectionist paradigm, although it has many flavors, can also be considered as a 
form of inductive learning. Take for example the popular three-layer feed-forward 
networks. In these networks an input is fed into the input layer of a network, which 
is connected to a hidden layer. The hidden layer is connected to an output layer that 
makes a final classification. After a classification has been made, the 
backpropagation algorithm is used to change the connection weights in the network 
based on the discrepancy between the required output and the actual output. Links 
which, on average, contribute to successful classifications will be strengthened, 
while links that do not contribute to success will be weakened. Cells in the hidden 
layer will often be feature-detectors, a role that shows close resemblance to 
HollandÕs schemata.

If one looks at the different paradigms, it is apparent that there is a difference in the 
number of examples the algorithms need before a reasonable successful 
generalization can be made. While an analytical algorithm sometimes only needs a 
single example, the connectionist and genetic algorithms often need thousands of 
trials before they converge. An analytical algorithm on the other hand needs to do a 
lot of processing and requires background knowledge to arrive at a generalization. 
New knowledge is often logically deduced from old knowledge, ensuring that if the 
domain knowledge is correct, the newly derived knowledge is also correct. This 
distinction is more like a dimension, since algorithms can be conceived of that use 
both domain knowledge and some generalization based on examining multiple 
examples. We will call this dimension the rational-empirical dimension.

Another issue in machine learning that is often left implicit, is the goal of learning. 
Sometimes learning is aimed at obtaining new knowledge. For example, if a neural 
network learns to discriminate letters on the basis of features or pixel patterns, it has 
learned new concepts. But learning can also be aimed at speeding up an existing 
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skill, by compiling knowledge into more efficient representations. This second goal 
of learning is also very important in human learning, and is in general described by 
the power law of practice, as discussed in chapter 1. Speedup and new knowledge 
are not always separate goals. As is also discussed in chapter 1, a speedup in 
processing may make some instances of problems tractable that were previously 
intractable. In that case speedup opens the road to new knowledge. So this second 
distinction can also be seen as a dimension, which we will call the exploration-
performance dimension.

While machine learning algorithms often take extreme positions on both 
dimensions, human learning has to be both rational and empirical, and aimed at 
both performance and exploration. Figure 2.12 shows how some current learning 
algorithms and theories can be positioned on the two learning dimensions. 
Induction algorithms tend to be aimed at exploration. The inductive algorithms 
based on logic often use some sort of inference to arrive at the best solution given a 
set of examples. So this kind of algorithm is rational in NewellÕs definition, in the 
sense that they use the available knowledge as rationally as possible, but also 
empirical, since they use multiple examples. Genetic algorithms and neural 
networks lack a rational component, and derive their generalizations from principles 

Soar 
Chunking

Rational

ACT-R 
production 
compilation

Empirical

EBL

ACT-R subsymbolic 
learning

ACT-R chunk 
learning

Genetic 
algorithms

Neural 
networks

Exploration

Performance

Figure 2.12. Learning algorithms and theories shown on the exploration-performance dimension 
and on the rational-empirical dimension.

Behaviorist learning
logic-based 
Induction 
algorithms
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inspired by genetics and neuroscience. Behaviorist principles of learning can also be 
found in this area: they are strictly empirical, and are not interested in performance. 
This may well be one of the reasons why connectionists are sometimes falsely 
accused of being a new breed of behaviorists. Analytical algorithms, exemplified by 
explanation-based learning (EBL), are on the opposite side of the figure. EBL is 
strictly rational in the sense that all new knowledge is specialized domain 
knowledge, and is based on a single example. As a consequence it can not gather any 
new knowledge. SoarÕs chunking mechanism resembles EBL in the sense that 
learning is based on a single example, summarizing processing in a subgoal, and its 
stress on rationality. 

ACT-RÕs learning mechanisms are harder to classify, since they cannot really be 
considered as learning algorithms. So their positions in the diagram are 
approximate. The chunk learning mechanism refers to the fact that ACT-R stores 
past goals in declarative memory. This may serve several functions. An old goal may 
just help to increase performance, for example of the fact that three plus four equals 
seven is memorized as a result of counting it. But a chunk may also contain 
information gathered from the outside world, or may contain a hypothesis posed by 
reasoning. If exploration is considered to be a function that proposes a new 
knowledge element as something that may be potentially useful, the chunk-learning 
mechanism is more an exploration mechanism than a performance increasing 
mechanism. Since new chunks are single examples, and are based on reasoning, they 
are more a product of rational than empirical learning. The empirical aspect of 
learning is covered by ACT-RÕs subsymbolic learning mechanisms. By examining 
many examples, ACT-R can estimate the various parameters associated with chunks 
and productions. But contrary to other subsymbolic learning algorithms, parameter 
learning is mainly aimed at performance increase. A higher activation allows 
quicker retrieval of a declarative chunk, and a better estimate of expected-gain 
parameters allows for more accurate strategy choices. In order to compile a new 
production in ACT-R, a detailed example must be available in the form of a 
dependency structure. Although production compilation can be used in any possible 
fashion, it is not feasible to create large amounts of production rules that contain 
uncertain knowledge. So the most likely role of production compilation is to increase 
the efficiency of established knowledge. 

Although we have discussed ACT-RÕs mechanisms separately, they usually work in 
concert. So some new knowledge may initially be learned as a chunk. The 
parameters of this chunk may be learned by parameter learning. If parameter 
learning has established that the chunk serves an intermediate function in a problem 
solving step, it may be transformed into a production rule. So although ACT-RÕs 
learning mechanisms are not fully fledged learning algorithms, they have the 
capability, in principle, to cover the whole spectrum of learning means and goals. In 
later chapters I will show how these primitive learning mechanisms can serve as 
building blocks for a theory of skill learning.
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2.5 Conclusions

For the purposes of this thesis, accurate modeling of learning processes in complex 
problem solving, the ACT-R architecture turns out to be the clear winner with 
respect to the comparisons made in this chapter. Neural networks Þrst have to solve 
a number of problems before they can achieve the architecture stadium, and 3CAPS 
and EPIC do not encompass learning. Although Soar supports learning, it is rigid in 
the sense that it is mainly aimed at performance increases, and gaining new 
knowledge is hard to model. SoarÕs theoretical assumptions are the main problem: 
by deÞning intelligence as using available knowledge, it discounts the importance 
of gaining new knowledge, and by ignoring performance aspects of behavior it 
makes detailed predictions of behavior impossible. When the learning mechanisms 
of ACT-R are examined in the context of machine learning, it turns out that they can 
in principle cover the whole spectrum of learning.

Although ACT-R is the vehicle I will use in the rest of this thesis, some of SoarÕs ideas 
will resurface. The idea to key learning to impasses in problem solving is not only 
rational in the Soar sense, but also, as we will see in chapter 5, in ACT-RÕs. 

2.6 Appendix: The ACT-R simulation system

The ACT-R simulation system is a program written in Common Lisp. The basic 
version is based on a command-line interface in Lisp. Typically, a user loads 
Common Lisp, loads ACT-R and starts working on a model. A model in ACT-R, 
which is just a text Þle, usually consists of four areas: global parameter declarations, 
the contents of declarative memory, the contents of procedural memory and lisp-
code to run the particular experiment.

There are two types of declarations for declarative memory: the specification of the 
chunk types and the initial contents of declarative memory. Although chunk types 
do not change during the execution of a model, the contents of declarative memory 
almost always does, since all the goals and subgoals ACT-R creates are added to it. 
In some models, a specification is added that gives the initial chunks an activation 
value that differs from the default value 0, for example to reflect that it is a chunk 
that has been in declarative memory for a long time. The next part of a model is an 
initial set of production rules. Sometimes initial parameters are specified for these 
rules. Finally some code is added to run an experiment, and to store results.
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Figure 2.13 show an example of a very small model, a model that tries to solve an 
addition-problem. It knows only two addition-facts: 3+4=7 and 4+2=6. Whenever it 
tries to solve an addition-problem, two rules are applicable: the do-addition rule that 
tries to retrieve a matching addition-fact and the do-addition-fail rule that give 
ÒdonÕt knowÓ as an answer. The parameter declaration for the do-addition-fail rule 
makes sure that its expected gain is lower than the expected gain of the do-addition 
rule. ACT-R will therefore first try do-addition, and only when that rule fails will do-
addition-fail be allowed to fire. 

The Lisp code consists of a function that goes through n addition-problems. It 
generates a random addition-problem, which is given to the model. After one of the 

; Very simple ACT-R example model

; Parameter declarations: switch on 
rational analysis and set Activation Noise 
to 0.1
(sgp :era t :ans 0.1)

; chunk-type declarations
(chunk-type addition-problem arg1 arg2 
answer)
(chunk-type addition-fact addend1 addend2 
sum)

; initial contents of declarative memory

(add-dm
(fact34 

isa addition-fact
addend1 3
addend2 4
sum 7)

(fact42
isa addition-fact
addend1 4
addend2 2
sum 6))

; contents of production memory

(p do-addition
=goal>

isa addition-problem
arg1 =num1
arg2 =num2
answer nil

=fact>
isa addition-fact
addend1 =num1
addend2 =num2
sum =num3

==>
=goal>

answer =num3)

(p do-addition-fail
=goal>

isa addition-problem
answer nil

==>
=goal>

answer dont-know)

; Parameter declaration for do-addition-
fail

(spp do-addition-fail :r 0.2)

; Lisp code to run sample experiment

(defun do-it (n)
(let ((result 0))

(dotimes (i n)
(let ((task (gentemp "goal")))
(eval `(add-dm 

(,task isa addition-problem 
arg1 ,(random 5) 
arg2 ,(random 5))))

(eval `(goal-focus ,task))
(run 1)
(when 

(equal (+ 
(eval `(chunk-slot-value ,task 

arg1))
(eval `(chunk-slot-value ,task 

arg2)))
(eval `(chunk-slot-value ,task 

answer)))
(setf result (1+ result)))

                (pop-goal)))
(format t "~%Accuracy = ~6,3F" (/ 

result n))))

Figure 2.13. Example ACT-R model
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production rules has fired, the lisp-function checks whether the answer is correct. 
After all n problems have or have not been solved, the function gives an accuracy 
score. 

The following trace fragment illustrates the output of the model:

? (do-it 2)
 Cycle 0  Time  0.000: Do-Addition-Fail
 Matching latency:  1.000
 Action latency:  0.050
 
 Stopped at cycle 1
 Run latency:  1.050
 Cycle 1  Time  1.050: Do-Addition
 Matching latency:  0.950
 Action latency:  0.050
 
 Stopped at cycle 2
 Run latency:  1.000
Accuracy =  0.500

Figure 2.14. The ACT-R environment
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This fragment goes through two addition-problems. The first problem fails, but the 
second succeeds. The trace shows relatively little detail, but additional tracing 
options can be used to get more information. 

Although ACT-R can be used from a command-line interface, an elaborate 
environment is also offered. Figure 2.14 shows some of the viewers available in the 
environment, using the addition example. In the environment, models can be 
executed step-by-step. At each moment the current contents of declarative and 
procedural memory can be viewed, as well as the rules that are applicable to the 
current goal. The environment also provides for a syntax-directed editor that makes 
it easier for novices to enter chunks and production rules. Finally, the environment 
supports a tutoring function that can be used in combination with a web-based 
tutorial. The ACT-R code, as well as the tutorial and the code for the environment, is 
available from http://act.psy.cmu.edu The models discussed in this thesis are listed 
in an appendix at the end of the thesis, and are all available from a web page as well.
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3.1 Introduction

In this chapter I will discuss an experiment that investigates performance changes 
due to learning while performing the task of precedence constrained scheduling 
(PCS). In PCS, a number of tasks has to be assigned to a number of workers. Each of 
the workers has a Þxed number of hours to perform tasks. Each of the tasks can 
have a different (but integer) duration. Finally, a number of order constraints has to 
be met: sometimes a certain task has to be Þnished before another task may start. All 
workers are assumed to work in parallel. A simple example of this problem is:

There are two workers, each having 6 hours
Task A takes 1 hour
Task B takes 2 hours
Task C takes 3 hours
Task D takes 3 hours
Task E takes 3 hours
The following constraints have to met:
A before B
A before D
C before E

A solution to this example is to assign ABD to one worker, and CE to the other. This 
solution is straightforward, since the constraints are satisfied by the order within a 
single worker. So ÒA before BÓ and ÒA before DÓ are satisfied by assigning ABD to 
a worker, and ÒC before EÓ is satisfied by assigning CE to the second worker. A 
solution in which the constraints are ÒcrossedÓ is to assign ABE to one worker and 
CD to the other. In that case the ÒA before DÓ and ÒC before EÓ constraints span both 
workers. Problems can be made more difficult by increasing the number of tasks and 
workers, but also by creating problems in which the constraints span multiple 
workers for any solution.

Although there are many NP-complete problems that might be used as the task in 
an experiment, not all of them are equally suitable. PCS has the following attractive 
properties:

1. The task is easy to explain, since it corresponds to a task participants may be 
familiar with (scheduling in general).

2. It is improbable that participants have any relevant task-speciÞc knowledge.

3. It is relatively easy to create challenging instances.

4. The task can be presented in several different ways, one of which requires 
participants to solve problems completely by heart.

The version of the problem I will use in the experiment uses instances in which the 
tasks always take up all available time of the workers. So, the duration of all the tasks 
together is equal to the number of workers multiplied by the number of hours each 
worker has. This sub-problem will be called fully-filled precedence constrained 
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scheduling (FF-PCS). Restricting the selection of instances to a sub-problem is in a 
sense dangerous, because a sub-problem of an NP-complete problem is not 
necessarily NP-complete itself. Fortunately, FF-PCS is also NP-complete. A proof of 
this fact is given in an appendix to this chapter.

3.2 Experiment

The goal of the experiment is exploration. The general expectation is that if 
participants have to solve a series of scheduling problems, their performance will 
generally improve due to learning. But what causes these improvements? Is it a 
matter of gradual speed-up, or do participants make discoveries that enable them to 
use a more effective approach to the problem? Analysis of verbal protocols will 
hopefully shed some light on this issue. 

To serve as experimental stimuli, a set of instances with varying difficulty was 
created. The main determiner for difficulty is the number of workers (m), which 
ranged from 1 to 3 in the experiment. The stimuli were presented to participants 
using two different interfaces (figure 3.1), implemented in HyperCard on the 
Macintosh. The direct-manipulation interface, shown in the top panel of figure 3.1, 
shows both a propositional representation and a visual representation of the task. 
The propositional representation lists the constraints of the schedule using short 
sentences such as ÒA before BÓ. In the visual representation, tasks are represented by 
the white boxes with letters in them. The length of each box represents the duration 
of a task. Workers are represented by grey rectangles. As with the tasks, the length 
of the rectangle represents the number of hours a worker has. Participants can create 
a schedule by dragging the task boxes onto the worker rectangles. In the figure task F 
has already been dragged onto the bottom rectangle. In the propositional interface 
participants had to perform the planning process entirely by heart. The only thing 
the interface allows participants to do is to enter the solution by clicking on the 
rectangles containing the letters (A-F in the example) representing the tasks, the 
Ònext workerÓ-button to end the task list of a worker and move on to the next one, 
and a ÒClearÓ-button to start over again. Both interfaces contain a ÒReadyÓ button 
which the participant has to click after entering the solution. If the answer is correct 
the program will move on to the next scheduling problem, else feedback will be 
provided and the participant has to try again.

To see whether participants develop specialized strategies for specific types of 
instances, approximately half of the instances has a solution that conforms to a 
common pattern. This pattern is outlined in figure 3.2 for instances with two and 
three workers. A representation similar to the direct-manipulation interface is used 
(the two worker example is the solution to the instance in figure 3.1). These instances 
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are particularly hard due to the fact that many of the precedence constraints in this 
pattern cross workers in the solution. 

Although this experiment is primarily exploratory, a number of expectations can be 
formulated. A first expectation is that performance will increase due to experience: 
a learning effect. A second expectation is that there will be an effect of the type of 
interface: the direct-manipulation interface is easier, so will lead to better 
performance. A third expectation is that instances conforming to the pattern in 
figure 3.2 will be harder to solve than other instances. A final expectation is that 
participants will discover some new strategies to solve the scheduling problem. 
Evidence for new strategies has to found by protocol analysis, or by sudden jumps 
in performance.

Figure 3.1. Two interfaces used in the experiment. The top panel shows the direct-manipulation 
interface in which participants can drag around boxes representing the tasks, while the bottom 
panel shows the propositional interface in which participants have to solve the problem by 
heart.
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Method

Participants. Eighteen undergraduate students of the University of Groningen were 
recruited to participate in this experiment. The experiment lasted 2 hours, including 
instructions and a small break. Participants were paid Fl. 20 for their efforts. 

Materials. Sixteen FF-PCS instances were created of the following types:

• R1 (2 instances): a single worker with four or Þve tasks

• A2 (10 instances): two workers, conforming to the pattern in Þgure 3.2

• R2 (8 instances): two workers, not conforming to any speciÞc pattern

• A3 (3 instances): three workers, conforming to the pattern in Þgure 3.2

• R3 (3 instances): three workers, not conforming to any speciÞc pattern

Procedure. Participants were randomly assigned to two groups. Group 1 started the 
experiment with the direct-manipulation interface, and switched to the 
propositional interface for the second half of the experiment. Group 2 started with 
the propositional interface and switched to the direct-manipulation interface for the 
second half. Figure 3.3 shows the exact experimental procedure for each of the two 
groups. At the start of the experiment, participants were instructed about the task 
and the particular interface they started with. To ensure participants properly 
understood how to handle the interface, they were given an example problem with 
its solution, after which they had to enter the solution. After the break participants 
were told the task would remain the same, but the way in which they had to enter 
the answer had changed. They then again had to enter the solution of an example 

Figure 3.2. Schematic diagrams of the solutions to half of the instances presented to the participants 
(an example for two and for three workers is shown). The representation is similar to the direct-
manipulation interface: boxes represent tasks and the length of a box represents its duration. 
The arrows represent precedence constraints. Note that the letters in the boxes are just examples 
and differ between instances.
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using the new interface. Participants were asked to think aloud during the 
experiment, which was recorded using an audio cassette recorder. The software 
registered and time-tagged all actions participants performed during the 
experiment.

Analysis of the results
To analyze the results of the experiment, a number of methods will be used. First, 
we will examine the solution times, and see if participants become faster, and 
whether or not there is transfer between the Þrst and the second interface. Secondly, 
we will do a protocol analysis on the verbal protocols in order to get a deeper 
insight into what strategies participants learn during the experiment. 

3.3 Analysis of solution times

An informal analysis
There are a number of potential factors that inßuence the solution time for each 
instance:

Group 1 Group 2

Start of experiment Start of experiment

Direct 
manipulation 
interface

one R1 problem Propositional 
interface

one R1 problem

one R2 problem one R2 problem

Þve A2 and three R2 
problems, in 
random order

Þve A2 and three R2 
problems, in 
random order

Break Break

Propositional 
interface

one R1 problem Direct 
manipulation 
interface

one R1 problem

one R2 problem one R2 problem

Þve A2 and three R2 
problems, in 
random order

Þve A2 and three R2 
problems, in 
random order

three A3 and three 
R3 problems, in 
random order

three A3 and three 
R3 problems, in 
random order

End of experiment End of experiment

Figure 3.3. Experimental procedure
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1. Individual differences

2. The difÞculty of the instance

3. The interface (direct-manipulation or propositional)

4. Learning

To get some impression of the learning factor, which is the main factor of interest, we 
will first do some quick calculations. To remove the difficulty factor of items, all 
solution times were divided by the average solution time for that particular item. 
Since participants occasionally Ògot stuckÓ at a particular instance, solution times 
that were longer than 2.5 times the average time were removed (8 cases out of 288). 
Finally, the scores were averaged and plotted in figure 3.4. Only the five A2 
problems and three R2 instances are plotted, since the first R1 and first R2 instance 
are the same for all participants, so average to 1 all the time, and the A3 and R3 
instances at the end of the experiment were completed by too few participants, so 
were also omitted in the analysis. In the first part for each of the two groups there is 
a clear learning effect, since on average participants start at around 1.3 times the 

First part Second part

Group 1

Direct manipulation

Average solution time = 143 sec

Propositional

Average solution time = 292 sec

Group 2

Propositional

Average solution time = 287 sec

Direct manipulation

Average solution time = 150 sec

Figure 3.4. Relative time to solve each instance for the two groups and the two parts of the 
experiment
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average time to solve an instance, and improve to around 0.8 times the average time. 
In the second part of the experiment, there is no effect of learning. This cannot be 
explained by the fact that the learning curve has flattened out due to the fact that 
there is nothing left to learn, since the average solution time is not better than in the 
first part, but even slightly worse (average solution times are below each of the 
graphs.) So, there is evidence for a time-on-task effect. This effect has several possible 
explanations, like boredom and a decrease in motivation or mental fatigue.

An analysis using multilevel statistics
A more thorough method to analyze the data that gives an impression of the impact 
of the different factors on the solution time, is to make a statistical model using 
multilevel analysis (Bryk & Raudenbush, 1992). A model in the sense of multilevel 
analysis is a set of regression equations that predicts the dependent variable, the 
solution time in our case. The basic regression equation is as follows:

(3.1)

The solution time  for participant i and trial t is predicted by an intercept  for 
participant i, plus the inßuence of a number of factors. Factors, in this equation 
represented by , , etc., are in our case the type of interface, the difÞculty of an 
instance and the trial number. These factors are scaled by , , etc. The Þnal part 
of the equation, , represents the random variance for each trial.

Each of the β scaling factors may vary between participants, as indicated by the i 
index. Each of these scaling factors has its own equation:

(3.2)

(3.3)

Multilevel analysis in general also allows us to add factors to these equations, 
comparable to the  and  in (3.1). These factors represent characteristics of 
individual participants. They are omitted here, since no such information is 
available. The γ-coefficients are called the fixed effects in terms of multilevel analysis, 
since they do not change between either participants or trials. The u-coefficients are 
called random effects, since they vary between participants. Not all factors have a 
significant random effect on differences between individuals, so sometimes the βÕs 
are just equal to the γÕs. An advantage of this method is that between-participant 
variance and within-participant variance can be discerned. A random effect on  
means that individuals have different starting points on the learning curve, so a 
random intercept. If we take the trial number as a factor, the β-coefficient that serves 
as its multiplication factor will become the slope of the learning curve. A random 
effect on this coefficient means individuals have different learning rates, so a random 

yti β0i β1i Ati β2iBti … rti+ + + +=

yti β0i

Ati Bti
β1i β2i

rti

β0i γ00 u0i+=

β1i γ10 u1i+=

Ati Bti

β0i
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slope. Figure 3.5 illustrates the difference between a random intercept and a random 
slope.

The general method to find the most appropriate model for a certain set of data is to 
use a multilevel analysis program to estimate the coefficients in the model. In this 
case MLn (Rasbash & Woodhouse, 1995) is used. The analysis starts with a very 
simple model, after which additional factors are added incrementally. After each 
additional factor, the deviance (- 2 log likelihood) between the model and the data is 
checked, to see if the additional factor provides for a significant improvement. 

Analysis of the Þrst part of the experiment
One of the constraints on multilevel analysis is that the dependent variable has to 
have a normal distribution. The solution times in the scheduling experiment, 
however, are skewed. In order to Þx this, the logarithm of solution times is used 
instead of plain solution times. One of the factors will be the trial number itself, in 
order to estimate the learning effect. The actual version of (3.1) now becomes:

(3.4)

In this equation t is the trial number, ranging from 1 to 9,  equals 1 if the trial 
involves a type A instance (the difÞcult ones) and 0 otherwise,  equals 1 if the 
item is presented in the propositional interface, and 0 if it is presented in the direct-
manipulation interface. The  term represents the interaction between interface 
and instance type. Note that most of the βÕs have been replaced by γÕs, indicating 
that no random effect on the level of individual differences has been investigated. 
Both β-parameters are calculated according to (3.2) and (3.3). The data used in the 
analysis are all the A2 and R2 instances in the Þrst part of the experiment, nine in 
all. Three data points with excessively long solution times were removed (each from 
a different participant). 

trial number

solution 
time

trial number

solution 
time

Figure 3.5. The difference between a random intercept (left), and a random slope (right). Each line 
represents an individual participant. 

ylog ti β0i β1it γ20 Ati γ30V ti γ40 AtiV ti rti+ + + + +=
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V ti
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Although (3.4) represents the most elaborate model, it is not necessarily the best 
model. The procedure to Þnd the best model is as follows. We start with the most 
simple model, in this case the model that just states that the solution time is a Þxed 
value, and all variation is random noise. This model will leave some unexplained 
variance, as expressed in the -2 log likelihood estimate. The next step is to add some 
factor that may improve the model. Adding a factor reduces the degrees of freedom, 
so this reduction must be warranted by a signiÞcant decrease in unexplained 
variance. In this analysis, the signiÞcance threshold will be 5%. Figure 3.6 shows the 
search tree to Þnd the most appropriate model. At the top of the tree the most simple 
model is shown. Adding the factor of time considerably improves the model, as 
shown by the second box. Now there are two choices: adding a random intercept or 
a random slope. The search tree explores both possibilities. Note that the 
introduction of random effects implies replacing a Þxed γ in the formula by a β that 
has a different value for each participant. Although both new models improve the 
previous model, the random intercept model reduces unexplained variance most. 
Moreover, if a random slope is consequently added, this does not improve the 
model. Apparently the individual differences can be captured by just a random 
intercept. The next three steps add the factors of interface type, problem type and the 
interaction between the two. Each of these steps improve the model. Finally, a last 
attempt is made to add a random slope, but this still does not improve the model.

The final model is presented in figure 3.7. It turns out that the effect of trial number 
is very significant, so there is a clear learning effect. The type of interface also has a 
significant impact on the solution time: the propositional interface, not surprisingly, 

Fixed effects

Effect Parameter Estimate S.E. p<

Intercept γ00 5.030 0.130 .000

Trial no. γ10 -0.074 0.014 .000

Propositional interface γ30 0.549 0.163 .000

Type A problem γ20 0.104 0.104 .159

Propositional * Type A γ40 0.298 0.145 .020

Random effects

var(intercept) u0i 0.067 0.030

var(residual) rti 0.207 0.025

-2 log likelihood: 224.9

Figure 3.7. Statistical model of the log solution times
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ylog ti γ00 rti+=

-2 log likelihood= 321.8

ylog ti β0i β1it γ20 Ati γ30V ti γ40 AtiV ti rti+ + + + +=

-2 log likelihood= 220.6

ylog ti γ00 γ10t r+ ti+=

-2 log likelihood= 312.7

ylog ti β0i γ10t r+ ti+=

-2 log likelihood= 255.3

ylog ti γ00 β1it r+ ti+=

-2 log likelihood= 274.6

ylog ti β0i β1it r+ ti+=

-2 log likelihood= 252.5

ylog ti β0i γ10t γ30V ti r+ + ti+=

-2 log likelihood= 239.4

ylog ti β0i γ10t γ20 Ati γ30V ti rti+ + + +=

-2 log likelihood= 229.0

ylog ti β0i γ10t γ20 Ati γ30V ti γ40 AtiV ti rti+ + + + +=

-2 log likelihood= 224.9

add the factor of trial number
p=0.00

add random intercept
p=0.00

add random slope
p=0.00

add interface type
p=0.00

add random slope
p=0.25 (not significant)

add problem type
p=0.00

add interaction between interface and problem type
p=0.04

add random slope
p=0.12 (not significant)

Final model

Figure 3.6. Search tree to Þnd the best model. Each box represents a model, with the equation at the 
top and the -2 log likelihood at the bottom. The thick arrows and boxes indicate the optimal 
search path.
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requires more time. Whether or not an instance is of type A is mainly significant in 
interaction with the type of interface. If the instance is of type A and the interface is 
propositional, there is an extra increase in solution time. This interaction can be 
explained by pointing at the difficulty of type A problems. The hard part of solving 
type A problems is to coordinate precedence constraints that span multiple workers. 
The fact that this type of instances is especially hard in the propositional interface 
condition is evidence for the fact that participants do not use a visual image to 
represent the schedule, but rather a linear string of tasks. If participants used a visual 
image, the type A problems would not have any additional difficulty associated 
with them in the propositional interface condition. If a schedule is represented as a 
linear string, it is easy to check constraints within a worker, but very hard to check 
constraints between workers.

It turns out that the best fitting model only has a random intercept and no random 
slope. So, the main source of individual differences is the starting point of the 
learning curve. Individual differences in learning rate were not large enough to 
provide for a better fitting model.

Analysis of the second part of the experiment
Although the informal analysis already showed that there is probably no learning 
effect in the second half the experiment, a multilevel analysis was conducted for 
that part as well. Before the analysis, Þve datapoints with excessively long solution 
times were removed from the set. Figure 3.8 shows an abbreviated version of the 
search tree: only -2 log likelihoods are shown and the additions to the model. What 
is immediately apparent is that the trial number has no impact on the solution time, 
whether it is added to the simple model or to the Þnal model. Although the 
interaction between interface and problem type is not signiÞcant in the second part 
of the experiment, the other effects are quite similar to effects in the Þrst part of the 
experiment. The bottom part of Þgure 3.8 shows the Þnal model. 

Conclusions
The statistical model of the solution times conÞrms the expectations stated in the 
previous section, at least with respect to the Þrst part of the experiment. There are 
strong effects of learning, interface type and problem type. None of these effects are 
particularly surprising. Oddly enough there is no learning effect in the second part 
of the experiment. An explanation for this has to be sought in the area of motivation 
or fatigue: perhaps participants no longer seek strategies that improve their 
performance. In chapter 5, I will show learning may indeed be partly dependent on 
motivation, because a low motivation makes learning strategies less attractive than 
just trying a simple strategy over and over again. 



Analysis of verbal protocols

71

3.4 Analysis of verbal protocols

Inspection of the verbal protocol recordings reveals that only protocols of the 
propositional interface condition can be interpreted easily. The recordings of the 
direct-manipulation interface contain little information, and are difÞcult to correlate 
with actions of the participants in the interface. This was to be expected, since 
verbal protocol analysis tends to be a poor research instrument in assessing tasks 
with a large visual component. Since the learning effects are largest in the Þrst half 
of the experiment, participants from group 2 are used primarily in the analysis. One 
of the recordings was unusable due to problems with the cassette recorder, and 
another participant did not verbalize enough in order to be intelligible. So seven 

297.4

281.8

add random intercept

296.9

add trial number

275.8

add interface type

252.1

add problem type

249.9

252.1

add interaction between interface and problem

add trial 
final model

Fixed effects

Effect Parameter Estimate S.E. p<

Intercept γ00 4.516 0.116 .000

Propositional interface γ30 0.403 0.152 .004

Type A problem γ20 0.427 0.084 .000

Random effects

var(intercept) u0i 0.072 0.035

var(residual) rti 0.264 0.032

-2 log likelihood: 252.1

Figure 3.8. Abbreviated search tree for the model of the second part of the experiment and the Þnal 
model

number
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protocols were available from group 2. To get an impression of group 1 as well, two 
protocols from the second half of the experiment are added, giving a set of nine 
protocols.

We will proceed with the analysis in two steps. First, we will do a detailed analysis 
of a single participant. This analysis will show what kinds of processing are going on 
during problem solving. Secondly, a more quantitative analysis will be done on the 
set of nine protocols. 

Analysis of participant 2
Participant 2 shows a learning curve that is similar in shape to the average learning 
curve (Þgure 3.9). The relative time to solve an instance improves from 2.3 for the 
Þrst instance to 0.5 for the last, a learning effect that is even larger than the average 
participant. The following excerpt is from the protocol of participant 2, while she is 
solving problem A21 (Þgure 3.1). This problem is interesting, since it is followed by 
a large jump in performance. A possible explanation, which we will now examine in 
detail by protocol analysis, is that the participant discovers some new means to 
solve scheduling problems. The problem and the protocol are translated from 
Dutch, as are all other excerpts discussed. First I will repeat the problem:

There are two workers with 6 hours each
Task A takes 1 hour
Task B takes 1 hour
Task C takes 2 hours
Task D takes 2 hours
Task E takes 3 hours
Task F takes 3 hours
The schedule has to satisfy the following constraints:
C before A
E before B
F before B
D before C

0

0.5

1

1.5
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2.5

A21 D A25 R24 A23 R22 A29 A27
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Figure 3.9. Relative solution times (similar to Þgure 3.4) for participant 2. Note that A21 is the third 
instance the participant has to solve, since the two training problems are not in the graph.
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The protocol is as follows:

Yes. There are two workers with each six hours. Two. Task A, task B, task C. The schedule has to 
satisfy the following constraints... Task C before A, C before A, E before B, F before B and D before C. 
[..unintelligible..] First now D. D.. D..C..A..B.., D..C..A..B.., D.C.A.B., DCAB, and then, DCAB, [keys 
in DCAB] and then E... E..F, E..F. [keys in EF] [Receives feedback] Oh, task F is not before B. C.., D has 
to be before C. D.. No, C..D.., D has to be before C. C.. D.., C.. D.., A...B [keys in CDAB] thatÕs one 
worker. E..F..., [keys in EF]. [receives feedback] Huh?! Task F is not before B and task D is not before 
C? Oh wait. D has to be before C, so Þrst D... D...C..AB..AB [keys in DCAB]. Next worker, F.. yes, 
F..E.., ready. [keys in FE]. [receives feedback] Task E is not before B? IsnÕt it? Yes? [Emphasizing, keys 
in] D..C..A..B..E..E..F...ready. [receives feedback]. Well! Ehmm.. Task D takes two hours. [Silence] 
Task F is not before B, so F should be before B. Task E before... E should be before B, so E and F 
shouldnÕt be done by.... by the same worker. So we will, letÕs see. Task C before A, so we will Þrst.... E 
before B, so we will Þrst E..E..E..B..C. E...E..B..C.., EBC, no thatÕs not right. EBC..F..A..B.. Ah.. start 
again. The D should be before C. [silence]. E... Ehm... The D should be before the C, so we put the D 
with worker one, and C with worker two. So we start with E with worker one... E..C..A.. E.C.A. 
ECA.. E.C.A. No, I donÕt get it... E..C..A..D..F.. Oh.. wrong again. 

This is about half of the total protocol for problem A21. Participant 2 needed 793 
seconds to solve the whole problem. It is obvious that the written protocol doesnÕt 
reveal much in the presentation given above. Nevertheless, we can already infer 
some categories into which we can classify the various elements in the protocol. First 
there are reading actions, in which the participant reads parts of the problem. It is 
also obvious that the participant incrementally builds a schedule by adding tasks 
one by one. So adding a task to the current schedule is also a possible action. The 
interesting parts of the protocol are the parts in which the participant makes complex 
inferences. There is one obvious example in the above excerpts, where the 
participants remarks Òso E and F shouldnÕt be done by.... by the same worker.Ó In 
order to reach this conclusion, five constraints of the problem need to be combined: 
the fact that each worker has six hours that both E and F take three hours, and the 
fact that both E and F must be before B. Identification of the simple steps in the 
problem solving process enables us to keep track of the information the participant 
has in working memory at a particular time. In order to analyze the above fragment, 
and the rest of the protocol, the following categories will be used.

Notational primitives:

• c:a denotes the constraint ÒC before AÓ. Participants can connect these 
constraints to more advanced schemas like b:c:a (b is before c is before a) or b;c:a 
(b and c are both before a).

• sched(acd|bef) denotes a schedule or a schedule fragment, the vertical bar 
separates workers.

• a5 denotes the number of hours a task takes (in this case: task a takes 5 hours).

• work2 denotes the number of workers (in this case 2 workers).

• time7 denotes the number of hours each worker has (in this case 7 hours).

• diff(a,b) denotes the fact that task a and b must be done by different workers
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• same(a,b) denotes the fact that task a and b must be done by the same worker.

• last(a) denotes the fact that task a must be done last by a worker.

• Þrst(a) denotes the fact that task a must be done Þrst by a worker.

• middle(a) denotes the fact that task a must be somewhere in the middle of the 
schedule of a worker.

Reading
When the participant reads something from the screen, this is denoted by the Read() 
action. The argument is the item read. For example, Read(c:a) corresponds to the 
participant reading Òc before aÓ. The result of a reading action is that the item read 
is in working memory.

Adding tasks to the schedule
When a participant adds new items to the current schedule this is represented by 
the Add() action. The argument is the task added to the schedule. The result of an 
add action is that the task is added to the current schedule in working memory.

Rehearsing working-memory items
Any items in working memory (WM) can be rehearsed, which is denoted by the 
Reh() action. The argument is the item rehearsed.

Inference
In general inference is denoted by Inf(p1; p2 → q), meaning q is inferred from p1 
and p2. Precondition for such an inference is that p1 and p2 are available in 
memory. The result is that q will be in working memory.

Evaluation

• Eval+ denotes that the participant concludes the schedule is correct.

• Eval-() denotes that the participant concludes that the schedule is incorrect. If a 
violated constraint is mentioned, it is given as the argument, for example Eval-
(c:a): the schedule is incorrect because c is not before a

• IEval+ denotes that the program accepts the solution

• IEval-() denotes that the program rejects the solution, the violated constraint(s) 
are again between parentheses

Other actions

• Restart denotes that the participant starts again

• Inkey() denotes that the participant keys a (possibly partial) solution into the 
computer

• Fill denotes miscellaneous remarks
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• Meta denotes remarks about the difÞculty or other aspects of the task

• Q denotes a question of the participant to the experimenter

Using this scheme, the following analysis can be made of the protocol fragment. The 
analysis column shows an interpretation of the fragment listed in the protocol 
column. The WM column shows the possible contents of working memory based on 
this interpretation. 

Problem A21. Time 793 seconds

Protocol Analysis WM

1. Yes. There are two workers with 
each six hours.

Read(work2); 
Read(time6)

work2; time6

2. Two. Task A, task B, task C. Reh(work2); Read(a); 
Read(b); Read(c)

work2

3. The schedule has to satisfy the 
following constraints...

Fill

4. Task C before A, C before A, E 
before B, F before B and D before 
C.

Read(c:a); Reh(c:a); 
Read(e:b); Read(f:b); 
Read(d:c)

c:a; e:b; f:b; d:c

5.  [unintelligible] ?

6. Þrst now D. D.. Add(d) sched(d)

7. D..C..A..B.., Reh(d); Add(c); Add(a); 
Add(b)

sched(dcab)

8. D..C..A..B.., Reh(dcab) sched(dcab)

9. D.C.A.B, Reh(dcab) sched(dcab)

10. DCAB, Reh(dcab) sched(dcab)

11. and then, Add(|) sched(dcab|)

12. DCAB, [keys in DCAB] Reh(dcab|); KeyIn(dcab|) sched(dcab|)

13. and then E... Add(e) sched(e)

14. E..F.. Reh(e); Add(f) sched(ef)

15. E..F.. [keys in EF] Reh(ef); KeyIn(ef) sched(ef)

16. [receives feedback] Oh, task F is 
not before B.

IEval-(f:b); Restart

17. C.., Read(c)

18. D has to be before C. Read(d:c) d:c

19. D Read(d)

20. No, C..D.., Add(c); Add(d) sched(cd)

There are two 
workers with each 
6 hours
Task A 1 hour
Task B 1 hour
Task C 2 hours
Task D 2 hours
Task E 3 hours
Task F 3 hours
The schedule has 
to satisfy the 
following 
constraints:
C before A
E before B
F before B
D before C
Solution:
ECA
DFB
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21. D has to be before C. Read(d:c) sched(cd); c:d

22. C..D.. Reh(cd) sched(cd)

23. C..D.., Reh(cd) sched(cd)

24. A..B.. [keys in CDAB] Add(a); Add(b); 
KeyIn(cdab)

sched(cdab)

25. ThatÕs one worker Add(|); KeyIn(|) sched(cdab|)

26. E..F..., [keys in EF]. Add(e); Add(f); KeyIn(ef) sched(cdab|ef)

27. [receives feedback] Huh?! Task F 
is not before B and task D is not 
before C? 

IEval-(f:b;d:c); Restart

28. Oh wait. Fill

29. D has to be before C, Read(d:c) d:c

30. so Þrst D... D...C..AB..AB [keys 
in DCAB]. 

Add(d); Reh(d); Add(c); 
Add(a); Add(b); Reh(ab); 
KeyIn(dcab)

sched(dcab)

31. Next worker, Add(|); KeyIn(|) sched(dcab|)

32. F.. yes, F..E.., ready. [keys in FE]. Add(f); Reh(f); Add(e); 
KeyIn(fe)

sched(dcab|fe)

33. [receives feedback] Task E is not 
before B? 

IEval-(e:b) sched(dcab|fe)

34. IsnÕt it? Yes? ? Fill sched(dcab|ef)

35. [Emphasizing, keys in] 
D..C..A..B..E..E..F...ready. 

KeyIn(dcab|ef) sched(dcab|ef)

36. [receives feedback]. Well! IEval- sched(dcab|ef)

37. Ehmm.. Task D takes two hours. Read(d2) sched(dcab|ef); 
d2

38. [Silence] Fill sched(dcab|ef)

39. Task F is not before B, Eval-(f:b) sched(dcab|ef); 
f:b

40. so F should be before B. Reh(f:b) sched(dcab|ef); 
f:b

41. Task E before... E should be 
before B, 

Read(e:b) sched(dcab|ef); 
f:b; e:b

42. so E and F shouldnÕt be done 
by.... by the same worker.., 

Inf(f:b; e:b; e3; f3; time6 
→ diff(e,f))

diff(e,f)

Problem A21. Time 793 seconds

Protocol Analysis WM
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A dissection of the protocol in terms of the analysis above reveals a bit more of what 
is going on during the problem solving process. Figure 3.10 shows a summary of the 
analysis in the form of the search tree that is traversed in the episode above. 

The participant starts with reading the problem (1-4, not shown in the figure). After 
that, there are four episodes in which she tries to find a solution (5-16, 17-27, 28-33 
and 34-36). Each of these episodes consists of a number of alternating processes: 
incrementally increasing the current schedule, rehearsing the current schedule, and 

43. So we will, letÕs see. Task C 
before A,

Restart; Read(c:a) diff(e,f); c:a

44. so we will Þrst.... Fill diff(e,f)

45. E before B, Read(e:b)

46. so we will Þrst E..E..E..B..C. Add(e); Reh(e); Reh(e); 
Add(b); Add(c)

sched(ebc)

47. E...E..B..C.., Reh(e); Reh(ebc) sched(ebc)

48. EBC, Reh(ebc) sched(ebc)

49. no thatÕs not right. Eval- sched(ebc)

50. EBC..F..A..B.. Add(|); Add(f); Add(a); 
Add(b)

sched(ebc|fab)

51. Ah.. start again. Restart

52. The D should be before C. Read(d:c) d:c

53. [silence]. Fill d:c

54. E... Ehm... Read(e) d:c

55. The D should be before the C, so 
we put the D with worker one,

Inf(d:c → diff(c,d))

56. and C with worker two. 

57. So we start with E with worker 
one...

Add(e) sched(e)

58. E..C..A.. Reh(e); Add(c); Add(a) sched(eca)

59. E.C.A. Reh(eca) sched(eca)

60. ECA.. Reh(eca) sched(eca)

61. E.C.A. Reh(eca) sched(eca)

62. No, I donÕt get it... Fill

63. E..C..A..D..F.. Oh.. wrong again. Reh(eca); Add(d); Add(f); 
Eval-

Problem A21. Time 793 seconds

Protocol Analysis WM
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evaluating the current schedule. At the end of each episode, the resulting schedule 
is either rejected by the interface or by the participant. Although the participant does 
not reveal on what basis she selects tasks to add to the plan, the precedence 
constraints seem to be an obvious lead. The DCAB sequence, which recurs in three 
of the four episodes, directly reflects the ÒD before CÓ and ÒC before AÓ constraints. 
A possible strategy underlying this type of sequencing is to look for two constraints 
in which the second task in the first constraint equals the first task in the second 
constraint, and distill a three-task sequence out of it. 

Up to line 36 in the protocol, the problem-solving process seems to follow a straight 
forward search pattern, although the participant only backtracks once, but rather 
starts again after a dead end in the search tree. Furthermore, the participant tries the 
same solution twice. After four unsuccessful tries, however, the participant reaches 
an impasse (37-38). After this impasse, a complex inference is used to infer a new 
constraint, the fact that task E and F should be assigned to different workers (39-42). 
As mentioned before, this inference is quite complex, since it involves five 
constraints. Using this newly inferred constraint, search is resumed, and a new 
unsuccessful episode follows (43-51). The solution reached in this episode differs 
from the previous episodes, however, in the sense that the newly derived constraint 

Figure 3.10. Search tree corresponding to the analysis of instance A21. Numbers in parentheses refer 
to line numbers in the protocol.

D DCAB DCAB
EF

feedback from interface: F not before B 
(5-16)

C CD CDAB CDAB
EF

feedback interface: F not before B, D not before C
(17-27)

D DCAB DCAB
FE

feedback interface: E not before B
(28-33)

DCAB
EF

feedback interface: F not before B

impasse (37-38)

inference that E and F should be assigned to different workers (39-42)

E EBC

(34-36)

EBC
FAB

restart on own initiative
(43-51)

impasse

inference that C and D should be assigned to different workers

E ECA ECA
DF

(52-56)

restart on own initiative
(57-63)
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is satisfied. Another interesting change is that the participant evaluates the solution 
herself, instead of relying on the interface. In the next episode the participant derives 
another new constraint, the fact that task D and C should also be assigned to 
different workers (52-56). In the final episode (57-63), the participant nearly reaches 
the solution. Although she only needs to add task B to her schedule, she somehow 
decides the solution is incorrect and starts anew. Examination of the complete 
protocol reveals that the participant needs several more search episodes before she 
solves the problem.

The problem solving fragment discussed above shows aspects of two theories of 
problem solving. Processing within search episodes concurs with the theory that 
problem solving is problem-space search, which we have discussed in chapter 1. On 
a more global scale, however, the fragment shows aspects of insight theory 
(Davidson, 1995). According to insight theory, which is rooted in Gestalt 
psychology, the interesting moment in problem solving is when the problem solver 
suddenly ÒseesÓ the solution, in a moment when an Òunconscious leap in thinkingÓ 
takes place. Instead of describing problem solving as a gradual approach of the goal, 
insight theory predicts the following pattern: exploration, impasse, insight and 
execution. The nine-dots problem is a typical example (see figure 1.3 in chapter 1): 
the exploration phase consists of fruitless search within the boundaries of the nine 
dots, after which an impasse occurs followed by the insight that lines may go beyond 
the boundaries of the grid. This insight allows for a final resolution in terms of a 
solution.

This insight problem-solving pattern can be found in the problem-solving fragment, 
since the four unsuccessful search attempts (5-36) can be seen as the exploration 
phase, after which an impasse occurs (37-38), followed by an insight (39-42). 
Unfortunately, the insight is only an important step in the direction of the solution, 
so the execution phase actually involves some more exploration. Furthermore, the 
insight episode isnÕt really an Òunconscious leap in thinkingÓ, but rather an episode 
of solid rational reasoning. Although the fragment shows the pattern of insight 
problem solving, it does not share the more mystical aspects associated with some 
versions of insight theory.

Learning the different-worker strategy
From the viewpoint of learning problem solving it is interesting to investigate 
whether something is learned during an insight episode. Although it is hard to 
actually prove something new is learned, it is possible to Þnd some evidence that 
this is the case. One way to do this is to see if the same pattern of reasoning can be 
found again in later instances. After problem R25, a problem in which the pattern 
cannot be used, it recurs in problem A25, as the following fragment shows:
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Again, the complex inference is made after two unsuccessful search attempts. In this 
case, however, there is no impasse: the participant immediately makes the inference. 
Later in the experiment, in problem A29, the same strategy is used:

The only difference with problem A25 is that the participant seems to recognize the 
fact that this pattern has occurred before. In the final type A problem, problem A27, 
the participant immediately uses the newly learned strategy without resorting to 
fruitless search first:

Summarizing, the four protocol fragments show how a new strategy, the Òdifferent-
worker strategyÓ, comes into existence. In A21, the strategy is discovered in a classic 

Problem A25 Time 300 seconds

Protocol Analysis WM

20. task A should be before D Read(a:d) sched(adcb); 
a:d

21. A..D..C..B..E..F..ready.. Inkey(adcb); Add(|); 
Add(e); Add(f); 
Inkey(adcb|ef)

sched(adcb|ef)

22. task F is not before B. IEval-(f:b) f:b

23. so E and F cannot be done by the 
same worker...

Inf(e2; f2; time4; f:b; e:b 
→ diff(e,f))

diff(e,f)

Problem A29 Time:128 seconds

Protocol Analysis WM

15. B..A..D..C, next worker.. Reh(badc); Add(|) sched(badc|)

16. E..F, ready. Add(ef); Inkey sched(badc|ef)

17. Oh, task F is not before C, so E 
and F again canÕt go together.

IEval-(f:c); Inf(f:c; ? → 
diff(e,f))

diff(e,f)

Problem A27 Time:140 seconds

Protocol Analysis WM

8. So then it is eeh, A before C and 
D before A, E beforeB and F 
before B

Read(a:c); Read(d:a); 
Read(e:b); Read(f:b)

a:c; d:a; e:b; f:b

9. E and F can probably not go 
together, since then they will not 
be before B

Inf(e:b; f:b → diff(e,f)) diff(e,f)
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insight problem-solving pattern. In A25, the pattern recurs, except that there is no 
impasse period. In A29, the pattern again recurs, but the participant shows evidence 
of recognizing the strategy. Finally, in A27, the strategy is incorporated in the normal 
search process.

Learning the Þt-the-hours strategy
The different-worker strategy is not the only strategy the participant discovers 
during problem solving. The Þrst indication of a second strategy is in problem R25, 
the fourth problem.

After an unsuccessful search episode, the participant mentions that F, A and B 
belong together, and should be assigned to the first worker. Inspection of the 
particular problem shows why this may be inferred. For each worker, the sum of the 
tasks assigned must add up to nine hours. Only 2+2+5 and 3+3+3 add up to nine in 
this given instance, so A, B and F should go together, and C, D and E. Although this 
particular piece of protocol is only weak evidence for this strategy, stronger evidence 
for the new strategy can be found in problem R24, two problems later.

Problem R25 Time 200 seconds

Protocol Analysis WM

15. ABF...D..E..C.. Reh(abf|d); Add(e); 
Add(c); Inkey(abf|dec)

sched(abf|dec)

16. Oh, no, thatÕs not right. task C is 
not before B,

Eval-(c:b) sched(abf|dec)

17. OK, one more time. Restart

18. F, A and B belong together, so 
the Þrst worker...

Inf(f5; a2; b2; time9 → 
same(a,b,f))

same(a,b,f)

Problem R24 Time 93 seconds

Protocol Analysis WM

1. two workers with each nine 
hours,

Read(work2); 
Read(time9)

work2; time9

2. letÕs look at the hours... Meta

3. seven plus two can again be 
nine,

Read(e7); Read(a2); 
Read(b2); Inf(e7; a2; b2 
→ same(2,7))

same(2,7)

2 workers
9 hours
A 2 hours
B 2 hours
C 3 hours
D 3 hours
E 3 hours
F 5 hours

A before E
C before B
E before D

Solution:
AFB
CED

2 workers
9 hours
A 2 hours
B 2 hours
C 3 hours
D 4 hours
E 7 hours

A before B
C before D
C before B

Solution:
EB
ACD
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After problem R24, the participant uses this strategy at the start of every new 
problem, a clear indication that this new strategy has been incorporated in the 
general problem solving method. In the problem A29, the strategy has become 
routine, and the participant can even recognize whether or not the strategy is useful.

Summary of the qualitative analysis
The most interesting aspect that can be found in the protocol of participant 2 is the 
fact that she learns two new strategies to solve scheduling problems. The Þrst time 
these strategies surface is after one or more unsuccessful search attempts. It is quite 
probable that the participant discovers the strategy at this point. Later on, they are 
incorporated in the problem solving process. Since scheduling is intractable, these 
strategies do not provide an effective procedure to solve the general scheduling 
problem. Nevertheless, they are useful for a large number of instances of the 
problem. 

Another aspect of the problem solving process is that the participant hardly uses 
backtracking: she just starts all over again. On the other hand, she does keep track of 
what she does somehow, since a renewed search attempt is almost always a 
variation on the previous attempt. A final very obvious aspect is the role of rehearsal. 

4. Four, three and two equals nine, Read(d4); Read(c4); 
Read(b2); Read(a2); 
Inf(d4; c3; b2; a2 → 
same(2,3,4))

same(2,7); 
same(2,3,4)

5. So that seven has to go with A or 
B.

Inf(same(2,7); e7 → 
same(2,e7))

same(2,e7)

Problem A29 Time:128 seconds

Protocol Analysis WM

1. eehm, there are two workers 
with each six hours.

Read(work2; time6) work2; time6

2. It may be the case that E and F 
go together, because three plus 
three,

Inf(e3; f3; time6 → 
same(e,f))

same(e,f)

3. And DCBA, two, two, two, one 
hour.

Inf(d2; c3; b1; a1; time6 
→ same(a,b,c,d))

same(e,f); 
same(a,b,c,d)

4. It can also be the case that... 
Well, anything can be the case.

Meta

Problem R24 Time 93 seconds

Protocol Analysis WM

2 workers
6 hours
A 1 hour
B 1 hour
C 2 hours
D 2 hours
E 3 hours
F 3 hours

A before D
B before A
E before C
F before C

Solution:
EAD
BFC
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The participant uses rehearsal quite extensively to keep partial solutions active in 
memory. Interleaving rehearsal with other aspects of processing requires planning 
as well. The participant not only has to create a schedule for the workers in the 
scheduling problem, she has to schedule her own activities as well.

Quantitative analysis
To get a more reliable picture of the ideas outlined in the previous section, a 
simpliÞed version of the analysis has been carried out for all protocols. All main 
analyses have been done on the seven interpretable protocols from group 2. 
Occasionally we will also look at the two protocols from group 1. Two observers, a 
professor in computer science and a graduate student in psychology, were asked to 
score the protocols according to the following categories:

• Simple inferences, deÞned by the fact that two or less constraints are involved. 
Constraints are all aspects of the task, e.g. ÒA before CÓ constraints, the fact that 
task C takes two hours, and any constraints the participants themselves have 
derived.

• Complex inferences that resemble the Þt-the-hours strategy

• Complex inferences that derive the fact that two tasks should be assigned to 
different workers

• Complex inferences that derive the fact that two or more tasks should be 
assigned to the same worker

• Complex inferences that derive the fact that some task should be at the 
beginning of the schedule, at the end of the schedule, or somewhere in the 
middle

• Complex inferences that do not Þt in with any of the previous categories

• Counting, if the participant uses counting to do addition

The last category requires some more explanation. It turned out some of the 
participants sometimes used counting as a strategy to do addition. This strategy is 
normally found only in children who have not yet memorized all addition facts. A 
possible explanation is that in situations where working memory demands are high, 
counting is a procedure that is less likely to disrupt the contents of working memory 
than retrieving a fact.

After the observers had scored the protocols, the correspondence was calculated. 
Correspondence is expressed using the kappa-measure (van Someren, Barnard & 
Sandberg, 1994), which corrects for the expected correspondence. The kappa 
measure turned out to be 0.61. According to van Someren et al., kappa should at least 
be 0.70. Closer inspection of the categories, however, revealed that simple inferences 
and miscellaneous complex inferences were scored very unreliably. Furthermore, 
the fit-the-hours strategy and inferences that two or more tasks should be assigned 
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to the same worker were hard to distinguish. So, the simple inferences and the 
miscellaneous complex inferences were removed from the analysis, and inferences 
that tasks should be done by the same worker were collapsed with the fit-the-hours 
category. This resulted in the correspondence table in figure 3.11, and a kappa of 
0.72, which is an acceptable value. The entry in the Blnk/Blnk cell (2114) of the figure 
is high due to the fact that most entries in the protocol were not classified, since they 
contained no apparent inferences (or counting events). Figure 3.11 also shows that 
the fit-the-hours and the different-worker strategies are most prominent among the 
complex inference strategies. So, the two strategies we found in participant 2 are also 
the main strategies found in the rest of the participants. The analyses of both 
observers were combined into a single analysis using only the complex inferences 
both observers agreed on. If both observers agreed on a complex inference, but used 
different categories (5 cases), the experimenter chose the most appropriate category.

One would expect that if participants learn new strategies during problem solving, 
the number of complex inferences increases with practice. Figure 3.12 shows this is 
indeed the case: in the first problem the participants use 0.5 complex inferences on 
average to reach the solution, which increases to more than 2 inferences in instance 8, 
dropping back slightly in the last two instances. 

Figure 3.13 shows how the two most prominent strategies are distributed over the 
individual participants. The black boxes mark the use of the fit-the-hours strategy for 
a certain instance, while the grey boxes indicate the use of the different-worker 
strategy. As is evident in the figure, some of the aspects witnessed in the analysis of 
participant 2 are also evident in other participants. Some of the participants also 
integrate the fit-the-hours strategy in their standard search strategy, notably 
participants 2, 6, 7 and 11. The same is true for the different-worker strategy. This is 
less evident in the figure, since the different-worker strategy cannot be used 

Observer 1

Observer 2 Blnk Ch Cdiff CÞrst Clast Cmid Cnt

No score or removed (Blnk) 2114 8 5 6 3 2 1

Fit-the-hours strategy (Ch) 11 32 1

Different worker (Cdiff) 5 27

Assign Þrst (CÞrst) 24 1 3 15

Assign last (Clast) 9 16

Assign middle (Cmid) 1 2

Use counting to add (Cnt) 1 14

Figure 3.11. Correspondence between the two observers
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successfully for every instance. Participants 1, 2, 4, 6 and 7, however, show consistent 
use of it. 

The use of counting to add numbers was use extensively by participant 1, who used 
it 13 times to add numbers. Three participants, 6, 11 and 12, only used it once, and 
the other participants showed no evidence for the use of counting to do addition. 
Although this aspect has no relevance to the rest of the discussion here, I will return 
to this matter briefly in chapter 5.

3.5 Conclusions

The analyses presented in this chapter only scratch the surface of all that is going on 
during problem solving. But it is a study in the spirit of Alan Newell, in which we 
try to learn as much as possible by studying a single complex task. It is clear that 
learning in problem solving cannot be accounted for by a simple, one-principle 
theory. Nevertheless many of the aspects found in the analysis support the general 
outline discussed in chapter 1. There is evidence for the use of problem-space 
search, but also for qualitative insight-like changes in problem-solving approach. 
Participants discover and reÞne new strategies as the experiment proceeds, 
enabling them to eventually handle even more complex problems.

The next two chapters will examine details of the aspects of learning in problem 
solving that have been found in this chapter. The strategy is to formulate a model 
based on intuitions gained from the scheduling experiment, and test these models 
on more simple experiments and data from the literature. 
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Maintaining the current problem context
One important aspect of problem solving, which becomes most apparent if problem 
solving has to be done entirely by heart, is to maintain the current problem context 
in memory. Protocols show participants have great difÞculty with this aspect of 
problem solving, since they give a lot of attention to rehearsing their current 
schedule, but nevertheless make many mistakes with it. Clearly there is more going 
on than just pure rational search. But participants have to do more than just 
rehearsal, they also have to keep track of other dynamic aspects of problem solving, 
such as what they have already tried and what new constraints they have already 
derived. Coordinating knowledge in the current problem context has aspects of 
implicit and explicit learning. Rehearsal is clearly an intentional, explicit aspect, but 

1 2 3 4 5 6 7 8 9 10

participant 1

participant 2

participant 3

participant 4

participant 5

participant 6

participant 7

participant 11 
from condition 1

participant 12 
from condition 1

Figure 3.13. Strategy use plotted for individual participants. Black boxes indicate the Þt-the-hours 
strategy was used for that particular trial, and grey boxes indicate the use of the different-
worker strategy.
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a growing sense of the inadequacy of search given the current knowledge, is more 
implicit. Chapter 4 will elaborate on this topic, and will discuss a model of 
rehearsal.

The role of insight and rule learning
Protocol analysis showed clear evidence for the emergence of two distinct problem-
solving strategies, the Þt-the-hours strategy and the different-worker strategy. The 
single protocol that was analyzed in detail also showed a learning pattern that 
resembled the exploration-impasse-insight-resolution scheme posed by insight 
theory. In chapter 5, a rational basis for this pattern of problem solving will be 
sought. Additionally, the problem of how new rules can be learned during an 
insight episode will be discussed. 

3.6 Appendix: Proof of NP-completeness of fully-Þlled precedence 
constrained scheduling

A proof of NP-completeness consists of two steps. First, the problem must be in NP, 
and secondly it must be possible to polynomially reduce any NP problem to the 
candidate NP-complete problem. Reducing a problem A to problem B means that 
there exists a transformation function T that takes an arbitrary instance of problem 
A and returns an instance of problem B, satisfying the condition that the solutions 
to both instances are the same. To polynomially reduce A to B means that the 
transformation function T must have a polynomial time complexity. 

To prove that any NP problem can be reduced to a candidate NP-complete problem 
is very hard. Fortunately, there is a much easier method. It is sufficient to prove that 
an arbitrary other NP-complete problem can be reduced to the candidate NP-
complete problem. Since all NP problems can be reduced to this other NP-complete 
problem, any NP problem can be reduced to the candidate NP-complete problem in 
two steps (figure 3.14).

The original definition of PCS assumes all tasks have a duration of one hour. So FF-
PCS also differs in this respect, since tasks can have an arbitrary duration. The NP-
completeness proof will have to take this into account as well. The formal definition 
of PCS is as follows (from Garey & Johnson, 1979).

DeÞnition of PCS
An instance is a set T of tasks, each having length , a number  of 
workers, a partial order < on T, and an overall deadline . The question to be 
answered for each instance is: is there an m-worker schedule for T that meets the 
overall deadline D, i.e., a function  such that, for all , the number of 

l t( ) 1= m IN
+∈

D IN
+∈

σ:T IN→ u 0≥
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tasks  for which  is no more than m and such that, for all 
, , and obeys the precedence constraints, i.e., such that  

implies ?

DeÞnition of FF-PCS

FF-PCS differs from PCS with respect to the following two points: it allows arbitrary 

lengths of tasks, so , and it requires the schedule to be filled, so 

.

Theorem
FF-PCS is NP-complete.

Proof
First, we have to prove that FF-PCS is NP. The problem is NP, if there is an 
algorithm consisting of two parts: a non-deterministic part that ÒguessesÓ a 
schedule, and a deterministic algorithm of polynomial time complexity that checks 
whether this schedule meets all the constraints. Both parts of this algorithm are 
easy: guessing a schedule is just Þlling  with arbitrary values, and checking the 
schedule means checking the precedence constraints (one check for each 
constraint), whether all tasks end before the deadline (one check for each task), and 
whether there are no overlapping tasks (no more checks required than the 
multiplication of the number of tasks and the deadline D).

The second part of the proof involves the reduction of PCS, a known NP-complete 
problem, to FF-PCS. So, given an instance I of PCS, we have to show how this 

NP problems

candidate 
NP-complete 
problem

To prove a problem is NP-complete, 
one has to prove any NP problem can 
be reduced to it.

NP problems

other NP-complete 
problem

The easiest way to do this is through 
another NP-complete problem, since 
it requires only a single reduction.

Figure 3.14. How to prove any problem can be reduced to an NP-complete problem 

candidate    NP-complete 
problem

t T∈ σ t( ) u σ t( ) l t( )+<≤
t T∈ σ t( ) l t( )+ D≤ t t'<

σ t'( ) σ t( ) l t( )+≥

l t( ) IN
+∈

l t( )
t T∈
∑ mD=

σ t( )
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instance can be transformed into an instance IÕ of FF-PCS, and have to prove that if 
there is a schedule for I, there is a schedule for IÕ, and if there is no schedule for I, 
there is no schedule for IÕ either. 

The best way to understand this transformation is to think of a PCS schedule as a 
schedule in which some of the workers have time left in which they have nothing to 
do. Now suppose we also want to schedule this Òfree timeÓ. This will not increase or 
decrease the difficulty of the process, since there are no constraints on free time, it is 
just that any time that is left over is now officially called a Òfree-timeÓ task. 

For the transformation function we will distinguish three possible cases, two of 

which are trivial. The first is the case in which , so the total duration of 

all tasks exceeds the total time workers have. In that case there can never be a 
solution. So we can just transform all instances to a single FF-PCS instance for which 
we know no schedule is possible. This transformation satisfies the condition, since 

for all instances there is no schedule. The second trivial case is when : 

the total duration equals the total time the workers have. In this case the PCS 
instance already is a FF-PCS instance, so we can just use identity as the 

transformation function. The third case is when , the case in which there 

is more available time than it takes to do all the tasks. The idea is to Òfill upÓ the rest 
of the schedule with tasks of length one (Òfree-timeÓ tasks), on which we do not 
impose any precedence constraints. These extra tasks can fill in the rest of the 

schedule. So given an instance I of PCS, we create IÕ by adding  tasks to 

T, each of which has . No precedence constraints are imposed on these new 
tasks. If there is no schedule for I, neither will there be one for IÕ, since it only has 

more tasks to schedule. If there is a schedule for I, it has exactly  points 

in time left for which the schedule has less than m scheduled tasks that can be filled 
with the added tasks in IÕ. Since no precedence constraints are imposed on these 
tasks, they can be scheduled anywhere. 

l t( ) mD>
t T∈
∑

l t( )
t T∈
∑ mD=

l t( ) mD<
t T∈
∑

mD l t( )
t T∈
∑–

l t( ) 1=

mD l t( )
t T∈
∑–
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CHAPTER 4 Implicit versus Explicit 
Learning
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The goal of this chapter is to arrive at a theory of implicit and explicit learning 
without introducing new theoretical entities. The basis for this theory will be the 
ACT-R architecture. The ACT-R theory, of course, also uses multiple theoretical 
entities. As we will see, none of these correspond directly to the notions of implicit 
and explicit learning, but together they can provide an explanation. This chapter will 
start with a general discussion about implicit and explicit learning. One experiment 
that is often quoted in the context of implicit learning is a dissociation experiment by 
Tulving, Schacter and Stark (1982). An ACT-R model is presented that can be used 
to explain their results. The model also serves as a basis for a more general discussion 
on how implicit learning and explicit learning can be understood in terms of ACT-
R. The remainder of the chapter is used to discuss a particular example of explicit 
learning: rehearsal. Rehearsal is often studied using the free-recall task. By 
examining free-recall in several different situations, we may conclude that the 
primacy effect is mainly an effect of explicit learning, while the recency effect can be 
explained by implicit learning.

4.1 Introduction

In chapter 1 I have discussed Alan NewellÕs criticism of psychological research, in 
which he mocked the simplistic conceptualization of the complexity of human 
cognition in terms of binary oppositions. Since 1973 a new opposition has become 
popular in cognitive psychology: the distinction between implicit and explicit 
learning or implicit and explicit memory. Although the term implicit memory was 
already proposed by Reber in 1967, the topic became popular by the end of the 
eighties. Before implicit learning research became popular, most memory research 
paradigms were based on either recognition or recall. Both in recognition and recall, 
participants Þrst have to study some materials, and are tested later on. These types 
of experiments offer many insights into the nature of human memory, but tend to 
bias theories of memory. For example, in the famous dual-store memory theory by 
Atkinson and Shiffrin (1968), a major role for storing information in long-term 
memory is attributed to rehearsal, the mental process of sub-vocally repeating 
information. The dual-store theory was able to explain many of the recognition and 
recall experiments. A very powerful but false prediction was however neglected: 
the fact that no rehearsal implies no storage in long-term memory. As we will see 
shortly, learning may even take place without awareness. The dual-store theory 
overestimated the importance of rehearsal as a memory process, because it used 
recognition and recall as a basis. In both types of experiments, participants were 
told explicitly they had to memorize certain items. 

ReberÕs 1967 experiments departed from this experimental paradigm, and 
investigated what people learn without being aware of what they have to learn. The 
experiment he introduced, and which has been replicated many times in many 
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variations, is artificial grammar learning. In this experiment participants first study a 
list of strings that has been generated by a finite-state automaton based on an 
artificial grammar. After this study phase, participants were told the strings they had 
studied were words generated by a grammar. In the following test phase, they were 
presented with new strings generated using the same grammar, mixed with random 
strings and strings with subtle errors in them. Participants had to figure out which 
new strings were generated by the grammar, and which were not. It turned out that 
participants are surprisingly good at this task, and classify the new strings not 
perfectly, but well above chance level. Since none of the strings that were originally 
memorized were presented in the test phase, and participants were not aware of the 
fact that there was any systematicity in the learned strings, they somehow must have 
learned more than just the literal strings. Reber coined the term implicit learning to 
describe this additional, unintentional aspect of learning. Additional studies show 
that although participants perform well on this task, they can not explicitly state the 
rules of the grammar. 

The idea that participants must learn to predict the behavior of a final-state 
automaton has been used in several other research paradigms. An example of one of 
these paradigms is dynamic system control, in which participants have to learn to 
control a complex system. An example is an experiment by Berry and Broadbent 
(1984), which involves a scenario in which participants have to learn to control a 
sugar factory. The Sugar Factory computer simulation they used is a dynamic 
system in which participants have to control sugar production by setting the number 
of workers. Since the relationship between input and output is highly non-linear, it 
is almost impossible for participants to discover the rule that governs the system. 
Nevertheless participants learn adequate control quite quickly, although they are 
not able to state the underlying rules of the system. A model of this experiment will 
be discussed in chapter 6.

Another type of research that deviates from traditional memory research is the 
dissociation paradigm. An example of this type of research is an experiment reported 
by Tulving, Schacter, and Stark (1982). In this experiment participants first had to 
study a list of 96 words. They were subsequently tested using two different tests, an 
implicit and an explicit test. The first, explicit, test was a simple recognition test, in 
which the participant was asked whether or not a certain word was in the study list 
or not. The second, implicit, test was a word-completion task. In this case 
participants were presented with a word fragment which they had to complete, for 
example A_ _ A _ _ IN (answer: ASSASSIN). Some of the fragments originated from 
the studied list, and others were from words not previously studied. Each 
participant had to do each test twice: an hour after the study phase and a week after 
the study phase. Figure 4.1 shows the results. One hour after studying the words, 
participants recognize 58% of the items correctly (this percentage is corrected for 
guessing). After a week, performance has dropped considerably to 24%. The implicit 
word-completion task, however, shows a totally different picture. Studying words 
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improves performance on this test: after one hour word-completion was accurate for 
studied words in 49% of the cases, while new words were only completed 
successfully in 30% of the cases. This advantage does not degrade with time, since 
after a week performance on the word-completion task is still the same. The 
discrepancy between the two tasks is called a dissociation: while one type of 
information, the fact that a word has been studied in the context of the experiment, 
degrades over time, other, subtly different, information seems not to suffer from any 
decay in time at all. 

In the example above the dissociation is caused by time: one type of performance did 
suffer due to the passage of time, while another did not. There are other types of 
dissociations, for example due to brain damage. A study by Warrington and 
Weiskrantz (1970) reveals that patients suffering from amnesia perform much worse 
compared to healthy people on explicit tests like recognition and recall. On implicit 
tests like word completion, their performance equals control participants. 

What do experiments such as artificial-grammar learning and dissociation learning 
exactly prove? At least they show the inadequacy of the classical recognition/recall 
paradigms, and also show that the Òno rehearsal no learningÓ prediction of the dual-
store model does not hold. But, probably to Alan NewellÕs horror, psychologists 
turned the new phenomena into a new binary opposition, and, even worse, posed 
two binary opposite theories (the systems and the processing theory) to explain the 
distinction. Implicit and explicit learning were proposed as two distinct types of 
learning, each having its own mechanisms and needing its own theoretical 
framework. Explicit learning was associated with all the old memory research, but 
implicit learning, the new kid on the block, promised to be a new unexplored 
domain of countless experiments. 

What makes implicit learning different from explicit learning? The dissociation 
experiments show that implicit learning is somehow more robust than explicit 
learning, since neither brain damage nor the passage of time seems to affect it. 
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Figure 4.1. Results of the Tulving, Schacter & Stark experiment: performance on the explicit 
recognition test degrades in a week, while performance on the implicit word completion task 
remains constant.
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Implicit learning is more robust in other aspects as well. McGeorge, Crawford and 
Kelly (1997) have shown that explicit learning is dependent on age and intelligence, 
while implicit learning is not. Participants that score higher on an IQ-test also 
perform better on explicit memory tests, and performance of older participants on 
the explicit test is worse than the performance of younger participants. Implicit 
learning on the other hand is hardly affected, either by IQ or age. 

Another aspect of implicit learning, even used by some researchers as the defining 
quality, is that consciousness or awareness does not seem to play a role in it. Implicit 
learning is therefore sometimes called unconscious learning, as evidenced by the fact 
that although the participants can not verbalize any knowledge about the task, their 
performance increases nevertheless. In ReberÕs artificial grammar participants were 
not able to state any of the grammar rules, but could categorize the strings anyway. 
In the Tulving experiment, participants had forgotten that they had studied a 
particular word after a week, but managed to use them for word-completion 
anyway. The notion of consciousness is, however, not unproblematic, as pointed out 
by Shanks and St. John (1994). In the artificial grammar experiments participants 
were not able to express any of the rules of the grammar. But they were aware of the 
fact that certain combinations of letters were more likely in grammatical than in 
ungrammatical strings, something that could at least explain some of their increased 
performance. A ÒsaferÓ version of the unconsciousness aspect of implicit learning is 
to define implicit learning as unintentional learning, learning that is not tied to goals. 
In artificial grammar learning and in the Tulving experiment, participants had to 
memorize words or strings for later recall or recognition, not with the intention to do 
word-completion or to figure out a grammar. In this sense implicit learning can be 
seen as a Òby-productÓ of normal information processing, while in explicit learning 
information processing is aimed at learning, comprehending or memorizing 
something.

There are two opposing theories that attempt to explain the differences between 
implicit and explicit learning: the systems theory and the processing theory. 
According to the systems theory, put forward by Squire (Squire & Knowlton, 1995), 
there are two different memory systems, an implicit and an explicit memory system, 
represented in separate structures in the brain. The fact that amnesiacs perform 
worse than controls on explicit tasks but not on implicit tasks can simply be 
explained by the fact that their explicit memory is damaged but their implicit 
memory is intact. Explicit memory is conscious memory, implicit memory is 
unconscious. Information in explicit memory decays with time, while information in 
implicit memory stays put. This also corresponds well with the folk-psychology idea 
that all our experiences are stored in unconscious memory. 

The processing theory of implicit learning by Roediger (1990) assumes that there is 
a distinction between two types of processes: data-driven processes and 
conceptually driven processes. Data-driven processes are triggered by external 
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stimuli and can be associated with tests of implicit memory. For example, in the 
word-completion task part of the pattern is given. This part of the data actively 
facilitates the retrieval of the whole pattern. In the recognition test on the other hand, 
a connection between a word and an episodic event must be verified, so has a more 
conceptual nature. Conceptually driven processes are initiated by the participant 
and lead to explicit learning. According to the processes theory, memory 
performance will be best if the processing required on the test is the same as the 
processing required in the learning phase. 

The problem with both the systems and the processing theory is that a distinction 
found in empirical data is explained by proposing two different theoretical entities, 
either two systems or two types of processing. From a scientific point of view this is 
a weak explanation that furthermore offers no insights in what the difference is 
between implicit and explicit learning. The evidence for separate entities is not final 
either. There are many examples of dissociations in which explicit learning is 
impaired while implicit learning is intact. If each type of learning is associated with 
its own theoretical entity, however, a so-called crossed double dissociation has to be 
found. In a crossed double dissociation, two experimental variables have to be found 
that have opposite effects on the implicit and the explicit test. A dissociation like this 
has never been found (Cleeremans, Destrebecqz & Boyer, 1998). To quote 
Cleeremans (1997, page 215):

With the exception of Hayes and Broadbent (1988) that has failed to be replicated 
so far, such a [crossed double dissociation] has never been observed in implicit 
learning situations. [...] the fact that no crossed double dissociation has ever been 
satisfactorily obtained in implicit learning research has often been used by other 
authors (e.g. Shanks and St John, 1994) as an argument to deny the existence of 
implicit learning as an independent and autonomous process.

Evidence from studies with patients isnÕt strong either: both patients of 
HuntingtonÕs disease (Heindel, Butters & Salmon, 1988) and ParkinsonÕs disease 
(Saint-Cyr, Taylor & Lang, 1988) have severe difficulty in learning motor skills, while 
showing intact performance on recall and recognition. Motor skills are usually 
considered procedural skills. Since people do not have conscious access to their 
procedural skills the associated learning process can be considered implicit. The 
problems these particular patients have, however, seem to limit themselves to the 
motor domain, so a generalization to implicit learning in general is unwarranted.

4.2 A model of the dissociation experiment

TulvingÕs dissociation experiment consists of three separate activities, each of which 
is modeled by a small set of production rules: studying the list of words, the 
recognition test and the word-completion test. First, the list of words has to be 
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studied. In the experiment, every 5 seconds a word is presented. Since participants 
were only told they were involved in a memory experiment, they had no direct clue 
on what they had to do exactly with the words. It is therefore a safe assumption that 
participants will just rehearse the word and the fact that they have seen the word in 
the current context. This is easily accomplished in ACT-R: a Þrst production rule 
creates a declarative recognition chunk that points to the word to be studied and to 
the current context. The recognition chunk can be considered as an episodic 
memory trace. A second rule keeps retrieving the chunk that represents the word 
and the recognition chunk until the next word is presented. Due to ACT-RÕs base-
level learning, the activation of a chunk is increased each time it is retrieved. The 
base-level activation at a certain time t can be calculated using the following 
equation:

(4.1)

In this formula, n is the number of times a chunk has been retrieved from memory, 
and  represents the time of each retrieval. The longer ago a retrieval was, the less 
it contributes to the activation. B and d are constants. Figure 4.2 shows an example 
of the behavior of this function, in which the activation of a chunk is plotted that is 
accessed at time 1, 4 and 7. 

When the rehearsal production rule retrieves the recognition chunk and the chunk 
that represents the word itself, activations of both chunks are increased 
considerably, because n is increased in the formula, and the new Õs are all still close 
to t. There is, however, a difference between the activation of the recognition chunk 
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and the word chunk. The recognition chunk has just been added to declarative 
memory, so has no previous history of activations. This means that the activation of 
the recognition chunk is based solely on the few rehearsals in the context of the 
experiment. The word chunk, however, was already present in declarative memory, 
and already has a history of past use. In the model, this is simulated by assuming that 
words have been accessed on average 150 times, spread evenly over the past ten 
years, producing a low, but stable activation value. Some fixed activation noise in the 
model assures that all words have slightly different activation values. The difference 
between recognition and word chunks means that activations will also develop 
differently in the time period after studying the words. As figure 4.3 shows, both the 
word chunks and the recognition chunks start at a high level of activation. The 
activation of recognition chunks, however, decays faster due to the fact that they 
have no previous history. 

In the recognition test the question must be answered whether or not a particular 
word has been studied in the study phase. In terms of the model this means that 
given a particular word chunk and a particular context chunk, a recognition chunk 
must be retrieved that connects the two. This is handled by two production rules. 
The first rule tries to retrieve the recognition chunk and answers ÒyesÓ when it 
succeeds. The second rule, which may fire if the first rule fails, just answers ÒnoÓ. 
This model is not entirely faithful, since it does not model the event in which a word 
that has not been studied is mistaken for one that has been studied. This can be 
modeled in ACT-R using partial matching, but this has not been done in the current 
model (partial matching has briefly been introduced in chapter 2, but will used in the 
Sugar-Factory model in chapter 6). Failure to recognize a word that has been studied 
is due to the fact that the activation of the recognition chunk has become too low, 
since ACT-R cannot retrieve chunks with activations below the retrieval threshold. 
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Figure 4.3. Development of activation values for recognition chunks, primed words and non-primed 
words in the course of the week after the study phase of the experiment.
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In a recognition test, the indices to retrieve the right chunk are clear enough: the 
word and the study event. This is not the case in the word-completion task, where 
only a part of the word is given and the rest has to be retrieved. In order to retrieve 
the word that fits the pattern A _ _ A _ _ IN, ideally a production rule is needed that 
matches the first, fourth, seventh and eighth letter, and tries to retrieve a word that 
fits. The problem with this solution is that a production rule is needed for any 
combination of letters, which would mean 256 production rules if we would restrict 
ourselves to just 8 letter words. A solution that only requires a few production rules 
is to retrieve a word using only one or two letters, and compare if the retrieved word 
matches the rest of the letters. If it does, a solution has been found, if it does not, the 
model gives up. Alternatively, the model might have a few tries before giving up, 
but that aspect has not been modeled. One of the matching rules is as follows:

IF
the goal is to complete a word fragment AND
the first letter of the fragment is l1 AND
the second letter of the fragment is l2 AND
there is a word w that has l1 as its first letter AND
has l2 as its second letter

THEN
mark w as a candidate solution in the goal

This rule tries to find a word that matches at least the first two letters of the pattern. 
This rule will not work for the A _ _ A _ _ IN, because the second letter is unknown, 
but it will work if the first two letters are given. 

Although both recognition and word completion require some declarative retrieval, 
they differ with respect to the source of errors. In the recognition test, it may be the 
case that a recognition chunk is no longer retrievable due to low activation. In the 
word-completion test interference with other words is the major source of errors. 
Words that are primed in the learning phase of the experiment get an activation 
advantage over words that are not primed. This advantage may persist over longer 
periods of time, as is indicated in figure 4.3. This difference between the two tasks 
may well be the real explanation for the dissociation. Figure 4.4a demonstrates that 
the model indeed behaves in a way that is comparable to human data. The main 
parameter that was manipulated to achieve the fit is the base-level learning decay 
(parameter d in equation 4.1). The recommended value for this parameter is 0.5, but 
this turned out to be a poor choice to explain long-term learning, since in a week 
ACT-R had forgotten everything. Instead the value of 0.3 has been used. Other 
parameters that have been manipulated, such as the retrieval threshold and the 
activation noise, did have small effects on the actual values of data points, but did 
not change the main dissociation effect. 
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The interesting aspect of this model is the fact that although it exhibits a dissociation, 
it nevertheless has no separate theoretical constructs to explain this difference. Both 
types of information are represented in the same memory system by the same 
memory process. The dissociation can be explained by the characteristics of the tasks 
themselves, rather than by hypothesized constructs. What is the difference between 
recognition and word-completion? To get a broader view on this question, we first 
have to review the notion of activation. Activation in ACT-R is an estimate of the log 
odds that a certain chunk is needed in the current context. This estimate is used in 
ACT-R for two purposes:

• If there are two or more possible candidates for retrieval by the production rule 
that is currently matched, the candidate with the highest odds is chosen.

• If the odds of needing a certain chunk are too low, the potential gain of 
retrieving it is not worth the effort.

If we look at the study task the participants have to do, we have to compare it to the 
situation in which people normally read words. In normal situations, it is not useful 
to remember in which particular context a word has been read. It is, however, useful 
to keep track of how often a word is used or encountered, since high-frequency 
words are more important than low-frequency words. So, if someone read low-
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Figure 4.4. Results of the model of the dissociation experiment (a). The data are repeated in (b).
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frequency words in a normal setting, he would typically not remember the event of 
reading the word itself, and would probably only update the frequency information 
of that word. The Tulving experiment is not a normal situation, it is a memory 
experiment. In order to meet the, at that point, unknown criteria of the memory 
experiment, the participant intentionally influences the normal learning scheme by 
rehearsing information. Rehearsal in this context means: intentionally increasing the 
number of retrievals of certain chunks, thereby artificially increasing the odds-of-
being-needed of the chunk. As a consequence, the recognition chunk that stores the 
information that the word has been studied can still be recovered one hour after the 
study phase. A unintended by-product of rehearsal is that the frequency information 
of the studied words is increased as well. Since low-frequency words are used, the 
extra retrievals due to rehearsal have a significant impact on this estimate. It is this 
frequency information that the word-completion production rules need in order to 
select candidates, and which can be used as an explanation why studied words are 
completed better than words that are not studied, even after a week.

In the previous discussion the important difference between normal situations and 
a memory experiment is intentionality. In the introduction I have already noted that 
intentionality might be a key notion in the discussion. In the next section I will 
explain how this idea can be worked out in terms of the ACT-R theory.

4.3 An ACT-R theory of implicit and explicit learning

In the introduction I mentioned intentionality might be a good starting point to 
understand the nature of the difference between implicit and explicit learning. An 
advantage of using intentionality is that it can easily be operationalized in terms of 
ACT-R. Intentionality in terms of ACT-R means: tied to a goal. In the case of 
learning words for later recognition, as in the Tulving experiment, the intention of 
the participant is to memorize the words. If we look at the learning mechanisms in 
ACT-R, none of them is principally tied to intentions. Although the base-level 
learning mechanism may be used in the context of a memorization goal, it is not its 
basic function. Its basic function is to keep track of the odds that chunks are needed, 
a function that is normally performed unintentionally and unconsciously. The same 
can be said about all learning mechanisms in ACT-R: they are at work all the time, 
and are basically not tied to intentions. In a sense all learning in ACT-R is implicit 
learning. This idea is consistent with other properties of implicit learning. Implicit 
learning does not change much by ageing, and individual differences are small. 
This is exactly what we want for basic mechanisms in an architecture for cognition, 
since it is a theory about what people have in common and not about what sets 
them apart. The fact that implicit learning is not easily impaired due to brain 
damage also favors the architectural mechanism view: the basic way the brain 
works shouldnÕt change due to damage.
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What is explicit learning? The position I would like to defend is that explicit learning 
is a form of implicit learning. But while implicit learning is a by-product of normal 
processing, explicit learning is the by-product of specific learning goals. Where 
normal processing would retrieve a chunk representing a word only once, an explicit 
learning goal may retrieve it a number of times, not because it is necessary for 
processing, but just to put the implicit learning mechanisms to work. Although we 
have no direct conscious access to the base-level learning mechanisms itself, we may 
have found out, due to experience that repeating a word helps remembering it. 
Instead of being another type of learning, explicit learning is just a set of strategies to 
make the best possible use of the implicit mechanisms. Explicit learning is therefore 
not a part of the architecture of cognition, but is rather produced by knowledge that 
is represented in the memory systems of that architecture. This idea also corresponds 
well with properties of explicit learning: since the knowledge corresponding to it has 
to be learned itself, one can expect large individual differences due to intelligence 
and development. Similar observations can be made with respect to brain damage. 
If implicit learning is a fundamental property of the brain, it will not be easy to 
damage it. Explicit learning, on the other hand, consists of knowledge. Brain damage 
may cause this knowledge to be lost, or disrupt successful usage of this knowledge. 

In the case of the Tulving experiment, the recognition task is an explicit task only 
because participants suspect either recognition or recall if they are told they are 
involved in a memory experiment. If one explained the word-completion task to 
participants at the start of the experiment, and told them they were supposed to do 
this task after the study phase, it would turn into an explicit task. The participant has 
several options: she can either stick to a rehearsal strategy, or attempt some more 
clever memory strategy, for example by explicitly memorizing characteristic 
fragments of words. The choice of strategy will have a large impact on performance. 
The original rehearsal strategy will of course still exhibit the assumed characteristics 
of implicit learning, while the fragment-memorization strategy, if it works at all, will 
probably suffer from the same fast decay that is supposed to characterize explicit 
learning. We might even be able to find a dissociation within the same task in healthy 
participants.

In ReberÕs artificial grammar and Berry and BroadbentÕs sugar factory, participantsÕ 
performance increases, although they are not capable of formulating any explicit 
rule-like knowledge about the task. In both cases, it is very hard to find the real rules: 
deriving grammars from examples is a very difficult task, and the non-linear 
character, the randomness and the limited means of control in the sugar factory 
make it almost impossible for participants to derive rules within the limited time of 
the experiment. As a consequence, explicit strategies that are usually successful in 
detecting regularities will fail. Nevertheless there is also implicit learning going on. 
For example in the sugar factory task, which I will discuss in detail in chapter 6, each 
time the participant sets the controls of the factory and perceives an outcome, a 
chunk recording this information is added to declarative memory. This is not done 
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intentionally, but rather because all popped goals are stored. It will turn out that this 
information alone can account for the improvement participants show on the task. 

In the remainder of this chapter and in the next two chapters, I will explore the 
implicit/explicit distinction based on the idea that implicit learning is based on 
mechanisms of the architecture, and explicit learning is the application of learning 
strategies. In chapter 5, I will discuss explicit strategies that learn new production 
rules, and how an increase in the number of strategies can explain the difference 
between small children and adults on a classification task. In chapter 6, I will 
describe how the implicit/explicit learning debate can be related to another debate 
in the learning literature: whether new skills are learned by accumulating examples, 
or by deriving general rules. The remainder of this chapter is devoted to one of the 
issues stated in the previous chapter: a model of rehearsal. This model will be 
discussed in the context of the free-recall task, a classical paradigm to study 
rehearsal.

4.4 A model of rehearsal and free recall 

The model discussed in this section is the Þrst model I made in ACT-R. As a 
consequence, the model is based on an old version of ACT-R (2.0), which on the one 
hand included features that have since been removed, but on the other hand did not 
include all that is currently part of ACT-R. I further chose to implement verbal 
rehearsal using a separate phonological loop, based on BaddeleyÕs evidence for this 
kind of structure. If I were to model rehearsal again, I probably would be more 
hesitant to add extra structures to the architecture. Recently, the CMU group 
(Anderson, Bothell, Lebiere & Matessa, 1998) has also modeled free recall as part of 
a broader project on list learning. Their model did not use an explicit phonological 
loop. They, however, implemented a phonological-loop-style memory structure 
within declarative memory that did the same job.

As we have seen in the introduction, rehearsal has been studied extensively in the 
seventies in the context of the dual-store memory theory by Atkinson and Shiffrin 
(1968). One of the experimental tasks used for studying rehearsal is the free-recall 
task. In this task a list of words, typically containing fifteen to twenty items, is 
presented at a constant rate to a participant. After presentation, the participant has 
to recall as many words as possible from the list. Two effects emerge from the results, 
the primacy effect and the recency effect, respectively referring to the fact that the 
first and the last few items of the list are recalled better than the rest. The dual-store 
memory theory can explain both effects: the primacy effect is due to the fact that the 
first few items in the list are rehearsed more often because they initially donÕt have 
to compete for space in short-term memory (STM), and the recency effect is due to 
the fact that the last few items are still in STM at the moment they have to be recalled. 
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This explanation is confirmed by Rundus (1971), who asked participants to rehearse 
aloud. The data show that there is a relation between the number of rehearsals and 
the chance of recall (figure 4.5), at least with respect to the primacy effect.

Since the popularity of the dual-store theory declined, partly because rehearsal 
turned out to be not the sole mechanism to store information in long-term memory 
(LTM), less research effort has been put into it. A theory that does involve rehearsal 
is BaddeleyÕs theory of working memory (Baddeley, 1986). In BaddeleyÕs theory, 
working memory has a central executive and two rehearsal subsystems: the 
phonological loop and the visuo-spatial sketch pad (figure 4.6). Both subsystems are used 
to temporarily store small amounts of phonological and spatial information. The 
phonological loop is a system that stores up to two seconds of phonological code in 
a serial fashion. The visuo-spatial sketch pad uses a quasi-visual representation of 
objects that can be used for spatial reasoning. The visuo-spatial sketch pad can be 
used to answer questions like: if the triangle is below the square, and the circle is to 
the right of the square, and the circle is above the cross, is the cross left or right from 
the triangle?
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The phonological loop is the relevant structure for retention in free recall, at least in 
the overt-rehearsal version by Rundus. Instead of being the process that transfers 
information from STM to LTM, rehearsal has become a process necessary to 
maintain items in STM. Whether or not information will also be stored in LTM is not 
specified by BaddeleyÕs theory, because it is a theory of working memory only. Work 
by Craik and Lockhart indicates that the extent to which rehearsed information is 
stored in LTM depends on the amount of processing that needs to be done on 
individual items (Craik & Lockhart, 1972). This led to the distinction between 
maintenance rehearsal and elaborate rehearsal. Maintenance rehearsal is used just to 
retain information for a short time, for example a telephone number that needs to be 
dialled. During elaborate rehearsal on the other hand further processing is done on 
the rehearsed information. 

Baddeley has gathered extensive empirical evidence for the phonological loop and 
the visuo-spatial sketch pad. The central executive, however, is a weak point in the 
theory. It is supposed to be able to contain two or three items, and to control what 
goes into both subsystems, but it is unclear what representation it uses, and why and 
when it puts something in either subsystem. The central executive is almost a 
reference to the rest of information processing, because it not only stores 
information, it also makes important decisions on what to memorize in what 
subsystem. Some of these decisions must be deliberately planned, involving 
knowledge stored in LTM. The problems with the central executive have an obvious 
reason: somehow the theory of working memory must be tied to the rest of 
information processing, and the central executive is responsible for this. 

The ACT-R theory can be seen as a specification of central information processing 
that can serve as a means to create models of rehearsal using BaddeleyÕs 
phonological loop. The role of the central executive is taken care of by the ACT-R 
architecture. 

A model of free recall in ACT-R
To be able to model free recall in ACT-R, we Þrst need some way to do rehearsal. In 
order to use BaddeleyÕs phonological loop, some assumptions have to be made 
about the representation of the loop and the interaction with ACT-R. According to 
Baddeley, the phonological loop has a phonological representation. To be able to 
interact with the memory of ACT-R, we must assume it is possible to activate a 
phonological representation given a chunk-like symbolic representation in 
declarative memory and vice-versa. To simplify matters, we will assume the 
phonological loop has the following properties:

• The phonological loop is a linear storage buffer with a capacity of 2 seconds of 
phonologically coded words. 

• References to declarative chunks representing pronounceable words can be 
added to the loop. New references are added to the end of the loop. 
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• If the capacity of the loop is exceeded, a random word is dropped.

• At any moment the contents of the loop can be rehearsed, which involves 
entering a subgoal to do this.

• In the rehearsal subgoal the words can just be rehearsed (maintenance 
rehearsal), or further reasoning can be done with them (elaborate rehearsal).

Implementing a separate structure for rehearsal is at odds with the idea that 
rehearsal is just a learned strategy. But what if the phonological loop is not primarily 
a structure of working memory, but rather a buffer to store perceived speech in, or 
speech that is about to be pronounced? In that case, rehearsal would be a clever 
strategy of reusing a structure whose original purpose is different. 

Once rehearsal is taken care of, a model of free recall is straightforward. During the 
study phase of the experiment words are read and added to the phonological loop 
one at a time. In the time between presentations the phonological loop is rehearsed. 
At the time of recall, words are recalled in order of activation until there are no 
words left above the retrieval threshold. No attempt is being made to first ÒemptyÓ 
the phonological loop at the time of recall, only the last item of the list is retained.

The explanation this model offers for the two prominent effects in free recall, the 
primacy and the recency effects can now be made clear. The primacy effect can be 
explained in the same manner as RundusÕ explanation: the first few words are 
rehearsed more often, on average, so are retrieved more often. The recency effect can 
be explained by the fact that the retrievals are relatively recent, so their impact on the 
activation is larger. 

A positive recency effect can be considered as an implicit learning effect, since its 
presence is not influenced by strategy. This finding concurs with developmental 
data. Hagen and Kail (1973) compared free-recall behavior of 7 and 11 year-old 
children. Although both groups show a recency effect in recall, in the group of 
younger children the primacy effect is absent. Cuvo (1975) found that this difference 
can be attributed to strategy: younger children tend to just repeat the last item 
presented, while older children adhere to the adult pattern of rehearsal. These 
studies demonstrate that implicit learning, as witnessed in the recency effect, is not 
affected by age, while explicit learning is, as witnessed in the primacy effect.

Simulation 1
The goal of the Þrst simulation was to reproduce the results of RundusÕ experiment. 
Rundus used 25 participants, to whom 11 lists of 20 words were presented on cards 
with a 5 second interval. Participants were instructed to rehearse aloud.
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In the experiment the mean number of words correctly recalled was 11.12 and the 
mean number of rehearsals 88.3. The simulation recalls 11.15 words correctly on 
average, using 116.0 rehearsals. The serial position curve and the mean number of 
rehearsals for each item in the list are shown in figure 4.7. The fit between the data 
and the model is reasonably good for the probabilities of recall (R2=0.82), and not too 
good for the number of rehearsals (R2=0.57). As can been seen in the figure, the 
model overestimates the number of rehearsals, although the curve has the right 
shape. 

Simulation 2
In the standard experiment, participants have to rehearse aloud, but are free in 
choosing which words to rehearse. Participants can be constrained in this aspect, for 
example if they may only rehearse the word that has just been presented. Figure 4.8 
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shows the data (from Fischler, Rundus & Atkinson, 1970) and the results of the 
model (R2=0.65). The interesting aspect is that the primacy effect largely disappears, 
but the recency effect remains. This Þnding is consistent with Hagen and Kail (1973) 
(no primacy effect in young children) and Cuvo (1975) (young children only 
rehearse the last word presented) studies.

Simulation 3
To see whether the model holds its ground in other variants of the task, a data set 
collected by Murdock (1962) is a good basis for comparison, since he used different 
list lengths (from 10 to 40 words) and different rates of presentation (1 or 2 seconds 
per word). Murdock did not require overt rehearsal, so only the probabilities of 
recall can be compared. Figure 4.9 shows the data and the results of the model. The 
main deviation between model and data is that the model overestimates the 
primacy effect. The overall explained variance is nevertheless quite high (R2=0.91). 

Simulation 4
In the standard free-recall experiment, recall starts immediately after the 
presentation of the words. If there is a delay between recall and presentation in 
which further rehearsal is prevented, the recency effect disappears. An experiment 
by Postman and Phillips (1965) demonstrates this effect: 18 participants were given 
lists of 20 words, 6 lists for which recall immediately followed the presentation, and 
6 lists where participants had to count backwards for 15 seconds before recall. 
Words were presented at a rate of one word per second, and rehearsal was covert. 
The mean number of words recalled correctly was 6.20 if there was no delay after 
presentation, and 5.05 if there was a 15 second distraction. The serial position 
curves for both conditions are depicted in Þgure 4.10, together with the simulation 
data. The simulation recalls 8.6 words correct on average in the condition without 
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delay, and 4.6 words in the 15 sec delay condition. The most interesting aspect, 
however, is that the recency effect has largely disappeared. This is normally 
explained by the fact that participants cannot use the contents of their rehearsal 
buffer in their answers, but the model shows that an explanation based on decay of 
activation is sufÞcient. It also predicts that due to the fact that the last few items are 
rehearsed fewer times than items in the middle of the experiment, the recency effect 
will eventually turn into a negative recency effect, as we will see in simulation 5. 
The primacy effect is much less affected by the delay, since it is caused by the fact 
that items have been rehearsed more often. The explained variance is only average: 
the overall R2 has a value of 0.58.

Simulation 5
Craik (1970) discovered that the disappearance of the recency effect after a delay 
can even turn into a negative recency: in some situations recall for items at the end 
of the list is worse than for items in the middle part. In a free-recall experiment 20 
participants were presented with 40 lists of 15 words at a rate of 2 seconds per 
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word. After each 10 lists, participants were asked to recall as many words as 
possible from the previous 10 lists, giving a Þnal-recall score. The results of this 
experiment are shown in Þgure 4.11a. To obtain a smooth curve Craik averaged 
each data-point with its successor and predecessor, except for the Þrst and the last. 

The free-recall model also produces negative recency, as can be seen in figure 4.11b. 
The same averaging technique as Craik used is used on the data. In the simulation 
the model has to produce as many items as possible after presentation, after which a 
60 second break follows and another, final, recall session. Although the results of the 
model cannot directly be compared to CraikÕs data, since the experimental setup is 
different, a negative recency effect that is similar to Craik can be seen in the model. 
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Discussion
The results of the simulations show that the classical effects of primacy and recency 
in free recall can be reproduced using a theory of rehearsal based on the ACT-R 
architecture and BaddeleyÕs phonological loop. The primacy effect can be explained 
by the fact that items early in the list are rehearsed more often on average than other 
items in the list, the same explanation that was used in the dual-store theory of 
memory. The recency effect can be explained by the base-level activation 
mechanism of ACT-R: the last few items of the list have a higher activation because 
they have been accessed more recently. 

Simulations 2, 4 and 5 show that both the primacy and the recency effect can be 
manipulated by changing aspects of the task. It is interesting to examine the nature 
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of these manipulations. In simulation 2, participants were instructed to use a certain 
type of rehearsal strategy, which resulted in the disappearance of the primacy effect. 
The learning strategy thus determines the presence or absence of the primacy effect, 
and can be considered as an effect of explicit learning. In simulations 4 and 5, the 
circumstances of the experiment were changed. Instead of changing the strategy, a 
time delay was used, resulting in an effect on the recency effect. 

The various models presented in this section also illustrate the inadequacy of the R2 
measure to express the quality of fit between the data and the model. Although the 
fit with the original Rundus data is clearly the best, the model of the Murdock 
experiment achieves the best fit, although it overestimates the primacy effect. 

The parameters in the models discussed above were set to their recommended 
default settings, except for the activation noise and activation threshold, which were 
estimated to optimize the fit to the Rundus model. The same settings were used for 
all the other simulations. The base-level learning decay parameter used was the 
recommended value of 0.5. In the Tulving model this parameter had to be set to 0.3, 
meaning there is an issue to be resolved here. We will return to this issue in 
chapter 6.



CHAPTER 5 Strategies of learning
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5.1 Introduction

In the previous chapter we saw that learning is a concept with two layers. The 
bottom layer consists of the learning mechanisms of the architecture, while the 
upper layer is a set of learning strategies that manipulate the mechanisms of the 
bottom layer. We have already seen an example of a learning strategy in the form of 
rehearsal. In this chapter, the focus will be on learning strategies that try to infer 
new knowledge, a phenomenon that we have witnessed in the protocols of the 
participants in the scheduling problem. There are several questions to be answered 
with respect to learning strategies. 

The first question is: when are learning strategies used. A learning strategy is tied to 
an explicit learning goal. This means that at some point during reasoning, a learning 
goal must be posed in favor of other processing. The protocols in chapter 3 
demonstrate that several episodes can be distinguished in the problem solving 
process, some of which involve search, and some of which involve reflection. In the 
reflection episodes, participants discover new strategies, and the recurrence of these 
strategies in later episodes indicates that they have been learned during the first 
episode. But when, and for what reasons, does a participant decide to stop search 
and start reflection? This is a question of meta-cognition, often portrayed as a 
monitoring process that prevents unbounded search. An alternative, which I will 
pursue in sections 5.2 and 5.3, is to incorporate the function of meta-cognition 
without the need for a separate monitoring process. A separate process would 
require its own monitor, leading to endless regress.

A second question one might ask is how learning strategies themselves are learned, 
and what their nature is. Learning learning strategies is probably a long-term 
process, so it will be hard to investigate this process in a standard experimental 
setting. A better setting to investigate the nature of learning strategies is 
development. During development, a lot of learning strategies are acquired. 
Probably many differences between adults and children with respect to their 
reasoning capabilities can be explained in terms of what type of information they can 
represent, and what learning strategies they have available to learn this information. 
In section 5.4, three theories of development will be discussed, and what can be 
learned from them.

The third and final question is how to model strategy learning in ACT-R. New 
production rules have to be represented in memory. Some learning scheme has to be 
developed that is independent of the current task. In sections 5.5 and 5.6, I will 
propose some example learning strategies, and show how they can learn task-
specific knowledge in two different domains. To emulate some of the developmental 
aspects of these strategies, I will do some Òreverse developmentÓ by impoverishing 
the learning strategies. As we will see, this leads to behavior associated with an 
earlier stage of development.
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5.2 Search vs. Insight

In chapter 1, I criticized the traditional approach of problem solving, in which 
solving a problem means no more and no less than Þnding an appropriate sequence 
of operators that transforms a certain initial state into a state that satisÞes some goal 
criterion. The difÞculty of problem solving is determined by factors as the length of 
the sequence needed, the number of possible operators, and the amount of 
knowledge available on how to choose the right operator. 

The alternative insight theory stresses the moment at which the crucial step towards 
the solution is found. Insight can be viewed in two ways: as a special process, or as 
a result of ordinary perception, recognition and learning processes (Davidson, 1995). 
Despite the intuitive appeal of a special process, the latter view is more consistent 
with the modern information-processing paradigm of cognitive psychology, and is 
much more open to both empirical study and computational modeling. One way to 
look at insights from an information-processing viewpoint is that an insight involves 
the relaxation of constraints (see, for example, Knoblich & Ohlson, 1996). In the nine-
dots problem mentioned in chapter 1, for example, the initial assumption that all 
lines should remain within the 3x3 square is a constraint that needs to be relaxed.

Another famous insight problem is the box-candle problem, in which a candle has to 
be affixed to a door, using a box of candles, a box of matches, and a box of tacks (see, 
for example, Mayer, 1983). The crucial constraint to be relaxed is the fact that the 
boxes are not just containers, but can also be used to support the candle. Knoblich & 
Ohlsson (1996) have shown in an experiment involving matchstick problems that 
once a constraint is relaxed, it stays relaxed. 

Looking at insights as removing constraints is a rather negative approach: 
something that is there needs to be removed. A slightly different view on insight is 
to assume some new knowledge is gained at the moment of insight. This 
corresponds well with the idea that a constraint stays relaxed. Another advantage of 
this view on insight is that not all insights can be described as relaxing constraints. 
The fact that participants in the scheduling problem start using complex inferences 
during a reflection episode can of course be called Òthe relaxation of the constraint 
not to use complex inferencesÓ, but this stretches the original idea so much it 
becomes almost meaningless: it is like defining the creation of a statue as removing 
marble.

Both the search and the insight theory select the problems to be studied in 
accordance with their own view. Typical ÒsearchÓ-problems involve finding long 
strings of clearly defined operators, as in the eight puzzle, the towers-of-hanoi task 
and other puzzles, often adapted from artificial intelligence toy domains. ÒInsightÓ-
problems, on the other hand, can be solved in only a few steps, often only one. 
Possible operations are often defined unclearly, or misleadingly, or are not defined 
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at all, as the nine-dots and candle problems illustrate. Due to this choice of problems, 
both evidence from insight and search experiments tend to support their respective 
theories. Both theories ignore some aspects of problem solving. The search theory 
seems to assume that participants create clear-cut operators based on instructions 
alone, and fails to assign a significant role to reflection. Insight theory on the other 
hand offers no explanation of the role of processing that happens before the 
ÒinsightÓ occurs. An obvious alternative is to think of both search and insight as 
aspects of problem solving, and to try to find a theory of problem solving that 
combines the two (Ohlsson, 1984). 

One such view sees insight as representational change, which is a more general term 
that includes constraint relaxation and gaining new knowledge about the task. 
Search is needed to explore the current representation of the problem, and insight is 
needed if the current representation appears not to be sufficient to solve the problem. 
In this view, search and insight correspond to what Norman (1993) calls experiential 
and reflective cognition. If someone is in experiential mode, behavior is largely 
determined by the task at hand and the task-specific knowledge the person already 
has. In reflective mode on the other hand, comparisons between problems are made, 
possibly relevant knowledge is retrieved from memory, and new hypotheses are 
created. If reflection is successful, new task-specific knowledge is gained, which may 
be more general and on a higher level than the existing knowledge. All these 
theories, however, fail to specify at what time a certain mode of thinking will be 
used, and due to what influences the mode of thinking changes.

In the protocol analysis of the scheduling problem in chapter 3, we saw that all 
participants start with an experiential search strategy, and only later on switch to a 
reflective strategy. As we have observed, the process reflects the explore-impasse-
insight-execute pattern described in the literature about insight (Ohlsson, 1984; 
Davidson, 1995). Some, but not all, of the participants show some sort of impasse, 
during which they stop searching, just stare at the screen for a minute, and then try 
a new approach. Furthermore, there is no difference between the explore and the 
execute stage: the participant just searches on, using the knowledge gained by 
reflection. Sometimes further reflection is needed to reach a solution.

5.3 A dynamic growth model

In this section a model is proposed that explores the distinction between search and 
reßection. The model is based on AndersonÕs theory of rational analysis, the 
theoretical basis of ACT-R (Anderson, 1990). According to rational analysis, 
participants choose strategies based on a cost-beneÞt analysis: the strategy that has 
the lowest expected cost and the highest probability of success is selected in favor of 
others. The model is not an actual ACT-R model, but a dynamic growth model, in 
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which the trade-off between search and reßection is modeled in a coarse-grained 
way. Dynamic models are used in developmental psychology to describe 
developmental paths, for instance a model that describes stage-wise increases in 
knowledge (Van Geert, 1994; 1998). In section 5.6, the coarse-grained model will be 
applied in actual ACT-R models. 

In order to give a rational account of insight learning, the first question is: why 
would participants initially prefer a search strategy in the scheduling problem? The 
reflective strategy seems to be much more powerful. There are several reasons for 
this. A first reason is that reflective reasoning has a high cost. To be successful, 
several aspects of the task must be combined and kept in memory. Additional 
knowledge must be retrieved from memory and it may be necessary to seek 
analogies with other problems. A second reason is that it is not immediately evident 
that search will be unsuccessful. In the nine-dots problem, but also in the scheduling 
problem, naive search alone does not work, but people generally do not know this 
when they start on these problems. Why not try the strategy which takes the least 
effort first? A third reason is that as a participant starts with a new type of problem, 
he has only read instructions and has seen an example problem. He first has to learn 
the basic rules and operators by experience, before he can attempt any higher level 
strategies.

Considerations like these are the basic ingredients for the model. In the model, 
search and reflection are two competing strategies, whose evaluations depend on 
expected gain. Estimates on these gains change in time, due to increasing knowledge 
and the successes and failures due to this knowledge.

The model
According to rational analysis (Anderson, 1990), strategies are chosen with respect 
to their expected outcome, according to the following equation:

(5.1)

In this equation, Ps is the estimated probability of reaching the goal using strategy s, 
G is the expected value of the goal, and Cs is the estimated cost of reaching the goal 
using strategy s.

The model will attempt to describe how search and reflection will alternate while 
solving a problem. The model is coarse-grained in the sense that the knowledge of 
the system with respect to a certain task is summarized in two variables  and . 

 is a measure for the amount of basic task-knowledge, for example, in the case of 
the scheduling task, knowledge about adding a task to an existing plan and 
knowledge to judge whether a solution is correct.  corresponds to the amount of 
higher-level knowledge in the system, for example the fact that it is a good idea to 
see how the tasks add up to the amount of time the workers have available. If a 
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participant starts with a new problem, we assume that both variables have a small 
value. Later on, they increase, since the participant builds up knowledge during 
problem solving. The assumption of the model will be that search will increase the 
amount of basic knowledge, represented by , and reflection will increase the 
amount of higher-level knowledge, represented by . The choice of two knowledge 
levels is somewhat arbitrary, as are some of the choices of parameters in the 
equations below. The reader should keep in mind that the goal is to produce a 
rational account of the alternation between search and reflection.

The following equations show how  and  grow in time, and are inspired by the 
growth equation used by Van Geert (1994):

If the strategy in step i-1 is search, then

(5.2)

else  keeps its value, so .  is a constant that controls the rate of 
growth, and  is the maximum possible value for . The fraction at the end of 
the equation ensures that  doesnÕt exceed its maximum value. Assuming only 
search is used, the value of  grows gradually and levels off once it approaches the 
maximum. Figure 5.1 shows an example of the growth of  knowledge if only 
search is used, and  equals 10.

The equation for  is slightly more complicated, because the increase in value 
depends on the current value of , reflecting the fact that we can only gain higher-
level knowledge if we have enough basic knowledge.
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If the strategy at step i-1 is reflection, then

(5.3)

else .  is the maximum possible value for . The parameter  
(support) controls the influence of basic knowledge on the increase of higher level 
knowledge.

Now that we have described how knowledge grows depending on the type of 
strategy, we have to describe the process by which a strategy is chosen. At this point, 
AndersonÕs expected gain equations are introduced into the model. Whether the 
strategy at step i will be search or reflection is determined by their respective 
expected outcomes:

(5.4)

(5.5)

The strategy with the highest expected outcome will be chosen. In these equations 
,  and  are fixed parameters. , the expected value of the goal, is 

assumed to be fixed as long as the goal is not reached. , the cost of search, may 
change in actual problem-solving situations, for example due to the fact that search 
becomes more complicated once more knowledge is involved. But since these 
fluctuations are task-dependent, the current model assumes that the costs of search 
remain constant. The influence of , the chance of success of reflection, will be 
taken into account in the specification of the costs of reflection.  and  
are variable in time, and rise and fall due to the chosen strategy and the growth in 
knowledge.

The probability that search will reach the goal depends on the amount of knowledge 
and the current evaluation of this knowledge:

(5.6)

The constant w determines how much more useful higher-order knowledge is than 
basic knowledge.  is the contribution to the probability of success of  
knowledge, and  the contribution of  knowledge. The probability of success 
increases as knowledge increases, but decreases over time if the goal is not reached. 
The decrease in knowledge is calculated by multiplying the probability of success by 
a decay parameter on each time-step search is used as strategy. New knowledge is 
given the benefit of the doubt, and is assigned an initial probability of success of 1. 
Both  and  can be calculated using:

L2 i( ) L2 i 1–( ) S12 L1 i 1–( )⋅ 1
L2 i 1–( )

L2max
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 +=

L2 i( ) L2 i 1–( )= L2max L2 S12
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Csearch
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Psearch i( ) Cref i( )
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(5.7)

 represents the decay in probability of success, and has typical values between 
0.95 and 0.99 if the strategy in step i was search and the goal has not been reached. 
In the case of reflection in step i, . The  part of the equation 
takes care of the decay of existing knowledge. However, new knowledge is added to 
the model as well, and this new knowledge starts out with the ÒoptimisticÓ 
probability of success of 1. The  part of the equation takes care of that 
aspect. So on each search step, the probability of success decreases due to decay, and 
increases due to the addition of ÒfreshÓ knowledge.

The costs of reflection depend on two factors. The first is that the costs are higher if 
there is less basic knowledge, since higher level knowledge has to be based on more 
primitive knowledge. The second factor is that the costs are higher if there is already 
a lot of higher level knowledge. This reflects the idea that there is only a limited 
number of good ideas to come up with, and that it will be more difficult to discover 
a new idea if there is less to discover.

(5.8)

This equation assumes reßection has a certain base cost ( ) that is increased by 

two factors:  which decreases as level 1 knowledge increases, and , 

which increases as level 2 knowledge increases.

Finally we have to say something about time, since we have talked about ÒstepsÓ in 
the previous discussion. Each step takes an amount of time which can vary. So, 
following the ACT-R intuition that cost and time are related to each other, we take 
the estimated cost of the strategy at step i as the amount of time step i takes:

(5.9)

where  is either  or , depending on the strategy at step i.

Results
If the appropriate constants and starting values are chosen for the variables 
described above, we can calculate the increase in knowledge over time. The model 
is simulated using a spreadsheet program, in this case Microsoft Excel. Note that 
the model assumes that the goal is never reached, so the results simulate a 
participant that never succeeds in reaching the goal. Figure 5.2 shows the value of 
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 and  with respect to , and the corresponding evaluations for search and 
reßection. At the start of the task, search is superior to reßection, but as search fails 
to Þnd the goal, and the basic (level 1) knowledge increases, reßection becomes 
more and more attractive up to the point (at T=155) where reßection wins from 
search. Since reßection leads to an increase of level 2 knowledge, search again 
becomes more attractive (using the newly gained knowledge), and since the cost of 
reßection increases with the amount of level 2 knowledge already present, reßection 
becomes less attractive. As a result search will again dominate for a while, up to 
T=262 where reßection wins again. We assume problem solving continues until 
both expected outcomes drop below zero, since then neither strategy has a positive 
expected outcome. In the example, this is the case at T=533.

As noted, G is the value of the goal. Using a lower value for G corresponds to the fact 
that a participant values the goal less, and is less motivated to reach it. If we calculate 
the model for G=15 instead of G=20, we get the results as depicted in Þgure 5.3. The 
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result is that reflection occurs only once, and later (at T=239). Furthermore, at T=393 
both evaluations drop below zero, so a less motivated individual gives up earlier. If 
G is further decreased to 12, no reflection at all takes place, and the give-up point is 
at T=277.

5.4 The nature of learning strategies

The dynamic growth model nicely describes the phenomena around insight in the 
literature and in the scheduling experiment. Furthermore, it explains why this 
behavior is rational. It also predicts changes in strategy due to motivational factors. 
It however poses new questions. What is the nature of the basic and higher-level 
knowledge? How will the model behave if the goal is reached at some point? What 
mechanism is responsible for gaining new knowledge, and how is it represented?
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In the previous chapter, I proposed to define implicit learning in terms of learning 
by the mechanisms of the architecture, and to define explicit learning by activity of 
explicit learning strategies. In this sense, learning that occurs during search is 
implicit, since during search the goal is to solve the problem, not to learn something 
new. During reflection, on the other hand, the goal is to find a new way to approach 
the problem, so the goal is to discover something new. In this sense, reflection can be 
seen as explicit learning. As I have argued, there is no principal distinction between 
the knowledge learned by implicit learning and the knowledge learned by explicit 
learning, hence there is no real distinction between level 1 and level 2 knowledge in 
the dynamic growth model. It is just that level 2 knowledge might be more useful, 
because it has been constructed in a more clever way. 

How to get more insight into learning strategies? As we have seen, they are a source 
of individual differences. On the other hand, there are explicit strategies that at least 
all adults share, as we have seen in the case of rehearsal. But even in the area of 
rehearsal, some people prefer to memorize items by verbal rehearsal, while others 
prefer memorizing information by visualizing it in some fashion. Since learning 
strategies that are unique for certain individuals are hard to investigate, I will focus 
on strategies that most adults share, and see how they develop in children. 

PiagetÕs stage theory
The Þrst to acknowledge the fact that children reason in a different way than adults 
do was Jean Piaget (1952). Based on many experiments, among which the famous 
conservation experiments, Piaget concluded that children from different ages solve 
problems in different ways. He proposed a theory of stages, in which children in 
higher stages can reason more abstractly than children in lower stages. An example 
is the fact that very young children, who are in the Þrst sensorimotor stage, only 
reason about objects that are in their Þeld of perception. Once an object is hidden it 
is considered non-existent. In the second, pre-operational stage, children have 
mastered the concept of object permanence, and know an object is still there, 
although it cannot be seen at the moment. The transition between stages is a 
discontinuous jump: a child either has or hasnÕt mastered the concept of object 
permanence. PiagetÕs four stages are very strict: if a child moves to a new stage, 
they do so for all skills in all domains at once. It turned out that PiagetÕs theory was 
too strong. Children can be taught skills that belong to a stage they have not 
reached yet, and children may be in different stages in different cognitive domains. 
Piaget was well aware of this problem, to which he referred to as Òhorizontal 
d�colageÓ. 

The mechanism that causes these discontinuous jumps is adaptation, which, 
according to Piaget, is a result of assimilation and accommodation. During assimilation 
elements from the external world are added to the knowledge of the child. 
Accommodation, on the other hand, is an internal process that modifies the 
assimilatory scheme on the basis of the assimilated experiences. So accommodation 
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can be seen as the process that produces ÒnewÓ knowledge, and causes the sudden 
jumps. In order to do so, it needs the accumulated knowledge gained by the 
assimilation process.

FischerÕs levels
A modern version of PiagetÕs theory by Kurt Fischer (1980) tries to remedy the ßaws 
in the original theory. His theory has no less than thirteen stages or levels as he calls 
them, grouped into four tiers. He distinguishes between two levels of performance: 
the functional level and the optimal level. The functional level is the level a child 
performs at in a ÒnormalÓ situation. There may be large variations in this level 
across domains. At the functional level, a child is no longer in a single stage, but has 
a different level of development for each cognitive domain. The optimal level, on 
the other hand, is the highest level that an individual can produce, and is attained 

Level Representation Examples Age

S4/Rp1: Single 
Representations

[YOUMEAN] or [MENICE] Child pretends that doll is hit-
ting someone. 

Child says, ÒDoll mean.Ó

18-24 
months

Rp2: Represen-
tational Mappings

[YOUMEANÑMEMEAN] Child makes one dollÕs mean 
actions produce reciprocal 
mean actions in the other 
doll.

Child makes two dolls act as 
Mom and Dad in parental 
roles.

3.5-4.5 
years

Rp3: Represen-
tational Systems

Child makes two dolls inter-
act in reciprocally nice and 
mean ways.

Child makes two dolls act as 
Mom and Dad as well as doc-
tor and teacher simulta-
neously.

6-7 years

Rp4/A1: Single 
Abstractions

= [INTEPOS]

Person explains that inten-
tions matter more than 
actions.

Person sees Dad as having 
general personality charac-
teristics, such as conformity, 
emotionality, or secretiveness

10-12 
years

Figure 5.4. Example of stage 7-10 in FischerÕs theory. Adapted from Fischer & Ayoub (1994)
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when given high levels of support and opportunities for practice. The fact that 
levels of development can differ across domains makes FischerÕs theory more 
realistic, but weaker than PiagetÕs. A strong point of the theory is however that 
Fischer describes the kind of representations that are used at each level, and how 
they can be combined to reach a higher level. In that sense, the theory is much more 
precise than the original Piaget theory. 

From the viewpoint of learning strategies, the optimal level can be associated with 
the learning strategies that are available to a child. A skill that is beyond the childÕs 
optimal level is a skill for which it lacks the right learning skills. That does not imply 
that the child has already learned everything it could possibly learn given its current 
learning skills. For each domain, the child has acquired some of the domain-specific 
knowledge it can possibly gain given its current learning skills. This level can be 
associated with the functional level. To get from the current functional level for a 
skill to the optimal level, the child just has to learn additional domain-specific 
knowledge using its current learning skills. To go beyond the optimal level, new 
learning skills have to be acquired first.

Figure 5.4 is an illustration of some of the levels, in this case the third tier applied to 
the topic of what type of behavior agents can carry out. At the level of single 
representations, the top level in the table, children can represent that people or 
animate objects can carry out concrete actions and have concrete characteristics. 
They cannot yet combine these representations. At the next level, simple 
combinations of agent-behavior tuples can be made, for example: if you are mean, I 
will be mean. These combinations remain isolated, however, so there is no 
generalization of relationships between agent-behavior tuples. At the level of 
representational systems, combinations of representations are no longer isolated, 
but generalized. Instead of having a collection of combinations of representations, 
the actual mapping between representations is understood. At the final level of this 
example, the level of single abstractions, mappings between representations are 
combined, leading to concepts like intentions: the intention of a person influences 
the actual behavior they show while interacting. The complex pattern of interactions 
between mappings between representations are collapsed into new units: 
abstractions. In the next tier, abstractions are combined in the same manner as 
representations in this tier: first by simple combinations, later by systems, and finally 
by systems of systems. 

An important property of FischerÕs theory is that the representations used at a 
certain level are combined in the next level, either by forming combinations, as in the 
shift from single units to mapping, or by generalization, by combining a set of 
mappings into a system. So, the end-products of a level are the building blocks for 
the next level. A simple experiment that shows that young children cannot combine 
representations in the same way older children can is the discrimination-shift task 
by Kendler & Kendler (1959). In this experiment, children are presented with blocks 
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that are either white or black, and either small or large. The children have to say 
either ÒyesÓ or ÒnoÓ to each block. For example, they have to say ÒyesÓ when a white 
block is shown, or ÒnoÓ when a black block is shown. The children do not know this, 
but have to discover this on the basis of feedback. After a child has made 10 
consecutive correct predictions, the criterion is changed, unbeknownst to the child. 
Either a reversal shift is made, in which ÒyesÓ has to answered in response to black 
blocks, or an extra-dimensional shift is made, in which the dimension is changed, 
and the child has to answer ÒyesÓ when a large block is presented (Þgure 5.5). After 
the shift, the number of trials the child needs in order to be able to do ten consecutive 
correct trials again is counted. Figure 5.6 shows the results of a discrimination-shift 
experiment in which participants were children of 6-7 years old (Kendler & Kendler, 
1959). Fast-learning children discover reversal shifts quickly, but need a lot more 
trials to discover an extra-dimensional shift. Slow-learning children show a pattern 
that is entirely opposite: they are faster at an extra-dimensional shift, while needing 
much more time for a reversal shift. Similar experiments have shown that adults are 
also faster at reversal shifts (for example, Harrow & Friedman, 1958), while small 
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children and animals (for example rats in Kelleher, 1956) are faster at extra-
dimensional shifts. 

In terms of Fischer, the knowledge needed to successfully do this particular 
discrimination-shift task can now be stated. The most compact representation is an 
Rp3-system (the third row in figure 5.4), in which the color (or size) of the block has 
to be mapped onto the response (yes or no). Before a shift takes place, the following 
system has to be learned:

(5.10)

A property of the block, its color, has to be used to select a response. If a child has 
not mastered Rp3-representations yet, it has to use representations of one of the 
lower stages of development, for instance the S2 stage of sensorimotor mappings. 
This stage is not shown in Þgure 5.4, but is two levels below the S4/Rp1-level. At 
this stage, it is not yet possible to reason about individual properties of an object, 
but just about the object as a whole. The knowledge needed before the shift has to 
be represented by a set of four sensorimotor mappings:

{ [SMALL-WHITE-BLOCKÑREPONSE-YES],
[LARGE-WHITE-BLOCKÑRESPONSE-YES],
[SMALL-BLACK-BLOCKÑRESPONSE-NO],

         [LARGE-BLACK-BLOCKÑRESPONSE-NO] } (5.11)

If we now look at the changes required in each of these representations to 
accommodate the different types of shift, we can understand why reversal shifts are 
easier if you use Rp3 representations, and extra-dimensional shifts are easier if you 
use just S2 representations. In the Rp3 case (Þgure 5.7a), the reversal shift is easier, 
because the system remains the same: only the mapping within the system changes. 
In the S2 case (Þgure 5.7b), the extra-dimensional case is easier, since only two out 
of four mappings change, while two mappings remain the same. In the reversal 
shift all four mappings change. 

In the introduction to this section I remarked that reflection corresponds to the use 
of explicit learning strategies. Since learning strategies themselves have to be 
acquired as well, it interesting to look at the development of reflection and the 
relation with FischerÕs theory. Kitchener, Lynch, Fischer and Wood (1993) have done 
a study in which they relate FischerÕs skill levels to reflective judgement. Each level 
from Rp1 upwards can be related to an increased capacity of reflection. While 
children at the Rp1 level can only reason about concrete propositions, like ÒI know 
the cereal is in the boxÓ, children at the Rp3 level can reason about the uncertainty of 
knowledge. Kitchener et al. developed the Reflective Judgement Interview to assess 
the level of reflection, and used participants who were between 14 and 28 years old. 
The results show a steady increase in reflective capacity. Moreover, a specific version 
of the test was used to assess the optimal level of performance by giving maximal 
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contextual support. In this version of the test the growth curve shows some evidence 
for growth spurts, as predicted by FischerÕs theory (figure 5.8). 

In summary, FischerÕs theory is weaker than PiagetÕs with respect to the predictions 
it makes. This is not a big problem, since PiagetÕs original theory is not completely 
accurate. On the other hand, Fischer provides representations that can be used to 
analyze skills in different stages of development. These representations can also be 
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{ [S-W-BÑRESP-Y],
[L-W-BÑRESP-Y],
[S-B-BÑRESP-N],
[L-B-BÑRESP-N] }

{ [S-W-BÑRESP-N],
[L-W-BÑRESP-N],
[S-B-BÑRESP-Y],
[L-B-BÑRESP-Y] }

{ [S-W-BÑRESP-N],
[L-W-BÑRESP-Y],
[S-B-BÑRESP-N],

[L-B-BÑRESP-Y] }

Figure 5.7. Changes in representation (indicated in an outlined font) due to reversal and extra-
dimensional shifts using different types of representation. Abbreviated versions of (5.10) and 
(5.11) are used.
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used to describe developmental paths that lead from one stage to the next stage. In 
this sense FischerÕs theory is stronger than PiagetÕs theory: it can specify how 
knowledge is represented, and how a higher-order representation can be built out of 
lower-order representations. It still lacks a real processing component, however, a 
specification of the processes that actually change the representations. Furthermore, 
FischerÕs representations in their current form are not precise enough to support a 
detailed processing theory. This is also the main criticism of stage theories of 
development, the fact that they put too much stress on the state of knowledge at a 
certain age, thereby neglecting the importance of what some researchers see as the 
main issue of interest in development: the process of change. 

The dynamics of change in FischerÕs theory can be described by dynamic systems 
theory. Van Geert (1994) has developed models of the increase in knowledge on 
different levels, using growth equations similar to those presented in section 5.3. An 
interesting feature of van GeertÕs model is that it can model the shape of the growth 
spurts, such as the slight regression in performance between age 17 and 18 in 
figure 5.8, followed by a fast increase between age 18 and 20. As the model is coarse-
grained, it does not describe the changes in representations, nor can it explain by 
what changes a new level starts. Nevertheless, a dynamic growth model may be a 
good starting point for constructing a fine-grained model that does model 
knowledge representations.

Karmiloff-SmithÕs representational redescription
A theory that puts more stress on the process of change than on levels of knowledge 
is Annette Karmiloff-SmithÕs (1992) theory of representational redescription (RR). The 
RR theory is concerned with mastering skills in speciÞc domains, so it has no global 
Piaget-like stages or Fischer-like optimal levels. An interesting feature of the theory 
is that it discriminates an implicit learning phase for a new skill, followed by 
several explicit learning phases. In each new phase, the representations of the 
previous phases are redescribed into a new representation. The phases are called I 
(implicit), E1 (explicit 1), E2 (explicit 2) and E3 (explicit 3). The last two phases are 
often collapsed into a single E2/3 phase. The difference between a phase and a 
stage is that phases are not related to age, and the cycle of four phases recurs for 
every domain that has to be mastered during development. 

According to the RR theory, the I-phase in learning a new skill involves implicit, data 
driven processing. In this phase, the child creates Òrepresentation adjunctionsÓ out 
of the external data, which are just stored in memory. No further processing is done 
on these representations, but they can contribute to successful performance. If the 
child has accumulated enough adjunctions, performance becomes consistently 
successful. The RR theory defines this as behavioral mastery. Although the child can 
perform the skill, it does not have conscious access to it, since the examples are not 
generalized into rules. Generalization takes place in the E1 phase, in which the focus 
is moved from external data to internal representations. Features from the 
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environment are disregarded in favor of the internal generalization process. This 
may lead to a decrease in performance, since generalizations may be wrong. In E2/
3, the internal representations are made consistent with the external data, leading to 
a representation that supports successful performance, and offers the building 
blocks for new skills. 

Each phase produces its own type of representations. The Òrepresentational 
adjunctionsÓ are stored in procedural form. This procedural form is not the same as 
production rules in ACT-R, but shows a strong resemblance to popped goals that are 
stored in declarative memory. In the E1 phase, the representational adjunctions are 
redescribed into more compact abstractions that can be related to other domains. 
These abstractions are recoded in E2/3 into a representation that is available for 
conscious manipulation, and that can be verbalized. An important feature of these 
representations is that they all remain available, so even if a child has reached phase 
E2/3, the representational adjunctions are still available. In chapter 6 we will discuss 
some ACT-R models in which the ideas of representational redescription will be 
used and made precise in terms of ACT-R representations.

SieglerÕs overlapping-waves theory
Siegler (1996) criticizes the stage, level and phase models by pointing out that the 
idea of a stage may well be an artifact of the way developmental psychologists 
collect their data. Typical experiments involve studying how two or more age 
groups of children perform a certain task, and contrasting their respective 
approaches. According to Siegler, however, it is a mistake to think about the way 
children think about a certain problem at a certain age. The result of these 
approaches are staircase models. For example, several strategies to do simple 
additions have been identiÞed in children: small children tend to count both 
addends from 1, slightly older children start with the largest addend (the min 
strategy), and even older children retrieve the answer from memory (Ashcraft, 
1987). A ÒstaircaseÓ interpretation of these differences is depicted in Þgure 5.9: Þrst 
children use the sum strategy, then they switch to the min strategy, and Þnally to the 
retrieval strategy. Closer inspection of what strategies children use reveals that 
children do not use a single strategy to solve addition problems, but instead use 
several strategies. What changes with age is the frequency with which they use a 
certain strategy. The bottom graph of Þgure 5.9 illustrates this aspect using a study 
from Svenson and Sjoberg (1983). In this longitudinal study, the strategy use of 13 
children was followed from Þrst to third grade. As can be seen in the graph, at each 
point in time children use several strategies, and the frequencies of particular 
strategies ßuctuate over time. 

The main point Siegler makes is that children do not change strategies overnight. 
When a child discovers or learns a new strategy to do addition, it does not 
exclusively switch to this strategy but adds it to the set of existing strategies with 
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which it has to compete. If a strategy proves to be sound in the long run, and has an 
edge over other strategies, it will be used more often. 

In chapter 3, we saw that some participants in the scheduling experiment sometimes 
use counting to do addition, which corresponds to the min strategy. This 
corresponds well with the overlapping waves model: even adults have all strategies 
available, but most adults just use retrieval as their sole strategy. Some individuals 
may however use other strategies occasionally. The fact that addition had to be 
performed in a situation where working memory load was already high may also 
have contributed to a shift in strategy. The matter of working memory load will 
return in chapter 7.

Discussion
The goal of this section was to get some idea of what learning strategies are by 
looking at development. Each of the four theories discussed offers some parts of the 
puzzle. Unfortunately, all four theories are mainly descriptive, and are not very 
speciÞc about exact representations or processes acting on these representations. 

0

5

10

15

20

25

30

35

40

45

Early
1st

Late
1st

Early
2nd

Late
2nd

Early
3rd

Late
3rd

Grade

Pe
rc

en
t u

se Min
Retrieval
Count fingers
No answer

Figure 5.9. Staircase model (top) versus data supporting the overlapping-waves model (bottom) of 
addition strategies (from Siegler, 1996)



5: Strategies of learning

132

An important topic in development is domain specificity. Although PiagetÕs theory 
of pure global development has turned out to be too strong, the presence of some 
global factor is still under debate. Fischer and Karmiloff-Smith seem to contradict 
each other on this point. Fischer defines a global optimal level of performance at a 
certain age. When this level goes up, there is a global increase in development. This 
global increase is not witnessed in the way Piaget envisions it, because performance 
in specific domains may still be lagging behind. Karmiloff-SmithÕs RR theory only 
describes development within a domain, without any need for global development. 

One might ask whether it is at all possible to settle this debate on the basis of 
empirical evidence. In FischerÕs theory, it is always possible to define an optimal 
level: it is just the level of the domain that has progressed most. In order to assert an 
optimal level that is really meaningful, it has to offer some additional support to the 
learning process. Although it may be very hard to find empirical evidence, a 
modeling perspective may offer some sort of support. 

One issue a model may resolve is whether it is at all possible to have knowledge that 
is useful for all domains. If such knowledge can be defined and represented, for 
example in ACT-RÕs representations, the next step is to find a developmental path 
through this knowledge, and to specify how a more refined strategy can be learned 
from a more primitive one. If a system like this can be developed, and is capable of 
offering new explanations for old phenomena, it might offer a new type of evidence 
in the discussion. But in order to build such a system, the mechanisms of change 
have to be understood. The theories discussed here can offer some clues. 

Karmiloff-Smith suggests the first (I) phase in learning a new skill is to store 
representational adjunctions. This phase only involves storing, retrieving and 
applying these adjunctions. Only when this set is sufficiently stable in the sense that 
behavioral mastery is reached, the explicit phases in which the information is 
integrated can be entered. This idea closely matches PiagetÕs idea of assimilation and 
accommodation: during assimilation external experiences are stored, while during 
accommodation these experiences are integrated into a qualitively new behavior.

SieglerÕs theory of overlapping waves shows that the discovery of a new strategy 
does not necessarily imply that this strategy will completely dominate behavior. A 
new strategy first has to prove it is better than the existing strategies. This illustrates 
the need for an evaluation mechanism: any new strategy has to be assessed with 
respect to the question whether it really is useful and better than the alternatives. 

What have we learned with respect to learning strategies? Take FischerÕs theory as a 
starting point. Each new level in the theory involves a type of representation in 
which a single representation replaces a combination of representations from the 
previous level. Assuming these representations are mainly declarative, one needs 
accompanying procedural knowledge in order to handle these representations. 
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Which of these comes first? In terms of ACT-R, the declarative representations have 
to be first, because a declarative example is needed to learn a new production rule. 
This also concurs with the RR model in which a set of representations is acquired and 
stored in the first phase. Only when a suitable set of knowledge is collected can 
generalization be attempted. Probably many generalizations are possible, so sorting 
them out may take some time, and may cause the rise and fall of certain strategies as 
Siegler has shown. Summarizing,

• learning strategies have to be general, so they can be used in several domains

• it has to be possible to Þnd some developmental path through these learning 
strategies

• representing, storing and retrieving examples is an important Þrst step in 
acquiring a new strategy

• since several generalizations are possible, an evaluation mechanism is needed to 
select the most useful strategies

In the remainder of this chapter, I will show a potential example of a general learning 
strategy, thus addressing the first point on the list. This strategy will be explored in 
models of two separate tasks. An interesting property of the strategy is that once it 
is impoverished by removing some of the production rules, it exhibits behavior 
consistent with a lower level of development. This property is important for the 
second point: the developmental path through strategies. The models in the 
remainder of this chapter will model the discovery of new rules, so accommodation 
in terms of Piaget, or the E1-phase of Karmiloff-Smith. The aspect of assimilation or 
I-phase, i.e. the use of examples, will be an important topic in the next chapter, as 
well as the evaluation mechanism. 

5.5 Modeling explicit learning strategies in ACT-R

The goal of an explicit learning strategy is to learn new knowledge that is necessary 
for some new task or domain, or to improve the knowledge already available for an 
existing task or domain. In order to model this in terms of ACT-R, general learning 
goals have to be deÞned, and production rules that operate on these goals. The 
starting point for learning goals is the predeÞned dependency chunk-type (see 
Þgure 2.9 in chapter 2). Dependency chunks form the basis for new production 
rules: once a dependency is popped from the goal stack, it is compiled into a 
production rule. Intuitively, the best way to think of a dependency is to consider it 
as an example of how to do something. The goal of coming up with such an 
example can therefore be seen as an explicit learning goal. Eventually, this learning 
goal will produce a new production rule. In ACT-R, the dependency learning goal 
needs production rules that matches it. These rules are therefore also part of explicit 
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learning, and have to be domain independent. So at least the production rules that 
operate on dependencies are explicit learning strategies for learning new 
procedural knowledge. 

When are explicit learning goals needed? As we have seen earlier in this chapter, we 
need them if the current approach to the task does not work well. But they are also 
needed, in the case of a psychological experiment, when participants have to do a 
task they have never done before, as is often the case. Participants in a psychological 
experiment need explicit learning strategies to set up initial knowledge structures to 
perform the task. These strategies need some domain-specific information to work 
with, for example the following types of information:

Task instructions and examples. In the case of an experiment or educational setting, a 
task or problem is explained by the experimenter or teacher, and sometimes a few 
examples are shown.

Relevant facts and biases of other domains in declarative memory. New tasks often build 
on existing knowledge. Knowledge from related domains can therefore be retrieved 
and adapted to the task at hand.

Facts and biases in declarative memory from the current domain. As someone gains 
experience in a new domain, popped goals are accumulated in declarative memory, 
while declarative learning maintains activation levels and associations with other 
chunks. This declarative knowledge, similar to the RR modelÕs implicit I-phase 
knowledge, may serve as a basis for new production rules.

Feedback. If a wrong answer is given based on the current knowledge, and feedback 
is provided on what the right answer is, this may also be used as a basis for new 
rules.

Figure 5.10 outlines how a learning strategy works: given initial information in 
declarative memory, a set of general production rules creates an example of how to 
do something, a dependency. This dependency is compiled into a new production 
rule, which has to compete with the rules that have created it. If the task-specific rule 
performs too poorly, the explicit learning strategies win the competition, and 
propose new rules, taking into account the feedback (if any) received on the faulty 
rule. The competition between the task-specific rules and the general learning 
strategies is the same competition as the competition between search and reflection 
modeled in the dynamic systems model earlier this chapter.
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5.6 An ACT-R model of a simple explicit strategy

The beam task
The task we will start with is a beam task. It is a simpliÞed version of the balanced-
beam task, a task of used in developmental studies (Siegler, 1981). The problem is 
relatively easy: a beam is given, with weights on the left and the right arm. Attached 
to the arms of the beam are labels, each with a number on it. The task is to predict 
whether the beam will go left, right, or remain in balance. The numbers on the 
labels have no inßuence on the outcome. Figure 5.11 shows an example of a beam. 
Although the task is easy if we know something about weights and beams, it is 
much more difÞcult if we know nothing at all.

The assumption is that the model initially has no task-speciÞc rules about beam-
problems. The only procedural knowledge the model has is a set of general rules. 
Later on, we will use the same general rules for other tasks. The general rules used 
to learn this task are the following:

Explicit learning 
strategies 

(ÒreflectionÓ)

Task-specific 
rules 

(ÒsearchÓ)

Instructions, 
biases and facts

Example of how to 
do something:
Dependency

Procedural 
Memory

Declarative 
Memory

Competition

Figure 5.10. General schema of learning strategies in ACT-R

Feedback

2 3
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label

Figure 5.11. Example of the beam task
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Property-retrieval. If there is a task that has a number of objects, create a dependency 
that contains an example of retrieving a certain property of each of the objects. In the 
case of the beam task, the objects are the arms of the beam, and weight and label are 
possible properties. This rule creates a rule that directs attention to a certain aspect, 
attribute or dimension of the task.

Find-fact-on-feedback. If feedback indicates that the answer is incorrect, and also 
contains the correct answer, set up a dependency that uses the goal and the answer 
as examples. Also, retrieve some fact that serves as a constraint in the dependency. 
The resulting rule will, given a goal, try to fill in the answer using some retrieved fact 
from declarative memory. To be able to generate correct rules for the beam task, we 
need to retrieve the fact that a certain number is greater than another number, in 
order to predict correctly whether the beam will go left or right.

Both general rules involve retrieving an arbitrary chunk from declarative memory, 
either a property or a fact. Normally the retrieval of arbitrary chunks will not 
produce the right rules. The chunks retrieved are however not arbitrary, since ACT-
RÕs activation mechanism ensures that the chunk with the highest activation is 
retrieved. Since activation represents the odds that a chunk is needed, the chunk 
with the highest odds of being needed is retrieved. This activation can itself again be 
manipulated by explicit declarative memory strategies such as rehearsal.

In the model, this is reflected by the fact that both property-retrieval and find-fact-
on-feedback can be influenced by prior knowledge. If there is an association strength 
between beam and weight, indicating knowledge that a beam has something to do 
with weight, property-retrieval will choose weight in favor of label. If there is an 
association strength between beam and greater-than, a greater-than fact will be 
retrieved by find-fact-on-feedback. Although this is not part of the model presented 
here, a possible source of the relevant associations is an implicit learning phase in the 
sense of the RR theory as discussed in section 5.4.

Since the general rules are just production rules, they can be in direct competition 
with the task-specific rules they generate. If property-retrieval generates a rule X to 
retrieve the label, X will compete with property-retrieval. If X is not performing well, 
for example if it retrieves the irrelevant label, its evaluation will decrease, and it will 
eventually lose the competition, in which case property-retrieval will create an 
example of retrieving weight. Although find-fact-on-feedback is only activated if 
feedback indicates an incorrect answer (i.e., when an expectation-failure occurs), the 
rules it produces are in competition with each other. The rule with the highest 
success rate will eventually win.

Figure 5.12 summarizes the property-retrieval rules, and figure 5.13 summarizes the 
find-fact-on-feedback rules. Both are instantiations of figure 5.10. Figure 5.13 shows 
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the case in which a ÒDonÕt knowÓ rule fires. If instead an incorrect answer is 
predicted, a dependency is created in the same manner. Apart from the general 
rules, the model contains lisp functions to generate random beams, and production 
rules to give feedback. When the model produces an incorrect answer, it will try the 
same beam again until it can predict the right outcome.

Simulation results
The general rules turn out to be sufÞcient to learn the task. The following rules are 
examples of (correct) rules learned by the model. The rule generated by property-
retrieval is a rule that retrieves the weight property for both arms of the beam, and 
stores them in the goal:

Figure 5.12. How property-retrieval works
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Figure 5.13. How Þnd-fact-on-feedback works
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IF the goal is of type SOLVE-BEAM and refers to two objects O1 and O2 
of which no properties have been retrieved yet
AND there is a property of O1 of type weight and value V1
AND there is a property of O2 of type weight and value V2

THEN add V1 and V2 as properties of type weight to the goal

One of the rules generated by find-fact-on-feedback is a rule that predicts when the 
left arm of the beam will go down.

IF the goal is of type SOLVE-BEAM and two properties V1 and V2 of 
type weight have been identified
AND there is a fact of type greater-than that specifies V2 is 
greater than V1

THEN set the answer slot of the goal to LEFT

The model was tested in several conditions, differing in the bias given for the 
properties (P) and the fact-type (F). The following table summarizes the conditions:

P+ Association between beam and weight
P- Association between beam and label, a bias for the wrong property
F+ Association between beam and greater-than
F- Association between both beam and greater-than, and beam and number, 

so two possible fact-types were favored.
F-- No associations between beam and fact-types, four fact-types are possible.

Each experiment has both a P condition and an F condition. Each experiment was 
run 30 times for 45 trials. Figure 5.14 shows the results. As can be seen in the graph, 
in the P+F+ condition ACT-R learns to solve the task quite rapidly, and the fact that 
the model does not reach a 100% score within a few trials is only due to the fact that 
beams are generated randomly, only occasionally producing a beam in which 
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balance is the correct answer. Performance decreases if the model has less initial 
information. In the case of the P-F-- condition, the model often fails to find the correct 
rules for the task. Success depends heavily on the quality of the declarative 
information. This information does not have to be completely accurate, but some 
declarative stage before proceduralization is important for success. 

The results in figure 5.14 suggest a gradual increase of performance. However, this 
impression is misleading, as it is caused by averaging 30 runs. If individual runs are 
examined, each has a certain point where performance increases dramatically. To get 
a better perspective on this increase, it is necessary to find the exact point at which 
the increase in performance starts. In one of the conditions, the P-F+ condition, this 
point is the most obvious: the moment the model switches from examining the label 
property to examining the weight property. Since this moment is easy to identify in 
an individual run of the model, it is possible to average results with respect to this 
point in time. An interesting aspect to average is the number of failed predictions the 
model makes before it makes the right predictions. Remember the model keeps 
trying to predict the right answer until it is successful. The result is shown in 
figure 5.15. It shows the average number of incorrect tries for each trial in the P-F+ 
condition. At x=0 the model creates a production rule that retrieves the weight 
properties. As is apparent from the graph, before ACT-R creates this rule, on average 
three failed predictions are made. Since this clearly establishes that the current task-
specific rules are not correct, the general rules can take over and propose new task-
specific rules. This process resembles the impasse-insight stages of insight problem 
solving, and is based on the same mechanisms of the dynamic growth model.
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Discrimination-shift learning
One of the advantages of explicit learning strategies compared to implicit learning 
is that they can handle change more easily. If something changes that has been 
stable for a while, an explicit strategy may react by proposing new knowledge to 
replace the old. An example of a task in which the rules change is discrimination-
shift learning, which I have explained in section 5.4. The ACT-R model of adult 
behavior uses the same 8 general production rules used in the beam-task, 
implementing the property-retrieval and Þnd-fact-on-feedback strategies. It learns 
rules that are quite similar to the rules for the beam task: a rule that focuses on one 
of the properties of the blocks, either the size or the color, and rules that map 
speciÞc colors or sizes onto the answers yes and no. This knowledge is closely 
related to the Rp3-representation of FischerÕs theory (Þgure 5.7). The small-child/
animal model uses only 2 of the 8 general production rules, implementing a limited 
Þnd-fact-on-feedback strategy. The latter model hardly uses any explicit reasoning 
at all, but rather stores regularities in the environment in production rules. This 
representation closely resembles FischerÕs S2-representation. The results of both 
ACT-R models are shown in Þgure 5.16b, producing results quite similar to the 
Kendler & Kendler data in Þgure 5.16a.

Despite the fact that the discrimination-shift task is generally not considered to be an 
insight problem, it nevertheless requires the participant to notice that something has 
changed, and to discover the new relations. So it can be seen, in a sense, as an 
elementary insight problem.
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5.7 Discussion

The goal of cognitive modeling is to create computer simulations of cognitive 
processes. A criterion for a good model is whether the results of the simulation 
match the empirical data. A second criterion that becomes increasingly more 
important, is the question whether the model can learn the knowledge it needs. A 
model that uses a large set of specialized production rules is less convincing than a 
model that gathers its own knowledge. The learning mechanisms which are part of 
the architecture, are often not capable of doing this job by themselves, so they need 
augmentation. In the previous chapter I have argued that these mechanisms 
correspond to implicit learning. The mechanisms can be augmented by explicit 
learning, that is, implemented by knowledge in memory that directs the implicit 
learning mechanisms.

Implicit mechanisms are fixed, but explicit strategies have to be acquired. 
Individuals probably differ in their explicit strategies, although they may well have 
many in common. Rehearsal, for example, is a strategy used by almost all adults, 
though it is clearly not something we were born with. An interesting question is 
whether the same property is also true for other learning strategies. Is there a 
sequence of rules that unfolds during development? The model of the 
discrimination-shift task at least hints in this direction, as does FischerÕs theory. On 
the other hand we may well expect large individual differences. Experiments in 
which participants have to solve difficult problems often show that every participant 
solves a problem in a different way. 

An interesting question is, how the issues discussed here can be related to other 
architectures. The emphasis on learning models is often attributed to the ascent of 
neural network models. A neural network model typically starts out with an 
untrained network, gaining knowledge by experience. Neural networks are 
powerful in the sense that a three-layer network can learn any function if properly 
configured. This power is also a weakness, especially if the time taken to learn 
something is taken into account. Neural networks usually do not have any goal 
structures, so they lack the mechanisms that are able to focus learning. Karmiloff-
Smith, for example, states that neural networks model implicit I-phase learning very 
well, but are not yet capable of modeling the more explicit phases of skill learning. 
Raijmakers, van Koten and Molenaar (1996) have shown that a standard feed-
forward neural network always behaves like a small child or animal in the 
discrimination-shift task, being faster at the extra-dimensional shift. To summarize: 
neural networks do a very good job at implicit learning, but the step towards explicit 
learning is difficult to make because of the absence of goals and intentional 
structures.

In the Soar architecture (explained in chapter 2), goals and deliberate reasoning are 
even more important than in ACT-R (Newell, 1990; see for an extensive comparison 
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of ACT-R and Soar: Johnson, 1997). The ACT-R models presented in this chapter 
only use deliberation when existing simple rules prove to be insufficient and, more 
importantly, if there is any knowledge present on how to deliberate. If ACT-R has to 
choose between actions A and B, a cost benefit analysis between the rule Òdo AÓ and 
the rule Òdo BÓ will decide. Only if both rules prove to perform badly, explicit 
learning strategies will try to find a more sophisticated rule. A Soar model on the 
other hand will always try to make a deliberate and rational choice between A and 
B, a process that may require a lot of processing and specific task knowledge. A Soar 
model that has to choose between A and B, and has no particular additional 
knowledge, will get into a infinite sequence of impasses. SoarÕs single learning 
mechanism is chunking, which summarizes the processing done between an 
impasse and its resolution into a new production rule. Although chunking is a 
mechanism, it is only activated after an impasse has been resolved, so after a 
deliberate problem solving attempt. Since chunking is SoarÕs only learning 
mechanism, this may cause trouble. For example, to learn simple facts, Soar needs 
the elaborate scheme of data-chunking. Data-chunking eventually produces rules 
like ÒIF bird THEN note it has wingsÓ. To be able to learn this, however, a lot of 
deliberation has to be done by production rules that are not part of the architecture. In 
a sense, Soar walks the reverse way: instead of building explicit learning on top of 
implicit learning, it accomplishes typical implicit learning tasks by elaborate explicit 
schemes. The critical reader will be able to find more examples of SoarÕs problems 
with simple satisficing behavior in Johnson (1997).

Since many other architectures, like EPIC and 3CAPS, currently support no learning 
at all, ACT-R presently seems to be the best platform to support explicit learning 
strategies on a basis of implicit learning. To be able to fully sustain explicit learning 
though, some technical issues in ACT-R must be resolved. Most notably a 
mechanism must be included to create new chunk-types. The models discussed in 
this chapter circumvent this problem by using a generic goal type for all goals, but 
this is hardly a satisfactory solution in the long run.

This chapter may be a starting point for several strands of further research. A more 
thorough inventory of possible general rules has to be made. This leads to a further 
question: where do the general rules themselves originate? This question is best 
studied in a developmental setting. Is it possible to specify a sequence of general 
rules that are learned during development that can account for the fact that older 
children can handle more abstract concepts? Unfortunately, I will not answer this 
question in this thesis: in the next few chapters we will focus on adult problem-
solving behavior only. 
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An important topic in skill learning is the question of what type of knowledge is 
learned. Two explanations dominate the discussion. The rule-learning explanation 
assumes rules are learned by generalizing examples. The instance-based explanation 
assumes a set of examples is retained. This explanation assumes improved 
performance can be explained by the fact that a solution is retrieved from memory 
instead of being calculated again. Both types of explanation are compatible with 
ACT-R, and this chapter will explore the question of how to choose between the two. 
The central idea will be that the type of learning with the best expected gain will 
dominate performance. This will be demonstrated using two models. The first of 
these models the Sugar Factory task, a task in which performance can be explained 
by instance learning alone. The second models the Fincham task, in which the 
expected gain of both the use of instances and the use of rules can be examined in 
detail. 

6.1 Introduction

The models in the previous chapter made an important assumption about learning 
new skills, the assumption that they are represented as production rules. An 
alternative account of skill learning is that people store examples, and later retrieve 
these examples if they encounter the same or a similar situation. 

The question whether skills are realized as abstract rule-like entities or as sets of 
concrete instances is one of the central distinctions in cognitive science, spreading 
across Þelds as diverse as research on memory, problem solving, categorization or 
language learning (Logan, 1988; Hahn & Chater, 1998; Redington & Chater, 1996; 
Plunkett & Marchman, 1991; Lebiere, Wallach, & Taatgen, 1998). Hahn and Chater 
(1998) proposed that the distinction between instance- and rule-based learning 
mechanisms cannot be based on different types of representations, but must be seen 
within the framework of their use in problem solving. We extend their argument 
and emphasize the necessity of an integrated investigation of human skill 
acquisition using a comprehensive theory of cognition.

The view of skill acquisition as learning and following abstract rules has dominated 
theories of skill acquisition over the last decades, whether encoded in production 
systems (Newell & Simon, 1972; Anderson, 1993), stored as logical implications or 
represented in classifier systems (Holland, Holyoak, Nisbett & Thagard, 1986). 
While these approaches differ in many aspects, they share the assumption that 
cognitive skills are realized as abstract rules that are applied to specific facts when 
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solving problems. In ACT-R, it is assumed that people start out with concrete 
examples of previous problem solving episodes that are generalized to abstract 
rules. These rules can be applied in subsequent problem solving and can thus 
account for increased performance. Discontinuous improvements in cognitive 
performance (Blessing & Anderson, 1996) can be taken as further evidence for the 
acquisition of rules. While Anderson (1993) describes the view that cognitive skills 
are realized as (production) rules as Óone of the most important discoveriesÓ in 
cognitive psychology, Logan (1988) argues for domain-specific instances as the basis 
for cognitive skills. According to this instance theory, general-purpose procedures or 
algorithms are applied to solve novel problems. Each time such a procedure is used 
in problem solving, its solution is retained as a separate instance. For new problems, 
the solution can be calculated, or a previous one can be retrieved and applied to the 
current problem. The retrieved solution can be used as a whole, in part, or in an 
adapted version to obtain the solution of the new problem. 

An important source of evidence for the instance-based approach is the fact that 
repeating a certain specific example of a problem increases performance on this 
example, but not on other ones. The fact that participants cannot verbalize abstract 
knowledge about the problems solved is frequently cited as further evidence against 
some form of generalization, as implied by rule-based skill theories. ACT-R, 
however, assumes that rules themselves cannot consciously be inspected, so this 
second source of evidence is not as convincing as the first.

Evidence for the fact that knowledge is represented as production rules comes from 
research on the directional asymmetry of rules. A production rule has two parts, a 
condition and an action, which we informally denote as ÔIF condition THEN actionÕ. 
In a production system, control always flows from the condition to the action. In 
many practical cases, the condition and the action are both part of a pattern, for 
example the pattern AB. A rule like ÔIF A THEN BÕ can be used to complete the 
pattern given A. In an instance approach, the pattern AB can be stored as an instance, 
and retrieved given either A or B. If participants are trained to complete some 
pattern AB on the basis of A, a rule approach predicts that they learn the rule ÔIF A 
THEN BÕ, and the instance approach predicts that they learn the instance AB. If 
participants are consequently asked to complete AB on the basis of B, the instance 
approach would not predict a decrease in performance. The rule-based approach, 
however, suggests that a new rule would have to be learned for the ÔIF B THEN AÕ 
case, resulting in worse performance.

Another apparent source of evidence stems from the fact that rules are more general 
than instances, which are assumed to be represented in a relatively unprocessed 
form (Redington & Chater, 1996). If participants show increased performance on 
examples they have not encountered before, some generalized knowledge can be 
postulated as the basis of the observed performance. This second source of evidence 
is, however, unreliable. It assumes that stored examples can only be used when the 
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new example is literally identical to one of the stored examples. If one or more old 
examples (or fragments of them) can be used to improve performance on a new 
example in a less direct fashion, generalization is also possible in an instance-based 
setting. Consequently, if generalization in transfer experiments is used as evidence 
against instance theory, it must be made clear that the answer to a certain problem 
cannot easily be derived from answers to previous problems. As Redington and 
Chater (1996) have pointed out, surprisingly simple models, relying on represented 
fragments of observed stimuli, can perform exceedingly well in transfer tasks 
without acquiring any abstract knowledge. An example of such a model will be 
discussed in section 6.3 when we demonstrate the scope of a purely instance-based 
approach in accounting for data that Broadbent and his colleagues (Broadbent, 1989) 
have interpreted as evidence against ACT-RÕs claim that production rules are 
learned on the basis of examples. Their results on dissociations between knowledge 
and performance seem to imply that participants can acquire rules to successfully 
operate complex systems without showing an increased performance in answering 
questions about the systemÕs behavior. Our instance model will provide a very 
simple explanation for this dissociation result.

6.2 Learning strategies

The learning mechanisms in ACT-R are all quite basic, and can be used in several 
different ways to achieve different results. In chapter 4, it is argued that the learning 
mechanisms of ACT-R correspond to the psychological notion of implicit learning, 
since they are always at work, do not change due to development and show few 
individual differences. Explicit learning, on the other hand, is tied to intentions Ñ 
to goals in ACT-R terms Ñ and can better be explained by a set of learned strategies. 

In this chapter we will discuss a paradigm for skill learning that involves both 
implicit learning and an explicit strategy. Figure 6.1 shows an overview of this 
paradigm. First we assume people have some initial method or algorithm to solve 
the problem. Generally this method will be time-consuming or inaccurate. Each time 
an example of the problem is solved by this method, an instance is learned. In ACT-R 
terms, an instance is just a goal that is popped from the goal stack and is stored in 
declarative memory. Since this by-product of performance is unintentional, it can be 
considered as implicit learning.

Other types of learning require a more active attitude. If the initial method is too time 
consuming, one may try to derive an abstraction to increase efficiency. If the initial 
method leads to a large number of errors, new relationships in the task may be 
deduced or guessed in order to increase performance. The next step, from 
abstraction to production rule, can only be made if the abstraction is simple enough 
to convert to a production rule. Since proceduralization is usually not considered 
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something that is under conscious control, it is a form of implicit learning as well. 
This idea is not entirely consistent with ACT-RÕs production compilation 
mechanism. We will return to this issue in the discussion at the end of the chapter. 
Both the application of abstractions and the firing of new production rules will create 
new instances. Regardless of what is going on due to explicit learning, implicit 
learning keeps accumulating knowledge. 

If we have that many ways of learning, what type of learning will we witness in a 
particular experiment? To be able to answer this question we go back to the principle 
of rational analysis. According to this principle, the type of learning that will be 
principally witnessed is the type that will lead to the largest increase in performance. 
If we have a task in which it is very hard to discover relationships or abstractions, 
learning will be characterized primarily by implicit instance learning. In tasks where 
each instance is different from the others, but where generalization is relatively easy, 
the best explanation of performance will probably involve the learning of rules.

Before discussing specific models, both learning instances and production rules will 
be examined in more detail. The abstractions used in this chapter are still very simple 
structures, and will be elaborated in the next chapter.

Instance-based learning
The last thirty years have seen a number of different experimental paradigms 
investigating the concept of implicit learning in domains as diverse as learning 
artiÞcial grammars (Reber, 1967), sequence learning (Willingham, Nissen, & 
Bullemer, 1989) or learning to control complex systems (Berry & Broadbent, 1984). 
All these studies share the claim that participants learn more about structural 
properties of the tasks than they are able to verbalize. To explain these Þndings, an 
implicit mode of learning has been distinguished from an explicit mode. Berry and 
Broadbent (1995) characterize the implicit mode as 

[É] a process whereby a person learns about the structure of a fairly complex 

Initial method Abstractions Production 
rules

Instances

Implicit 
learning

Explicit 
learning

Figure 6.1. Overview of the proposed skill learning paradigm
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stimulus environment without necessarily intending to do so, and in such a way 
that the resulting knowledge is difÞcult to express.

In opposition to this characterization they refer to explicit learning as involving 

[É] deliberate attempts to solve problems and to test hypotheses, and people are 
usually aware of much of the knowledge that they acquired.

The distinction between two learning modes has not remained unchallenged (c.f. 
Perruchet & Amorim, 1992; Perruchet & Pacteau, 1990; Buchner, 1994) but is cited 
frequently as evidence against the conception of declarative knowledge as the source 
for the acquisition of procedural knowledge as is assumed in the ACT-framework. 
Broadbent (1989) argues that the study of Berry and Broadbent (1984) contradicts the 
ACT claim since participants seem to learn rules for successfully operating a 
complex system without being able to consciously state these rules. Berry and 
Broadbent (1984) even found negative correlations between task performance and 
the ability to answer specific questions about the systemÕs behavior.

In section 6.3 we propose an explanation for the reported dissociation between 
knowledge and performance by analyzing instance-based learning in an ACT-R 
model and comparing it to LoganÕs instance theory. 

Learning production rules
In the previous chapter some strategies for learning task-speciÞc rules were 
discussed. We will now extend those methods to a general scheme for procedural 
learning in ACT-R. Both the property-retrieval and the Þnd-fact-on-feedback 
strategy have the desirable property that they can be used for several different 
tasks. The implementation of these strategies in terms of production rules is, 
however, rather ad hoc. This becomes an issue if the question of how these 
strategies themselves are learned is raised. In this chapter we will, therefore, 
propose a more general approach to learning new production rules. The idea is to 
have a standard method to construct a dependency, the declarative memory 
structure needed for a new production rule. Explicit learning strategies can extend 
this standard method. The advantage is that a learning strategy no longer has to 
take care of the whole process of creating a dependency, but only modiÞes some of 
the details.

It is important to note that the method of learning new productions presented here 
has two aspects. On the one hand, some principled decisions are made that have 
psychological relevance. On the other hand, there is a ÒprogrammingÓ aspect 
involved: the method must produce the right rules. As a consequence, some, but not 
all steps in the production learning process are defendable in psychological terms.
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The many constraints ACT-R poses on production rules actually simplify the 
problem of finding this basic method of production rule learning. Consider the most 
common type of production rule: a rule that matches the goal, retrieves a fact from 
declarative memory, and modifies the goal:

IF the goal has a certain type and satisifies certain
properties
AND there is a fact in declarative memory that satisfies
certain constraints

THEN modify one or more slots of the goal

The dependency necessary to learn this rule requires four principal components: the 
dependency itself, an example goal before the desired rule is executed, an example 
solution after the desired rule is executed, and the fact that is retrieved. Let us 
examine these four components and investigate how they may be derived. 

The easiest component is the example goal. Assuming rules are derived at the point 
they are needed, the example goal is actually the current goal at the moment the 
assembly of a dependency is started. The next component is the dependency itself. 
Since ACT-R requires that all elements in declarative memory are former goals 
themselves (apart from chunks acquired through perception), the dependency must 
be pushed onto the goal stack at some point. The best time to do this is right at the 
beginning, in order to change the context from normal processing to a production 
learning setting. Since any goal setting may be appropriate for learning new rules, a 
rule is needed that pushes a dependency as a subgoal regardless of the current goal. 
As we already mentioned, the current goal is one of the four components needed, so 
we immediately stick it into its rightful place: the goal-slot of the dependency:

IF the goal is anything
THEN push as a subgoal a dependency with the original goal in

the goal slot of the dependency

This rule always matches, and can interrupt normal information processing at any 
moment. The rule has a high cost associated with it, since it will be followed by extra 
processing that is not directly necessary for normal performance. The rate at which 
this rule will fire is directly related to the rules it competes with. If competing rules 
have high expected gain values, this rule will fire rarely. If competing rules have low 
expected gains, due to the fact that they are inaccurate or costly, this rule will fire 
more often. So the frequency with which dependencies are produced depends on the 
amount and quality of the knowledge that is already available. This is the same 
mechanism as the search-reflection trade-off discussed in the previous chapter. 

After the dependency-pushing rule has fired, we end up with a dependency on top 
of the goal stack. This is illustrated in figure 6.2a: on top of some arbitrary task goal 
X, a dependency has been pushed as a subgoal. Only one slot of the dependency is 
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Figure 6.2. General method to create dependencies on the ßy. (a) a dependency is pushed. (b) the a 
copy of the original goal is pushed with a place holder for the retrieved fact. (c) the goal is 
modiÞed using some retrieved fact. (d) both the modiÞed goal and the dependency are popped, 
leaving a completed dependency structure. 
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filled: the goal slot. The next step is to fill in the remaining slots of the dependency, 
as far as necessary. The main two slots to fill are the modified slot and the constraints 
slot. Some way has to be found to propose some modified goal. At this point we need 
some explicit learning strategy that can reason out the next step, take a guess or 
whatever. In order to take this next step, however, we need to restore the original 
goal context. This is accomplished by pushing a copy of the original goal as a new 
subgoal, and creating a placeholder for the retrieved fact in that subgoal. 

IF the goal is a dependency and the modified slot is nil
and G is in the goal slot of the dependency

THEN push a copy GC of G as a subgoal, set the learn flag of GC
to true, and create a place holder in the retrieved 
slot of GC
AND put GC in the modified slot of the dependency
and set the constraints slot of the dependency to the
place holder

After this rule has fired, the goal stack contains three items: the original goal, a 
dependency, and a copy of the original goal (figure 6.2b). The copy of the original 
goal has its learn flag set to true, so rules that implement explicit learning strategies 
are allowed to fire. The next step is that the copy of the goal is modified. This may be 
due to explicit learning strategies, but may also be ÔregularÕ problem-solving steps 
(figure 6.2c). Once the goal is modified using some fact that is retained in the 
retrieved slot, it is popped while removing the learn flag:

IF the goal is has its learn-flag set to true 
and the retrieved slot the goal is not nil

THEN set the learn-flag to nil and pop the goal

At that point, further slots of the dependency may be filled, the dependency itself is 
popped, and ACT-RÕs production compilation mechanism creates a new production 
rule. Now we are back in the original situation in the original goal (figure 6.2d), but 
with a new production rule that can modify it.

The advantage of the method outlined above is that learning strategies do not have 
to handle dependencies themselves, which is a big hassle. A learning strategy now 
only needs to recognize the learn-flag, and modify the goal while putting some fact 
in the retrieved slot of the goal. The method can also be modified slightly to produce 
production rules that push a subgoal instead of retrieving a fact. This is 
accomplished by simply using the stack slot of the dependency instead of the 
constraints slot.

The important thing to note in the method above is that procedural learning is part 
of normal processing, in the sense that it can be initiated at any moment. The fact that 
the goal needs to be copied in the subgoal, and some of the manipulations in this 
subgoal, are a bit awkward from a cognitive perspective. In the next chapter we will 
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pull out all knowledge-based processing from the dependency subgoal. In that way, 
the actual process of learning a production rule becomes more like an implicit-
learning mechanism.

6.3 Sugar Factory

In contrast to rule-based approaches that conceptualize skill acquisition as learning 
of abstract rules, theories of instance-based learning argue that the formation of 
skills can be understood in terms of the storage and deployment of speciÞc episodes 
or instances (Logan, 1988; 1990). According to this view, abstraction is not an active 
process that results in the acquisition of generalized rules, but rule-like behavior 
emerges from the way speciÞc instances are encoded, retrieved and deployed in 
problem solving. While ACT-R has traditionally been associated with a view of 
learning as the acquisition of abstract production rules (Anderson, 1983; 1993), we 
present a simple ACT-R model that learns to operate a dynamic system based on 
the retrieval and deployment of speciÞc instances (i.e. chunks) which encode 
episodes experienced during system control. The ACT-R model will be compared to 
a model by Dienes and Fahey (1995). This comparison will involve both the 
accuracy of the predictions and the assumptions made by each of the models.

The Task
Berry & Broadbent (1984) used the computer-simulated scenario Sugar Factory to 
investigate how subjects learn to operate complex systems. Sugar Factory is a 
dynamic system in which participants are supposed to control the sugar production 
sp by determining the number of workers w employed in a Þctional factory. The 
behavior of Sugar Factory is governed by the following equation:

(6.1)

The number entered for the workers w can be varied in 12 discrete steps 1 ≤ w ≤ 12, 
while the sugar production changes discretely between 1 ≤ sp ≤ 12. To allow for a 
more realistic interpretation of w as the number of workers and sp as tons of sugar, 
these values are multiplied in the actual computer simulation by 100 and 1000, 
respectively. If the result according to the equation is less than 1, sp is simply set to 
1. Similarly, a result greater than 12 leads to an output of 12. Participants are given 
the goal to produce a target value of 9000 tons of sugar (so sp=9) on each of a number 
of trials. They are given no information at all about the relationship between present 
output, number of workers and previous output. 

spt 2wt spt 1––= random component (-1, 0, or 1)+
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The models
Based on LoganÕs instance theory (1988; 1990) Dienes & Fahey (1995) developed a 
computational model (the D&F model) to account for the data they gathered in an 
experiment using the Sugar Factory scenario. According to instance theory, 
encoding and retrieval are intimately linked through attention: encoding a stimulus 
is an unavoidable consequence of attention, and retrieving what is known about a 
stimulus is also an obligatory consequence of attention. LoganÕs theory postulates 
that each encounter of a stimulus is encoded, stored and retrieved using a separate 
memory trace. These separate memory traces accumulate with experience and lead 
to a Ògradual transition from algorithmic processing to memory-based processingÒ 
(Logan, 1988, p. 493). The ACT-R model is also based on LoganÕs ideas, but differs in 
the way they are worked out.

Both models assume some algorithmic knowledge prior to the availability of 
instances that could be retrieved to solve a problem. Dienes & Fahey (1995, p. 862) 
observed that 86% of the Þrst ten input values that subjects enter into Sugar Factory 
can be explained by the following rules:

1. If the sugar production is below (above) target, then increase (decrease) the 
amount of workers with 0, 100, or 200.

2. For the very Þrst trial, enter a work force of 700, 800 or 900.

3. If the sugar production is on target, then respond with a workforce that is 
different from the previous one by an amount of -100, 0, or +100 with equal 
probability.

While this algorithmic knowledge is encoded in the D&F model by a constant 
number of prior instances that could be retrieved in any situation, ACT-R uses 
simple production rules to represent this rule-like knowledge. The number of prior 
instances encoded is a free parameter in the D&F model that was fixed to give a good 
fit to the data reported below. There is no equivalent parameter in the ACT-R model.

LoganÕs instance theory predicts that every encounter of a stimulus is stored. The 
D&F model, however, only stores instances for those situations in which an action 
successfully leads to the target. All other situations are postulated to be forgotten 
immediately by the model. ACT-R, on the other hand, encodes every situation, 
irrespective of its result. The following chunk is an example of an instance stored by 
the ACT-R model:

transition1239
ISA transition
STATE 3000
WORKER 800
PRODUCTION 12000

The chunk encodes a situation in which an input of 800 workers, given a current 
production of 3000 tons, led to subsequent sugar production of 12000 tons. 
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The assumption that only successful instances are stored is not problematic in itself. 
The problem is that the D&F model uses a ÒlooseÓ deÞnition of what is successful. 
Due to the random component in the equation the outcome may be 1000 more or less 
than expected. Therefore an output of between 8000 and 10000 was considered 
successful by the model. This generous scheme of success was not available to 
participants: for them only an outcome of 9000 meant success.

Retrieving instances
In the D&F model each stored instance ÒrelevantÓ to a current situation races 
against others and against prior instances representing algorithmic knowledge. The 
fastest instance determines the action of the model. An instance encoding a 
situation is regarded to be ÒrelevantÒ, if it either matches the current situation 
exactly, or does not differ from it by more than 1000 tons of sugar in either the 
current output or the desired output, analogous to the loose range discussed above. 
Retrieval in the ACT-R model, on the other hand, is governed by similarity matches 
between a situation currently present and encodings of others experienced in the 
past (see Buchner, Funke & Berry, 1995 for a similar position in explaining the 
performance of subjects operating Sugar Factory). On each trial, a memory search is 
initiated based on the current situation and the target state Ô9000 tonsÕ as cues in 
order to retrieve an appropriate intervention or an intervention that belongs to a 
similar situation. The following production rule is used to model the memory 
retrieval of chunks based on their activation level:

IF the goal is to find a transition from the current state with
output current to a state with new output desired
AND there is a transition in declarative memory, with
current output current and new output desired and a number
of workers equal to number

THEN set the number of workers in the goal to number

This rule will normally only retrieve an old situation that exactly matches the current 
situation. However, ACT-R can also match chunks that do not exactly match the rule 
by a process called partial matching, which was mentioned briefly in chapter 2. This 
means that an old situation may also be retrieved if it is slightly different from the 
current situation. Instances which only partially match the retrieval pattern, i.e. 
which do not correspond exactly to the current situation will be penalized by 
lowering their activation proportional to the degree of mismatch. Activation noise is 
introduced to allow for some stochasticity in memory retrieval. 

As figure 6.3 shows, the use of instances instead of the initial algorithmic knowledge 
increases over time, resulting in the gradual transition from algorithmic to memory-
based processing as postulated by Logan (1988, p. 493).
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Theoretical Evaluation
While the two models of instance-based learning share some striking similarities, 
the D&F-model makes unrealistic assumptions with respect to the storage and the 
retrieval of instances. Dienes & Fahey (1995) found out that these critical 
assumptions are essential to the performance of the D&F model (p. 856f):

The importance to the modeling of assuming that only correct situations were 
stored was tested by determining the performance of the model when it stored 
all instances. (É) This model could not perform the task as well as participants: 
the irrelevant workforce situations provided too much noise by proscribing 
responses that were in fact inappropriate (É) If instances entered the race only if 
they exactly matched the current situation, then for the same level of learning as 
participants, concordances were signiÞcantly greater than those of participants.

Since the ACT-R model does not need to postulate these assumptions, this model can 
be regarded as the more parsimonious one, demonstrating how instance-based 
learning can be captured by the mechanisms provided by a unified theory of 
cognition.

Empirical Evaluation
While the theoretical analysis of the assumptions underlying the two models favors 
the ACT-R approach, we will brießy discuss the empirical success of the models 
with respect to empirical data reported by Dienes and Fahey (1995). Figure 6.4 
shows the trials on target when controlling Sugar Factory over two phases, 
consisting of 40 trials each. ACT-R slightly overpredicts the performance found in 
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the Þrst phase, while the D&F model slightly underpredicts the performance of the 
subjects in the second phase. Since both models seem to explain the data equally 
well, we cannot favor one over the other.

After the participants had controlled the Sugar Factory for 80 trials, they had to do a 
slightly different task. Again they had to determine the work force in 80 situations, 
but now they did not receive feedback, but just moved on to a new, unrelated 
situation. The 80 situations presented were the last 40 situations from the first part 
of the experiment mixed with 40 new situations. 

Figure 6.5 shows how the percentage of times (concordance) participants chose the 
same work force in this second task as they did in the first. The baseline level 

0

5

10

15

20

25

ACT-R Experiment Dienes &
Fahey

Tr
ia

ls
 o

n 
ta

rg
et

Trial 40-80
Trial 1-40

Figure 6.4. Number of trials on target in the experiment, the ACT-R model and the D&F model for 
the Þrst and second half of the experiment conducted by Dienes & Fahey (1995)

0

0.1

0.2

0.3

0.4

0.5

Baseline Correct Wrong

Co
nc

or
da

nc
e

ACT-R
Experiment
Dienes & Fahey

Figure 6.5. Concordances for the experiment and both models



The Fincham task

157

represents the chance that both choices are equal due to random choice. This chance 
is higher than 1/12, because some choices are made more often during the 
experiment than others. The correct column shows how often the same work force is 
chosen if this leads to a correct output, and the wrong column shows the same for 
the incorrect outputs. Again, both models seem to do a similarly good job in 
explaining the data, with neither model being clearly superior. 

Conclusion
We discussed and compared a simple ACT-R model to an approach based on 
LoganÕs instance theory with respect to their ability to model the control of a 
dynamic system. While both models were similar in their empirical predictions, the 
ACT-R model was found to require fewer assumptions and is thus preferred over 
the model proposed by Dienes & Fahey (1995). Generally, ACT-RÕs integration of an 
activation-based retrieval process with a partial matcher seems to be a very 
promising starting point for the development of an ACT-R theory of instance-based 
learning and problem solving.

6.4 The Fincham task

An example of a task in which both rule learning and instance learning are viable 
strategies is described by Anderson & Fincham (1994). In this task, participants first 
have to memorize a number of facts. These facts look like this:

ÒHockey was played on Saturday at 3 and then on Monday at 1.Ó 

We will refer to these facts as Òsports-factsÓ to prevent confusion with facts and rules 
in the model. A sports-fact contains a unique sport and two events, each of which 
consists of a day of the week and a time. After having memorized these facts, 
participants were told they really are rules about the time relationships between the 
two events. So in this case ÒHockeyÓ means you have to add two to the day, and 
subtract two from the time. In the subsequent experiment, participants were asked 
to predict the second event, given a sport and a first event, or predict the first event, 
given the sport and the second event. So participants had to answer questions like: 
ÒIf the first game of hockey was Wednesday at 8, when was the second game?Ó 
Figure 6.6 shows an example of the interface used in the experiment. In this 
paradigm, it is possible to investigate evidence for both rule-based learning and 
instance-based learning.

Directional asymmetry, evidence for rule-based learning, can be tested for by first 
training participants to predict events in one direction for a certain sports-fact, and 
then reverse the direction and look how performance in the reverse direction relates 
to performance on the trained direction. Evidence for instance learning can be 
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gained by presenting specific examples more often than other examples. Better 
performance on these specific examples would indicate instance learning. Anderson 
& Fincham (1994), and later Anderson, Fincham & Douglass (1997) performed five 
variations on this basic experiment, three of which we will discuss here. But before 
discussing the specific experiments, we will first take a look at the ACT-R model we 
have developed.

The ACT-R model
The central assumption of our model of the Fincham task is that the data can only 
be explained by multiple strategies. We will use the four strategies discussed by 
Anderson, Fincham & Douglass (1997): analogy, abstraction, rule and instance. These 
strategies have different cost-success proÞles (summarized in Þgure 6.9), which 
determine at what stage of the learning process they will be most prominent. 
Figure 6.7 shows schematic representations of each of the strategies. Since each 
problem involves calculating a day and a time, two separate sub-problems have to 
be solved. Each of these strategies corresponds to one of the boxes in Þgure 6.1.

The analogy strategy (figure 6.7a) has the highest cost, but only needs the sports-
facts learned initially. Starting at the top goal, a subgoal is pushed onto the goal stack 
to either find the day or the time. To be able to do this, the original example must first 
be retrieved, and the appropriate elements (days or times) must be extracted. 
Another subgoal takes care of this stage. After retrieving the example, this second 
subgoal is popped, and a new subgoal is pushed to make an analogy between the 
example and the current problem. First the relation in the example is determined, for 
example the fact that two has to be subtracted from the day. Most of the time, this 

Figure 6.6. Example of the interface used in Anderson & Fincham (1994) and Anderson, Fincham & 
Douglass (1997). From Anderson, Fincham & Douglass (1997).
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Figure 6.7. Schematic representation of the four possible strategies used in the model. Note that two 
strategies (possibly the same) are needed to solve the whole problem: one for the day of the 
week and one for the time of the day



6: Examples versus Rules

160

relationship can be determined directly by retrieval, for example the relationship 
between four and six. But sometimes, as in the case of days of the week, this has to 
be done by counting. To determine the relationship between Sunday and Friday, one 
has to count two steps back from Sunday. Counting is taken care of by an additional 
subgoal, with the advantage that this subgoal is added to declarative memory and 
can be retrieved during later trials to determine the relation directly. After 
determining the relationship in the example, this relation is applied to the current 
problem. This can again be direct, or through a counting subgoal. 

The analogy strategy requires prior knowledge. The model assumes that people 
already know how to make simple analogies, how to memorize and recall strings of 
words, and that they know relationships between numbers and days of the week, 
and are able to calculate these relations if they cannot be retrieved from memory. The 
rest of the necessary knowledge, mainly involving perceptual-motor operations like 
reading the information on the screen and entering the answers, has to be learned by 
the participants during the instructions. This aspect of the task is not modeled.

The abstraction strategy (figure 6.7b) assumes knowledge about the relation 
between the two days or two times for a certain sport. For example, ÒHockeyÓ means 
Òadd two to the daysÓ. An abstraction in the model is a declarative fact that stores 
this information, for example:

ABSTRACTION234
ISA ABSTRACTION
SPORT HOCKEY
TYPE DAY
RELATION PLUS2

Using an abstraction to find the answer only requires two steps: retrieve the 
abstraction and apply it to the current problem. The second step, application, may 
involve another counting subgoal, similar to the analogy strategy. Although the 
abstraction strategy is more efficient than the analogy strategy, it requires 
knowledge participants initially do not have: abstractions. 

The rule strategy (figure 6.7c) uses production rules to find the answer. Each of the 
rules has two versions, one that retrieves the answer, and one that calculates the 
answer. An example of a retrieve rule is:

IF the goal is to find the day of the second event, the sport 
is hockey and the day of the first event is day1
AND day1 plus two days equals day2

THEN put day2 in the second event slot of the goal

The calculate version pushes this calculation as a subgoal, which is handled by the 
same production rules that determine and apply the relations in the analogy 
strategy. An example of this second version is:
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IF the goal is to find the day of the second event, the sport 
is hockey and the day of the first event is day1

THEN push as a subgoal to find the answer to day1 plus two days
AND put the answer in the second event slot of the goal

The advantage of the rule strategy is that its costs are much lower than those of the 
analogy strategy, and also slightly lower than the costs of the abstraction strategy, 
since the answer can be found in a single step. However, in order to use it, the 
necessary production rules must be learned. Furthermore, the two example rules 
given only calculate the second event given the first. To calculate the first event given 
the second, two additional rules are needed. 

The strategy with the lowest costs is the instance strategy (figure 6.7d). It can be 
applied to the top-goal, since it retrieves the answer from past subgoals directly. This 
strategy will only work if the appropriate instance is available. An example of an 
instance is:

ITEM434
ISA ITEM
SPORT HOCKEY
TYPE DAY
LEFT SUNDAY
RIGHT TUESDAY

To be able to fully depend on this strategy, all possible examples have to be learned. 
For each sports-fact, seven to nine examples are needed. 

The abstraction, rule and instance strategy are actually short-cuts for the original 
analogy strategy. The abstraction and rule strategy make short-cuts at the subgoal 
level of the analogy strategy, and the instance strategy directly at the top level. The 
knowledge needed for the instance short-cut is gained automatically, since the 
popped subgoals serve as examples. To be able to use an example, its activation must 
be high enough, so it has to be repeated a number of times before it can successfully 
be retrieved. Abstractions and rules, on the other hand, have to be learned more 
explicitly.

To create an abstraction and use it for later problems, information from different 
levels of the goal stack has to be used. The relation is determined in the analogy 
subgoal, while the name of the sport is stored higher in the goal stack. As a 
consequence, old goals created by the analogy strategy cannot be used as 
abstractions. An explicit goal is necessary to assemble it. An appropriate moment to 
do this is at the end of the analogy strategy, as illustrated in figure 6.8a. The goal is 
not popped, but is replaced by a goal to build an abstraction. Alternatively, the 
abstraction could be derived first and be subsequently applied. Since this alternative 
will produce the same predictions, it is not further investigated.
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Learning a new production rule presupposes a dependency that must be created 
explicitly. As discussed earlier in this chapter, a dependency and a copy of the goal 
may be pushed as a subgoal to accomplish this (figure 6.8b). The subgoal that 
calculates a day or a time is replaced by a dependency. Further processing is done 
on a copy of the original subgoal. Assuming some other strategy has found the 
answer, the subgoal is popped and the dependency is completed. After the 
dependency has been popped from the goal stack, ACT-RÕs production compilation 
mechanism will compile the dependency into a production rule. In this particular 
model, pushing a dependency can only be successfully completed if it is followed by 
the abstraction strategy, since only the abstraction strategy can provide for the 
necessary constraint (for example, the appropriate plus2 fact in the hockey case). In 
the case of the analogy strategy, this constraint is buried deeper in the goal-structure, 
and cannot easily be recovered. 

For both abstraction and rule learning, additional steps in the reasoning process are 
necessary that are irrelevant to the immediate solution. The production rule that 
proposes to create an additional abstraction goal has to compete with the rule that 
proposes to just pop the goal and be done. Similarly, the rule that proposes to replace 
the original goal with a dependency has to compete with rules that try to solve the 
problem immediately. Since the rules that propose additional processing imply 

top goal

 calculate 
day (or time)

 calculate 
day (or time)

dependency

etc. (same as 
abstraction 
strategy)retrieve

abstraction

 apply 
relation 
(direct)

apply relation 
by counting

(a) Abstraction learning

 create 
abstraction

(b) Dependency (rule) 
learning

Figure 6.8. Explicit learning used by the model. (a) Learning abstractions: an additional goal in the 
analogy strategy (Þgure shows the right-hand side of Þgure 6.7a). (b) Learning dependencies 
that are compiled into production rules, as outlined in Þgure 6.7 (Þgure shows the left-hand side 
of Þgure 6.7b).
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additional costs, they will only occasionally win the competition. Building up 
abstractions and production rules may therefore be a slow process, and may well be 
a source of individual differences. Figure 6.9 summarizes cost and learning aspects 
of the four strategies. 

In the Fincham task, learning of abstractions, instance learning and rule learning are 
all viable strategies from the viewpoint of rational analysis. Abstraction and rule 
learning will lead to quicker results but need more effort initially, since rules are not 
learned automatically. Instance learning is eventually the best strategy, but requires 
much more training to be fully effective.

Empirical evaluation of the model
In order to test the predictive power of the model, three experiments conducted by 
Anderson, Fincham and Douglass have been modeled. The Þrst experiment was 
used to determine all the parameters, so the second and the third experiment can be 
considered as predictions based on the Þrst. Each of the experiments tries to gain 
insights into the learning process by seeking evidence for the use of rules and the 
use of instances. The data discussed in the experiments all come from Anderson, 
Fincham and Douglass (Anderson & Fincham, 1994; Anderson, Fincham & 
Douglass, 1997), the model outputs are produced by 100 runs of our model. 

Experiment 1
In the Þrst experiment (experiment 2 in Anderson & Fincham, 1994), participants 
had to learn eight sports-facts. In the Þrst three days of the experiment, four of these 
sports-facts were tested in a single direction: two from left to right and two from 
right to left. On each day 40 blocks of trials were presented. In each block, each of 

Strategy Cost Additional 
knowledge 
needed for 
each rule

Is knowledge 
necessary for this 
strategy gained 
implicitly?

Uses 
knowledge 
gained from

Analogy High None No Instructions

Abstraction Medium 1 instance No Analogy

Rule Low 2 rules for each 
direction

OfÞcially no, but 
see discussion at the 
end of chapter

Abstraction

Instance Very low 7-9 instances Yes Analogy, 
Abstraction or 
Rule

Figure 6.9. Summary of cost and learning aspects of the four strategies
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the four sports-facts was tested once. On the fourth day all eight sports-facts were 
tested in both directions. On this day 10 blocks of trials were presented, in which 
each of the eight sports-facts was tested twice, once for each direction.

The model uses the following parameters: base-level decay is set to 0.3, in accordance 
with the findings in the Tulving-model in chapter 4, both permanent activation noise 
and normal activation noise are set to 0.05, the expected gain noise is set to 0.2, the 
retrieval threshold is set to 0.3 and both the latency factor and latency component are 
set to their default values of 1.0. Except for the base-level decay, all these values are 
close to their recommended values. Furthermore, the same parameter values will 
also be used for experiment 2 and 3.

Figure 6.10 shows the latencies in the first three days of the experiment, both the data 
from the experiment and from the model. Although the results of the model are the 
product of four interacting strategies, this produces no discontinuities: the learning 
curve of the model resembles a power-function, except for a slight decrease in 
performance at the beginning of each new day. The fit between the model and data 
is quite good: R2=0.94. Figure 6.11 shows the results for day 4. Both in the data and 
in the experiment there is a clear directional asymmetry, since items in the practiced 
direction are solved faster than reversed items. Items that are completely new and 
have been practiced in neither direction, however, are performed even more slowly 
than the reversed items, indicating rule learning cannot be the whole explanation for 
all of the learning in the first three days of the experiment. 

Figure 6.12 shows how the model uses the four strategies in the course of the 
experiment. At the start of the experiment, analogy is used most of the time, but both 
the abstraction and the instance strategy gain in importance after a few blocks of 
trials. The rule strategy appears later, and only plays a minor role during the first 
day. At the start of the second day, there is a large shift toward using rules at the 
expense of instances. This can be explained by the fact that the activation of a large 
portion of the instances has decayed between the two days, so that they cannot be 
retrieved anymore. Since only a few rules are needed for successful performance, 
they receive more training on average and are less susceptible to decay. Note that the 
abstraction strategy remains relatively stable between the days since it also less 
susceptible to decay than the instance strategy. This pattern is repeated at the start 
of the third day, although the instance strategy loses less ground due to more 
extended training of the examples. At the start of the fourth day, the frequency of use 
of the analogy strategy goes up again, since there are no production rules for the new 
four sports-facts. The abstraction strategy can take care of the reversed items though, 
so in that case the expensive analogy strategy is not needed. This explains the fact 
that reversed items are still faster than completely new items.



The Fincham task

165

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

Block

La
te

nc
y

Data

Model

Day 1 Day 2 Day 3

Figure 6.10. Latencies for day 1 to 3 in experiment 1

Figure 6.12. Proportion of the trials a certain strategy is used by the model in experiment 1
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Same direction, practised 8.9 8.4

Reverse direction, practised 10.9 9.3

Not practised 13 16

Figure 6.11. Effect of direction of practice and whether a rule has been trained on time to respond 
(in seconds) from day 4 of experiment 1.
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Experiment 2
In experiment 2 (experiment 1 in Anderson, Fincham & Douglass, 1997) the 
directional asymmetry was explored further. Instead of having only a single 
transfer day, two rules were reversed each day of the experiment. This requires 
quite a complicated experiment, since on each day a rule has to be presented in two 
directions that was presented in one direction previously. So, on day 1 of the 
experiment, two out of eight rules were presented in two directions, while the 
remainder was only tested in one direction, on day 2 four out of eight rules, up to 
day 4 where all rules were presented in both directions. On each day participants 
had to do sixteen blocks of ten to sixteen trials, ten trials on day 1, twelve trials on 
day 2, fourteen trials on day 3, and sixteen trials on day 4. To further investigate the 
difference between rule and instance based performance, participants were asked 
after each trial whether they solved it using a rule or an example. Finally, on each 
day one of the sports-facts studied originally was offered as a trial somewhere 
between block 7 and 10. If performance on this original sports-fact is better than on 
other sports-facts, this indicates the participant retrieves the answer instead of 
calculating it.

The latencies for day 1 to 4 are shown in figure 6.13 for both the data and the model. 
Although the model is slightly slower than the participants, the learning curves are 
parallel. Directional asymmetries are calculated using the two rules that are 
presented in two directions for the first time that day. The solution time for the 
practised direction is subtracted from the solution time for the reversed direction. 
The result is the extra time needed for the reversal, and is shown in figure 6.14. Both 
the data and the model show a gradual increase in asymmetry over the days, 
although asymmetry for the model is slightly larger than for the data. To be able to 
map the participantsÕ reports of using either a rule or an example onto the model, we 
first have to decide when the model uses a rule or an example. The most logical 
choice is to assume that both the analogy and the instance strategy are strategies that 
use examples, and that the abstraction and the rule strategy are strategies that use 
rules. Figure 6.15 shows the results of both the model and the data on this aspect of 
the task. Since the Òsolve by exampleÓ-category includes both the slowest (analogy) 
and the fastest (instance) strategy, it eventually becomes faster than the rule strategy 
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as analogy is not used anymore. Both the data and the model show this 
phenomenon.

The latencies for the original sports-fact that was presented between block 7 and 10 
are shown in figure 6.16, and are compared with the average latencies between block 
7 to 10. Performance on original examples is clearly superior to other examples, 
indicating instance learning. Figure 6.17, finally, shows the strategies that were used 
by the model in the course of the experiment. It shows a pattern that is similar to the 
pattern in experiment 1.

Experiment 3
In experiment 3 (experiment 3 in Anderson, Fincham & Douglass, 1997), the effect 
of repeated examples is further explored. The same experimental setup as in 
experiment 2 was used, except that the experiment now took Þve days and each day 
consisted of 32 blocks of trials. On the Þrst day eight rules were tested in only one 
direction. On each subsequent day, a new pair of rules was also tested in the 
reversed direction. So, on day 2 eight rules were tested in the practiced direction, 
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and two rules in the reverse direction, on day 3 eight rules were tested in the 
practiced direction and four rules in the reverse direction, etcetera. To see if 
instances that are repeated more often than others are solved faster, half of the 
instances presented for a certain sport were identical, while the other half were 
generated in the usual way.

Figure 6.18 shows the results for both the data and the model. Repeated instances 
have a clear advantage over unique instances, further evidence for instance-based 
learning. Figure 6.19 shows the directional asymmetry results. After a steady 
increase between day 2 and 4, it decreases on day 5, both in the model and the data. 
On day 5 however, both the data and the model show a decline in asymmetry, 
indicating that instance-based reasoning, which has no asymmetry, takes over from 
rule-based reasoning. 
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6.5 Discussion

The two models discussed in this chapter demonstrate that understanding skill 
acquisition is not just a matter of answering the question whether skills are 
represented by rules or examples. People apparently have the capacity to store 
previous results and the capacity to generalize rules. Whether or not both types of 
learning show up in the results of experiments depends on their successfulness. In 
the Sugar Factory experiment, rules were very hard to generalize, so behavior can 
be explained by learning examples only. The Fincham experiment, on the other 
hand, shows clear evidence for both types of learning, since there is a balance 
between the usefulness of learning rules and examples. 
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A theory that just states that skill learning is a matter of both instance learning and 
rule learning is rather weak, and will certainly not end the debate. That is why 
cognitive modeling is so useful: the theory proposed in this chapter is not just the 
conjunction of two existing theories, but adds the constraint that the structure of the 
task is a main determinant of which types of learning will have an impact on 
performance. 

The subject of the previous chapter, implicit versus explicit learning, is also tied to 
the discussion of rule versus instance learning. If we consider a rule as a 
generalization of one or more examples, creating abstractions is the most important 
step of rule learning. Proceduralizing this abstraction later on is just an efficiency 
improvement. This brings up another issue, namely whether the proceduralization 
of abstractions is a form of explicit or implicit learning. Technically, it is explicit in 
ACT-R, since a dependency has to be pushed on the top of the goal stack, so is the 
focus of attention for a while. But is learning a production rule really an intentional 
act? This is at odds with our intuitions about production rules, especially since we 
have no conscious access to production rules. How can we intentionally learn things 
we cannot directly access?

An alternative is to suppose production learning is a more or less automatic 
mechanism, along the lines sketched in section 6.2. The assumption that production-
rule learning is an implicit learning mechanism implicates another stance towards 
explicit learning strategies. Instead of depicting explicit knowledge as dependency 
manipulators, explicit strategies are clever abstraction builders and interpreters. 
Although the Fincham model needs an abstraction before a production rule can be 
compiled, we might imagine more simple situations in which a rule can be learned 
without explicit declarative intervention (for example as in the child model of 
discrimination-shift learning in chapter 5). Eventually it may be possible to develop 
a learning mechanism that does not need the dependency structure at all. It must be 
noted that ACT-RÕs developers still consider production compilation as a tentative 
proposal (Anderson & Lebiere, 1998, pp. 109-110)

If learning a production rule is an implicit learning process, the explicit part of 
learning rules lies in constructing abstractions, which can be considered declarative 
rules. Now that rules and instances are both declarative representations in ACT-R, 
we might ask the question whether there really is a distinction between the two. 
Instances in the Sugar Factory model are used for situations that are different from 
the situation in which they were created, so some sort of generalization occurs at the 
moment an instance is applied. Abstractions in the Fincham model are used as rules, 
but are just declarative facts in memory. The main difference is not their 
representation, but the way in which they were learned, either implicitly or 
explicitly. 
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Again a traditional distinction in cognitive psychology is not what it seems when 
analyzed in detail within a cognitive architecture. The mapping from implicit 
memory to procedural memory and explicit memory to declarative memory turned 
out to be invalid, and now the mapping from procedural memory to rules and 
declarative memory to examples is not valid either. Although the concepts 
themselves are quite meaningful, we have to learn to live with the fact that there are 
no direct mappings between them and the underlying cognitive architecture. But 
this may just make them more interesting.
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CHAPTER 7 Models of Scheduling
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7.1 Introduction

When I Þrst started thinking about a model of a problem as complicated as the 
scheduling problem, I didnÕt have a clue where to start. One option, which I quickly 
dismissed, was to specify a set of production rules that implemented a scheduling 
algorithm. Such a model might display some expert-like behavior on scheduling, 
but would not expose any learning. It would also contradict the ideas I started out 
with in chapter 1, namely that the process of learning is more interesting than the 
actual problem-solving behavior itself. While carrying out the projects discussed in 
chapters 4 though 6, however, the contours of a scheduling model started to take 
shape. In this chapter, I will present a model of scheduling that integrates many of 
the aspects of learning discussed in the last few chapters. 

The starting point for the model of scheduling will be the learning paradigm 
presented in chapter 6 (figure 6.1). The central idea is that problem solving on a new 
task starts with some initial method. This method produces instances, examples of 
how the task is solved that can be retrieved later on. Another possible product of the 
initial method are abstractions, declarative representations of how the problem can 
be solved. Abstractions can be retrieved and applied to new cases of the problem, 
and during this application, production rules can be compiled. In the model of the 
Fincham task in chapter 6, abstractions used a representation that was specific to the 
task, and always involved the same kind of operation: adding or subtracting days or 
times. In this chapter, I will develop a generalized abstraction representation, to be 
used for any type of operation. This is necessary, since the strategies for the 
scheduling task are not fixed in advance. Another advantage of generalized 
abstractions is that explicit learning strategies can now operate on these abstractions. 
As a consequence, production rules themselves are no longer a product of explicit 
learning, and production compilation can be seen as a truly implicit learning 
mechanism.

Besides learning, there is another important aspect of the data discussed in chapter 3 
that I will investigate in the model, the issue of individual differences. Individual 
differences have many sources. One source is differences in knowledge. If an 
individual does not know all the addition facts, they have to do addition by 
counting. This slows down the problem solving process, or may even disrupt it if 
working-memory capacity is exceeded. Or an individual may use a particular trick 
to solve a certain problem, which is not available to other individuals. I will not 
explore this source of individual differences in this chapter, although the reader 
might want to refer to the discussion of discrimination-shift learning in chapter 5 for 
an example. Another source of individual differences is the ability to retain elements 
in working memory. Although ACT-R does not model working memory explicitly, 
what is normally referred to as working-memory capacity is closely related to the 
source activation parameter in ACT-R (Lovett, Reder, & Lebiere, 1997). Source 
activation is the amount of activation that spreads from the chunks that are part of 
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the goal context to other chunks (figure 2.8). Lovett et al. have shown that varying 
the parameter between 0.7 and 1.4 with a mean of 1.0 can explain individual 
differences in the digit working memory task (Yuill, Oakhill, & Parkin, 1989). In this 
task, participants have to read aloud a number of strings of digits that appear on the 
screen. Their goal is to memorize the last digit in each string, and reproduce them 
after all strings have been read. Both the number and the length of the strings can be 
varied. Working-memory capacity is quite relevant in the scheduling task, since 
many aspects of the task have to be retained in memory at the same time. We will 
therefore look at changes in performance in the model when the source activation 
parameter is varied.

A final factor that has to be taken into consideration is randomness in choice. In 
ACT-R, noise is involved in almost any choice that is made. This means that ACT-R 
predicts that even if participants could be brought into exactly the same situation 
twice, they would not necessarily make the same choice twice. 

7.2 Generalized abstractions

Abstractions in the Fincham model consist of two parts: a speciÞcation of what the 
goal has to be like, for example the sport is hockey and we are looking at the day of 
the week, and the operation that has to be performed, for example plus2. This 
operation has two aspects: on the one hand the plus2 operation has to be 
performed, involving either retrieval or subgoaling, and the answer has to be stored 
in the goal. The generalized version of abstractions will have the same components, 
but will separate out the two aspects of the operation. Furthermore, in the Fincham 
model abstractions relied on task-speciÞc rules to retrieve and apply them. 
Generalized abstractions will need no task-speciÞc knowledge, but are retrieved 
and applied by general purpose productions only. In this section, I will describe the 
representation and use of abstractions in general terms. A more elaborate 
discussion, which will take care of all the details, can be found in section 7.8. 

Representation of an abstraction
The main four components of a generalized abstraction are the following:

1. The type of goal the abstraction can be used for

2. The type of fact that needs to be retrieved

3. A test that is performed on the goal and the retrieved fact

4. An action, which speciÞes what to do with the retrieved fact and the goal

A generalized version of a Fincham abstraction may therefore look like this:
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EXAMPLE-ABSTRACTION
ISA ABSTRACTION
GOAL FINCHAM-HOCKEY-DAY-GOAL
RETRIEVE Òx PLUS2 equals yÓ
TEST Òthe day of the first event must be equal xÓ
ACTION Òset the day of the second event to yÓ

In order to use an abstraction, it has to be interpreted by production rules. This 
involves a number of steps, the main ones of which are depicted in figure 7.1. The 
first step is to retrieve an abstraction that is applicable to the current goal. This 
abstraction is stored in the current goal. The second step is to retrieve a fact as 
specified in the abstraction, satisfying the test in the abstraction. In the example 
Fincham abstraction, a fact of type plus2 is needed in which the argument matches 
the day in the goal. Finally, the action is carried out: the retrieved fact has to be used 
to modify the current goal. In the Fincham example, the answer of the plus2 fact 
needs to be stored in the second-day slot of the goal. 

This description looks conspicuously like a description of a production rule, but this 
is intentional. An abstraction is more or less the declarative counterpart of a 
production. But since it is declarative, it can be inspected, reasoned with explicitly, 
and manipulated. On the other hand it has to be interpreted by production rules in 
order to be executed. While abstractions offer flexibility, production rules offer 
speed: the whole cycle in figure 7.1 can be done in one step by a task-specific 
production rule. If both speed and flexibility are needed, both representations can be 
retained, but if flexibility is no longer necessary, the abstraction may be forgotten.

Using this dual representation of knowledge corresponds directly with theories 
about skill learning. For example Fitts (1964, cited in Anderson, 1995) discerns three 
stages in skill learning: a cognitive stage, an associative stage and an autonomous 
stage. In the cognitive stage, declarative representations (in our case abstractions), 

goal retrieve goal

abstractionan abstraction

goal abstraction
retrieve a fact

satisfying test fact

perform action

(changes goal)

goalÕ abstraction

fact

clean upgoalÕ

Figure 7.1. Diagram that illustrates retrieval and application of an abstraction.
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acquired through instructions or examples, are interpreted. In the associative stage, 
the skill is in transition between a declarative and a procedural representation 
(abstractions are available, productions only partially). In the autonomous stage the 
skill is proceduralized completely, and sometimes the ability to verbally describe the 
skill is lost (all productions are learned, abstractions are forgotten). Anderson has 
also adapted FittsÕ general skill learning theory for the ACT theories when he 
developed ACT* (Anderson, 1983). In the chapter about procedural learning in The 
Architecture of Cognition he already discusses the need for general interpretive 
productions in a description of how skill learning in ACT* can be accomplished. This 
skill acquisition aspect has, however, not been elaborated yet in terms of the ACT-R 
theory.

Chaining abstractions
An abstraction can be considered as a sort of plan for what to do. The example in 
the previous section was a simple one-step plan. But sometimes a number of steps 
have to be carried out in a certain order. To allow multi-abstraction plans, two extra 
slots have been added to the abstraction: a prev slot and a fail slot. These two slots 
are used to link abstractions into lists of abstractions. Each time an abstraction is 
completed successfully, a next abstraction is retrieved following the prev links. If an 
abstraction somehow fails, the next abstraction is retrieved following the fail links.

Figure 7.2 shows an example of a plan that a participant might have in a standard 
Sternberg memory experiment (Sternberg, 1969). In this type of experiments, the 
participant first has to memorize a set of letters, the memory set. Subsequently, new 
letters are presented to the participant, and they have to decide as quickly as possible 
whether or not the letter is in the memory set. Figure 7.2 shows the plan for this 
decision process. Each circle represents an abstraction, and the arrows show how 
they have been linked. In the first abstraction, the letter is read and stored in the goal. 
In the next step, the second abstraction from the left, a letter from the memory set is 
retrieved (hopefully the right one). If this already fails, a response of ÒnoÓ is given, 

Figure 7.2. Example of chaining abstractions, in which the participant has to decide whether a letter 
presented on the screen is part of a previously memorized memory set. Each circle represents an 
abstraction. 
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following the ÒfailÓ-link. If a letter is retrieved, the third abstraction checks whether 
both letters are equal. If this succeeds, the response is ÒyesÓ, else it is ÒnoÓ.

Proceduralizing abstractions
Since an abstraction has a function that is quite similar to a production rule, it is not 
so hard to proceduralize. The same method is used as discussed in the previous 
chapter (Þgure 6.2). Each time an abstraction is retrieved, there is a possibility that a 
dependency will be pushed as a subgoal, and the four steps in which the 
abstractions are carried out will be compiled into a single production rule. Due to 
the use of generalized abstractions, it is no longer necessary to have explicit 
learning strategies that are activated when a dependency goal has been pushed. The 
explicit strategies can now operate at the level of abstractions, independently of the 
production-compilation process. By pulling explicit learning strategies out of the 
dependency subgoal, the actual process of building dependencies can be carried out 
by a Þxed set of production rules, more or less as a mechanism of the architecture.

7.3 A Þrst model

A Þrst approximation of a model of scheduling has the following components:

1. Production rules that interpret and proceduralize abstractions as outlined in the 
previous section

2. A top-goal that reads the constraints for the current problem from the screen and 
pushes a task subgoal upon the goal stack. After the subgoal has successfully 
terminated, it outputs the answer found in the subgoal.

3. Productions that store elements in a list, and implement rehearsal, both 
maintenance rehearsal and elaborate rehearsal.

4. A set of abstractions that implements a simple strategy for scheduling.

5. Productions that produce some sort of verbal protocol.

The first item on the list has already been discussed, and the top-goal productions 
are quite trivial, so I will only elaborate on the last three items of the list.

Storing elements in a list and doing rehearsal
In chapter 4, I discussed a model of rehearsal based on BaddeleyÕs phonological 
loop. As we have seen in the protocols of scheduling, participants maintain a list of 
the partial solution, which they rehearse from time to time. Rehearsal can have two 
functions: maintenance rehearsal to keep the activation of the list high enough, and 
elaborate rehearsal to do additional processing on the items in the list. The Þrst 
model will use elaborate rehearsal to calculate the total duration of the tasks in the 
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list. Instead of using an explicit phonological loop, as in chapter 4, ordinary ACT-R 
chunks are used to represent the list. Details of the implementation can be found in 
section 7.8.

Abstractions that implement a simple strategy
The Þrst model uses a simple, one shot strategy that involves the following steps:

1. A Þrst task for the schedule is selected by retrieving an order-constraint and 
picking the Þrst task in this constraint. For example, if ÔD before CÕ is a 
constraint, D is picked as a possible Þrst task. It is then checked if there is no 
earlier task, indicated by a constraint like ÔA before DÕ. If that is the case, the 
earlier task is substituted as candidate Þrst task, else D is accepted as Þrst task.

2. The next task is determined by Þnding an order constraint that speciÞes a fact 
that is later than the task we have just added to the schedule. So if the schedule 
starts with D, and ÔD before CÕ is a constraint, we add C. Repeat this step until no 
more tasks can be added using this method.

3. Now count how many hours the tasks in the current schedule take (using 
elaborate rehearsal, as explained above). 

4. Calculate how many hours are left for one worker. So, if the tasks currently in 
the schedule take four hours, and each worker has six hours, two hours are left. 
If the number of hours left is greater than zero, Þnd a task that has a duration of 
exactly that number of hours and add it to the schedule.

5. Move to the next worker.

6. Go through the list of all the tasks, and add those to the schedule that are not 
already allocated to the Þrst worker.

Verbal protocol
An assumption about abstractions is that they can be reasoned about, so they are 
available to verbalization in a think-aloud experiment. To avoid writing a language-
production model, a ÒverbalizationÓ string is added to each abstraction that 
describes the action performed by the expression. Whenever an abstraction is 
executed, this string is added to the verbal protocol. Rehearsal actions also produce 
verbal protocol, as do reading actions. The verbal protocol not only enables 
producing ÒTuring TestÓ-like results, but is also very useful in debugging the 
model. Although a fully-ßedged language production module will probably require 
a formidable modeling effort, it may be a very useful tool in a continued research 
effort on declarative rules.

Results of the model
The model was tested using a set of ten example problems, all of which consisted of 
two workers and six or seven tasks. Although the problems are not particularly 
hard, this is not yet important since the answer given by the model is not checked. 
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The model uses only symbolic learning, and has all subsymbolic learning turned 
off. New chunks in declarative memory do not have a role in the problem solving 
process yet. Improvements in performance can therefore be attributed to 
production compilation. Figure 7.3 shows the learning curve of the model. The 
graph also shows the data from chapter 3 in comparison (actually the lower-left 
panel of Þgure 3.4 multiplied by the average solution time; the data start at 
problem 2, because participants have already solved one two-worker example 
problem). Although the data from the model and the experiment cannot be 
compared properly because different problems have been used, the graph shows 
the same logarithmic curve for both the model and the data. To get some idea of the 
rate of learning, the growth in the number of productions is plotted in Þgure 7.4. 
The more interesting part is the pseudo verbal protocol produced by the model. To 
see the impact of proceduralization, examples of the output of the Þrst and the tenth 
problem have been printed in Þgure 7.5. Clearly, the protocol of the Þrst problem is 
a protocol analystÕs dream, because participants are hardly ever that precise. But the 
tenth protocol looks more familiar: many steps in the process are omitted, and we 
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can only guess why some decisions have been made. This concurs with the general 
idea that proceduralized skills produce no verbal protocol (Ericsson & Simon, 1984; 
van Someren, Barnard & Sandberg, 1994). 

Although this first model shows some interesting properties similar to real problem-
solving behavior, it is far from complete. The current model just takes a single shot 
at the solution, and does not retry if it is incorrect. Only production compilation had 
been turned on, so the model will never forget any intermediate results it has found. 
And finally, the model starts out with a set of task-specific abstractions. One of the 
desired properties of the model was to start without any task-specific knowledge. 
These issues will be addressed in the second version of the model. But first the most 
important of these issues will be discussed separately: where do abstractions 
themselves come from?

Protocol of Þrst problem
There are two workers. Each of the workers has seven hours. Task A takes two hours. Task B takes 
two hours. Task C takes two hours. Task D takes two hours. Task E takes three hours. Task F takes 
three hours. Task B before F. Task F before A. First I will Þnd a task to begin with. Let's look at an 
order constraint. B before F. Let's see if there is no earlier task. There is no earlier task. Begin with B. 
B Can we Þnd a next task just by looking at the order? B before F. B.. F.. Can we Þnd a next task just 
by looking at the order? F before A. B.. F.. A.. Can we Þnd a next task just by looking at the order? Is 
this a schedule for one worker or for more? Now I am going to count how many hours we already 
have B.. How long does this one take? Task B takes two hours. Add this to what we have. nothing 
plus two equals two. F.. How long does this one take? Task F takes three hours. Add this to what we 
have. Two plus three equals Þve. A.. How long does this one take? Task A takes two hours. Do we 
have enough for one worker? Each worker has seven hours. We can move to the next worker.. B.. F.. 
A.. next.. Let's do the rest Now we are going to look at all the tasks, and see which ones are not yet 
in the schedule. Let's start with A. Task A takes two hours. Let's try to put it in the schedule. A is 
already in the schedule. OK, what is the next letter? B comes after A. Task B takes two hours. Let's 
try to put it in the schedule. B comes after A. B is already in the schedule. OK, what is the next 
letter? C comes after B. Task C takes two hours. Let's try to put it in the schedule. C comes after B. 
B.. F.. A.. next.. C.. OK, what is the next letter? D comes after C. Task D takes two hours. Let's try to 
put it in the schedule. D comes after C. B.. F.. A.. next.. C.. D.. OK, what is the next letter? E comes 
after D. Task E takes three hours. Let's try to put it in the schedule. E comes after D. B.. F.. A.. next.. 
C.. D.. E. Task F takes three hours. Let's try to put it in the schedule. F comes after E. F is already in 
the schedule. OK, that was the last task, we're done! The answer is B F A next C D E

Protocol of tenth problem:
There are two workers. Each of the workers has six hours. Task A takes one hours. Task B takes one 
hours. Task C takes two hours. Task D takes two hours. Task E takes three hours. Task F takes three 
hours. Task D before E. Task E before A. First I will Þnd a task to begin with. Let's see if there is no 
earlier task. Begin with D. D.. D.. E.. D.. E.. A.. Can we Þnd a next task just by looking at the order? 
Is this a schedule for one worker or for more? Now I am going to count how many hours we 
already have D..E..A.. D..E..A.. next Now we are going to look at all the tasks, and see which ones 
are not yet in the schedule. Let's start with A. A is already in the schedule. D..E..A.. next.. B 
D..E..A..next..B..C D is already in the schedule. E is already in the schedule. D..E..A.. next.. B..C..F. 
OK, that was the last task, we're done! The answer is D E A next B C F

Figure 7.5. ACT-R protocol of the Þrst and the tenth problem of a sample run
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7.4 Learning new abstractions

Figure 6.1 specifies the first step of learning a new skill as the Ôinitial methodÕ. In the 
Fincham task the initial method was analogy, because this method had been 
explained as part of the experiment. In general, analogy is a strategy that takes 
knowledge from another domain, and modifies this knowledge to suit the current 
task. 

Work by Sander and Richard (1997) indicates that people use the analogy strategy in 
discovering knowledge for a new domain. In their experiment, participants without 
any computer experience had to learn to operate a word processor. Since 
participants did not get any instructions on how to operate the word processor, they 
had discover the functions by themselves. The tasks participants had to do was to 
modify a given text so that it would be identical to another text. The total set of 
possible operations to change text was classified into four levels. Level 1 consists of 
operations that are also possible on a standard typewriter, a device participants were 
all familiar with, for example typing new letters, and deleting the last character 
typed. Level 2 operations are operations that are not possible on a typewriter, but 
can be considered as normal in the domain of writing, for example inserting a word 
in a sentence. Level 3 operations come from the even more general domain of object 
manipulation, for example copying a word and pasting it somewhere else. Finally, 
level 4 operations are operations not related to any domain. An example of a level 4 
operation is to copy strings of spaces. A space is not an object in the real world, so 
the specific knowledge that a space in a word processor is like any other character is 
required. 

In the experiment participants were strongly encouraged to discover new methods, 
since each time they tried a method they used before, they were prompted to attempt 
another method to solve that particular problem. As it turned out, all participants 
used level 1 operations immediately from the start of the experiment. As the 
experiment progressed, they gradually discovered level 2 operations, followed by 
level 3 operations. Level 4 operations were only discovered by a minority of the 
participants, and only in the last few sessions of the experiment. 

The results of this experiment support the idea that when people are in a new 
situation, they adapt knowledge from a similar domain to initially guide their 
actions. In word processing, knowledge of a typewriter is the most immediate 
source. If that source of knowledge is exhausted, knowledge of writing in general 
can be used, followed by the even more general knowledge source of object 
manipulation. 

In the scheduling task, analogy is also a good starting point. People may not know 
anything about schedules, but they do know something about lists, and how to 
construct them. Suppose we need to make a schedule. We may use knowledge about 



The second model

183

lists to start with. How do we make a list? First we have to find a first item for the 
list, a beginning. Once we have a beginning, we find a next task until we are done. 
But how do we find something to begin with, and how do we find a next task? We 
may choose to handle these problems by making them subgoals, or we may try to 
find mappings between ÔbeginningÕ and ÔnextÕ and terms in the scheduling problem. 
For example, a mapping can be made between ÔnextÕ and an order-constraint in the 
scheduling problem. The result is a modified version of the list-building 
abstractions, with ÔlistÕ substituted by ÔscheduleÕ and ÔnextÕ substituted by ÔorderÕ. 
Note that for sake of the explanation, the terms ÔlistÕ, ÔbeginningÕ, ÔbeforeÕ and ÔnextÕ 
will be used to refer to general terms, and ÔscheduleÕ and ÔorderÕ to refer to task-
specific terms. Except for knowledge on how to build a list, the analogy between a 
schedule and a list may also offer knowledge on how to retain a list in memory by 
rehearsal. 

Although these new abstractions may find a start for a schedule, they are not 
sufficient to build a complete schedule, mainly because the mapping between ÔnextÕ 
and ÔorderÕ is inadequate. When this abstraction fails to make a complete schedule, 
another plan may take over and contribute to the schedule. 

An idea that may take over if the list-building plan fails to add any more tasks to the 
schedule is the plan that tries to complete the first worker. A useful general plan may 
state that whenever something has to be completed, the difference between the 
desired size and the current size has to be calculated, after which an object has to be 
found with a size equal to this difference.

The central emerging idea is therefore that several strategies from similar domains 
are adopted and patched together. This method of adapting old strategies to new 
purposes is similar to the script and schema theories, as proposed by Schank (Schank 
& Abelson, 1977). Traditional script and schema theories assume that a complete 
script is first adapted to fit the current task, and then carried out. The ACT-R model 
uses a more on-demand style of adaptation: a new abstraction is created at the 
moment it is needed. Again, the details may be found in section 7.8.

7.5 The second model

The second model solves some of the shortcomings of the Þrst. It learns new 
abstractions as outlined in the previous section. Furthermore, the following aspects 
have been added to the model:

1. After a solution has been produced by the model, it receives feedback from the 
interface. If the solution is incorrect, the model has the opportunity of reading 
the violated constraint, and has to attempt a new solution. If no solution has 
been found after 300 seconds, the model has to move on to the next problem. 
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This 300 second boundary is somewhat arbitrary, but gives an opportunity to 
assess the accuracy of the model: if the model cannot solve it within the allotted 
time, it is counted as a failure.

2. Base-level learning is turned on. As a consequence, the model can forget all 
kinds of partial results it derives, most notably the list that contains the partial 
solution, but also read constraints (which have to be reread in that case), newly 
derived abstractions, etc. To recover gracefully from all kinds of errors that can 
occur due to forgetting, the robustness of the model had to be increased. The 
result of an error is often that a subgoal is popped in failure. This means that if a 
goal pushes a subgoal, it sometimes has to check whether or not this subgoal has 
actually succeeded. This is especially important if production compilation is 
involved, since this may result in learning a faulty production rule that gets 
ACT-R into endless loops. A base-level decay of 0.5 is used, the recommended 
value, from which I diverged in the Tulving and Fincham model. No long-term 
effects of learning were investigated in this model, so there was no need for a 
smaller decay.

3. The model uses the order in which constraints are presented on the screen. For 
example, if a task has to be found that takes 3 hours and is not yet present in the 
current schedule, the list on the screen is used to Þnd the Þrst task taking 3 
hours. If that task is already in the schedule, the next 3 hour task is looked for on 
the screen, etc.

4. Several extra abstractions have been added to ensure that correct solutions are 
eventually found by the model. The model now tries to satisfy the order 
constraints for the second worker as well, and uses the feedback it gets when it 
makes an error as a starting constraint for the next try.

Example verbal protocol
The following protocol fragment, produced by the model, gives an impression of 
the additional aspects of the model:

There are two workers. Each of the workers has six hours. Task A takes one hours. Task B takes one 
hours. Task C takes two hours. Task D takes two hours. Task E takes three hours. Task F takes three 
hours. Task B before C. Task F before A. I have to think of some new way to Þnd a schedule. Let's use 
what I know about lists. First I will Þnd something to begin with. Let's look at a before constraint. I 
have to think of some new way to Þnd a before. Let's use what I know about order. Let's use a order 
fact as a before fact. F before A. I have to think of some new way to Þnd a before following a fail-
abs12. F before A. I have to think of some new way to Þnd a before following abstraction12. Let's 
look at a before constraint. Let's see if there is no earlier element. Let's use a order fact as a before fact. 
There is no earlier element.

This doesn't work. Let's start again. First I will Þnd something to begin with. Let's look at a before 
constraint. Let's see if there is no earlier element. Let's use a order fact as a before fact. There is no 
earlier element. Begin with F. F.. I have to think of some new way to Þnd a schedule following 
abstraction10. Now I have to Þnd the next thing. F before A. A.. I have to think of some new way to 
Þnd a schedule following abstraction17. Now I have to Þnd the next thing. No more items for the list, 
let's check whether we're done. F.. A.. Is this a schedule for one worker or for more? Now I am going 
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to count how many hours we already have F.. How long does this one take? Task F takes three hours. 
Add this to what we have. nothing plus three equals three. A.. Add this to what we have. Three plus 
one equals four. Do we have enough for one worker? No, the schedule is not full, yet. I have to think 
of some new way to Þnd a total. Let's use what I know about hours. Let's use a hours fact as a total 
fact. Each worker has six hours. I have to think of some new way to Þnd a total following fail-abs23. 
Each worker has six hours. I have to think of some new way to Þnd a Þnd-remain following a failure. 
This doesn't work. Let's start again. 

First I will Þnd something to begin with. Let's look at a before constraint. Let's see if there is no 
earlier element. Let's use a order fact as a before fact. Let's see if there is no earlier element. Let's use 
a order fact as a before fact. There is no earlier element. Begin with F. F.. Now I have to Þnd the next 
thing. F before A. A.. Now I have to Þnd the next thing. Now I have to Þnd the next thing. No more 
items for the list, let's check whether we're done. F.. A.. Is this a schedule for one worker or for more? 
Now I am going to count how many hours we already have F.. Add this to what we have. Nothing 
plus three equals three. A.. Add this to what we have. Three plus one equals four. Do we have 
enough for one worker? No, the schedule is not full, yet. Let's use a hours fact as a total fact. Each 
worker has six hours. Each worker has six hours. How many hours are there left? Two plus four 
equals six. F.. A.. Now Þnd the task that Þts in. Task C takes two hours. C.. We can move to the next 
worker.. NEXT-WORKER Let's do the rest.. F.. A.. C.. NEXT-WORKER.. I now try to Þnd any unused 
order constraints. B before C. This one hasn't been used, so the constraint has been found. B.. Now 
we are going to look at all the tasks, and see which ones are not yet in the schedule. Let's start with A. 
A is already in the schedule. B is already in the schedule. Let's move on to the next task. C is already 
in the schedule. Task D takes two hours. D.. Task E takes three hours. E.. Task F takes three hours. 
OK, what is the next task? OK, that was the last task, we're done! This doesn't work. Let's start again. 

[one more failed search episode]

First I will Þnd something to begin with. Begin with F. F.. Now I have to Þnd the next thing. F before 
A. A.. Now I have to Þnd the next thing. No more items for the list, let's check whether we're done. F.. 
A.. Is this a schedule for one worker or for more? Now I am going to count how many hours we 
already have F.. Add this to what we have. Nothing plus three equals three. A.. Add this to what we 
have. Three plus one equals four. Do we have enough for one worker? No, the schedule is not full, 
yet. F.. A.. Now Þnd the task that Þts in. Task C takes two hours. C.. We can move to the next worker.. 
NEXT-WORKER Let's do the rest F.. A.. C.. NEXT-WORKER.. I now try to Þnd any unused order 
constraints. B before C. B before C. This one hasn't been used, so the constraint has been found. B 
before C. B before C. B.. Now we are going to look at all the tasks, and see which ones are not yet in 
the schedule. Let's start with A. Task A takes one hours. A is already in the schedule. OK, what is the 
next task? Task B takes one hours. B is already in the schedule. Let's move on to the next task. OK, 
what is the next task? Task C takes two hours. C is already in the schedule. Let's move on to the next 
task. OK, what is the next task? Task D takes two hours. D.. Let's move on to the next task. OK, what 
is the next task? Task E takes three hours. E.. Let's move on to the next task. OK, what is the next 
task? Task F takes three hours. F is already in the schedule. Let's move on to the next task. OK, what 
is the next task? OK, that was the last task, we're done! F.. A.. C.. NEXT-WORKER.. B.. D.. E.. The 
answer is   F A C NEXT-WORKER B D E

The particular fragment contains five search episodes, only four of which are shown: 
the first three and the final, successful episode. In the first two fragments, the model 
is busy figuring out how aspects of the problem can be mapped onto things it knows 
something about. Unfortunately, the primitive protocol generating part of the model 
produces some awkward sentences with references to internal symbols. Somewhere 
along the line the model gets stuck, because it can not keep track of all the constraints 
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in the task and all the newly derived abstractions. The third search episode is slightly 
more successful: it can use the abstractions derived in the first two episodes. 
Unfortunately, it fails just when it is done, because it cannot retrieve the start of the 
list anymore for typing in the answer. In the fifth, successful episode some of the 
earlier derived results can be retrieved. For example, the model immediately starts 
with ÒBegin with FÓ instead of deriving this fact.

The separate search episodes are similar to the episodes participants showed in the 
experiment (see chapter 3). Once the model gets stuck, it often does not have 
knowledge to repair the situation other than starting again. In the new search 
episode knowledge derived in the earlier episode is sometimes retrieved, so failed 
episodes do contribute to eventual success. This concurs with the behavior of 
participants, since they also are hardly ever able to recover from an error in their 
reasoning process.

Results of the model
Figure 7.6 shows the basic, averaged, results of the model. The solution times and 
the number of learned production rules are similar to the results of the Þrst model. 
The improvement in solution time is accompanied by an improvement in the 
proportion of the problems that is solved correctly within 300 seconds, which I will 
refer to as ÔaccuracyÕ in the rest of the chapter. 
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Figure 7.6. Solution times (top left), proportion solved (top right) and number of learned production 
rules (bottom) for the second model
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Individual differences
Figure 7.6 shows a gradually improving learning curve. But as we have seen in 
chapter 5, the averaging process may smooth out discontinuities that may be 
present in the data of individuals. Figure 7.7 shows solution times of six individual 
runs of the model, and the results of six participants from the experiment in 
chapter 3. Neither the model nor the data shows a smooth improvement of 
performance, only after averaging results is such a result obtained. Again, the 
comparison between model and data is only an approximation, since different 
problems were used. 

As mentioned in the introduction of this chapter, the source activation (W) 
parameter is associated with individual differences in working-memory capacity. 
Since the scheduling task requires participants to keep many aspects of the task in 
memory at the same time, it should be quite sensitive to changes in this parameter. 
Working-memory capacity, as modeled by source activation in ACT-R, is not a 
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buffer of limited size, but rather the capacity to increase activation of currently 
relevant memory chunks. As the number of relevant chunks increases, the potential 
for errors increases. Sometimes it is possible to recover from an error, by 
recalculating the lost fact, but sometimes the information is lost. The number of 
errors is a non-linear function of the number of currently relevant chunks. Figure 7.8 
illustrates this aspect: it shows the results of a small ACT-R model that stores 
between three and twelve items and then tries to retrieve them. The graph shows the 
proportion of correct retrievals for three different values of W. The model is allowed 
a single rehearsal for each item. As can be seen in the graph, at some point the 
probability of correct retrieval decreases dramatically. For the average W=1 case, this 
point is around the Òmagical number sevenÓ, and the low and high W cases roughly 
represent Òplus or minus two.Ó This decrease in performance is not caused by the 
fact that some activation resource must be distributed over a number of chunks Òin 
working memoryÓ, but is rather an emergent fact of several aspects of processing at 
the same time. The real limited resource is time: as more chunks are relevant, less 
time can be spent on each of them individually. A higher source activation just 
makes it possible to retrieve chunks that were accessed longer ago. The result is a 
model of a limited capacity without resources. 

The following metaphor may clarify this issue. Suppose you are a baby-sitter and 
you look after number of small children. To prevent children from getting up to 
mischief, you have to pay attention to them. You can only pay attention to one child 
at a time. As long as a child has had your attention not too long ago, it will behave 
properly. But if ignore a child too long, it will start misbehaving. If you only have a 
few children too look after, you will have no problems. Any mischief can be 
corrected easily by giving a little more attention to the particular rascal. But as the 
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Figure 7.8. The proportion of items retrieved correctly decreases non-linearly with the number of 
items currently relevant. Three values for the W parameter are shown: low (0.7), average (1) 
and high (1.4)
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number of children rises, giving more attention to one child means neglecting the 
others, causing more and more trouble. So, at a certain number of children, it 
becomes almost impossible to keep them all happy. Now if you are a particular good 
baby-sitter, you can give them impressive talkings-to, so they will keep from 
mischief just a little longer. Or, if you know the particular children, you might know 
a few tricks to keep a particular child happy. 

In the baby-sitter example, baby-sitters have no particular hard limit or capacity of 
children they can keep happy. Neither do they spread attention to all children at the 
same time. They just go from child to child and hope for the best. Individual 
differences between baby-sitters are reflected by the impact their attention has on the 
children: better baby-sitters donÕt have more time, they just use it more effectively. 

To see the impact of the W parameter, the model was run several times with source 
activations ranging from 0.7 to 1.4, the range that covers all subjects in the Lovett et 
al. experiment. Figure 7.9 shows that source activation has indeed a high impact on 
performance. A low source activation implies longer solution times and a lower 
accuracy. The interesting thing about the accuracy is, however, that the differences 
are initially very large: for the first problem, the accuracy of the high source 
activations is almost perfect, as opposed to the very poor accuracies for low source 
activations. But as learning progresses, these poor accuracies improve dramatically 
and by the tenth problem are almost as good as the higher source activations. This 
corresponds well with the experiment, in which almost every participant eventually 
managed to solve the problems, although the time they needed to do this (so the 
number of opportunities for learning), differed tremendously. A tentative 
conclusion of this model may therefore be that practice eventually overcomes poor 
working-memory capacity. 

Is proceduralization necessary for mastering complex skills?
In chapter 1, the hypothesis was posed that mastering a complex skill is a gradual 
process, in which some cases of a problem can be solved directly, some need 
additional search, and some cannot be solved due to the fact that this would take 
too much time. In the scheduling model, a similar issue turns up: if part of a skill is 
not proceduralized, it puts extra demands on working-memory capacity, and limits 
the amount of other non-proceduralized activity. As a consequence, as working-
memory capacity is lower, more proceduralization (i.e., practice) is needed before a 
task can be performed successfully. Working-memory capacity more or less deÞnes 
how broad the small grey band in Þgure 1.4 is. The results in Þgure 7.9 show that 
the accuracy for the higher source activations is close to 1 for the very Þrst problem. 
If source activation is lower, practice is needed before a high accuracy is reached.

Figure 7.10 shows a graphical impression of the consequences of limited working-
memory capacity for the scheduling task, analogous to figure 1.4. The rectangle 
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represents all skills involved in scheduling. At the bottom of the rectangle is a black 
region which represents the some basic skills that even novices in scheduling already 
possess, such as reading the screen, building lists and doing rehearsal. Using these 
skills does not require any extra working-memory capacity. Skills in the light grey 
area do require working-memory capacity. In terms of the model, these skills use 
chunks that represent the list, but also abstractions that are used in the reasoning 
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Figure 7.9. Solution time and proportion solved correctly for source activations ranging from 0.7 
to 1.4
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process. The white area represents skills, or groups of skills that take too much 
working-memory capacity. The dark grey circles, finally, represent the skills of 
doing the scheduling problems the model has to solve. The top part of the figure 
shows a case of high working-memory capacity (W=1.4). The scheduling problems 
are already within the grey area, so can immediately be solved by the model. The 
only advantage of procedural learning is that the solution time decreases. When 
source activation is low, on the other hand, the skill of solving the scheduling 
problems is still in the white area, as shown in the bottom-left part of the figure 
(W=0.7). In order to be able to solve the problem at all, procedural learning is 
necessary to reach to get the dark grey circles within the grey band. 

To examine more closely whether this is the case in the model, a comparison is made 
between runs with production compilation turned on and turned off. Figure 7.11 
shows the results for source activations 0.6, 0.65, 0.7 and 1.4. Clearly for the lower 
source activations, production learning is essential for successfully mastering the 
skill. For W=1.4, on the other hand, procedural learning does not contribute to 
accuracy at all.

Figure 7.10. Graphical impression of the role of source activation in solving scheduling problems
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7.6 Some empirical evidence for the scheduling model

Although the models of scheduling presented in this chapter address most of the 
issues raised in chapter 3, the predictions made by the model have not actually been 
tested yet. Fortunately, Linda Jongman has recently performed an experiment that 
provides some experimental support for the model. In a study on mental fatigue, 
she used the scheduling task as discussed in chapter 3, and the digit working 
memory task that has been modeled in ACT-R by Lovett, Reder and Lebiere (1997). 

The digit working memory task was used to make an estimate of the working-
memory capacity of a participant, expressed in the ACT-R source activation 
parameter. This working-memory capacity was related to the performance on the 
scheduling task. Unfortunately, the scheduling task as it was used in this particular 
experiment was a mixture of problems with two and three workers with varying 
difficulty and varying time limitations. It is therefore hard to compare the results 
directly to the model predictions. Nevertheless some of the more qualitative 
predictions of the model can be tested with respect to individual differences. 
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The model predicts a strong correlation between working-memory capacity and the 
performance on the scheduling task. This proved to be the case in the experiment: 
the correlation between the estimated source activation and the number of 
successfully solved schedules is 0.56 (with n=16). This correlation increases to 0.66 if 
the analysis is restricted to the three-worker schedules, the schedules that require 
most working-memory capacity. Figure 7.12 shows the scatter plot for this latter 
relation. A more specific prediction of the model is that the effect of working-
memory capacity on performance will diminish due to proceduralization. To 
investigate this prediction, the group of participants is split into eight low source-
activation participants (W<0.95) and eight high source-activation participants 
(W>0.95). The proportion of correct solutions for each of the groups is plotted in 
figure 7.13. In this graph only three-workers problems are shown, and to average out 
part of the noise each data point is averaged with its predecessor and its successor. 
There is a clear convergence between the two curves, as can be seen in the bottom 
graph that depicts the difference.

7.7 Discussion

At the end of the previous chapter it seemed that production compilation was an 
uninteresting optimization of declarative knowledge. The scheduling model shows 
that this was a false impression. Complex reasoning processes in declarative 
memory can only become more complex because production compilation decreases 
demands on working-memory capacity. 
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The scheduling model also reveals insights into a part of the problem-solving 
process that is usually not part of cognitive models: the acquisition of task-specific 
rules from instructions. Although the model does not encompass a natural language 
parser, it is easier to imagine translating an instruction into a list of abstractions than 
into a set of production rules. 

The abstraction representation chosen for this model is not the only possibility: 
probably a more general and efficient representation is possible. Optimizing the 
representation might be a good topic to study in conjunction with a more extensive 
system for creating new plans using old plans. A more general issue of 
representation that has become clear in this model is the fact that the degree of 
freedom ACT-R provides in choosing different types of chunks is probably too great. 
When general rules have to reason with declarative facts, having too many distinct 
types is a hindrance. The scheduling model uses only a few chunk types. The 
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downside of a chunk type that can be used for many purposes is that the number of 
slots becomes very large. Many of the slots are only needed at the moment that the 
chunk is the current goal, and are irrelevant for retrieval later on. For example, the 
generic goal type contains slots to store the current abstraction and the retrieved fact, 
and other bookkeeping slots. These slots are not needed anymore once the goal is 
popped. 

Unfortunately, the model cannot yet solve the hard problems that participants had 
to solve in the experiment. The current model, however, shows many aspects also 
found in the experiment:

• Separate search episodes

• Elaborate and maintenance rehearsal

• Errors due to limited working-memory capacity

• Large individual differences

• Deliberate reasoning about the task

• Proceduralization of declarative knowledge

A number of issues are still unresolved. The way in which new abstractions are 
learned is a good starting point for discovering new strategies, but it is not yet clear 
whether that is sufficient to discover complicated strategies like the different-worker 
and fit-the-hours strategies in chapter 3. Another issue is the fact that ACT-R only 
maintains expected gains of production rules, and that it has no mechanisms to keep 
track of the quality of declarative knowledge. Some way has to be found to represent 
that, for example, a particular abstraction does not work most of the time. 

Although these issues may involve even more explicit strategies, there is no 
fundamental problem in resolving them within the current framework. The main 
problem lies in the fact that people have a lot of relevant knowledge, even for an 
abstract task like the scheduling problem, and it is hard to specify all this knowledge 
and put it in a model.

7.8 Appendix: Implementation of abstractions in ACT-R

In this section I will discuss in detail how abstractions work. Readers not interested 
in the technical details may skip this section.

The basic generalized abstraction
The basic structure of a generalized abstraction is as follows:
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GENERALIZED-ABSTRACTION
ISA ABSTRACTION
GOAL the type of goal this abstraction applies to 
RETRIEVE the type of fact that needs to be retrieved from declarative memory
TEST constraints the retrieved fact has to satisfy
ACTION how the goal is modified using the retrieved fact

The generalized abstractions have many properties of a typical production rule in 
ACT-R: the goal has to be of a certain type (GOAL), some fact is retrieved from 
declarative memory (RETRIEVE) satisfying some condition (TEST), and this fact is 
used to modify the goal (ACTION). Note that tests on the goal itself are part of the 
condition in the TEST slot. Suppose the goal of the Fincham task looks like:

EXAMPLE-FINCHAM-GOAL
ISA HOCKEY-DAY-GOAL
DAY1 WEDNESDAY
DAY2 NIL

Further assume there are plus2 facts available of the following form:

EXAMPLE-PLUS2-FACT
ISA PLUS2
ARGUMENT WEDNESDAY
ANSWER FRIDAY

An abstraction that specifies that plus2 facts are needed for the hockey-day-goal 
looks as follows:

EXAMPLE-FINCHAM-ABSTRACTION
ISA ABSTRACTION
GOAL HOCKEY-DAY-GOAL
RETRIEVE PLUS2
TEST DAY1=ARGUMENT
ACTION DAY2:=ANSWER

In English, the interpretation of this abstraction is: 

If the goal is of type hockey-day-goal, retrieve a plus2 fact, so that the content of 
the day1 slot of the goal is equal to the argument slot of the plus2 fact, and put 
the contents of the answer slot of the plus2 fact in the day2 slot of the hockey-
day-goal. 

The representation presented above cannot be used directly. It needs to be 
interpreted, and this interpretation has to be done by production rules. Production 
rules, however, cannot inspect the names of slots, nor can the type of the goal (i.e., 
the contents of the ISA-slot) be variabilized. In order to circumvent this problem, 
some generalized goal representation is necessary with a fixed amount of slots. The 
representation I will use is as follows:
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EXAMPLE-GENERAL-GOAL
ISA GENERIC
TYPE the type of the goal
SLOT1 a general purpose slot to store results, arguments etc
SLOT2 another general purpose slot
SLOT3 a third general purpose slot
ANSWER the answer, or true to indicate a goal that has succeeded
ABSTRACTION slot to store a retrieved abstraction
RETRIEVE slot to store the retrieved fact 
TEST slot to store the test 
ACTION slot to store the action 

Unfortunately, the general purpose goal has many slots. Especially the abstraction, 
retrieve, test and action slots are necessary for processing purposes and are useless 
once the goal is popped. 

The generic goal makes it possible to interpret abstractions using ordinary 
production rules. LetÕs look at our Fincham example again, and translate the goals 
into the generic goal:

EXAMPLE-FINCHAM-GOAL
ISA GENERIC
TYPE HOCKEY-DAY-GOAL
SLOT1 WEDNESDAY
ANSWER NIL

(all other slots are nil)

EXAMPLE-PLUS2-FACT
ISA GENERIC
TYPE PLUS2
SLOT1 WEDNESDAY
ANSWER FRIDAY

(all other slots are nil)

The example abstraction now becomes:

EXAMPLE-FINCHAM-ABSTRACTION
ISA ABSTRACTION
GOAL HOCKEY-DAY-GOAL
RETRIEVE PLUS2
TEST SLOT1=SLOT1
ACTION ANSWER:=ANSWER

As we can see, slot names no longer label what is in a slot, making it slightly harder 
for us (but not for ACT-R) to interpret the meaning of abstractions and rules. The 
convention for tests and actions is that in a slotx=sloty or slotx:=sloty construction 
the slotx part refers to the goal, and the sloty part to the retrieved fact. When used in 
the test slot of the abstraction, it means that slotx of the goal has to match sloty of the 
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fact, and in the action slot of the abstraction, it means the contents of sloty of the 
retrieved fact have to be copied to slotx of the goal. It is important to note that ACT-
R does not interpret these test and action instructions: they are just labels that are 
matched by the appropriate production rules.

Interpretation of an abstraction can be handled by four consecutive production 
firings. I will present the rules, and step through the Fincham example to illustrate 
it. First, an abstraction needs to be retrieved:

RETRIEVE-ABSTRACTION
IF the goal is a generic goal of type type, and the abstraction

slot of the goal is nil
AND there is an abstraction with goal type

THEN put the abstraction in the abstraction slot of the goal

This rule will be competing with ordinary task-specific rules, so it should have an 
expected gain that is not too high. In that case, when task-specific rules perform well 
and have a high expected gain, they will win most of the time, but when the task-
specific rules have a low expected gain, abstraction retrieval will be preferred. This 
competition is comparable to the competition between search and reflection, as 
discussed in chapter 5. After the abstraction has been retrieved, the contents of its 
slots are copied to the goal.

COPY-ABSTRACTION-TO-GOAL
IF the goal is a generic goal and some abstraction is in the

abstraction slot of the goal
THEN copy the contents of the retrieve, test and actions slots of

the abstraction to their respective slots in the goal

In the Fincham example, these two rules will retrieve the example-fincham-
abstraction and store it in the goal, so the goal will now become:

EXAMPLE-FINCHAM-GOAL
ISA GENERIC
TYPE HOCKEY-DAY-GOAL
SLOT1 WEDNESDAY
ANSWER NIL
ABSTRACTION EXAMPLE-FINCHAM-ABSTRACTION
RETRIEVE PLUS2
TEST SLOT1=SLOT1
ACTION ANSWER:=ANSWER

Now that the abstraction has been selected, the retrieval specified in its ÒretrieveÓ 
slot has to be carried out:
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APPLY-ABSTRACTION-RETRIEVE-SLOT1-SLOT1
IF the goal is a generic goal with an abstraction in the

abstraction slot, and the retrieve slot has type retrieve
and the test slot equals slot1=slot1 and slot1 has value slot1
AND there is a fact of type retrieve and value slot1 in slot1

THEN put this fact in the retrieved slot of the goal

This rule is specific to the slot1=slot1 test, so a similar rule is necessary for every 
possible test. In the Fincham example, this rule will look for a plus2 fact with 
wednesday as slot1 value, and will find our example-plus-fact, transforming the 
goal to:

EXAMPLE-FINCHAM-GOAL
ISA GENERIC
TYPE HOCKEY-DAY-GOAL
SLOT1 WEDNESDAY
ANSWER NIL
ABSTRACTION EXAMPLE-FINCHAM-ABSTRACTION
RETRIEVE EXAMPLE-PLUS2-FACT
TEST SLOT1=SLOT1
ACTION ANSWER:=ANSWER

Sometimes the fact that needs to be retrieved is not available in declarative memory. 
An alternative method to get a fact is to push it as a subgoal. The following rule 
accomplishes this for the slot1=slot1 case:

APPLY-ABSTRACTION-SUBGOAL-SLOT1-SLOT1
IF the goal is a generic goal with an abstraction in the

abstraction slot, and the retrieve slot has type retrieve
and the test slot equals slot1=slot1 and slot1 has value slot1

THEN push as a subgoal a goal of type retrieve and set slot1 
to slot1
AND store this subgoal in the retrieved slot of the goal

In the Fincham example, this rule would create the following subgoal:

EXAMPLE-SUBGOAL-PLUS2
ISA GENERIC
TYPE PLUS2
SLOT1 WEDNESDAY
ANSWER NIL

(the rest of the slots also nil)

Resolving this subgoal of course needs knowledge in the form of other abstractions 
or productions to find the answer.

The final step is to carry out the action and remove the abstraction:
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ABSTRACTION-DO-ANSWER-ANSWER
IF the goal is a generic goal and fact retrieved is in the

retrieve slot of the goal and the action slot equals
answer:=answer
AND retrieved has answer in the answer slot

THEN put answer in the answer slot of the goal, set the
abstraction, action and retrieved slots to nil, and put the
original abstraction in the test slot

This production rule takes the answer from the retrieved slot and puts it in the 
answer slot of the goal, and resets the rest of the slots:

EXAMPLE-FINCHAM-GOAL
ISA GENERIC
TYPE HOCKEY-DAY-GOAL
SLOT1 WEDNESDAY
ANSWER FRIDAY
ABSTRACTION NIL
RETRIEVE NIL
TEST EXAMPLE-FINCHAM-ABSTRACTION
ACTION NIL

The abstraction that has just been used is retained in the test slot. Although this has 
a specific purpose that I will discuss in the next section, it also allows access to the 
abstraction even when the abstraction is proceduralized. The proceduralized version 
of the example is:

IF the goal is of type hockey-day-goal and slot1 equals day1 
and the answer is nil
AND there is a fact that day1 plus2 equals day2

THEN put day2 in the answer slot of the goal and put 
example-fincham-abstraction in the test slot of the goal

This rule does exactly what we expect it to do, an leaves behind a reference to the 
example-fincham-abstraction. Even when the proceduralized version of the 
abstraction is fired, the declarative version is still available for retrieval, provided 
that the abstraction still has an activation that is high enough for retrieval. If the 
activation of an abstraction drops below the retrieval threshold, it becomes a 
meaningless symbol in the production rule and declarative conscious access is lost. 
Although the symbol has become meaningless, it still has a function, as we will see 
in the next section.

Chaining abstractions
In order to implement the chaining of abstractions, a few more production rules are 
needed. The following rule implements handling the prev-links:
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ABSTRACTION-DO-NEXT
IF the goal is a generic goal of type type, and the abstraction

slot of the goal is nil and the test slot has value prev-abs
AND there is an abstraction with goal type and prev prev-abs

THEN put the abstraction in the abstraction slot of the goal

The rule for handling fail links is slightly different, since it has to fire whenever the 
current abstraction somehow gets stuck. The rule has to remove the current 
abstraction, and replace it by an abstraction that points to it using a fail link:

ABSTRACTION-REPLACE-FAIL
IF the goal is a generic goal of type type and the abstraction

slot contains some abstraction abs1
AND there is an abstraction with goal type and fail abs1

THEN put this abstraction in the abstraction slot of the goal

This production may of course only fire if we are really stuck, so we give it a low 
expected gain. 

Proceduralizing abstractions
To proceduralize an abstraction, the same method is used as outlined in chapter 6. 
After an abstraction has been retrieved, but before its contents have been copied to 
the goal (so in between retrieve-abstraction and copy-abstraction-to-goal), a push-
dependency rule may Þre that pushes a dependency onto the goal-stack. The 
remaining steps are exactly the same as outlined in Þgure 6.2. The resulting 
production rules use the test slot of the goal to make sure steps are carried out in the 
right order. For example, the rule that results from proceduralizing abs 2 in 
Þgure 7.2 checks in its condition part whether abs 1 is in the test slot, and puts abs 2 
in the test slot in the action part. 

Building lists and doing rehearsal
Each item in a list is represented by a separate chunk, using the following chunk 
type:

EXAMPLE-LIST-ITEM
ISA LIST-ITEM
LIST-ID Reference to the first item in the list (to itself if it is the first item)
VALUE The item that is stored in the list
PREV Reference to the previous item in the list (nil if it is the first item)

In the scheduling goal, slot3 points to the last item of the current list. Tasks that are 
put in slot1 of the goal are added to the list by a production rule that creates a new 
list-item that replaces the current last item in slot3. As an example, figure 7.14 shows 
how the list ÒABDÓ is represented. 
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Rehearsal is implemented by a subgoal that retrieves the list-items one at a time. If 
additional processing on items is required, in the case of elaborate rehearsal, a 
further subgoal is pushed in which the elaboration is carried out. Figure 7.15 shows 
a schematic representation of both types of rehearsal. In the case of maintenance 
rehearsal the content of the goal-tp slot in the rehearse-goal is ÔnothingÕ, and the list-
items are retrieved one at a time without further processing. In elaborative rehearsal, 
the goal-tp slot of the rehearsal goal stores the goal type of the goal that has to do the 
elaboration (Ôcount-hoursÕ in the figure). For each item in the list a subgoal of that 
type is created and pushed onto the goal stack. Results of this processing are passed 
on from subgoal to subgoal, and are eventually passed on to the main goal. 

Rehearsal is initiated by abstractions that have ÔrehearsalÕ in their retrieve slot, and 
the type of the elaboration subgoal in the test slot (or ÔnothingÕ in the case of 
maintenance rehearsal). The action slot specifies what has to be done with the results 

Figure 7.14. Example of the representation of the partial solution ÒABDÓ

list-id

prev

list-id

prev

A B D

valuevaluevalue

slot3

scheduletypegoal

list-id

prev

list-id

prev

A B D

valuevaluevalue

scheduletypegoal

push

rehearse
goal-tp nothing

retrieve

scheduletypegoal

push

rehearse
goal-tp count-hours

push

list-id

prev

list-id

prev

A B D

valuevaluevalue

count-hours count-hours count-hours
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of the elaboration. The following set of abstractions implements the strategy that 
calculates the total duration of the tasks already in the list. To do this, the durations 
of individual tasks in the list have to be retrieved and added. The first abstraction 
initiates elaborate rehearsal:

START-COUNT-REHEARSAL
ISA ABSTRACTION
GOAL SCHEDULE
RETRIEVE REHEARSE
TEST COUNT-STEP
ACTION SLOT2:=ANSWER

When this abstraction is retrieved, a rehearsal subgoal (retrieve=rehearsal) is pushed 
with its goal-tp set to count-step (test count-step). The final result will be stored in 
slot2 of the goal (action slot2:=answer). Although the rehearse subgoal is 
implemented by production rules, the processing in the count-step goal still has to 
be specified:

The rehearse subgoal puts the currently rehearsed item in slot1, and the current 
results of elaboration in slot2. It expects the result of the elaboration step in the 
answer slot. So, at the moment the subgoal of type count-step is pushed, slot1 
contains a task, and slot2 contains the running total of the duration. The first step is 
to retrieve the duration of the task that is currently rehearsed. These durations are 
stored in chunks of type time, which have the task in slot1, and the duration of the 
task in slot2. Count-get-time retrieves a fact of type time which matches the task in 
slot1 (test slot1=slot2). It then stores the duration of the task in slot3 (slot3:=slot2). 
The next step is to add this duration to the running total in slot2. Count-add-time 
retrieves an addition fact with the first addend (which is in slot1 of the addition 
fact) equal to the running total and the second addend (in slot2) equal to the 
duration of the current task (slot2=slot1*slot3=slot2, a conjunction of two tests: 
slot2=slot1 and slot3=slot2), and stores the sum in the answer slot of the subgoal 
(answer:=answer). Whenever something is put in the answer slot of a goal it is 
automatically popped, so the elaboration subgoal is popped after count-add-time 
has finished.

COUNT-GET-TIME
ISA ABSTRACTION
GOAL COUNT-STEP
RETRIEVE TIME
TEST SLOT1=SLOT1
ACTION SLOT3:=SLOT2
PREV NIL

COUNT-ADD-TIME
ISA ABSTRACTION
GOAL COUNT-STEP
RETRIEVE ADDITION
TEST SLOT2=SLOT1*SLOT3=SLOT2

ACTION ANSWER:=ANSWER
PREV COUNT-GET-TIME
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Learning new abstractions
Suppose we need to make a schedule. We may use knowledge about lists to start 
with. How do we make a list? First we have to find a beginning. Once we have a 
beginning, we find a next task until we are done. A general set of abstractions to 
create a list might look like:

This representation assumes that the list is stored in slot3 of the goal (as illustrated 
in figure 7.14), and that items in slot1 are added to the list and copied to slot2. Find-
beginning specifies that if there is no list yet (test slot3=nil), a beginning has to be 
found, and this beginning has to be stored in slot1 (action slot1:=slot1). Once list-
building productions have added the item in slot1 to a new list in slot3, and have 
transferred this item to slot2, the find-next abstraction specifies that a next relation 
has to be found between the item in slot2 (test slot2=slot1), the item we have just 
added to the list, and some new item, which will be stored in slot1 (action 
slot1:=slot2). 

In the ACT-R model, the process of adaptation does not precede the rest of 
processing, but rather is part of it. A new strategy is initiated by a production rule 
that pushes an abstraction as a subgoal. This subgoal only produces the first step in 
the solution plan: later parts of the plan are generated when needed later on. The rule 
that pushes an abstraction goal is the subgoaling version of the rule that retrieves 
abstractions: 

SUBGOAL-ABSTRACTION
IF the goal is a generic goal of type type, and the abstraction

slot of the goal is nil
THEN set as a subgoal an abstraction with goal type

AND put this abstraction in the abstraction slot of the goal

This rule has to compete with the retrieve-abstraction rule, but since it has a higher 
cost, it will only occasionally win the competition if an abstraction is already 
available in the current situation (or, it will almost never win if there is a task-specific 
production rule available with a high expected gain). If there is no abstraction 
available, the retrieve version of the rule will fail, and subgoal-abstraction will be 
chosen automatically. Once an abstraction has become the goal, the first step is to 
find a goal that is similar to the desired goal-type in the goal slot of the abstraction. 
For example, in the case of scheduling, the abstraction subgoal becomes:

FIND-BEGINNING
ISA ABSTRACTION
GOAL LIST
RETRIEVE BEGINNING
TEST SLOT3=NIL
ACTION SLOT1:=SLOT1
PREV NIL

FIND-NEXT
ISA ABSTRACTION
GOAL LIST
RETRIEVE NEXT
TEST SLOT2=SLOT1
ACTION SLOT1:=SLOT2
PREV FIND-BEGIN
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EXAMPLE-ABSTRACTION-SUBGOAL
ISA ABSTRACTION
GOAL SCHEDULE
RETRIEVE NIL
TEST NIL
ACTION NIL

etc.

The current model uses an explicit representation to store relations between goal 
types, for example, it represents that schedule is related to list, and next is related to 
order. An alternative, but less reliable, option is to use implicit association strengths 
to find related goals. The following rule implements the explicit version:

FIND-ASSOCIATED-GOAL-TYPE
IF the goal is an abstraction for goal type goal-tp1 and no

associated goal-type has been found yet.
AND goal-tp1 is related to goal-tp2

THEN put goal-tp2 in the test slot of the goal

In our example, this rule stores ÔlistÕ in the test slot of the abstraction. In the next few 
steps (for reasons of brevity, I will omit the production rules), an abstraction of the 
associated type is retrieved and its slots are copied to the abstraction, producing 
(assuming find-beginning is retrieved):

EXAMPLE-ABSTRACTION-SUBGOAL
ISA ABSTRACTION
GOAL SCHEDULE
RETRIEVE BEGINNING
TEST SLOT3=NIL
ACTION SLOT1:=SLOT1
PREV NIL

No more adaptations are possible for this abstraction, since the beginning type in the 
retrieve slot cannot be related to any task-specific aspect. As a consequence, 
applying this abstraction will lead to a subgoal of type beginning. Once the next step 
in the plan, the find-next abstraction, has been adapted to the schedule goal, the 
retrieve type can be filled with a task-specific term. The situation is as follows:

EXAMPLE-FOLLOW-UP-ABSTRACTION
ISA ABSTRACTION
GOAL SCHEDULE
RETRIEVE NEXT
TEST SLOT2=SLOT1
ACTION SLOT1:=SLOT2
PREV EXAMPLE-ABSTRACTION-SUBGOAL

In this case a fact of type next has to be retrieved. But since next facts are related to 
order constraints, next can be substituted by order, producing:
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EXAMPLE-FOLLOW-UP-ABSTRACTION
ISA ABSTRACTION
GOAL SCHEDULE
RETRIEVE ORDER
TEST SLOT2=SLOT1
ACTION SLOT1:=SLOT2
PREV EXAMPLE-ABSTRACTION-SUBGOAL

Although there are probably more ways to adapt abstractions, this are sufficient for 
the second model.



CHAPTER 8 Concluding remarks
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The goal of this thesis, as stated in chapter 1, is the development of a theory of 
problem solving that is psychologically plausible, and does justice to its complexity. 
The weak-method theory that stems from artificial intelligence acknowledges this 
complexity, but shows only very limited correspondence with human data. Theories 
from experimental psychology, on the other hand, neglect the complexity of 
problem solving, and theorize about how complex skills can be explained in terms 
of memory systems and basic information processing. In the course of this thesis, the 
subject of problem solving has been broadened to cognitive skills in general, since 
there is no principled distinction between the two. The approach I have chosen is to 
focus on learning cognitive skills. In chapters 5 to 7, a view of skill learning has taken 
shape, which I will try to explicate in this final chapter. This view is built upon the 
foundation the ACT-R architecture offers, ensuring a plausible system of learning 
and memory, and it exhibits the complexity of behavior that artificial intelligence is 
interested in. The theory of skill learning that emerges has a number of areas that 
need more investigation, and a number of possible applications. Both topics will be 
discussed in the final sections of this chapter.

Have I solved the problem of NP-completeness? The answer to this question is of 
course ÒnoÓ. But I have tried to draw a picture of how humans can acquire the 
knowledge to at least partially solve hard problems. This is not a simple picture, and 
cannot be summarized in a clear-cut algorithm. When people start with a new task, 
they do not use a general machine learning algorithm to acquire knowledge about 
this task. Rather, they use a set of strategies, knowledge about other domains and 
tasks, instructions about the current task to start with, and keep adapting and 
refining their knowledge while they are working on the task. A better understanding 
of these processes is the key to understanding complex human problem solving.

8.1 The skill of learning

Skills are not separate entities, they almost always rely on other skills. In order to 
learn multiplication, one has to master addition Þrst. In order to be able to add 
numbers, one has to be able to count, etc. The diagram I used in chapter 1 to outline 
the growth of knowledge for a certain problem (Þgure 1.4) is useful to intuitively 
sketch skill learning in general. LetÕs visualize the space of possible tasks in a two-
dimensional diagram (Þgure 8.1). Again, the idea is that tasks that are similar are 
close to each other in the diagram. The vertical axis is used to indicate complexity. A 
task is higher in the diagram if the skill to perform this task relies on skills 
associated with a task lower in the diagram. The result is a partial ordering. Each 
task can be instantiated in numerous ways, so each of them is shown as a small set 
(a box). Now, if the set boundaries are dissolved, weÕre back at Þgure 1.4, except 
that the diagram now represents the set of instances of all possible tasks. 
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Figure 1.4 gave the impression of a gradual learning process, in which the 
boundaries between the black, grey and white areas slowly move upwards. On the 
basis of chapter 5 to 7, it is possible to revise this picture, and to show how 
discontinuous learning can occur. Suppose a new skill is being learned. To be able to 
start at all, the prerequisite skills have to be mastered Þrst (i.e., the have to be in the 
black area). This means that the task itself has to be in the grey area (Þgure 8.2a). 
Experience with the task will produce examples of solutions. These examples can be 
retrieved later on, producing Òspecks of blackÓ in the grey area that represents the 
new skill (Þgure 8.2b). This process is similar to instance learning, PiagetÕs 
assimilation, implicit learning and the I-phase of the RR-theory. Although it seems 
that the black specks will eventually Þll up the whole set, this is only true for tasks 
with a Þnite number of instantiations. Mastery of an inÞnite set of instantiations 

Set of possible tasks

grey: tasks for which some 
combinatoric search or 
deliberation is needed

black: tasks that can be performed in a direct 
fashion (retrieval, simple procedure)

white: tasks that cannot be done yet

Tasks higher on the vertical 
axis prerequire skills related to 
tasks lower on the axis

Tasks close to one another on the horizontal 
axis are closely related

Figure 8.1. The set of possible tasks

Figure 8.2. Summary of the skill acquisition process. The Þgure shows a detail of Þgure 8.1. (a) The 
rectangle in the middle represents the task to be learned. The two black rectangles at the bottom 
represent prerequisite skills, which already have been mastered. Experience with the task 
produces examples or instances (b). Once there are enough examples, generalization can be 
successful (rule learning), producing situation (c).

(a) (b) (c)

continuous
process

discontinuous
process
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would require an inÞnite number of examples. To master an inÞnite set as a whole, 
one or more generalization steps are necessary. Once a successful generalization is 
made (possibly after several unsuccessful ones), it is suddenly possible to efÞciently 
solve the set as a whole (Þgure 8.2c). The process of generalization is similar to rule 
learning, PiagetÕs accommodation, explicit learning and the E1-phase of the RR-
theory. A side effect of successful mastery of a skill is that it is now possible to learn 
skills that were previously unreachable. This means a sudden shift in the border 
between the grey and the white area (Þgure 8.2c).

An important aspect of this process is that the generalization step is a skill itself. As 
we have seen in chapter 5, adults use a more elaborate form of generalization than 
children do. It is this aspect of learning that makes human learning virtually 
limitless. Understanding this particular set of skills may well be the key to 
understanding many aspects of individual differences and cognitive development. 
In the next section, an ACT-R implementation of this idea will be outlined, based on 
the models from chapter 6 and 7. In section 8.3, I will elaborate on the issue of 
individual differences.

8.2 Processes involved in skill learning

In chapter 6, I proposed a first version of a general schema of skill learning 
(figure 6.1). Although this schema offered a good description for the two models 
discussed, the Sugar Factory and the Fincham task, it did have a problem: the vague 
notion of the initial method. In both the Sugar Factory model and the Fincham 
model these initial methods were hard-coded into the model. The origin of this 
knowledge was left unspecified. The scheduling model in chapter 7 showed how 
this problem can be solved. In this section, I will update figure 6.1 according to the 
modifications introduced in chapter 7. The final skill learning theory I propose 
encompasses two currently dominant theories, the theory of rule learning, rooted in 
the original ideas by Fitts (1964) and further extended by Anderson (1982), and the 
idea of instance learning, as posed by Logan (1988). 

Now how can this theory produce the kind of learning discussed in the previous 
section? Suppose we have a task in the grey area (as in Þgure 8.2a). This means some 
way of doing this task is available, although it is inefficient. This initial method may 
involve a set of declarative rules that has been adapted through analogy to suit the 
current task, or is the result of interpreting instructions. Doing the task using these 
initial rules produces examples that are stored as instances. At some point, the 
explicit learning strategies will attempt some generalization (in terms of chapter 5: a 
reflection episode). As soon as the generalization is successful, and the new, efficient 
declarative rules are subsequently proceduralized, the skill is mastered.
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Figure 8.3 shows a revised overview of the theory, an expansion of figure 6.1. Each 
of the boxes in the diagram represents a type of knowledge. The dashed boundary 
indicates which of these knowledge types are task specific. Each rectangle represents 
a type of knowledge that is associated with a certain strategy. Each of these strategies 
needs knowledge associated with it to function properly. Within the task-specific 
knowledge, there are three possible strategies, each of which represents a possible 
way to perform the task: using a declarative rule, using a production rule, or 
retrieving an instance. According to ACT-R, the strategy with the highest expected 
outcome will win the competition. The instance strategy is generally the best 
strategy, followed by production rules, declarative rules and using an explicit 
learning strategy. 

Using one type of knowledge to perform the task results in learning: not only is the 
knowledge itself reinforced, but it may also produce knowledge necessary for other 
strategies as a by-product. This implicit learning is represented by the dashed 
arrows. The strategy outside the task-specific knowledge represents explicit-
learning strategies. The goal of this strategy is to produce task-specific knowledge in 
the form of declarative rules. In order to do this, it can use different knowledge 
sources, both within and without the task domain. The use of these sources is 
represented by the grey arrows.

Instructions, 
biases, feedback

Production 
rules

Figure 8.3. Overview of the proposed skill-learning theory

Task specific knowledge

Explicit learning 
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Decl. rules from 
other domains

B

B

B

A

A If knowledge type A is used to solve an instance of 
the problem, knowledge type B is implicitly learned

Knowledge type A explicitly produces knowledge 
type B

Knowledge of type B uses type A as a (possible) 
source of knowledge
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(abstractions)

Instances

Declarative 
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Explicit learning strategies
There are many possible learning strategies, and they are an important source of 
individual differences. Explicit learning strategies themselves can also be 
considered skills, and can be learned in the same way as other skills. Eventually, 
some bootstrapping problem must be solved, so some initial strategy should 
probably be part of the architecture itself. 

Some possible strategies are:

• Use analogy to apply declarative rules from other domains to the current 
domain

• Generalize instances into declarative rules

• Create a direct representation of the instructions

• ReÞne current declarative rules based on feedback

Both the Fincham model (chapter 6) and the scheduling model (chapter 7) use 
analogy initially, although the Fincham model does so in a task-specific fashion (i.e., 
the method of analogy was already part of the instructions). In some cases 
instructions provide for an initial method. In that case the main task is to translate 
the instructions into declarative rules that can be carried out. But in many cases 
instructions will also draw on knowledge people already have. 

Declarative rules and Instances
Declarative rules have to be interpreted in order to be carried out. As such, they 
require attention and working-memory capacity. Since they are declarative, these 
rules can be subjected to deliberate reasoning, which may lead to new declarative 
rules. Whether or not learning of declarative rules will contribute to performance in 
the long run, not only depends on the available knowledge, but also on the task. 
The Sugar Factory experiment in chapter 6 illustrates this: the possibility of control 
is limited, the behavior of the system is non-linear, and there is random noise 
involved. Therefore, learning of declarative rules will fail for most participants, so 
performance can be explained by instance learning alone. In other cases learning of 
declarative rules may be successful, but will not prove to be the most cost-efÞcient 
strategy. This is the case when the set of instances is small, so that instance retrieval 
can dominate performance. In the Fincham task, the use of declarative rules was a 
very useful strategy, and in the scheduling task it was crucial, since the instructions 
alone are clearly insufÞcient to do the task and examples are not very useful. 

Production rules
Production rules serve the same function as their declarative counterparts. But since 
they can be executed in one step instead of being interpreted, they are much faster. 
Another advantage is that they use less working memory capacity due to the fact 
that there is no longer a declarative rule that has to be kept active. Although 
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production rules provide no new knowledge when compared to their declarative 
cousins, they make it possible to solve problems that could not be solved before 
because of limitations in working memory capacity or available time. This may 
even open the way to learning more difÞcult skills. 

In ACT-R, production rules are learned through a specific type of goals 
(dependencies). In that sense production-rule learning requires deliberate planning. 
The encapsulation explained in chapter 6 and 7 turns this goal-directed type of 
learning into an implicit learning mechanism. In the current models, each time a 
declarative rule is retrieved, there is a chance that a production rule will be learned. 
Although this method fits the data quite nicely, there are alternatives, such as a 
gradual transfer from the declarative to the procedural version of a rule. This raises 
the question whether procedural memory and declarative memory are really distinct 
in principle. Is proceduralization not a process of gradually speeding up the process 
of interpreting declarative rules while reducing interference? 

Implicit and explicit learning
The distinction between implicit and explicit learning follows naturally from this 
theory. Implicit learning is a result of normal processing, producing new instances 
and proceduralization. Explicit learning is based on strategies. Using these 
strategies is also a form a normal processing, except with another goal. Instead of 
performing the task, the goal is to generalize new knowledge. Due to this fact, 
explicit learning is ÒconsciousÓ, since the episode can be recalled later on by 
retrieving the learning goal, while implicit learning is not. Explicit learning is a skill 
that has to be learned. This fact can explain the large individual differences in 
explicit learning whether due to age, intelligence or brain damage.

8.3 Individual differences

In this thesis two sources of individual differences have been discussed in detail. In 
chapters 4 and 5, the idea has been put forward that individual differences stem 
from differences in explicit learning strategies. Experiments in discrimination-shift 
learning, for example, exhibit a qualitative difference in learning between young 
children and adults. The model in chapter 5 shows how this difference can be 
explained in terms of different strategies. The scheduling model in chapter 7 further 
suggests that these explicit learning strategies can be subdivided into a set of 
declarative rules that can be reused, and production rules that adapt these 
declarative rules to new situations. 

Chapter 7 introduces another source of individual differences: working memory 
capacity, which corresponds to source activation in ACT-R. Correlational studies, for 
example by Kyllonen and Christal (1990), find correlations of between 0.80 and 0.90 
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between reasoning ability factors and working-memory capacity. All the tests in 
their experiment, however, were relatively short. The model in chapter 7 and the 
results in the previous section suggest that the advantage of working-memory 
capacity diminishes due to procedural learning. With respect to individual 
differences on a larger time scale, explicit learning strategies may become more 
important. Nevertheless, a high working-memory capacity may imply more 
flexibility, leading to a larger range of problems that can be solved in a declarative 
fashion. The evidence up to now is inconclusive with respect to the interaction 
between working memory capacity and reasoning ability.

Although the supporting evidence is still scarce, the modeling approach to 
individual differences has great advantages over the traditional approach in IQ-
tests. Working-memory capacity and explicit learning strategies are information 
processing notions. The exact impact of these aspects on performance can be 
predicted by an ACT-R model. For example, Kyllonen and Christal classify a 
particular test as a working-memory test on the basis of intuition alone. In that case, 
working-memory capacity is just a factor that is defined as Òwhat all the working-
memory tests measureÓ. In the case of the digit-working memory task, on the other 
hand, working-memory capacity is a parameter in the model that can be separated 
out from, for example, the effect of learning. A further advantage of a parameter is 
that it leads to precise predictions about individual differences in other tasks. As a 
result, research in individual differences may move from a descriptive to a 
predictive stance. 

BinetÕs (1962; originally published in 1911) original IQ concept was based on ideas 
about development, in the sense that IQ represents the Òmental ageÓ divided by the 
real age of a child. This idea is, however, no longer valid in modern IQ tests. As was 
argued in chapter 5, individual differences due to development can best be 
explained by differences in available explicit strategies. I do not believe that the 
source activation parameter in ACT-R, the main determinant of individual 
differences in working-memory capacity, is susceptible to development. Anyone 
who has played the game of memory with children may attest this. Tests of working-
memory span do not measure working-memory capacity only, but also 
memorization strategies like rehearsal.

The skill-learning theory presented in this thesis may also be useful in the study of 
cognitive development. Explicit learning strategies are themselves skills, and their 
development may resemble the development of skills, but on a larger time scale. The 
table in figure 8.4 shows how we may think about this issue in terms of a time scale 
of human learning. This table is analogous to the time scale of human action, as 
originally conceived by Alan Newell (1990). Individual skills are learned and 
proceduralized in terms of minutes and hours, while general intelligence develops 
in terms of weeks and years. This is not because a general learning strategy is 
fundamentally different from a skill. Skills are based on generalizing knowledge to 
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produce specific facts. To go from a fact to a skill takes two orders of magnitude on 
the time scale (from 100 to 102). It takes another two orders of magnitude to 
proceduralize this knowledge. An assumption behind these learning steps is that it 
includes all aspects that lead to an optimally useful representation, such as learning 
parameters, discrediting wrong generalizations, etc. To learn knowledge that is 
generally useful, knowledge related to specific skills needs to be generalized, which 
takes another two orders of magnitude. 

8.4 Evaluation of ACT-R

This thesis could not have been written without the ACT-R cognitive architecture. It 
has provided both a theory and a modeling environment with just the right level of 
constraints. ACT-RÕs constraints actually help the modeler in designing a proper 
model for his data. Too few constraints leave too many choices, while too many 
constraints may force the modeler to spend too much time overcoming the 
limitations of the architecture. ACT-R offers a solid basic system of learning and 
memory, grounded in empirical data. An ideal architecture would be a system in 
which it is just sufÞcient to specify some necessary knowledge, after which the 
architecture exhibits psychologically plausible behavior. ACT-R comes close to this 
ideal. 

In the course of the research described in this thesis, I often pushed the envelope of 
the capabilities of ACT-R. As a consequence, I have encountered some aspects of 
ACT-R that are still underspecified. I think this thesis can contribute to ACT-R by 
helping to point out and sometimes fill in some of the gaps.

Time scale of human learning

Scale 
(sec)

Time 
Units

Type of representation Memory 
system used

108 years Learning strategies Procedural
DevelopÐ

mental band106 weeks Generally useful 
declarative rules

Declarative

104 hours Task-speciÞc production 
rules

Procedural

Skill band
102 minutes Task-speciÞc declarative 

rules
Declarative

100 seconds Task-speciÞc facts Declarative Instance band

Figure 8.4. Time scale of human learning, analogous to NewellÕs (1990) time scale of human action



8: Concluding remarks

216

Production compilation
One of the cornerstones of the ACT-R theory is the distinction between declarative 
and procedural memory. This distinction has proved to be very useful, not only in 
terms of the theory, but also in providing users of the theory with a relatively easy-
to-learn modeling environment. Having two long-term memory stores, however, 
also produces additional complications. More speciÞcally: ACT-RÕs current 
procedural learning is not yet completely adequate. Using dependencies in ACT-R 
is still too much like programming, and some of the productions that Þll slots in a 
dependency goal lack any psychological plausibility. The method for creating 
dependencies introduced in chapter 6 and extended in chapter 7 abstracts away 
from this process by focusing on declarative rules. The actual production rules are 
learned more or less automatically if their declarative counterparts are used often 
enough. In order to use these declarative rules, and stay consistent with earlier ACT 
systems like ACT* (Anderson, 1983), a set of general interpretive productions is 
necessary, or at least a framework in which they can be deÞned. The scheduling 
model in chapter 7 offers some kind of solution, which may need some more 
elaboration to be useful in any setting. 

An issue we should keep in mind, in the spirit of Newell, is not to be too dogmatic 
about the declarative/procedural distinction. From the fact that declarative 
knowledge apparently gradually changes into procedural knowledge we may 
deduct that at a deeper level declarative and procedural knowledge are similar after 
all. Finding this deeper equivalence not necessarily contradicts the ACT-R theory. 
Rather, it may strengthen the theory by pointing out how a conceptually useful 
distinction can be grounded in a more parsimonious, but probably less usable, 
system.

Chunk types
Another unresolved issue in ACT-R concerns chunk types. There is no mechanism 
that can learn new types, neither will it be easy to specify one. In most models, this 
problem does not surface, since most models are only concerned with a speciÞc 
task. Production rules that implement explicit learning strategies need to be able to 
operate on several different types of chunks. The solution I have chosen, to use a 
generic goal type, is not entirely satisfactory. It makes chunks and production rules 
harder to read and understand. Because the generic chunk type must be multi-
purpose, it contains too many slots. Apart from aesthetic reasons, large chunk-types 
have two serious disadvantages: spreading activation is diluted over more chunks, 
and collapsing two chunks with the same information is more likely to go wrong 
due to the fact that irrelevant bookkeeping slots have different contents.

Ideally, a model uses small production rules and chunks with only a few slots. It is 
almost impossible to satisfy both of these constraints at the same time in a model in 
which new production rules are learned. There are probably no easy solutions to this 
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problem, but it should be a consideration if one attempts to specify a new production 
compilation mechanism. 

Base-level decay
The models in this thesis have used either 0.5 or 0.3 as the base-level decay 
parameter. A fast decay of 0.5, which is the ofÞcial recommended value of the 
parameter, turns out to work best for decay within an experimental session. A slow 
decay of 0.3 is necessary for experiments in which an hour, a day or a week passes 
between experimental sessions, else ACT-R will forget all it has learned. This 
problem has also been noted by Anderson, Fincham and Douglass (submitted). A 
decay of 0.25 is even necessary to account for some of their data. Since base-level 
decay is a parameter that is supposed to remain constant, this poses a problem that 
has to be resolved. A possible solution, explored by Anderson et al., is to change the 
decay function, so that it decays fast at the start, but more slowly as time progresses. 
Another possible solution is to suppose that base-level decay is slow all the time, 
but that the apparently high decay during an experiment is due to interference. This 
interference, for which association strength learning in ACT-R can account in 
principle, may also be the key to resolving this issue.

Production-strength learning
The learning mechanism I havenÕt used in any of the models in this thesis is 
production-strength learning. Strength is a parameter maintained with each 
production rule, reßecting its past use in the same manner as base-level activation 
for chunks. Strength is a parameter in the equation that determines the time it takes 
to retrieve a chunk (equation 2.3). Since strength inßuences the retrieval time of 
chunks, production rules that do not retrieve chunks other than the goal are not 
affected at all by strength. A second problem is that the strength of the production 
and the activation of the chunk are added together in the retrieval time equation. As 
a consequence, if the strength of a production rule is high enough, it can retrieve 
almost any chunk in almost zero time. 

Why would ACT-R need production-strength learning? Generally, strength learning 
is used in ACT-R models to account for the fact that there is a speed-up in 
performance on new tasks. These models often assume that participants have 
already learned the necessary task-specific production rules at the start of an 
experiment. Using these rules improves their speed. An alternative account would 
be along the lines of the scheduling model: at the start of an experiment, most task-
specific knowledge is still declarative. This declarative knowledge is only gradually 
compiled into production rules, providing the speed-up normally explained by 
strength learning. 
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Assessing model Þts
At several points in the thesis, I have criticized the R2 measure as a method to assess 
the quality of Þt between the data and the model. This measure is not sensitive to 
the spread of the data, and is not suitable if there are only a few data points to 
compare. Moreover, the number of free parameters in the model is not taken into 
account in the measure. So, if several models are compared with respect to the R2-
measure, the model with the highest value is not necessarily the best model. It 
would be very desirable to have a method similar to the multi-level methods 
described in chapter 3, in which addition of a parameter to the model has to be 
defended by showing it provides for a signiÞcantly better Þt. Of course, this 
problem is not speciÞc to ACT-R, but applies to cognitive modeling in general.

A look back at Soar
One of the concerns in the research of cognitive architectures has always been: is it 
not possible to implement any model you want in any cognitive architecture? For 
example, would it not have been possible to model all the data discussed in this 
thesis by Soar models? This is tough to answer, since it is very hard to prove 
something cannot possibly exist. But let us take a very simple example, the Tulving 
model discussed in chapter 4. The important issue in that model is the notion of 
forgetting, and the fact that certain information is forgotten in a week and other 
information apparently not. The ACT-R model shows that this dissociation 
naturally follows from a rationally organized declarative memory, without the need 
to resort to an explanation that assumes separate memory systems for implicit and 
explicit memory. If one were to model this experiment in Soar, the process of 
forgetting would have to be part of the model. Although it is possible to come up 
with such a model eventually, the fact remains that the aspect of forgetting 
information is not part of the speciÞc task, so should not be part of a model of that 
task.

Nevertheless, Soar has been a source of inspiration for many of the models in this 
thesis. The idea, introduced in chapter 5, of pushing a dependency as a subgoal in 
situations where no promising other rules apply corresponds closely to the Soar 
notion of pushing a subgoal in case of an impasse. The interpretation process of 
declarative rules, as discussed in chapter 7, also has close ties to the way Soar 
handles operators. There are many good ideas in the Soar architecture, and its failure 
to penetrate main-stream psychological research is probably due to the fact that the 
area in which it excels, complex problem solving, is a topic that is not as central in 
cognitive psychology as it should be.



Practical implications

219

8.5 Practical implications

In this thesis I have shown that problem solving cannot be studied properly without 
taking learning into account. Although this idea may not be too controversial in the 
domain of problem solving, many practical applications still assume that non-
learning reasoning systems can be built that reason in a human-like fashion. The 
main applications of rule-like systems are expert systems, human-computer 
interaction and education.

Application in the domain of expert systems
The assumption of expert-system design is that it is possible to specify all the 
relevant task-speciÞc knowledge for a certain task. This may be true in the case of 
simple tasks, but not of all tasks in general. It is impossible to make a non-learning 
expert system for scheduling. For tractable problems, one might also wonder 
whether the expert-knowledge approach is the best. Since it is estimated that the 
number of rules an expert has on a certain domain is around 50.000, it is highly 
impractical to try to specify all of them. Even if it is possible to specify all these 
rules, the subsymbolic knowledge associated with these rules also has to be 
deÞned. This subsymbolic information is crucial in Þnding the right information at 
the right moment. Expert problem-solving behavior is probably not the invocation 
of stored knowledge, but an active process of constructing new knowledge for the 
current purpose. Apart from this explicit learning aspect of expert behavior, implicit 
learning, by means of the ACT-R learning mechanisms, keeps organizing the 
subsymbolic aspects of the knowledge.

A promising alternative method for constructing expert systems is to use the skill-
learning theory presented in this thesis. Knowledge the system has to use can be 
supplied in a declarative fashion, after which the system is submitted to a training 
program. As a result, the system will organize the knowledge in the most profitable 
way, either as production rules, or as examples, or it will forget knowledge that does 
not prove to be useful altogether. Some issues have to be resolved before this can be 
a viable method: the right set of learning strategies has to be found, and a set of 
generally useful declarative rules. 

Application in the domain of cognitive ergonomics
The same point made about expert-system design can also be made with respect to 
task analysis for the purpose of interface design. For difÞcult tasks it will be 
impossible to make a complete task-analysis. Task analysis has another drawback: 
since it always investigates the knowledge of an expert user, it can only make 
approximate predictions about novice users. Instead of trying to identify all the 
knowledge an expert user has, a model can be supplied with the instructions a 
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novice user gets, and be submitted to the same training program novices have to go 
through. Again, the skill learning theory, when properly extended, can be very 
useful for this purpose. 

The theory also allows for the study of the integration of task-specific knowledge 
with knowledge about other tasks (the assimilation paradox, see Mulder, Lamain & 
Passchier, 1992). A general guideline in interface design is that the interface should 
help the user to get an adequate mental model of the system (Norman, 1988). 
Although this guideline is considered very useful, the notion of a mental model is 
rather vague. Neither is it clear when a mental model is adequate enough, and to 
what kinds of mistakes a certain mental model may lead. These kinds of questions 
can all be studied in the proposed modeling framework of skill acquisition. The 
notion of explicit learning of declarative rules is closely related to the concept of a 
mental model. Both are consciously inspectable knowledge structures that can be 
used in an interpretive fashion to make decisions about what actions to take. When 
used within the skill-learning framework, it is possible to make predictions about 
how knowledge from a mental model is proceduralized. 

Application in the domain of education
The idea that cognitive development involves explicit learning strategies can also 
have implications for education. The goal of education is not just to teach children 
speciÞc skills, but also to teach children how to approach problems in general. This 
latter goal can only be achieved indirectly, since general strategies can only develop 
by learning speciÞc skills. But if we know more about this process of strategy 
learning, we might be able to select a set of skills to teach that is optimal for general 
strategy development. This is not only applicable to children. One of the main goals 
of university education is to teach Òan academic way of thinkingÓ, although this is 
not taught in any particular individual course.

8.6 A UniÞed Theory of Learning?

In this Þnal chapter I have outlined a theory of skill learning. This theory uses 
existing theories of learning, glued together by elements inspired on the principle of 
rational analysis. This theory is supported by several models discussed during the 
course of this thesis. These ingredients may eventually be parts of a uniÞed theory 
of learning, which is itself a piece of the puzzle for a uniÞed theory of cognition. In 
order to specify such a uniÞed theory of learning, a simulation environment is 
needed that implements it. It might take the form of an extension to ACT-R, and be 
capable of learning its own task-speciÞc knowledge from instructions. This 
implementation would strengthen the theory, and enable many new predictions 
and applications.
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Web documents and 
Publication list

The following documents are available from the webpage 
http://tcw2.ppsw.rug.nl/~niels/thesis/

The ACT-R architecture itself can be obtained from:
http://act.psy.cmu.edu/

Chapter 3

• Verbal protocols of all participants (Dutch)

• The detailed protocol analysis of participant 2 (Dutch)

Chapter 4

• Model of the dissociation experiment

• Models of rehearsal and free recall

Chapter 5

• A Macintosh Microsoft Excel 4.0 Þle with the dynamic growth model

• Model of the beam task

• Model of discrimination-shift learning

Chapter 6

• Model of the Fincham task
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Chapter 7

• Model that demonstrates the inßuence of W on working memory span

• Two models of scheduling
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Samenvatting

Hoe denken mensen?
Een van de nog grotendeels onbeantwoorde vragen 
in de wetenschap is hoe het komt dat mensen zo slim 
zijn als ze zijn. Hoe is het mogelijk dat mensen zich 
kunnen handhaven in alle ingewikkelde situaties die 
het dagelijks leven aan ze voorschotelt? Tegenwoor-
dig wordt deze vraag bestudeerd door de cognitiewe-
tenschap, een inter-disciplinaire wetenschap die 
voortgekomen is uit psychologie, ÞlosoÞe, kunstma-
tige intelligentie, neurowetenschap en taalkunde. Elk 
van deze disciplines heeft een eigen beginpunt voor 
de beantwoording van deze vraag. In dit proefschrift 

staan de benaderingen van de psychologie en de kunstmatige intelligentie centraal, 
met hier en daar wat verwijzingen naar de andere drie. 

De invalshoek van de kunstmatige intelligentie is die van het oplossen van complexe 
problemen. Aanname is, dat menselijke intelligentie hierin maximaal tot uitdruk-
king komt. De nadruk van het onderzoek naar de aard van de intelligente processen 
ligt hierbij vooral op het resultaat: het vinden van een computerprogramma dat een 
bepaald probleem zo efficient mogelijk kan oplossen. De kunstmatige intelligentie 
ziet denken als een combinatie van zoeken en kennis. Een probleem is als het ware een 
soort doolhof. Ergens in het doolhof ligt de oplossing van het probleem. Om deze 
oplossing te bereiken, moet telkens gekozen worden tussen verschillende paden. Dit 
is het zoek-aspect van probleemoplossen. De kennis die iemand over een probleem 
heeft bepaalt hoe het doolhof er precies uitziet. Iemand met weinig kennis moet door 
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een ingewikkeld doolhof, terwijl iemand met veel kennis slechts een eenvoudig 
doolhof hoeft te bewandelen. Dit komt doordat voor degene met veel kennis veel 
van de doodlopende wegen niet bestaan. 

Als theorie van menselijke cognitie heeft de zoeken-en-kennis benadering een pro-
bleem. Aangezien mensen leren, is hun kennis niet statisch, maar continu aan veran-
dering onderhevig. Het doolhof verandert als het ware terwijl iemand er door heen 
loopt. Op zich hoeft dit niet zo erg te zijn: de wetenschap kan niet alles tegelijk 
onderzoeken. Een mogelijkheid is, om eerst het zoeken-en-kennis aspect goed in 
kaart te brengen, en later het aspect van leren toe te voegen. Een voorbeeld van een 
dergelijke benadering is de benadering van de expert-systemen. Expert-systemen 
hebben de pretentie het redeneren van een expert na te bootsen. Aangezien experts 
mensen zijn met al heel veel kennis, is de aanname dat leren geen invloed meer heeft 
op het redeneren van een expert. Het tot nu toe geringe succes van expert-systemen 
doet de vraag rijzen of deze aanpak wel klopt. Is het wel zo dat experts niet meer 
leren, en dat menselijk redeneren los van leren bestudeerd kan worden? Het ant-
woord op deze vraag is ontkennend. Voor complexe problemen geldt, dat ze in het 
algemeen niet efficient oplosbaar zijn met een computerprogramma, hetgeen met 
behulp van de complexiteitstheorie kan worden aangetoond. Complexe problemen 
maken deel uit van het dagelijks leven: niet alleen het maken van ingewikkelde roos-
ters is een complex probleem, maar ook het kunnen interpreteren van alledaagse 
taal. De conclusie is, dat redeneren en leren onlosmakelijk met elkaar verbonden 
zijn, en dat ze niet goed los te bestuderen zijn.

In de psychologie is het onderzoek naar leren lange tijd gedomineerd door experi-
menten, waarbij proefpersonen een lijst woorden of andere dingen moesten ont-
houden, die ze later in het experiment weer moesten reproduceren of herkennen. 
Hoewel dit belangrijke inzichten verschafte in de werking van het geheugen, pre-
senteerde deze manier van onderzoek ook het beeld van een leerproces dat los staat 
van het redeneren. Pas de afgelopen vijftien jaar is er belangstelling onstaan voor 
leren tijdens het uitvoeren van een taak, het zogenaamde impliciete leren. In de expe-
rimenten die in het kader van dit soort onderzoek worden uitgevoerd verbetert de 
prestatie van proefpersonen zonder dat ze kunnen aangeven welke kennis ze heb-
ben geleerd. Leren blijkt ook vanuit psychologisch oogpunt een continu proces te 
zijn, dat niet ophoudt als de leerfase voorbij is.
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Een theorie over menselijk redeneren
Om tot een theorie over menselijk redeneren te kun-
nen komen, is meer nodig dan de zoeken-en-kennis 
theorie van de kunstmatige intelligentie. De ontbre-
kende component, het leren, moet ge�ntegreerd zijn 
in de theorie, en niet als component later toegevoegd 
zijn. Het onderzoek naar architecturen voor cognitie 
probeert zoÕn ge�ntegreerde theorie te formuleren. 
Een architectuur voor cognitie is een theorie die tege-
lijk ook een simulatieprogramma is. 

In dit proefschrift staat de ACT-R (Adaptive Control 
of Thought, Rational) architectuur centraal. Als theorie stelt het, dat menselijk den-
ken een rationele grond heeft. Rationeel in de ACT-R visie is een soort economische 
rationaliteit: de hersenen zijn zo georganiseerd dat bij het maken van elke keuze een 
kosten-baten analyse gemaakt wordt. Welke keuze levert het meeste op bij zo min 
mogelijk risico en zo laag mogelijke kosten? Verder stelt de ACT-R theorie dat men-
sen over twee soorten geheugen beschikken: een geheugen voor feitenkennis (het 
z.g. declaratief geheugen) en een geheugen voor procedures (het z.g. procedureel 
geheugen), met kennis over hoe dingen gedaan moeten worden. De inhoud van deze 
geheugens is continu aan verandering onderhevig: niet alleen worden er dingen toe-
gevoegd, maar ook wordt de waardering en ordening van de kennis telkens veran-
derd onder invloed van ervaring en context. 

Behalve een theorie is ACT-R ook een simulatieprogramma. Voor een gegeven psy-
chologische taak is het mogelijk beginkennis in de simulatie te brengen, en het pro-
gramma voorspellingen te laten maken over menselijk gedrag. In die zin is het dus 
een theorie die niet alleen achteraf verklaringen kan geven voor bepaalde verschijn-
selen, maar ook voorspellingen kan doen. Wat we dus eigenlijk doen is aspecten van 
menselijk denken nabootsen op een computer, om ze zo beter te begrijpen. Hierbij 
moet niet meteen gedacht worden aan een Òdenkende computerÓ maar meer aan een 
programma dat voorspellingen kan doen over hoe snel mensen dingen kunnen 
doen, wat voor soort fouten ze maken, en welke keuzes in welke omstandigheden 
worden gemaakt. Voor een echt denkende computer zou het nodig zijn om alle ken-
nis van een bepaald individu in ACT-R te brengen, niet alleen feitenkennis, maar ook 
kennis over hoe je dingen moet doen (procedures). 

In praktijk maken we zogenaamde modellen in ACT-R, hetgeen simulaties zijn van 
hoe mensen zich gedragen in een specifieke context, namelijk de context van een 
bepaald psychologisch experiment. Dit proefschrift bevat een groot aantal voorbeel-
den van dergelijke modellen. Een voorbeeld van zoÕn taak is Òfree-recallÓ, waarbij 
proefpersonen een lijstje woorden moeten leren, waarvan ze er later zo veel mogelijk 
moeten herinneren. Het model van free-recall bevat kennis over het lezen van woor-
den, het mentaal repeteren van deze woorden, en het reproduceren ervan. Ook bevat 
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het uiteraard de woorden zelf. Dit model kan een aantal zaken verklaren die in expe-
rimenten gevonden zijn. Zo is bekend uit de literatuur dat de eerste woorden uit de 
lijst en de laatste woorden uit de lijst beter herinnerd worden dan de woorden uit het 
midden van de lijst. Dit worden het primacy-effect en het recency-effect genoemd. 
Beide effecten zijn normaal aanwezig, maar kunnen in bepaalde varianten van het 
experiment verdwijnen. Zo verdwijnt het primacy-effect als proefpersonen een 
bepaalde instructie krijgen over hoe ze woorden moeten repeteren. Het recency-
effect verdwijnt als er tijd zit tussen het leren van de lijst en het reproduceren. Als 
deze tijd lang is, kan het recency effect zelfs negatief worden, wat betekent dat de 
laatste woorden uit de lijst zelfs slechter herinnerd worden. Het ACT-R model kan 
al deze verschijnselen nabootsen en verklaren. 

Bovenstaand voorbeeld illustreert een aantal belangrijke aspecten van een model. 
Het feit dat het model een lijstje woorden kan reproduceren is op zich niet zo inte-
ressant. Waar het om gaat is dat de specifieke effecten die gevonden worden in het 
experiment, primacy en recency, voorspeld kunnen worden, en dat ook de omstan-
digheden kunnen worden nagebootst waarin beide effecten niet optreden.

Maar hoe zit het dan met echt complexe problemen?
Bij het voorbeeld van free-recall mogen we aanne-
men dat mensen over de kennis beschikken die ze 
nodig hebben om het experiment te doen, zoals 
woorden lezen, ze mentaal repeteren en later repro-
duceren. Bij echt complexe problemen moeten men-
sen echter nog uitzoeken hoe deze in elkaar zitten, en 
wat de methoden zijn om ze op te lossen. Een voor-
beeld van zoÕn complex probleem is roosteren. Roos-
teren is een probleem dat volgens de 
complexiteitstheorie in zijn algemeenheid onoplos-
baar is voor computers. Als mensen roosterproble-
men moeten oplossen, dan moeten ze dit eerst leren. 

Om beter inzicht in dit proces te krijgen, heb ik een experiment gedaan waarin 
proefpersonen roosterproblemen moesten oplossen. Tijdens het oplossen moesten 
ze hardop denken. Bij het begin van het experiment krijgen ze instructies, maar 
deze zijn onvoldoende om het probleem op te lossen. Dus moeten proefpersonen 
een beroep doen op kennis die ze al hebben, en moeten ze door dingen te proberen 
het probleem in de vingers krijgen. 

Uit het experiment bleek, dat proefpersonen soms heel erg vast kwamen te zitten in 
een probleem. Dit wordt wel een impasse genoemd. In een aantal gevallen kwamen 
proefpersonen vervolgens met een nieuwe idee, een nieuw inzicht om het probleem 
op te lossen. Ook bleek dat als proefpersonen zich eenmaal zoÕn inzicht hadden ver-
worven, ze dit bij latere problemen ook gingen toepassen. Behalve dit verwerven 
van inzichten zijn er nog een aantal interessante verschijnselen uit het experiment te 
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halen. Zo moest in ��n versie van het experiment alles uit het hoofd gedaan worden, 
met als gevolg dat proefpersonen hun aandacht moesten verdelen over enerzijds het 
repeteren van de al gevonden oplossing, en anderzijds het redeneren hierover. 

Al met al wijst het roosterexperiment erop dat er een breed scala van leerverschijn-
selen plaatsvindt bij het verwerven van een complexe vaardigheid. Proefpersonen 
interpreteren instructies en stippelen op grond hiervan een strategie uit, tijdens het 
experiment ontdekken ze nieuwe strategie�n, en ook worden ze beter in de meer ele-
mentaire stappen van het proces, zoals de co�rdinatie van het repeteren van deelop-
lossingen. De conclusie moet dus zijn, dat prestatieverbeteringen niet aan ��n 
leereffect toe te schrijven zijn, maar aan een aantal. Om beter inzicht te krijgen in de 
leereffecten die een rol spelen, is het nuttig om deze effecten afzonderlijk te bestude-
ren. 

Impliciet en expliciet leren
In de psychologische literatuur wordt vaak het 
onderscheid gemaakt tussen impliciet en expliciet 
leren. Impliciet leren is het Òleren door te doenÓ. Zon-
der actief bezig zijn met het leerproces, en vaak ook 
onbewust, worden mensen beter in het uitvoeren van 
een taak. Bij expliciet leren daarentegen zijn mensen 
actief bezig met iets te leren, zoals het leren van een 
lijst woorden, of het uitdenken van een strategie voor 
een moeilijk probleem. Psychologische experimenten 
hebben uitgewezen dat er interessante verschillen 
zijn tussen beide soorten leren. Zo is impliciet leren 
veel robuuster dan expliciet leren: de geleerde kennis 

wordt minder snel vergeten, zowel kinderen, ouderen, en minder intelligente indi-
viduen zijn even goed in impliciet leren als ieder ander. Zelfs mensen die leiden aan 
geheugenverlies (amnesie) kunnen nog wel impliciet leren. Bij expliciet leren zijn er 
wel grote verschillen tussen individuen, en de geleerde kennis wordt soms weer 
snel vergeten. Op grond van deze verschillen wordt door een aantal onderzoekers 
aangenomen dat impliciet en expliciet leren daarom plaatsvindt in verschillende 
hersendelen. Dit wordt de systems-theorie genoemd. 

Hoewel deze systems-theorie vrij aannemelijk klinkt, kent hij toch een aantal proble-
men. Zo kan deze theorie niet goed verklaren waarom impliciet leren zoveel robuus-
ter is dan expliciet leren, dus waarom het eigenlijk bijna nooit voorkomt dat mensen 
nog wel expliciet kunnen leren, maar niet impliciet. Ook kan de theorie niet verkla-
ren, waarom er zoveel individuele verschillen zijn in expliciet leren, maar niet in 
impliciet leren. In dit proefschrift behandel ik een alternatieve theorie. Eerst laat ik 
door middel van een model zien, dat het verschil tussen impliciet en expliciet leren 
ook prima met behulp van ��n geheugensysteem verklaard kan wordt, namelijk het 
declaratief geheugen van ACT-R. Het verschil tussen impliciet en expliciet leren in 
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dit model is, dat impliciet leren verklaard kan worden vanuit de leermechanismen 
die in de ACT-R architectuur verankerd zijn. Je zou ze dus kunnen vergelijken met 
de leerprocessen die deel uitmaken van onze hersenen. Expliciet leren kent echter 
specifieke leerdoelen. Een eenvoudig voorbeeld van een leerdoel is het onthouden 
van een lijstje woorden door ze te repeteren. Door dit repeteren zet je als het ware de 
impliciete leermechanismen van de hersenen aan het werk, net als wanneer je door 
te trainen je spieren sterker maakt. Leerdoelen kunnen ook complexer zijn, zoals het 
bedenken van een nieuwe strategie voor een complex probleem. Al deze leerdoelen 
hebben als gemeenschappelijk kenmerk, dat je kennis nodig hebt om ze te kunnen 
vervullen. Het blijkt bijvoorbeeld, dat kinderen niet of anders lijsten repeteren dan 
volwassenen. Aangezien expliciet leren gebaseerd is op kennis, zijn er daarom ook 
veel grotere verschillen tussen individuen. Ook is het daarom minder robuust: als de 
kennis om leerdoelen uit te voeren vergeten wordt, of door hersenbeschadiging ver-
loren is gegaan, werkt het expliciet leren niet meer, terwijl de basiseigenschappen 
van de hersenen die ten grondslag liggen aan impliciet leren niet zomaar verande-
ren. 

Hoe werken dan die leerstrategie�n, en hoe komen we eraan?
Aangezien impliciet leren al onderdeel is van de 
architectuur, is het met name interessant om te kijken 
naar het expliciete leren, waarvoor kennis nodig is. 
Hoe ziet zoÕn leerstrategie er in praktijk uit? En wan-
neer is het nuttig om zoÕn strategie toe te gaan pas-
sen? En hoe leren we de leerstrategie�n zelf? Om een 
beter inzicht in deze materie te krijgen is het nuttig 
om naar de cognitieve ontwikkeling van kinderen te 
kijken. Immers, als expliciet leren bestaat uit aange-
leerde kennis, hebben jonge kinderen minder van 
deze kennis dan oudere kinderen en volwassenen. 
Een aantal theorie�n over ontwikkeling lijken deze 

visie te ondersteunen. Jonge kinderen hebben grote moeite om om te gaan met 
abstracte begrippen. Volgens de theorie van Fischer, bijvoorbeeld, gaan kinderen 
door een aantal stadia waarin ze over steeds complexere structuren en concepten 
kunnen redeneren. Een voorbeeld hiervan is dat jonge kinderen nog niet kunnen 
redeneren over een concept als ÒroodÓ. Ze kunnen wel zien dat een bepaald object 
rood is, maar ze kunnen nog niet over ÒroodÓ als abstract begrip, dus los van een 
object, redeneren. Gevolg hiervan is, dat ze zich anders gedragen dan volwassen in 
een experiment waarbij zowel abstraheren als niet-abstraheren tot een oplossing 
leidt (het z.g. discrimination-shift experiment). In ACT-R is dit goed te modelleren 
door twee leerstrategie�n te deÞni�ren. Met beide leerstrategie�n gedraagt het 
model zich als een volwassene, terwijl het zich met een van beide leerstrategie�n als 
een kind gedraagt. 
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Wanneer gebruiken we een leerstrategie eigenlijk? Uiteraard zijn we niet de hele dag 
bezig met het stellen van leerdoelen. Deze moeten alleen gesteld worden op momen-
ten dat dat nodig is. Een mogelijke theorie hierover is die van meta-cognitie. Deze 
theorie veronderstelt dat we een ÒgewoonÓ redeneersysteem hebben en een systeem 
dat over het gewone redeneersysteem waakt, het meta-systeem. Het meta-systeem 
houdt het gewone systeem in de gaten en grijpt in wanneer dat nodig is. Het meta-
systeem kan dus bijvoorbeeld een leerdoel stellen op het moment dat het gewone 
redeneersysteem vast loopt.

De meta-cognitietheorie heeft echter een aantal problemen. Het toevoegen van een 
extra systeem aan een theorie is wetenschappelijk gezien nooit zoÕn aantrekkelijke 
optie, omdat het de theorie zwakker maakt. Maar ook is het de vraag waardoor het 
meta-systeem dan gecontroleerd wordt. Een meta-meta-systeem? Gelukkig is een 
meta-systeem niet echt nodig, hetgeen te zien is aan de hand van een zogenaamd 
dynamisch-groeimodel dat gebaseerd is op de kosten-baten analyse uit ACT-R. Het 
centrale idee in dit model is dat er een competitie plaatsvindt tussen het denkproces 
dat gewoon de taak wil uitvoeren en het denkproces dat een leerdoel wil stellen. 
Beide processen hebben kosten en opbrengsten: taakuitvoeringsprocessen hebben 
meestal lage kosten en leiden meestal tot de oplossing van een probleem. Leerdoelen 
kosten meestal meer tijd op uit te voeren, en leiden slechts indirect tot een oplossing 
van een probleem. Normaal gesproken is het uitvoeren van de taak aantrekkelijker. 
Als dit proces echter regelmatig fout loopt, doordat de kennis niet klopt of het proces 
te omslachtig is, zal de kosten-baten analyse van de taakuitvoeringsprocessen niet 
meer zo gunstig uitvallen, en zullen de leerstrategie�n de competitie winnen. 

De vraag die blijft liggen is hoe leerstrategie�n zelf geleerd worden. Leerstrategie�n 
zelf zijn ook vaardigheden. Een mogelijkheid is dat leerstrategie�n net zo geleerd 
worden als andere vaardigheden, maar dan op een langere tijdschaal. In dit proef-
schrift zal ik hiervan echter geen concrete voorbeelden behandelen.

De rol van het formuleren van regels en het onthouden van voorbeelden
Wat is precies nieuwe kennis voor een nieuw pro-
bleem? Het gebruikelijke idee is, dat mensen alge-
meen geldige regels proberen af te leiden. Een 
algemene regel zou bijvoorbeeld kunnen zijn: Òals je 
een voorwerp in de lucht houdt en het loslaat, dan 
valt het op de grondÓ. Deze regel is algemeen, omdat 
deze voor elk voorwerp geldig is. Je zou een dergelijk 
regel kunnen aßeiden op grond van het feit dat je al 
een aantal voorbeelden hebt gezien van voorwerpen 
die op de grond vallen, en nog (bijna) nooit een, die 
in de lucht blijft hangen. Er is echter ook een alterna-

tieve theorie, die stelt dat we helemaal geen algemene regels leren, maar voorname-
lijk voorbeelden onthouden. Deze voorbeelden kunnen we gebruiken voor nieuwe 
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voorspellingen. Als je dus moet voorspellen of een bal valt als je hem loslaat, zou je 
je een voorbeeld kunnen herinneren van het vallen van een steen. Deze strategie 
van het onthouden van voorbeelden is zeer krachtig. Uit een experiment waarin 
proefpersonen een suikerfabriek moeten besturen blijkt bijvoorbeeld, dat hun 
gedrag volledig verklaard kan worden door het feit dat ze voorbeelden onthouden. 
Dit blijkt uit een ACT-R model van deze taak, dat uitsluitend voorbeelden onthoudt 
en weer terughaalt, en hetzelfde gedrag vertoont als proefpersonen. Een mogelijke 
verklaring voor het feit dat de prestaties zo aan voorbeelden toe te schrijven zijn, is 
dat de suikerfabriek zo in elkaar zit dat het bijna onmogelijk is om de echte regel 
achter de fabriek te ontdekken.

Om een betere afweging te maken tussen de regel- en de voorbeeldtheorie, is een 
taak nodig waarbij zowel het afleiden van regels als het onthouden van voorbeelden 
een mogelijke strategie is, en waarbij de keuze in de resultaten terug te vinden is. De 
Fincham-taak voldoet aan deze criteria. In deze taak krijgen proefpersonen een 
gebeurtenis en een tijdstip, en moeten ze voorspellen wanneer de gebeurtenis nog 
een keer plaatsvindt. Dit kan zowel geleerd worden door het onthouden van voor-
beelden (ÒAls hockey of maandag is, dan is het de tweede keer op woensdag.Ó) als 
het afleiden van regels. (ÒDe tweede keer hockey is altijd twee dagen na de eerste 
keer.Ó) Uit de resultaten van de experimenten met deze taak en het ACT-R model is 
af te leiden, dat mensen van beide strategie�n gebruik maken, dus zowel van regels 
als van voorbeelden. De keuze van strategie hangt wederom af van een kosten-baten 
analyse: als een bepaald voorbeeld vaker voorkomt, zal de voorbeeld-strategie vaker 
worden gekozen. Voorbeelden worden echter ook weer snel vergeten, dus als er een 
dag tussen de testafnames zit, dan wordt het gedrag aan het begin van de volgende 
dag gedomineerd door de regel-strategie. Ook hier blijkt, net als bij de keuze tussen 
gewoon redeneren en het stellen van leerdoelen, dat de kosten-baten analyse die in 
ACT-R is ingebouwd een goede voorspeller is van gedrag.

Alle puzzelstukjes weer bij elkaar
De verschillende modellen van verschillende aspec-
ten van leren kunnen worden samengebracht in ��n 
model, dat gebruikt kan worden voor een model van 
roosteren. Dit model is weliswaar nog niet zo slim als 
mensen in het oplossen van roosterproblemen, maar 
vertoont wel een groot aantal kenmerken die ook in 
menselijk leren worden aangetroffen. Zo probeert het 
model in eerste instantie om regels te formuleren die 
het probleem oplossen (zie figuur bovenaan de 
pagina). Deze regels worden in eerste instantie 
gewoon opgeslagen als feiten in het declaratief 

geheugen. Hierbij wordt gebruikt gemaakt van een expliciete leerstrategie, die pro-
beert analogie�n te vinden tussen de gezochte kennis en andere kennis waarover 
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het model al beschikt. Het model weet bijvoorbeeld niet zoveel af van roosters, 
maar wel van het maken van lijsten. Een mogelijkheid is dus om kennis over lijsten 
te gebruiken voor het maken van roosters. Declaratieve regels zijn heel ßexibel, 
maar hebben als nadeel dat ze de volle aandacht vereisen om ze te kunnen gebrui-
ken. Bovendien kunnen ze ook makkelijk weer vergeten worden. Daarom worden 
deze regels langzaam omgezet in procedures in het procedureel geheugen. Daar-
door worden ze veel sneller, en worden minder snel fouten gemaakt. Naast regels 
onthoudt het model ook voorbeelden van hoe iets is opgelost, die later weer 
gebruikt kunnen worden. Tussen de bedrijven door moet het model ook nog de tus-
senresultaten repeteren die het tot dan toe heeft afgeleid. 

Het moge duidelijk zijn dat er nogal wat mis kan gaan in dit proces, en dit gebeurt 
ook in het model. Het aardige hiervan is, dat de fouten die het model maakt, overeen 
komen met het soort fouten dat proefpersonen maken. Tevens is het v��rkomen van 
fouten een bron van individuele verschillen: sommige individuen hebben veel pro-
blemen met het onthouden van tussenresultaten, en andere veel minder. Deze ver-
schillen kunnen gerelateerd worden aan verschillen in de capaciteit van het 
werkgeheugen. Het model laat echter zien, dat deze verschillen slechts tijdelijk zijn: 
na voldoende oefening zijn de prestaties van individuen met een klein werkgeheu-
gen bijna net zo goed als die van individuen met een groot werkgeheugen. 

Hoewel het model van roosteren nogal uitgebreid is, biedt het veel aanknopings-
punten voor generalisatie. In tegenstelling tot veel cognitieve modellen is de kennis 
niet echt voorgeprogrammeerd, en slechts indirect beschikbaar in de vorm van fei-
tenkennis. Het model leert dus zelf de benodigde regels. Door de feitenkennis van 
het model te veranderen wordt ook het gedrag veranderd, en kan hetzelfde model 
ook heel andere taken uitvoeren.

Procedures

Voorbeelden

Kennis voor een specifieke taak

Declaratieve 
regels (feiten)

expliciete 
leerstrategie�n

Kennis over andere 
problemen

expliciet
leren

impliciet
leren
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Conclusies
Menselijk leren van nieuwe vaardigheden is een 
complex cognitief fenomeen, dat niet met een enkel-
voudige theorie in kaart te brengen is. Niettemin is 
het mogelijk op grond van de modellen uit dit proef-
schrift een redelijk consistent totaalbeeld te schep-
pen, dat goed aansluit op bestaande idee�n in de 
cognitiewetenschap. Ook maakt deze theorie 
bepaalde constructies overbodig, zoals meta-cogni-
tie en aparte impliciete en expliciete geheugensyste-
men. Wel is duidelijk dat het menselijk leervermogen 
geen gesloten systeem is: het is altijd mogelijk 

nieuwe leerstrategie�n te ontdekken of van iemand anders te leren. Het precies in 
kaart brengen van hoe leerstrategie�n zelf geleerd worden is een uitdaging voor 
met name de ontwikkelingspsychologie. 

De gepresenteerde theorie van het leren van nieuwe vaardigheden kent ook ruime 
mogelijkheden voor het in kaart brengen van individuele verschillen. Niet alleen 
verschillen individuen in beschikbare leerstrategie�n, maar ook in eigenschappen 
die betrekking hebben op de onderliggende architectuur, zoals de capaciteit van het 
werkgeheugen. Het is daarom niet zo verwonderlijk dat elke proefpersoon com-
plexe problemen als roosteren weer anders oplost. 

Hoewel het onderzoek in dit proefschrift voornamelijk theoretisch van aard is, zijn 
er een aantal toepassingsvelden mogelijk. In de cognitieve ergonomie kan het inzicht 
van hoe nieuwe vaardigheden worden geleerd gebruikt worden in het ontwerp van 
computerprogrammaÕs. Deze inzichten zijn om dezelfde reden van belang in het 
ontwikkelen van computer-ondersteund onderwijs. 

Een ge�niÞceerde theorie van leren?
In dit proefschrift heb ik een theorie van leren 
geschetst, die bestaat uit delen van bestaande theo-
rie�n, aangevuld met verbindende elementen die met 
name ge�nspireerd zijn door de rationele theorie ach-
ter ACT-R. Vooralsnog bestaat deze theorie uit een 
algemeen verhaal en een verzameling computermo-
dellen die deelaspecten illustreren. Het roostermodel 
levert daarnaast een voorbeeld van de theorie in zijn 
geheel. Een echte ge�niÞceerde theorie van leren is 
echter nog wat concreter: daarvoor is een simulatie-

programma nodig dat alle elementen uit de theorie bevat. Een dergelijk programma 
zou een uitbreiding op ACT-R moeten zijn, en zou in staat moeten zijn uit instruc-
ties zelf de kennis te leren die nodig is voor het uitvoeren van een taak.Wellicht kan 
dit proefschrift een eerste stap zijn in de ontwikkeling van zoÕn theorie. 
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