
 

Abstract

 

In this paper two approaches to problem solving, search and
reflection, are discussed, and combined in two models, both
based on rational analysis (Anderson, 1990). The first model is
a dynamic growth model, which shows that alternating search
and reflection is a rational strategy. The second model is a
model in ACT-R, which can discover and revise strategies to
solve simple problems. Both models exhibit the explore-
insight pattern normally attributed to insight problem solving.

 

Search vs. Insight

 

The traditional approach of problem solving is one of 

 

prob-
lem space search

 

 (see for example Newell & Simon, 1972).
Solving a problem means no more or less than finding an
appropriate sequence of operators, that transform a certain
initial state into a state that satisfies some goal criterium.
Problem solving is difficult if the sequence needed is long, if
there are many possible operators, or if there is no or little
knowledge on how to choose the right operator.

A different approach to problem solving is that the crucial
process is 

 

insight

 

 instead of search. This view also has a rich
tradition, rooted in Gestalt psychology. According to the
insight theory, the interesting moment in problem solving is
when the subject suddenly “sees” the solution, in a moment
when an “unconscious leap in thinking” takes place. Instead
of gradually approaching the goal, the solution is reached in
a single step, and reasoning efforts before this step have no
clear relation to it. In this sense problem solving is often
divided into four stages: exploration, impasse, insight and
execution.

Insight can be viewed in two ways: as a special process, or
as a result of ordinary perception, recognition and learning
processes (Davidson, 1995). Despite the intuitive appeal of a
special process, the latter view is more consistent with the
modern information-processing paradigm of cognitive psy-
chology, and much more open to both empirical study and
computational modeling.

Both the search and the insight theory select the problems
to be studied in accordance with their own view. Typical
“search”-problems involve finding long strings of clearly
defined operators, as in the eight puzzle, the towers-of-hanoi
task and other puzzles, often adapted from artificial intelli-
gence toy domains. “Insight”-problems on the other hand,
can be solved in only a few steps, often only one. Possible
operations are often defined unclearly, or misleadingly, or
are not defined at all. A typical insight problem is the nine-
dots problem, in which nine dots in a 3x3 array must all be
connected using four connected lines. The crucial insight is
the fact that the lines may be extended outside the 3x3

boundary. Other insight problems are the box-candle prob-
lem and several types of matchstick problems (see for exam-
ple Mayer, 1995). Due to this choice of problems, both
evidence from insight and search experiments tend to sup-
port their respective theories. Both theories ignore aspects of
problem solving. The search theory seems to assume that
subjects create clear-cut operators based on instructions
alone, and that subjects do not reflect on their own problem-
solving behavior, while the insight theory assumes all pro-
cessing that happens before the “insight” occurs has hardly
any relevance at all. So probably search and insight are both
aspects of problem solving, and the real task is to find a the-
ory of problem solving that combines the two (Ohlsson,
1984). One such view sees insight as a representational
change. Search is needed to explore the current representa-
tion of the problem, and insight is needed if the current rep-
resentation appears not to be sufficient to solve the problem.
In this view, search and insight correspond to what Norman
(1993) calls 

 

experiential

 

 and 

 

reflective

 

 cognition. If someone
is in experiential mode, behavior is largely determined by the
task at hand and the task-specific knowledge the person
already has. In reflective mode on the other hand, compari-
sons between problems are made, possibly relevant knowl-
edge is retrieved from memory, and new hypotheses are
created. If reflection is successful, new task-specific knowl-
edge is gained, which may be more general and on a higher
level than the existing knowledge.

 

The scheduling task

 

An example of a task in which both search and insight are
necessary is scheduling. Figure 1 shows an example of a
scheduling task used in our experiments. The goal is to
assign a number of tasks (6 in the example) to a number of
workers (2 in the example), satisfying a number of order
constraints. A solution to the example in figure 1 is to assign

Figure 1: Example of a scheduling experiment
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DEA to the first worker, and FCB to the second. An experi-
ential strategy for this problem is to take one of the con-
straints, for example C must be before A, and assign them to
a worker directly following each other, so for example assign
CA to the first worker. A reflective strategy involves some
inference. For example, from the facts that both E and F have
to be done before B, that E and F each take 3 hours, and that
each worker has only 6 hours, it can be deduced that E and F
cannot be assigned to the same worker. Furthermore, since
each worker has 6 hours, either each worker gets a task of 3,
2 and 1 hours, or one worker gets both 3 hour tasks and the
other the rest. Since the latter option has already been ruled
out by the fact that E and F can’t be assigned to the same
worker, the former has to be correct. When the subject has
made these inferences a few times for different problems,
they can become part of the experiential strategy.

Protocol analysis of subjects solving these problems show
that all subjects start with an experiential strategy, and only
later on switch to a reflective strategy. So in a sense this
reflects the explore-impasse-insight-execute pattern
described in the literature about insight. Some, but not all of
the subjects show some sort of impasse, during which they
stop searching, just stare at the screen for a minute, and then
try a new approach. Furthermore, there is no difference
between the explore and the execute stage: the subject just
searches on, using the knowledge gained by reflection.
Sometimes further reflection is needed to reach a solution.

In this paper two models are presented that explore the dis-
tinction between search and reflection. Both models are
based on Anderson’s theory of rational analysis (Anderson,
1990). According to rational analysis, subjects choose strate-
gies based on a cost-benefit analysis: the strategy that has the
lowest expected cost and the highest chance of success is
selected in favor of others. The first model is a dynamic
growth model, in which the trade-off between search and
reflection is modeled in a course-grained way. Dynamic
models are used in developmental psychology to describe
developmental paths, for instance a model that describes
stage-wise increases in knowledge (Van Geert, 1994). The
second model is an ACT-R model, in which the competition
between individual strategies is modeled on a number of
concrete tasks. 

 

A dynamic growth model

 

Why would subjects initially prefer the experiential strategy
in the scheduling problem? The reflective strategy seems to
be much more powerful. There are several reasons for this. A
first reason is that reflective reasoning takes more effort. To
be successful, several aspects of the task must be combined
and kept in memory. Additional knowledge must be retrieved
from memory and it may be necessary to seek analogies with
other problems. A second reason is that it is not immediately
evident to the subject that the experiential strategy will be
unsuccessful. The problems in the experiment were chosen
so that the experiential strategy alone wouldn’t work, but
subjects didn’t know this. So why not try the strategy which
takes the least effort first? A third reason is, that as a subject
starts with a new type of problem, he has only read instruc-
tions and has maybe seen an example problem. So he first

has to learn the basic rules and operators by experience,
before he can attempt any higher level strategies.

 

The model

 

According to rational analysis strategies are chosen with
respect to their expected outcome, according to the following
equation:

In this equation, P is the estimated chance of reaching the
goal using this strategy, G is the expected value of the goal,
and C is the estimated cost of reaching the goal using this
strategy.

The model will attempt to predict how search and reflec-
tion will alternate while solving a problem. This model is
quite course-grained in the sense that the knowledge of the
system with respect to a certain task is summarized in two
variables  and .  is a measure for the amount of
basic task-knowledge in the model, for example in the case
of the scheduling task an operator to add a task to an existing
plan and knowledge to judge whether a solution is correct.

 corresponds to the amount of higher-level knowledge in
the system, for example the fact that it is a good idea to look
how the tasks add up to the amount of time the workers have
available. If a subjects starts with a new problem, we assume
that both variables have a small value. They can however
increase, because the subject builds up knowledge while
problem solving. The assumption of the model will be, that
search will increase the amount of basic knowledge, repre-
sented by , and reflection will increase the amount of
higher-level knowledge, represented by . The following
equations show how  and  grow in time, and are based
on the equation used by Van Geert (1994):

If the strategy in step 

 

i

 

-1 is search:

else  keeps its value, so .  is a con-
stant that controls the rate of growth, and  is the maxi-
mum possible value for . The fraction at the end of the
equation ensures that  doesn’t exceed its maximum value.

The equation for  is slightly more complicated, because
the increase in value depends on the current value of : we
can only gain higher-level knowledge if we have enough
basic knowledge.

If the strategy at step 

 

i

 

-1 is reflection:

else . Again,  is the maximum possi-
ble value for . The constant  (support) controls the
influence of basic knowledge on the increase of higher level
knowledge.

Whether the strategy at step 

 

i

 

 will be search or reflection is
determined by their respective expected outcomes:

Expected outcome of strategys PsG Cs–=

L1 L2 L1

L2

L1
L2

L1 L2

L1 i( ) L1 i 1–( ) R1 1
L1 i 1–( )

L1max
---------------------– 

 +=

L1 L1 i( ) L1 i 1–( )= R1
L1max

L1
L1

L2
L1

L2 i( ) L2 i 1–( ) S12 L1 i 1–( )⋅ 1
L2 i 1–( )

L2max
---------------------– 

 +=

L2 i( ) L2 i 1–( )= L2max
L2 S12

Expected outcome of search Psearch i( ) G⋅ Csearch–=



 

The strategy with the highest expected outcome will of
course be chosen. In these equations ,  and 
are constants, but  and  will vary in time. 

The chance that search will reach the goal is dependent on
the amount of knowledge and the current evaluation of this
knowledge:

The 

 

w

 

 constant determines how much more useful higher-
order knowledge is with respect to basic knowledge.  is
the contribution to the chance of success of level 1 knowl-
edge, and  the contribution of level 2 knowledge. The
chances of success increase as knowledge increases, but
decrease over time if the goal is not reached. Both  and

 can be calculated using:

 represents the decay in chance of success, and has
typical values between 0.95 an 0.99 if the strategy in step 

 

i

 

was search and the goal hasn’t been reached. Otherwise
.

The cost of reflection depends on two factors: the cost is
higher if there is less basic knowledge, and the cost is higher
if there is already a lot of higher level knowledge:

Finally we have to say something about time, since we have
talked about “steps” in the previous discussion. Each step
takes an amount of time which can vary. So, following the
ACT-R intuition that cost and time are related to each other,
we take the estimated cost of the strategy at step 

 

i

 

 as the
amount of time step 

 

i

 

 takes:

where  is either  or , dependent on the
strategy at step 

 

i

 

.

 

Results

 

If we choose appropriate constants and starting values for the
variables described above, we can calculate the increase in
knowledge over time. Note that the model assumes that the
goal is never reached, so the results simulate a subject that
never succeeds in reaching the goal. Figure 2 shows the
value of  and  with respect to . The corresponding
evaluations for search and reflection are shown in figure 3.
At the start of the task, search is superior to reflection, but as
search fails to find the goal, and the basic (level 1) knowl-
edge increases, reflection becomes more and more attractive
up to the point (at T=127) where reflection wins from search.
Since reflection leads to an increase of level 2 knowledge,
search becomes again more attractive (using the newly
gained knowledge), and since the cost of reflection increases
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with the amount of level 2 knowledge already present, reflec-
tion becomes less attractive. As a result search will again
dominate for a while, up to T=385 where reflection wins
again. We assume problem solving continues until both
expected outcomes drop below zero, since then neither strat-
egy has a positive expected outcome. In the example this is
the case at T=510.

Figure 2 and 3 show the results of the model for G=20. As
noted, G is the value of the goal. So using a lower value for
G corresponds to the fact that a subject values reaching the
goal less, or the fact that a subject is less motivated. If we
calculate the model for G=15 we get the results as depicted
in figure 4 and 5. The result is that reflection occurs only
once, and later (at T=203). Furthermore, at T=363 both eval-
uations drop below zero, so a less motivated individual gives
up earlier. If G is further decreased to 12, no reflection at all
takes place, and the give-up point is at T=237.

Discussion

The dynamic growth model nicely describes the phenomena
around insight in the literature and in our experiments. Fur-
thermore, it explains why this behavior is rational. It also
predicts changes in strategy due to motivational factors. It
however poses new questions. What is the nature of the basic
and higher-level knowledge? How will the model behave if
the goal is reached at some point? What mechanism is
responsible for gaining new knowledge, and how is it repre-
sented? The second model we will discuss in this paper will
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Figure 2: Value of level 1 and level 2 knowledge for G=20
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Figure 3: Evaluations of search and reflection for G=20



address some of these questions. This model can be seen as a
more detailed version of the dynamic growth model.

An ACT-R model of learning and revising task-
specific knowledge

ACT-R is an architecture of cognition developed by Ander-
son and his colleagues (Anderson, 1993; Lebière, 1996),
based on the theory of rational analysis. ACT-R has two long
term memory stores, a declarative memory, where knowl-
edge is represented using a frame-like representation, and a
procedural memory, where knowledge is represented by pro-
duction rules. One of the ingredients that ACT-R uses for
conflict resolution is the expected outcome of a production
rule, in the same manner as described in the previous section.
So if several production rules can fire, the rule with the high-
est  will generally win the competition. Along with
the rule the history of successes and failures and the past
costs of a rule are maintained to be able to calculate its
expected outcome. 

In the ACT-R architecture, new production rules can be
learned by the analogy mechanism. It involves generalization
of examples in declarative memory whenever a goal turns up
that resembles the example. The examples are stored in spe-
cialized elements in declarative memory, dependency
chunks, that contain all the information needed: an example
goal, an example solution, facts (called constraints) that need
to be retrieved from declarative memory to create the solu-
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Figure 4: Value of level 1 and level 2 knowledge for G=15
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Figure 5: Evaluations of search and reflection for G=15

PG C–

tion, and sometimes additional subgoals that must be satis-
fied before the solution applies. 

Although the ACT-R theory specifies how new production
rules are generated from examples, it does not specify where
the examples come from. But since examples are just ele-
ments in declarative memory, they can be created by produc-
tion rules. If we give a subject a new task, he will generally
have no task-specific rules for the task, but will have to rely
on general rules to acquire them. So the schema to produce
task-specific production rules will be as in figure 6.

The general rules themselves need of course information
to work with. Several sources of information may be avail-
able, which must be present in declarative memory, since
production rules cannot directly inspect other production
rules. Possible sources of information are:

- Task instructions and examples
- Relevant facts and biases in declarative memory
- Feedback
- Old goals and dependencies for the same problem

As both general and task-specific rules are in a constant com-
petition with each other, they play the same role as the search
and reflection strategies in the dynamic growth model. If
ACT-R uses task-specific rules, this corresponds to a search-
like strategy, and when it uses general rules, this corresponds
to reflection. So there is no real difference in ACT-R perfor-
mance between search and reflection, except that general
rules will often retrieve more low-activated elements from
declarative memory, which makes them slow and expensive.
Since using general rules has a higher cost, task-specific
rules will win the competition if they prove to lead to suc-
cess. 

The model

In Taatgen (1996) an example of a model that learns its own
task-specific rules is described. It uses two sets of general
rules, one that creates an example of retrieving a certain
property of the task, and one that creates an example of com-
bining the task with a fact in an attempt to predict the
answer. The example task is a beam with both weights and
labels on each arm (figure 7). Only the weights have any rel-
evance to the outcome. The strategies that do the task are
depicted in figure 8 and figure 9. The property-retrieval strat-
egy creates an example of retrieving one of the available
properties, in the case of the beam weight or label. The
example will be compiled into a production rule by ACT-R’s
analogy mechanism. If the new rule doesn’t lead to success-
ful predictions, which is the case when label is selected, its
evaluation will drop until it loses the competition with the
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rules

Figure 6: How to learn new production rules in ACT-R



general rule that wants to create a new example. The second
strategy, find-fact-on-feedback, is demonstrated in figure 9.
If the model has decided it will retrieve the weights, it still
cannot predict an answer, because it doesn’t even know what
the available answers are. So a “I don’t know” production
fires, after which the environment hopefully will give some
feedback. Suppose we have a child facing a real beam, it can
see that the answer is “left”. The strategy then tries to find
some fact in declarative memory that can help to predict the
answer. This can be an arbitrary fact, but since “beam”, “2”,
“3” and “left” are all part of the goal, ACT-R ensures that
facts containing these elements, or having associations with
them, are likely candidates. So 3 is-greater-than 2 is a possi-
ble candidate, particularly if there is already an association
between beam and greater-than, i.e. the child already knows
that beams have something to do with the fact that one thing
is greater than another. 

Results

Simulations of the model, discussed in detail in Taatgen
(1996), show that it can indeed infer the correct rules for the
beam task. If the model already has an association between
beams and weight and between beams and greater-than, the
correct rules can be inferred using only a few examples. If

1 3

3 2weight

label

Figure 7: The beam task.
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Figure 8: The property-retrieval strategy
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Figure 9: The find-fact-on-feedback strategy

the model has no prior associations at all, it may need as
much as 40 examples, and in some runs it cannot even find
the correct rules at all. 

When the model starts out with a wrong hypothesis, for
example that the labels have to be used to predict the out-
come, it shows a behavior similar to the explore-impasse-
insight-execute scheme: it first learns a lot of irrelevant rules
to predict the answer using the labels, then reaches a stage in
which it tries to explain a single example over and over again
but fails in doing this, after which it rejects the rule that
examines the labels, creates a rule that examines the weights,
and quickly derives the rest of the rules needed within a few
trials. Figure 10 shows an estimation of the time spent at

each trial before and after the moment the model creates the
rule to examine weight instead of label. 

Same model, other task: discrimination-shift

Another interesting property of the model is that its rules are
general, and can be applied to other tasks. A task that can be
modeled using the same production rules is discrimination-
shift learning (Kendler & Kendler, 1959). Figure 11 shows
an example of this task: subjects have to learn to discrimi-
nate the four stimuli in two reinforcement categories, for
example white is positive and black is negative. After the
subjects has made 10 consecutive correct predictions, the
reinforcement scheme is changed: either a reversal-shift, in
which all stimuli that received previous positive reinforce-
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ment get negative reinforcement and vice-versa, or an extra-
dimensional shift, in which the dimension is changed on
which the reinforcement is given, in the example from white
to large. It turns out that adults and older children are faster
at learning the reversal-shift condition, while young children
and animals are faster at the extra-dimensional shift. Figure
12 shows the results of an experiment by Kendler and Ken-
dler (1959). The ACT-R model of adult behavior uses the

same 8 production rules as used in the beam-task, imple-
menting the property-retrieval and find-fact-on-feedback
strategies. The small-child/animal model uses only 2 of the 8
production rules, implementing a limited find-fact-on-feed-
back strategy. The results of these models are shown in fig-
ure 13. Although the models do not mimic the subjects
results precisely, the general effects are in the same direc-
tion. 

Despite the fact that the discrimination-shift task is gener-
ally not considered to be an insight problem, it nevertheless
requires the subject to notice that something has changed,
and to discover the new relations. So it can be seen, in a
sense, as an elementary insight problem.

Discussion

The ACT-R model addresses some of the questions posed by
the dynamic growth model. ACT-R itself already answers
some of the questions: how knowledge is represented, and
what the effects of success or failure are. The question how
new knowledge can be acquired isn’t fully answered by the
ACT-R theory. The model presented here is an attempt to
supply the first steps to an answer, since the strategies imple-
mented in the model can learn several different tasks. The
discrimination-shift model is interesting in the sense that it
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Figure 13: Results of the ACT-R model on the discrimina-
tion-shift task

shows that an adult model can be changed into a child model
only by deleting some productions rules. This shows that the
general rules themselves aren’t hard-wired, but must be
learned as well, perhaps using the same mechanisms as
needed for task-specific knowledge. So a next step will be to
find out what other general rules people employ, and how
general rules themselves can be learned.

Conclusions

So, what should we do when we have to solve a new prob-
lem? Just search for a solution or just think hard and hope for
an insight? According the dynamic growth model, the most
rational thing to do is a proper alternation of the two. The
model allows manipulation of several parameters, like the
value of the goal as has been discussed. But other parameters
can be changed as well, for instance the amount of prior
knowledge, importance of level 2 knowledge, etc., allowing
for new predictions.

The ACT-R model shows how aspects of the dynamic
growth model can be implemented using real knowledge rep-
resentations instead of variables. Although both knowledge
needed for reflection and for search are represented by pro-
duction rules, there are differences between the two: reflec-
tion knowledge is general, and is relatively costly to use, and
search knowledge is task-specific and cheap, but possibly
insufficient to reach the goal. 
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