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Abstract

The traditional view of skill acquisition is that it can be explained by a gradual 

transition from behavior based on declarative rules in the form of examples and 

instructions towards general knowledge represented by procedural rules. This view is 

challenged by Logan’s instance theory, which specifies that skill acquisition can be 

explained by the accumulation of examples or instances of the skill. The position 

defended in this paper is that both types of learning can occur, but their success 

depends on the respective task. In the Sugar Factory task, it is very hard to determine 

the rule guiding the system, so rule learning will fail and instance learning dominates. 

In the Fincham task, mainly rule learning occurs, but variations in the task show 

evidence for some instance learning as well. Experiments with both tasks are modeled 

using ACT-R, a hybrid cognitive architecture whose adaptive learning mechanisms 

seem to be well suited for modeling two very different tasks using the same methods.
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Introduction

The question whether skills are represented as abstract rule-like entities or as sets 

of concrete instances taps one of the central distinctions in cognitive science, spreading 

across fields as diverse as research on memory, problem solving, categorization or 

language learning (Logan, 1988; Hahn & Chater, 1998; Redington & Chater, 1996; 

Plunkett & Marchman, 1991; Lebiere, Wallach, & Taatgen, 1998; Taatgen & Anderson, 

submitted). Recently, Hahn and Chater (1998) proposed that the distinction between 

instance- and rule-based learning mechanisms cannot be based on different types of 

representations, but must involve a framework of their use in problem solving. In this 

paper we extend their argument and emphasize the necessity of an integrative 

investigation of human skill acquisition using a comprehensive theory of cognition.

The view of skill acquisition as learning and following abstract rules has 

dominated theories of skill acquisition over the last decades, whether instantiated as 

production systems (Newell & Simon, 1972; Anderson, 1993), stored as logical 

implications (Rips, 1994) or represented in classifier systems (Holland, Holyoak, 

Nisbett & Thagard, 1986). While these approaches differ on various dimensions, they 

share the assumption that cognitive skills are realized as abstract rules that are applied 

to specific facts when solving problems. In ACT-R, a comprehensive architecture of 

human cognition (Anderson & Lebiere, 1998), it is assumed that people start out with 

specific examples or instances of previous problem solving episodes that can 

potentially be generalized to abstract rules. These rules can be applied in subsequent 

problem solving and can thus account for increased performance. Discontinuous 

improvements in cognitive performance as reported by Blessing and Anderson (1996) 

or Haider (1997) can be taken as evidence for the acquisition of new rules that allow for 

an increase in observed performance. While Anderson (1993) describes the view that 
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cognitive skills are realized as (production) rules as ”one of the most important 

discoveries” in cognitive psychology, Logan (1988) argues for domain-specific 

instances as the representational basis for cognitive skills. According to Logan’s 

instance theory, general-purpose procedures or methods are applied to solve novel 

problems. Each time such a procedure is used in problem solving, its result is encoded 

as a separate instance. For new problems, the solution can be calculated using general 

procedures, or the solution to a previous problem can be retrieved and applied to the 

current task. Retrieved episodes can be used as a whole, in part, or in an adapted 

versions to obtain solutions of new problems. 

One source of empirical support for the instance-based approach is the fact that 

repeating a certain specific example of a problem increases performance on this 

example, but not on others (Wallach, submitted). The fact that participants frequently 

cannot verbalize abstract knowledge about problems solved also seems to provide 

evidence against some form of generalization as implied by rule-based skill theories. 

The ACT-R theory that forms the basis of this article, however, assumes that rules 

themselves cannot consciously be inspected, so this phenomenon is at least not 

without an alternative explanation. Further evidence for the fact that knowledge is 

represented as rules, more specifically production rules, comes from research on the 

directional asymmetry of rules. A production rule consists of two parts, a condition 

part and an action part, which we informally denote as ‘IF condition THEN action’. In 

a production system, control always flows from the condition to the action, i.e. if the 

specified condition is met, then the action can potentially be executed. In many 

practical cases, the condition and the action are both part of a pattern. If we assume, for 

example, the pattern AB, a rule like ‘IF A THEN B’ can be used to complete the pattern 

given A. In an instance approach, the pattern AB can be stored as an instance, and 
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retrieved given either A or B. If participants are trained to complete some pattern AB 

on the basis of A, a rule approach predicts that they learn the rule ‘IF A THEN B’, and 

the instance approach predicts that they learn the instance AB. If participants are 

consequently asked to complete AB on the basis of B, the instance approach would not 

predict a significant decrease in performance. In the rule-based approach, with its 

assumption that control always flows from condition to action, however, the rule ‘IF A 

THEN B’ would be useless to complete AB on the basis of B. In that case a new rule ‘IF 

B THEN A’ would have to be learned, resulting in severe performance degradations 

(Kessler, 1988; Rabinowitz & Goldberg, 1995).

Another apparent source of evidence stems from the fact that rules are more 

general than instances, which are assumed to be represented in a relatively 

unprocessed form (Redington & Chater, 1996). If participants show increased 

performance on problems they have not encountered before, some generalized 

knowledge can be postulated as the basis of the observed performance. If we assume 

that stored instances can only be applied when the new problem at hand is literally 

identical to encoded examples, no performance increase on new problems is to be 

expected. However, if one or more old examples (or fragments of them) can be used to 

improve performance on a new example in a less direct fashion (Lebiere, Wallach & 

Taatgen, 1998; Lebiere, 1999), generalization is also possible in an instance-based 

setting. Consequently, if generalization in transfer experiments is used as evidence 

against instance theory, it must be ruled out that the answer to a certain problem can 

easily be derived from stored answers to previous problems. As Redington and Chater 

(1996) have pointed out, surprisingly simple models, relying on represented fragments 

of observed stimuli, can perform exceedingly well in transfer tasks without acquiring 

any abstract knowledge. An example of such a model will be discussed in a later 
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section, when we demonstrate the scope of a purely instance-based approach in 

accounting for data that Broadbent (1989) has interpreted as evidence against the claim 

that general rules are learned on the basis of previously stored examples. The results 

of Broadbent and colleagues on dissociations between knowledge and performance 

seem to imply that participants can acquire rules to successfully operate complex 

systems without showing increased scores when answering questions about the 

system’s behavior. The instance-based ACT-R model proposed in this paper will 

provide a very simple alternative explanation for this dissociation result.

Before presenting models of rule- and instance based skill acquisition in a unified 

theory of cognition, the next section provides the theoretical framework underlying 

our approach.

Unified theories of Cognition

In 1990 Newell published the book “Unified Theories of Cognition”, in which he 

elaborated the ambitious vision of a comprehensive theory of cognition, an approach 

he first outlined in 1973 (Newell, 1973). According to Newell, instead of developing 

micro-theories for every separate phenomenon, psychology should aim at unification. 

The ultimate goal, following Newell, is a integrative theory that encompasses a broad 

set of theoretical approaches: a truly Unified Theory of Cognition. Emphasizing the 

capability to make detailed predictions, Newell imagined a computational theory that 

is based on a cognitive architecture. A cognitive architecture, in analogy to the 

architecture of a computer, conceptualizes and implements the structures and 

mechanisms that are postulated to form the basis of human cognition. To be able to 

explain cognitive phenomena and to make predictions, such an architecture has to be 

supplied with a model of a specific task. A task model takes the form of a set of initial 

knowledge that is encoded in the representational structures provided by the 
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architecture. In the case of a model of expert behavior this may be an extensive body 

of task-specific knowledge. The task model of novice behavior, on the other hand, 

might only contain very general knowledge and some specific knowledge that is 

supposed to be acquired from instructions. Figure 1 illustrates the described research 

paradigm for cognitive modeling based on cognitive architectures.

In his 1990 book Alan Newell acknowledged the fact that psychology is not ready 

yet for a single integrated theory. He presented Soar, a candidate architecture of his 

own, but also called upon his fellow researchers to design alternative architectures. 

Since the development of Soar and Newell’s challenge three other well-known 

architectures have been implemented on the basis of production systems: EPIC (Meyer 

& Kieras, 1997), CAPS (Just & Carpenter, 1992) and ACT-R (Anderson, 1993; Anderson 

& Lebiere, 1998). The models that we discuss in this article rely on the ACT-R 

architecture. The other two architectures, EPIC and CAPS, do not incorporate learning 

(yet), and are therefore not suitable for modeling knowledge acquisition processes. 

Although the Soar architecture does incorporate learning, its pure symbolic nature 

makes it hard to model the subtle effects of gradual learning and forgetting that 

characterize the experiments modeled in this paper (see also Taatgen, 1999). The next 

section provides a brief sketch of the basic theoretical concepts of the ACT-R 

architecture.

The ACT-R theory

The ACT-R theory rests upon two important components: rational analysis 

(Anderson, 1990) and the distinction between procedural and declarative memory 

(Anderson, 1976). According to rational analysis, each component of the human 

cognitive architecture is optimized with respect to demands from the environment, 

given its computational limitations. Rational analysis assumes that the functioning of 
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an architectural component can be derived by considering how the component in 

question can work as optimal as possible in a given environment. Anderson (1990) 

relates this optimality claim to evolution that is shaping the architecture. An example 

of this principle is the way choice is implemented in ACT-R. Whenever there is a choice 

between strategies to use or memory elements to retrieve, the architecture will take the 

one that has the highest expected gain, i.e. the choice that has the lowest expected cost 

while having the highest expected outcome.

The principle of rational analysis can also be applied to task knowledge. While 

evolution shapes the architecture, learning shapes the knowledge and parts of the 

knowledge acquisition processes. Instead of only being focused on acquiring 

knowledge per se, learning should also aim at finding its right representation. This 

may imply that learning has to attempt several different ways to represent knowledge, 

so that the optimal one can be sorted out. This principle will underlie the models we 

will present later on.

The distinction between procedural and declarative memory is studied quite 

extensively from different perspectives in psychology and the neurosciences 

(Anderson, 1976; Squire, 1992). While ACT-R‘s declarative memory is conceptualized 

as a store for factual knowledge, elements of procedural memory encode production 

rules. The ACT-R architecture does not postulate a separate working memory but 

instead enhances declarative memory by an activation concept (see below) to control 

access to facts. Only declarative memory elements, so-called chunks, above a certain 

threshold can be retrieved and deployed in problem solving. To keep track of the 

current context, ACT-R uses a goal stack which organizes the system’s intentions. The 

top element of the goal stack is called the focus of attention, a reference to an element 

in declarative memory that represents the current goal. Figure 2 presents an overview 
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of the processes and memory systems of ACT-R.

ACT-R’s symbolic level

ACT-R comprises two levels of description: a symbolic and a subsymbolic level. 

On the symbolic level representations in memory are discrete items, and processing 

applies procedural items to declarative items in the recognize-act-cycle typical for 

production systems (Waterman & Hayes-Roth, 1976). Declarative memory uses 

chunks to represent knowledge. A chunk stores information in a propositional fashion 

and may contain a certain fact, the current or previous goals as well as perceptual 

information. An example of a goal chunk, in which two is added to six and the answer 

has not yet been found is:

 

 GOAL23
ISA ADDITION
ADDEND1 SIX
ADDEND2 TWO
ANSWER NIL

 

In this example, ADDEND1, ADDEND2 and ANSWER are slots in chunk 

GOAL23, and SIX and TWO are fillers for these slots. SIX and TWO are references to 

other chunks in declarative memory, thus forming an interrelated structure of 

embedded chunks in declarative memory. The ANSWER slot has a value of NIL, 

meaning that the slot has no filler, i.e. the answer is not known yet. Let us assume that 

the chunk GOAL23 designates the current goal. If ACT-R manages to fill the ANSWER 

slot and focuses its attention on some other goal, GOAL23 will become part of 

declarative memory and takes the role of a fact representing that six plus two equals 

eight. GOAL23 can then be retrieved for later problem solving.

Procedural information is represented in production memory by production 

rules. A production rule has two main components: a condition-part and an action-

part. The condition-part contains patterns that match the current goal and possibly 
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other elements in declarative memory. The action-part can modify slot-values in the 

goal and may create subgoals (or external actions, which will not be discussed here). 

In the recognize-act-cycle declarative elements are ”matched” to the patterns in the 

condition-part of a production rule and applied in its action-part.

An example for a rule that tries to solve a subtraction problem by retrieving an 

addition chunk might look like:

 

   IF the goal is to subtract num2 from num1 and there is no answer
   AND there is a addition chunk that num2 plus num3 equals num1
   THEN put num3 in the answer-slot of the goal

 

This example shows an important aspect of production rules, namely variables. 

Variables allow for the applicability of a production in a class of situations and thus 

determine the abstract character of procedural knowledge. The symbols num1, num2 

and num3 of the production shown above denote variables that can be instantiated by 

any value (with the restriction that same variables have to be bound to the same value). 

The above rule above can thus find the answer to any subtraction problem, given that 

the necessary addition chunk is available in declarative memory.

ACT-R’s subsymbolic level

The symbolic level provides for the basic building blocks of ACT-R. Using only 

this level already allows for several interesting models for tasks in which a clearly 

defined set of rules can be applied — the ”Tower of Hanoi” (Anzai & Simon, 1978) 

being a famous example of such a task (Anderson, Kushmerick & Lebiere, 1993). The 

symbolic level, however, leaves a number of details unspecified. The main topic that it 

delegates to the subsymbolic level is choice. Choices must be made when there is more 

than one production rule that can match in a situation, or when there is more than one 

chunk that matches the condition pattern in a production rule. Other matters that are 

taken care of by the subsymbolic level are accounts for errors and forgetting, as well as 

the prediction of latencies.
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At the subsymbolic level each rule or chunk is annotated with a number of 

numerical quantities. In the case of chunks, these parameters are used to calculate an 

estimate of the likelihood that the chunk is needed given the current context. This 

estimate, called the activation of a chunk, has two components: a base-level activation, 

that represents the relevance of the chunk by itself, and a context activation through 

association strengths with fillers of the current goal chunk. 

Figure 3 shows an example in the case of the subtraction problem 8-3=?. The fact 

that eight and three are part of the context increases the probability that chunks 

associated with eight and three are needed. In this case 3+5=8 will get extra activation 

through both three and eight. The activation process is computed by the following 

equation:

In this equation, Ai is the total activation of chunk i. This total activation has three 

parts, base-level activation (Bi) and context activation ( ), and noise. As context 

activation does not play any important role in the models discussed here, we will leave 

out the details (see Anderson & Lebiere, 1998, p. 71). 

The activation level of a chunk has a number of consequences for its processing. 

If the activation is below a certain threshold, it cannot be retrieved by patterns in the 

condition part of a production. If there is more than one chunk that matches the pattern 

in a production rule, the chunk with the highest activation is chosen. As activation has 

a noise component, these processes are stochastic: the chunk with the highest 

activation is not guaranteed to be selected, but has the highest probability of being 

retrieved.

Differences in activation levels can lead to mismatches, in which a chunk with a 

high activation that does not completely match the production rule is selected, while 

Ai Bi W jS ji noise+
j

∑+=

W jS ji
j

∑
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the activation of a completely matching chunk is too low to be retrieved. This process 

is called partial matching and will be discussed in more detail in a later section. Finally 

activation plays a role in the latency: the lower the activation of a chunk is, the longer 

it takes to retrieve it. This retrieval time is calculated using the following equation

 

1

 

:

Choices between production rules are determined by estimates of their expected 

gain. To calculate the expected gain of a certain rule, several parameters are used to 

make an estimate. The main equation that governs this estimate is:

In this equation Pp stands for the estimated chance to reach the goal using 

production rule p, G is the value of the goal (i.e. the amount of time that the system is 

willing to spend for the achievement of the current goal), and Cp designates the 

estimated cost of reaching the goal using p. Again a noise parameter is introduced to 

allow for some stochasticity in the choice process. The unit of cost in ACT-R is time. 

Suppose for illustration that a participant is willing to spent 10 seconds on a certain 

goal (G=10), and let us assume there are two production rules p1 and p2 which both 

match the current goal chunk. Production p1 reaches the goal in 60% of the cases 

(Pp1=0.6) in 2 second on average (Cp1=2). Similarly, we assume that Pp2=0.8 and 

Cp2=5. In that case the expected gain of p1 is 4 (0.6•10-2), and the expected gain of p2 

is 3 (0.8•10-5). Given these values, p1 is selected in favor of p2 since its expected gain 

is higher.

In ACT-R representational objects (chunks, productions) are never removed from 

memory, although they may become virtually irretrievable resp. inapplicable because 

their activation or expected gain value become too low.

Timei Fe
Ai–

=

Expected Gain for production p PpG C p– noise+=
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Learning in ACT-R

While ACT-R has two distinct memory systems with two levels of description, 

distinct learning mechanisms are proposed to account for the symbolic knowledge that 

is represented as well as for its subsymbolic parameters. At the symbolic level, learning 

mechanisms specify how new chunks and rules are added to declarative and 

procedural memory. At the subsymbolic level, learning mechanisms change the values 

of their numerical parameters.

A new chunk in declarative memory has two possible sources: it is either the 

encoding of a perceptual object, or a chunk created internally by the goal processing of 

ACT-R. ACT-R’s internally created chunks are always previously completed goals, as 

exemplified by the ADDITION-goal discussed in the earlier example. Consequently, 

any chunk in declarative memory that did not originate from perception has once been 

a current goal in ACT-R.

New production rules in ACT-R are learned by a process called production 

compilation. The basis for production compilation is an example chunk in declarative 

memory. This example chunk encodes how a certain goal is transformed into a new 

goal. Production compilation generalizes this example and produces a new rule. We 

will leave out the details of the process here, since they are rather technical and still 

under theoretical debate (Anderson & Lebiere, 1998, p. 460).

Parameters at the subsymbolic level estimate properties of certain knowledge 

elements, therefore learning at this level is aimed at adjusting the estimates in the light 

of new experience. The general principle guiding these estimates is the well known 

Bayes’ Theorem (Berger, 1985). According to this principle, a new estimate for a 

parameter is based on its prior value and evidence from the current situation. 

The base-level activation of a chunk estimates the likelihood that it is needed, 
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regardless of the current context. If a chunk was retrieved a number of times in the 

immediate past, the probability that it will be needed again is relatively high. If a chunk 

has not been retrieved for a long time, the probability that it will be needed now is only 

small. Consequently, each time a chunk is retrieved, its base-level activation should go 

up, and each time it is not used, it should go down. This is exactly what the base-level 

learning mechanism does: it increases the base-level activation of a chunk each time it 

is retrieved, and causes it to decay over time. The following equation calculates the 

base-level activation of a chunk:

In this formula, n is the number of times a chunk has been retrieved from memory in 

the past, and tj’s represent the times at which each of these retrievals took place

 

2

 

. The 

longer ago a retrieval, the less it contributes to the activation of a chunk.

The other parameters are estimated in a similar fashion, i.e. the probability of 

success of a production rules goes up each time a production rule leads successfully to 

a goal, and goes down each time the rule leads to failure.

Learning strategies

The goal of this paper is to explore instance-based and rule-based learning in an 

integrative theory of cognition. We assume that a participant in an experiment has 

some initial method or algorithm to solve a new problem. In most cases this method 

will initially be time-consuming or inaccurate. Each time an attempt at solving an 

example of the problem is made, an instance is learned that encodes the result. In ACT-

R terms an instance is just a goal chunk that is popped from the goal stack and stored 

in declarative memory. This means that instance-based learning is an automatic 

process: no conscious effort is needed. Successful use of this knowledge depends on 

the activation of this knowledge, so it may be necessary to learn the same instance a 

Bi t( ) t t– j( ) d–

j 1=

n

∑log=
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number of times before it can reliably be retrieved.

Other types of learning require a more active attitude from the participant. If the 

initial method is too time consuming or produces many errors, the participant may try 

to derive some sort of rule to increase efficiency. This initial rule is not a production 

rule, since it is a form of representation that is open to conscious inspection and 

reasoning. It rather is a declarative structure, that generalizes experience and may state 

some sort of explicit hypothesis of how things work. 

In order to propose and evaluate declarative rules, procedural knowledge is 

needed. This procedural knowledge has to be general enough to be used in multiple 

contexts. Once a declarative rule is well-established, it can be compiled into a 

production rule. 

Production rules that propose new declarative rules to solve a certain type of 

problem actually put a new layer on architectural learning. The learning that is part of 

the architecture, ACT-R’s built-in mechanisms, are fixed and not open to change. 

Learning strategies that pose new hypotheses and attempts of generalization are not 

part of the architecture, but result from acquired knowledge. As a consequence, one 

can expect large individual differences in learning strategies (Taatgen, 1997). 

Our discussion of mechanisms for instance- and rule-based learning raises the 

following question: if there are different ways of learning, what type of learning will 

be witnessed in a particular experiment? To answer this question we revisit the 

principle of rational analysis. According to this principle, we will observe that type of 

learning that will lead to the largest increase in performance. In a task in which it is 

very hard to discover valid generalizations and where the set of possible instances is 

not too large, learning can be characterized primarily by instance learning because this 

form of learning produces efficient improvements. The next section will discuss an 
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example of a model for a task in which the discovery of such relationships between 

variables is very difficult and which should — according to the arguments above — be 

accomplished by instance-based learning. Tasks in which there are too many instances 

too learn, but in which relationships are more obvious or salient, will probably be 

better explainable by postulating a form of rule learning (Broadbent & Hayes, 1988). In 

many tasks, however, both instance and rule learning will be successful to some 

degree. The model of the Fincham task will be an example of this case.

Sugar Factory

In contrast to rule-based approaches that conceptualize skill acquisition as 

learning of abstract rules, theories of instance-based learning argue that the formation 

of skills can be understood in terms of the storage and deployment of specific episodes 

or instances (Logan, 1988; 1990). According to this view, abstraction is not an active 

process that results in the acquisition of generalized rules, but that rule-like behavior 

emerges from the way specific instances are encoded, retrieved and deployed in 

problem solving. While ACT-R has traditionally been associated with a view of 

learning as the acquisition of abstract production rules (Anderson, 1983; 1987; 1993), 

we present a simple ACT-R model that learns to operate a dynamic system by 

retrieving and deploying specific instances (i.e. chunks) that encode episodes 

experienced during system control. Our ACT-R model will first be compared to a 

model proposed by Dienes and Fahey (1995) before we apply it to data from a new 

experiment. Our comparison with the Dienes and Fahey model encompasses both the 

accuracy of the predictions and the assumptions made by each of the models.

The Task

Berry and Broadbent (1984) used the computer-simulated scenario Sugar Factory 

to investigate how participants learn to operate complex systems. Sugar Factory is a 
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dynamic system in which participants are supposed to control the sugar production sp 

by determining the number of workers w employed in a fictional factory. The behavior 

of Sugar Factory is governed by the following equation:

The number entered for the workers w can be varied in 12 discrete steps 1 

 

≤

 

 w 

 

≤

 

 12, 

while the sugar production changes discretely between 1 

 

≤

 

 sp 

 

≤

 

 12. If the result 

according to the equation is less than 1, sp is set to 1. Similarly, a result greater than 12 

is set to an output of 12. Finally, a random component of ± 1 is added in 2/3 of all trials 

to the result that follows from the equation stated above. To allow for a more realistic 

interpretation of w as the number of workers and 

 

sp

 

 as tons of sugar, these values are 

multiplied in the actual computer simulation by 100 and 1000, respectively. 

Participants are given the goal to produce a target value of 9000 tons of sugar (i.e. sp=9) 

on each of a number of trials. Participants are not informed about the relationship 

between the number of workers and the sugar production. 

The models

Based on Logan’s instance theory (1988; 1990), Dienes and Fahey (1995) 

developed a computational model (coined D&F model in the remainder of this section) 

to account for the data they gathered in an experiment using the Sugar Factory 

scenario. According to the instance theory, encoding and retrieval are intimately 

linked through attention: encoding a stimulus is an unavoidable consequence of 

attention, and retrieving what is known about a stimulus is also an obligatory 

consequence of attention. Logan’s theory postulates that each encounter of a stimulus 

is encoded, stored and retrieved using a separate memory trace. These separate 

memory traces accumulate with experience and lead to a “gradual transition from 

algorithmic processing to memory-based processing“ (Logan, 1988, p. 493).

spt 2wt spt 1––= random component (-1, 0, or 1)+
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Both models, the D&F model and our ACT-R model, assume some algorithmic 

knowledge prior to the availability of instances that could be retrieved to solve a 

problem. Dienes and Fahey (1995, p. 862) observed that 86% of the first ten input 

values that participants enter into Sugar Factory can be explained by the following 

rules:

1. If the sugar production is below (above) target, then increase (decrease) the amount 
of workers with 0, 100, or 200.

2. For the very first trial, enter a work force of 700, 800 or 900.
3. If the sugar production is on target, then respond with a workforce that is different 

from the previous one by an amount of -100, 0, or +100 with equal probability.

While this algorithmic knowledge is encoded in the D&F model by a constant 

number of prior instances that can be retrieved in any situation, ACT-R uses simple 

production rules to represent this rule-like knowledge. The number of prior instances 

encoded is a free parameter in the D&F model that was fixed to give a good fit to the 

data reported below. 

Logan’s instance theory predicts that every encounter of a stimulus is stored. The 

D&F model, however, deviates from this assumption in that it only stores instances for 

those situations in which an action successfully leads to the target. All other situations 

are postulated to be ignored by the model — an assumption which not only lacks 

plausibility, but also violates Logan’s instance theory which supposedly forms the 

theoretical foundation of the D&F model. Complicating the modeling basis further, the 

D&F model uses a “loose” definition of what a successful action is. Due to the random 

component in the Sugar Factory equation, the outcome calculated by the Sugar Factory 

formula may vary by ± 1000. Unbeknownst to the participants, a sugar production of 

8000 or 10000 is therefore considered to be still on target. Although the information 

about the loose criterion was not available to participants, the D&F model stored only 

instances about actions that were successful according to this loose scheme. The ACT-



 

Skill Acquistion: Rule or Instance based? 19

R model, in contrast, encodes every situation that the model encounters, irrespective 

of its result. The following chunk is an example of an instance stored by the ACT-R 

model:

 

transition1239
ISA transition
STATE 3000
WORKER 800
PRODUCTION 12000

 

The above chunk TRANSITION123 encodes a situation in which an input of 800 

workers, given a current production of 3000 tons, led to subsequent sugar production 

of 12000 tons. 

Retrieving instances

In the D&F model each stored instance “relevant” to a current situation races 

against others and against prior instances representing algorithmic knowledge. The 

fastest instance determines the action of the model. An instance encoding a situation is 

regarded as “relevant“ by the D&F model, if it either matches the current situation 

exactly, or if it does not differ from it by more than 1000 tons of sugar in either the 

current output or the desired output, analogous to the „loose“ range discussed above. 

Again, the D&F model makes use of information unavailable to participants. Retrieval 

in the ACT-R model, on the other hand, is governed by similarity matches between a 

situation currently present and encodings of others experienced in the past. On each 

trial, a memory search is initiated based on the current situation and the target state 

‘9000 tons’ as cues to retrieve an appropriate intervention or an intervention that is 

associated with a similar situation. The following production rule is used to model the 

memory retrieval of chunks:
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IF the goal is to find a transition from the current state with
output 

 

current

 

 to a state with new output 

 

desired

 

AND there is a transition chunk in declarative memory, with
current output 

 

current

 

 and new output 

 

desired

 

 and a number
of workers equal to 

 

number

 

THEN set the number of workers in the goal to 

 

number

 

As outlined in the previous section, chunk retrieval in ACT-R is governed by the 

activation level of memory elements. Generally, productions try to retrieve an instance 

that matches the current situation exactly. However, if such a chunk does not exist in 

memory, or if the activation level of an exact matching chunk is too low, ACT-R can 

retrieve a memory element that only partially matches the condition pattern of the 

retrieving production. Chunks that do not exactly match the current situation will be 

penalized by lowering their activation for each mismatching slot proportional to the 

degree of mismatch using the following equation:

For each slot in the goal that is matched to a slot in the chunk that is a candidate for 

retrieval, the similarity between their respective contents is calculated. If this similarity 

is perfect (i.e. sim=1), no penalty if subtracted. When the similarity is lower than 1, a 

corresponding proportion of the fixed parameter MP is subtracted from the 

activation

 

3

 

.

Figure 4 shows an example for this process of partial matching. In figure 4 the chunk 

GOALCHUNK represents a situation in which the current sugar output („2000“) is 

encoded in the slot STATE, while the target state („9000“) is encoded in slot 

PRODUCTION. Chunk EPISODE007 is retrieved by production RETRIEVE-EPISODE 

using partial matching of the fillers „1000“ vs. „2000“ in the state slot and the values 

„8000“ vs. „9000“ in the PRODUCTION slot. In the action part of production 

Activation Penalty MP 1( sim– required s actuals,( ) )
s slots in matched chunk=

∑=
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RETRIEVE-EPISODE the number of the WORKER slot of EPISODE007 („5“) is then 

used to enrich the current GOALCHUNK by the retrieved value for its WORKER slot.

As figure 5 shows, the use of instances instead of the initial algorithmic knowledge 

increases over time, resulting in the gradual transition from algorithmic to memory-

based processing as postulated by Logan (1988, p. 493).

While both models of instance-based learning obviously share some striking 

similarities, the D&F-model makes assumptions regarding the storage and the 

retrieval of instances that can hardly be justified on neither a theoretical or empirical 

basis. Dienes and Fahey (1995, p. 865) point out that these critical assumptions are 

essential to the performance of the D&F model:

The importance to the modeling of assuming that only correct situations were 
stored was tested by determining the performance of the model when it stored all 
instances. (…) This model could not perform the task as well as participants: the 
irrelevant workforce situations provided too much noise by proscribing responses 
that were in fact inappropriate (…) If instances entered the race only if they exactly 
matched the current situation, then for the same level of learning as participants, 
concordances were significantly greater than those of participants.

Since the ACT-R model does not postulate these assumptions, it can be regarded 

as more parsimonious than the D&F model, demonstrating how instance-based 

learning can be captured by the elementary mechanisms provided by a unified theory 

of cognition.

While our theoretical argumentation of the assumptions underlying the two 

models has favored the ACT-R approach, we will briefly discuss the empirical success 

of the models with respect to empirical data reported by Dienes and Fahey (1995) 

before we compare the predictions of the ACT-R model with our own data. Figure 6 

shows the trials on target as reported by Dienes and Fahey (1995) when participants 

controlled Sugar Factory over two phases, consisting of 40 trials each. ACT-R slightly 

overpredicts the performance found in the first phase, while the D&F model slightly 
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underpredicts the performance of the participants in the second phase. Since both 

models seem to explain the data equally well, we cannot favor one over the other on 

empirical grounds.

After the participants had controlled the Sugar Factory in the experiment of 

Dienes and Fahey (1995), they were required to do a variant of a questionnaire. Again 

they had to determine the work force in 80 situations, but now they did not receive 

feedback, but just moved on to a new, unrelated situation. The 80 situations presented 

were the last 40 situations from the first part of the experiment mixed with 40 new 

situations, i.e. situations which participant did not encounter in controlling the system. 

Figure 7 shows how the percentage of times (concordance) participants chose the 

same work force in this second task as they did in the first. The baseline level 

represents the chance that both choices are equal due to random choice. This chance is 

higher than 1/12, because some choices are made more often during the experiment 

than others. The column labelled „correct“ shows how often the same work force was 

chosen if this lead to a correct output, the „wrong“ column shows the same for the 

incorrect outputs. Again, both models seem to do similarly well in modeling the data, 

with no model being clearly superior. 

Conclusion

We discussed a simple ACT-R model of instance-based learning and compared it 

to the Sugar Factory model of Dienes and Fahey (1995) with respect to their respective 

ability to model the control of a dynamic system. While both models were similarly 

successful in their empirical predictions, the ACT-R model was found to require fewer 

assumptions and was thus preferred over the model proposed by Dienes and Fahey 

(1995). Generally, ACT-R’s integration of an activation-based retrieval process with the 

concept of partial matching seems to be a very promising starting point for the 
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development of an ACT-R theory of instance-based learning and problem solving. The 

use of partially matching instances allows the architecture to implicitly generalize 

available examples for application to similar problems. In this view, the reported 

dissociations between knowledge and performance (Berry & Broadbent, 1984) do not 

seem surprising at all but are implied by instance-based learning: Participants who are 

good in controlling Sugar Factory should experience fewer different system transitions 

(since they are by definition often in the target state) and should thus have encoded 

fewer instances that would allow them to answer successfully the probes in the 

questionnaire. Participants who are bad in controlling Sugar Factory, on the other 

hand, experience a broader set of different system transitions and thus have a better 

basis of instances for answering questions that probe for system transitions (Funke, 

Buchner, & Berry, 1997).

In the next section we explore the ACT-R model in its ability to account for the 

data of a new experiment.

Experiment 1

The goal of the experiment is to explore whether different learning conditions 

result in different learning strategies and thus in the acquisition of different types of 

knowledge (i.e. instance vs. rule knowledge). The success of the instance-based ACT-

R model on the Sugar Factory task as described in the previous section supports our 

conjecture stated at the beginning of the paper: instance-based learning seems to be 

evoked by situations where the problem to be solved involves non-salient 

relationships between system variables that are very hard to discover: „looking for 

rules will not work when you cannot find them“ (Reber, 1989, p. 232; Broadbent, 1989). 

The equation underlying the Sugar Factory can be characterized as non-salient since it 

is not only based on a negative feedback component but also involves a random factor.
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In the experiment reported in this section we manipulate the activity demands 

when learning to control Sugar Factory with the intention to induce different 

knowledge acquisition strategies: Learning by observation results in the acquisition 

(and possible elaboration) of instances for demonstrated control behavior while 

learning by doing allows participants to generate, evaluate and test hypotheses about 

underlying structural relationships by appropriate system interventions. Berry (1991) 

found that observing a person who interacts with the Sugar Factory in an initial 

learning phase had no effect on subsequent control performance. In Berry’s study, 

participants watched the experimenter interacting with the task in a learning phase 

while they had to cope with the scenario themselves in a subsequent knowledge 

application phase. To make the observed control performance of the experimenter 

directly comparable with earlier studies conducted by Berry, the experimenter simply 

typed in responses taken from these studies. Participants in Berry‘s study were 

exposed to the very same sequence of input-output-pairs as were the participants in 

her previous studies (who generated these), but did not have the opportunity to 

actively provide input values and thus to explore their own hypotheses about 

underlying system relations in the learning phase. Interestingly, Berry found that 

participants were only able to learn successfully by observation when there was a 

salient relationship between input and output variables of the system to be controlled.

 Further studies that investigated the effect of system observation on control 

performance and system knowledge report results that are partially inconsistent with 

the findings of Berry (1991). Funke and Müller (1988) found that observers were 

significantly worse in subsequent system control than participants who learned to 

control the system exploratively by doing. However, observers were better in 

constructing a causal model that expresses the underlying relationships of the system 
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variables and which can be used an indicator of rule-knowledge acquired. Wallach 

(1998) also found observers to be significantly better with respect to verbalizable 

knowledge about the rules that underlie a system’s behavior. Control performance 

showed no differences between the two groups, indicating that exploratory learning 

and learning by observation led to comparable system control. It should be noted, 

however, that the systems used in the studies by Funke and Müller (1988) and Wallach 

(1998) can both be classified as scenarios which are governed by salient relationships 

between system variables.

One further difference between the studies cited above and the study conducted 

by Berry(1991) is that in her study the experimenter typed in the input value while the 

participants watched her interacting with the task. In the experiments conducted by 

Funke and Müller (1988) and Wallach (1998) observers were directly interacting with 

the task interface to view input values and the resulting system states. Instead of 

providing input values on their own, observers watched the respective values of a 

„matched“ exploratory learning participant whose interaction trace was read from a 

file and displayed on the interface. In contrast to the setting of Berry (1991), observers 

were thus in control of the interface — albeit without the opportunity to actively 

provide input values themselves. This procedure at least partially solves one problem 

with the setting of Berry: „One problem with studying learning while observing is that 

it is difficult to have control over what people actually do while observing. Although 

participants are instructed to watch closely when the experimenter is interacting with 

the task and do in fact appear doing so, there is no real control” (Berry, 1991, p. 905).

In our experiment we applied the exploration/observation procedure used by 

Funke and Müller (1988) and Wallach (1998) to investigate knowledge acquisition in 

the non-salient control scenario Sugar Factory for which Berry (1991) found no 
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evidence of learning by observation. If learning by observation is indeed not successful 

in the case of controlling the non-salient dynamic system Sugar Factory (as argued by 

Berry, 1991), this can be taken as evidence for important boundary preconditions of 

successful instance-based learning. 

Method

Participants: Participants were 40 (17 female, 23 male) students from the 

University of the Saarland aged 19 to 31 years (mean = 23.4) who were paid for 

participating in the experiment.

 Materials

 Control task: Participants were given the task to control the Sugar Factory. They 

used the numerical keypad of a computer to provide input values for the number of 

workers. After pressing a RUN-button on the interface, the result of the respective 

intervention was displayed. Participants were not given an opportunity to view past 

system transitions and — in contrast to the setting used by Berry (1991) or Dienes and 

Fahey (1995) — no graph was displayed that showed the sugar output over past trials. 

Post-task questionnaire: In order to access the knowledge that participants 

acquired while controlling the scenario, a total of 40 questions was provided that 

probed for state transitions. Questions involved state transition situations that 

participants experienced when controlling the system (old questions) and questions 

that comprised state transitions that participants have not experienced before (new 

questions). In the questionnaire, participants were given the value for the sugar 

production sp

 

t-1

 

 in the preceding trial as well as the current sugar production sp

 

t

 

 and 

they were asked to determine the intervention w

 

t

 

 that led to the production sp

 

t

 

. No 

feedback was given about the correctness of the answer in this phase and participants 
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were informed that each situation described in a question was unrelated to the 

previous question. Because of the random component involved in computing the 

output signal of the Sugar Factory, the loose scoring scheme of counting a state one off 

the target was used to judge the correctness of the participants’ responses. To ensure a 

maximal overlap of problem solving context and test context, questions were 

presented on the computer screen using the same interface for both tasks.

 Procedure

 Participants were tested individually in single sessions. Their task was to reach 

the target state, a sugar production of 9000 tons, as often as possible. Participants were 

not informed about the loose scoring scheme. The scenario was presented to the 

participants with an initial sugar production of 6000 tons. Participants interacted with 

the Sugar Factory in two blocks consisting of 40 trials each. They were introduced to 

block 1 as a knowledge acquisition phase while the experimenter referred to block 2 as 

a knowledge application phase. Participants were not informed about the application 

of a post-task questionnaire in advance. No time restrictions for the fixation of control 

interventions were imposed. To separate effects of active system control from those of 

system observation, the following yoked control design was used:

• A system exploration group (SE) was given the opportunity to actively explore the 

Sugar Factory in block 1, e.g. SE participants could freely select interventions, 

gather data, test hypotheses about the internal working of the Sugar Factory by 

changing the values for the workers hired and analyzing the resulting effects on the 

sugar production.

• In contrast, participants in a system observation group (SO) were restricted to the 

observation of the control behavior of yoked participants from the SE group that 

controlled Sugar Factory in block 1. Each SO participant observed exactly the sys-
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tem transitions in the first block that the yoked participant from the SE group gen-

erated in block 1. This method of experimental twins (Funke & Müller, 1988) 

ensures that the respective twins are provided with identical data about the behav-

ior of Sugar Factory.

The Sugar Factory interface for the SO condition was exactly the same as for the 

SE participants, albeit it was not possible to enter values for the work force. Instead, 

the intervention of a yoked SE participant and the resulting sugar production was 

displayed when SO participants pressed the RUN-button. The SO participants were 

informed that what they observed was not necessarily an optimal way to control the 

Sugar Factory but that they would watch a protocol of what a previous participant had 

done in an earlier experiment. During the knowledge application phase (block 2), all 

participants (SE and SO participants) controlled the Sugar Factory scenario.

Results

Control Performance: In contrast to results reported by Berry (1991), both 

experimental groups, SE and SO participants, were successfully able to learn to control 

Sugar Factory. No statistically significant difference was found in the control 

performance of both groups in the knowledge application phase (see Figure 8): SE 

participants achieved a mean performance of 10.2 trials on target in block 2 (SD: 4.17), 

SO participants scored 9.5 trials on target (SD= 3.66) in this phase. In block 1, SE 

participants showed a mean performance of 9.55 trials on target (SD= 3.82), SO 

participants did not control Sugar Factory in this phase. To aid interpretation we ran a 

simulation study with 100000 simulated participants to determine chance performance 

(i.e. each of the 12 possible responses is chosen with equal probability) on the 40 trials 

with the Sugar Factory task, resulting in an average performance of 4.99 trials on target 

(SD=2.08).
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There was no significant improvement in performance from block 1 to block 2 for 

the SE participants (t(19)=.48). However, a split-half analysis of block 1 indicated that 

they improved significantly from the first half of block 1 to the second half (t(19)=2.19, 

p<.05). Clear evidence for successful observational learning was found by comparing 

the performance of SE participants in the first half of block 1 with the performance of 

SO in the first half of block 2. The average number of trials for the SE group was 3.65 

(SD=1.93) in the first 20 trials of block 1, SO participant scored an average of 5.0 (SD= 

1.55) trials on target in the first half of block 2. The difference is statistically significant 

(t=2.25, p<.05). This results is in sharp contrast to the findings of Berry (1991), who 

reports no evidence for learning by observation when comparing the performance of 

controlling vs. observing participants in block 1 and block 2 respectively. 

To model the empirical data observed in block 2, we ran the instance-based ACT-

R model that was introduced in the previous section after individually initializing it for 

each participant by providing the model with the control episodes that the respective 

participant generated (or observed in the case of SO participants) in block 1. We thus 

generated a set of ACT-R models in which each model started with the very same 

sample of system transitions that the respective SE participant generated in block 1 

(and which was observed by the yoked SO participant). This procedure was chosen to 

insure that the model starts to control Sugar Factory in block 2 with the same 

information that the respective participants had about the system behavior. The 

model‘s single parameter, activation noise, was set to .5 for all runs of the model. As 

Figure 8 shows, the performance of the resulting sample of model runs is well within 

the range of performance of the SE and SO group in block 2 and thus provides evidence 

in favor of the instance-based learning mechanism of the model.

The mean time per intervention in block 1 was 8.06 seconds (SD=4.07) for SE 
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participants, SO participants spend an average of 5.94 seconds (SD=2.02) for the 

observation of each trial in this phase. The difference between the two experimental 

groups is statistically significant, (

 

t

 

(38)=2.08, 

 

p

 

<.05). An obvious explanation for this 

finding is that SE participants had not only to decide for the number of workers to hire 

but also to enter the respective input values using the keyboard. No significant 

difference in time per trial was found in block 2: SE participants spend an average of 

7.12 seconds per intervention (SD=4.95), the respective mean time for SO participants 

was 8.07 (SD= 3.56).

Questionnaire data:

Participants were generally significantly better to answer questions involving old

 

 

 

system transitions in contrast to new

 

 

 

transitions (

 

t

 

(38)=2.48

 

, p

 

<.02). The mean score for 

old items that were answered correct was 31.75% (SD=18.87) for the SE group and 

31.25 (SD=17.0) for the SO group (see Figure 9). 22.20% of new questions were 

answered correctly by the SE group (SD= 13.53), the respective percentage correct in 

the SO group was 20.19 (SD=21.81). The different activity demands (system control vs. 

system observation) in the two experimental conditions thus did not seem to have 

evoked different knowledge acquisition strategies, i.e. rule vs. instance knowledge) 

since both groups are equally good in answering new and old questions about system 

transitions.

To model the questionnaire data, the same individual initialization procedure 

was used as when modeling the performance of participants in block 2. As Figure 9 

illustrates, our simple instance-based ACT-R model reproduces the difference in 

incorrectness for new vs. old questions quite well, although it is generally slightly 

better in answering the questions than participants.

In contrast to results reported in the implicit learning literature (Berry & 
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Broadbent, 1984), we did not find a dissociation between knowledge (as accessed by 

the questionnaire) and performance (in terms of trials on target in the knowledge 

application phase): The overall correlation between knowledge of old items and 

performance was .42 (

 

p

 

<.01). There was no significant correlation between the ability 

to answer new items correctly and control performance.

Conclusion: Overall, the results from the experiment can be taken as evidence 

that (1) learning by observation does not seem to be limited in scope to systems for 

which the underlying relationship between variables is salient; (2) participants seem to 

be able to answer questions about old system transitions significantly better than 

questions about new ones — a result that is clearly compatible with an instance-based 

learning approach, but which provides a challenge for a rule-based view of skill 

acquisition; (3) It is therefore not surprising that the performance of the simple 

instance-based ACT-R model is in good correspondence with the empirical data 

reported.

While instance-based learning as a strategy of knowledge acquisition turned out 

to be sufficient in the case of Sugar Factory, the next section demonstrates a task and a 

model for it that requires it to be integrated with other learning strategies.

The Fincham task

An example of a task in which both rule learning and instance learning are viable 

strategies is described by Anderson & Fincham (1994). In this task, participants first 

have to memorize a number of facts. These facts are like

“Hockey was played on Saturday at 3 and then on Monday at 1.” 

We will refer to these facts as sport-facts to prevent confusion with facts and rules in 

the model. A sport-fact contains a unique sport and two events, each of which consists 
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of a day of the week and a time. After having memorized these sport-facts, participants 

were told that these actually represent rules about the time relationships between the 

two events. So in this case “Hockey” means you have to add two to the day, and 

subtract two from the time. In the subsequent experiment, participants were asked to 

predict the second event, given a sport and a first event, or predict the first event, given 

the sport and the second event. So participants had to answer questions like: “If the 

first game of hockey was Wednesday at 8, when was the second game?”, but also “If 

the second game of hockey was Thursday at 4, when was the first game?” Figure 10 

shows an example of the interface used in the experiment. Using this paradigm, it is 

possible to investigate evidence for both rule-based learning and instance-based 

learning. Directional asymmetry, evidence for rule-based learning, can be tested for by 

first training participants to predict events in one direction for a certain sport-fact, and 

than reverse the direction and look how performance in the reverse direction relates to 

performance on the trained direction. Evidence for instance learning can be gained by 

presenting specific examples more often than other examples. Better performance on 

these specific examples would indicate instance learning. Anderson & Fincham (1994), 

and later Anderson, Fincham & Douglass (1997) performed five variations on this basic 

experiment, three of which we will discuss here. Before discussing the specific 

experiments, we will first outline the ACT-R model we have developed.

The ACT-R model

The central assumption of our model of the Fincham task is, that the experimental 

data can only be explained by multiple strategies. In the model we will use the four 

strategies discussed by Anderson, Fincham & Douglass (1997): analogy, abstraction, 

rule and instance. Analogy is the strategy that participants all have to use at the start 

of the experiment: they have to recall the original sport-fact, determine the relations 
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between the two days and the two times, and apply these relations to the new case. The 

abstraction strategy is to memorize the relationships in the examples, for example 

“hockey day plus two”. This saves some time, as it is no longer necessary to determine 

the relationship in the sport-fact. The rule strategy is similar to the abstraction strategy, 

except that the knowledge is now part of a production rule instead of a chunk in 

declarative memory. Finally, the instance strategy tries to recall past instances from 

memory to solve the problem, for example, if a participant has solved “Hockey 

Tuesday Thursday” in an earlier trial, they might be able to recall this fact and use it 

for another trial where Hockey and Tuesday occur (or Hockey and Thursday, if the 

first event is required). Abstraction corresponds to what we referred to as declarative 

rules, rule strategy corresponds to production rules. We will therefore refer to the 

abstraction strategy as the declarative-rule strategy and the rule strategy as the 

production-rule strategy. The strategies have different cost-success profiles 

(summarized in Table 1), which will determine at what stage of the learning process 

they will be most prominent. To illustrate the respective strategies, Figure 11 shows 

schematic representations of each of the them. Arrows in the figure denote rule firings 

in the model. In the case of an pointing down, a subgoal is pushed on the goalstack, 

while an arrow pointing up stands for popping a goal. A horizontal arrow symbolizes 

a modification of the current goal. Since each problem involves calculating a day and 

a time, two separate sub-problems have to be solved. Each of these sub-problems has 

to be solved using one of the schemas in figure 11.

The analogy strategy (figure 11a) has the highest cost, but only needs the sport-

facts learned initially. Starting at the top goal, a subgoal is pushed on the goal stack to 

either find the day or the time. To be able to do this, the original example must first be 

retrieved, and the appropriate elements (days or times) must be extracted. Another 
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subgoal takes care of this stage. After retrieving the example, this second subgoal is 

popped, and a new subgoal is pushed to make an analogy between the example and 

the current problem. First the relation in the example is determined, for example the 

fact that two has to be subtracted from the day. This relationship can usually be 

determined by direct retrieval, for example the relationship between four and six. But 

sometimes, in the case of days of the week, this has to be done by counting. To 

determine the relationship between Sunday and Friday, a participant has to count two 

steps back from Sunday. Counting is taken care of by an additional subgoal, with the 

advantage that this subgoal is added to declarative memory and can be retrieved on 

later trials to determine the relation directly. After determining the relationship in the 

example, this relation is applied to the current problem. This can again be direct, or 

through a counting subgoal. 

The analogy strategy requires prior knowledge. The model assumes that people 

already know how to make simple analogies, how to memorize and recall strings of 

words, to know relationships between numbers and days of the week, and to be able 

to calculate these relations if they cannot be retrieved from memory. The rest of the 

necessary knowledge, mainly involving perceptual-motor operations like reading the 

information on the screen and entering the answers, has to be learned by the 

participants during the instructions. This aspect of the task is not modeled.

The declarative-rule strategy (figure 11b) assumes knowledge about the relation 

between the two days or two times for a certain sport. For example, “Hockey” means 

“add two to the days”. A declarative rule in the model is a chunk that stores this 

information, for example:

 

RULE34
ISA DEC-RULE
SPORT HOCKEY
TYPE DAY
RELATION PLUS2
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Using a declarative rule to find the answer only requires two steps: retrieve the 

rule and apply it to the current problem. The second step, application, may involve 

another counting subgoal, similar to the analogy strategy. Although the declarative-

rule strategy is more efficient than the analogy strategy, it requires knowledge 

participants initially do not have. 

The production-rule strategy (figure 11c) uses production rules to find the 

answer. Each of the rules has two versions, one that retrieves the answer, and one that 

calculates the answer. An example of a retrieval rule is:

 

IF the goal is to find the day of the second event, the sport 
is hockey and the day of the first event is 

 

day1

 

AND 

 

day1

 

 plus two days equals 

 

day2

 

THEN put 

 

day2

 

 in the second event slot of the goal

 

The calculate production pushes this calculation as a subgoal, which is handled 

by the same production rules that determine and apply the relations in the analogy 

strategy:

 

IF the goal is to find the day of the second event, the sport 
is hockey and the day of the first event is 

 

day1

 

THEN push as a subgoal to find the answer to 

 

day1

 

 plus two days
AND put the answer in the second event slot of the goal

 

The advantage of the production-rule strategy is that its costs are much lower 

than those of the analogy strategy, and also slightly lower than the costs of the 

declarative-rule strategy, since the answer can be found in a single step. However, in 

order to use it, the necessary production rules must be learned. Furthermore, the two 

example rules given only calculate the second event given the first. To calculate the 

first event given the second, two additional rules are needed. 

The strategy with the lowest costs is the instance strategy (figure 11d). It can be 

applied to the top-goal, since it retrieves the answer from past subgoals directly. This 

strategy will only work if the appropriate instance is available. An example of an 

instance is:
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ITEM434
ISA ITEM
SPORT HOCKEY
TYPE DAY
LEFT SUNDAY
RIGHT TUESDAY

 

To be able to fully depend on this strategy, all possible examples have to be 

learned. For each sport-fact, seven to nine examples are needed. 

The declarative-rule, production-rule and instance strategies are actually short-

cuts for the original analogy strategy. Both rule strategies make short-cuts at the 

subgoal level of the analogy strategy, and the instance strategy directly at the top level. 

The knowledge needed for the instance short-cut is gained automatically, since the 

popped subgoals serve as examples. To be able to use an example, its activation must 

be high enough, so it has to be repeated a number of times before it can reliably be 

retrieved. Declarative rules, on the other hand, have to be learned more explicitly. 

Once learned, the process of compiling declarative rules into production rules is again 

automatic.

To create a declarative rule for use in later problems, information from different 

levels of the goal stack has to be used. The relation is determined in the analogy 

subgoal, while the name of the sport is stored higher in the goal stack. As a 

consequence, old goals created by the analogy strategy cannot be used as declarative 

rules. An explicit goal is necessary to assemble it. An appropriate moment to do this is 

at the end of the analogy strategy. The goal is not popped, but is replaced by a goal to 

build a declarative rule. Alternatively, the declarative rule could be derived first and 

be consequently applied. Since this alternative will produce the same predictions, it is 

not further investigated.

For declarative rule learning additional steps in the reasoning process are 

necessary that are irrelevant for the immediate solution. The production rule that 
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proposes to create an additional declarative-rule goal has to compete with the rule that 

proposes to just pop the goal and be done. Since rules that propose additional 

processing imply additional costs, they will only occasionally win the competition. 

Building up declarative rules may therefore be a slow process, and may well be a 

source of individual differences.

Learning a new production rule presupposes a declarative example. The analogy 

strategy does not provide appropriate examples, because the process of retrieval and 

consequent analogy is too elaborate. The declarative rule, on the other hand, is a very 

good basis for proceduralization. Once a declarative rule is formed and applied on a 

regular basis, it will eventually be compiled into a production rule. Table 1 

summarizes cost and learning aspects of the four strategies. 

In the Fincham task, learning of declarative rules, instance learning and 

production-rule learning are all viable strategies from the viewpoint of rational 

analysis. Declarative rule learning will lead to quicker results but needs more effort 

initially, since rules are not learned automatically. Production rule learning will occur 

automatically, but presupposes declarative rules. Instance learning is eventually the 

fastest strategy, but requires extensive training to be fully effective.

Empirical evaluation of the model

In order to test the predictive power of the model, three experiments conducted 

by Anderson, Fincham and Douglass have been modeled. The first experiment was 

used to determine all the parameters, so the second and the third experiment can be 

considered as predictions based on the first. Each of the experiments tries to gain 

insights in the learning process by seeking evidence for the use of rules and the use of 

instances. The data discussed in the experiments all come from Anderson, Fincham 

and Douglass (Anderson & Fincham, 1994; Anderson, Fincham & Douglass, 1997), the 
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model outputs are produced by 100 runs of the model

 

4

 

. 

Experiment 1

In the first experiment (experiment 2 in Anderson & Fincham, 1994), participants 

had to learn eight sport-facts. In the first three days of the experiment, four of these 

sport-facts were tested in a single direction: two from left to right and two from right 

to left. On each day 40 blocks of trials were presented. In each block, each of the four 

sport-facts was tested once. On the fourth day all eight sport-facts were tested in both 

directions. On this day 10 blocks of trials were presented, in which each of the eight 

sport-facts was tested twice, once for each direction. This means that on the fourth day 

there were three types of trials: practised items tested in the practised direction, 

practised items tested in the reverse direction, and completely new items.

Figure 12 shows the latencies in the first three days of the experiment, both the 

data from the experiment and from the model. Although the results of the model are 

the product of four interacting strategies, this produces no discontinuities: the learning 

curve of the model resembles a power-function, except for a slight decrease in 

performance at the beginning of each new day. The fit between the model and data is 

quite good: R

 

2

 

=0.94. Table 2 shows the results for day 4. Both in the data and in the 

experiment there is a clear directional asymmetry, since items in the practiced 

direction are solved faster than reversed items. Items that are completely new and have 

been practiced in neither direction, however, are performed even more slowly, 

indicating that rule learning cannot be a sufficient for all of the learning in the first 

three days of the experiment. 

Figure 13 shows how the model uses the four strategies in the course of the 

experiment. At the start of the experiment, analogy is used most of the time, but both 

the declarative-rule and the instance strategies gain in importance after a few blocks of 
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trials. The production-rule strategy only appears later, and only plays a minor role 

during the first day. At the start of the second day, there is a large shift toward using 

rules at the expense of instances. This can be explained by the fact that the activation 

of a large portion of the instances has decayed between the two days, so that they 

cannot be retrieved anymore. Since only a few rules are needed for successful 

performance, they receive more training on average and are less susceptible to decay. 

This pattern is repeated at the start of the third day, although the instance strategy 

looses less ground due to more extended training of the examples. At the start of the 

fourth day, the frequency of use of the analogy strategy goes up again, since there are 

no production rules for the new four sport-facts. The declarative-rule strategy can take 

care of the reversed items though, so in that case the expensive analogy strategy is not 

needed. This explains the fact that reversed items are still faster than completely new 

items.

Experiment 2

In experiment 2 (experiment 1 in Anderson, Fincham & Douglass, 1997) the 

directional asymmetry was further explored. Instead of having only a single transfer 

day, two rules were reversed on each day of the experiment. This requires quite a 

complicated experiment, since on each day a rule has to be presented in two directions 

that was presented in one direction previously. So, on day 1 of the experiment, two out 

of eight rules were presented in two directions, while the remainder was only tested in 

one direction, on day 2 four out of eight rules, up to day 4 where all rules were 

presented in both directions. On each day participants had to do sixteen blocks of ten 

to sixteen trials, ten trials on day 1, twelve trials on day 2, fourteen trials on day 3, and 

sixteen trials on day 4. To further investigate the difference between rule and instance-

based performance, participants were asked after each trial whether they solved it 
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using a rule or an example. Finally, on each day one of the sport-facts studied 

originally was offered as a trial somewhere between block 7 and 10. If performance on 

this original sport-fact is better than on other trials, this indicates the participant 

retrieves the answer instead of calculating it.

The latencies for day 1 to 4 are shown in figure 14 for both the data and the model. 

Although the model is slightly slower than the participants, the learning curves are 

parallel. Directional asymmetries are calculated using the two rules that are presented 

in two directions for the first time that day. The solution time for the practised direction 

is subtracted from the solution time for the reversed direction. The result is the extra 

time needed for the reversal and is shown in figure 15. Both the data and the model 

show a gradual increase in asymmetry over the days, although asymmetry for the 

model is slightly larger than for the data. To be able to map the participants reports of 

using either a rule or an example onto the model, we first have to decide when the 

model uses a rule or an example. The most logical choice is to assume that both the 

analogy and the instance strategy are strategies that use examples, and that the 

declarative and production-rule strategy are strategies that use rules. Figure 16 shows 

the results of both the model and the data on this aspect of the task. Since the “solve by 

example”-category includes both the slowest (analogy) and the fastest (instance) 

strategy, it eventually becomes faster than the rule strategy as analogy is not used 

anymore. Both the data and the model show this phenomenon.

The latencies for the original sport-fact that was presented between block 7 and 

10 are shown in figure 17, and are compared with the average latencies between block 

7 to 10. Performance on original examples is clearly superior to other examples, 

indicating instance learning. Figure 18, finally, shows the strategies that were used by 

the model in the course of the experiment. It shows a pattern that is similar to the 
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pattern in experiment 1.

Experiment 3

In experiment 3 (experiment 3 in Anderson, Fincham & Douglass, 1997), the effect 

of repeated examples is further explored. The same experimental setup as in 

experiment 2 was used, except that the experiment now took five days and each day 

consisted of 32 blocks of trials. On the first day eight sport-facts were tested in only one 

direction. On each subsequent day, a new pair of sport-facts was also tested in the 

reversed direction. So, on day 2 eight sport-facts were tested in the practiced direction, 

and two in the reverse direction, on day 3 eight sport-facts were tested in the practiced 

direction and four in the reverse direction, et cetera. To see if instances that are 

repeated more often than others are solved faster, half of the instances presented for a 

certain sport were identical, while the other half was generated in the usual way.

Figure 19 shows the results for both the data and the model. Repeated instances 

have a clear advantage over unique instances, further evidence for instance-based 

learning. Figure 20 shows the directional asymmetry results. After a steady increase 

between day 2 and 4, it decreases on day 5, both in the model and the data. On day 5 

however, both the data and the model show a decline in asymmetry, indicating that 

instance-based reasoning, which has no asymmetry, takes over from rule-based 

reasoning. 

Conclusions

If we consider a rule as a generalization of one or more examples, creating 

declarative rules is the most important step of rule learning. Proceduralizing this rule 

later on is just an efficiency improvement. Although the Fincham model needs a 

declarative rule before a production rule can be compiled, we might imagine more 

simple situations in which a rule can be learned without explicit declarative 
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intervention. 

Discussion

The two models discussed in this article demonstrate that understanding skill 

acquisition is not just a matter of answering the question whether skills are represented 

by rules or examples. People apparently have the capacity to store previous results and 

the capacity to generalize rules. Whether or not both types of learning show up in the 

results of experiments depends on their success. In the Sugar Factory experiment, rules 

were very hard to abstract. A learning strategy that resulted in the acquisition and use 

of examples was shown to be sufficient to match human performance. The Fincham 

experiment, on the other hand, shows clear evidence for both types of learning, since 

there is a balance between the usefulness of learning rules and examples. 

A theory that only states that skill learning is a matter of both instance learning 

and rule learning is rather weak, and will certainly not end the debate. Our cognitive 

modeling approach goes beyond such a simple statement: the theory proposed in this 

paper is not just the conjunction of two existing theories in an integrative framework, 

but also adds the constraint that the structure of the task is a main determinant of 

which types of learning will have an impact on performance. The computational 

models presented in this paper demonstrate that the ACT-R architecture provides a 

powerful framework for the theoretical investigation of the interplay of different 

learning strategies.
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Footnotes

1The symbol F in the equation is a fixed scaling parameter that defaults to 1.

2The symbol d in the above equation is a decay parameter, which defaults to 0.5.

3Following Lebiere (1999), the following function is used to calculate the 

similarity of two numbers a, b representing the sugar production in respective instance 

chunks: . Note that similarity ranges from 0 (no similarity) to 1 

(equality).

4The model uses the following parameters: base-level decay (the d-parameter in 

the equation) is set to 0.3, parameter that controls the noise on activation is set to 0.1, 

the expected gain noise parameter is set to 0.2, the retrieval threshold is set to 0.3 and 

the latency factor (the F-parameter) is set to its default value of 1.0. Except for the base-

level decay, all these value are close to their recommended values.

sim a b,( ) min a b,( )
max a b 1, ,( )
------------------------------=
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Table 1

Summary of cost and learning aspects of the four strategies.

Strategy Cost
(in terms of time)

Additional 
knowledge 
needed for each 
rule

Uses knowledge 
gained from

Analogy High None N.A

Declarative rule Medium 1 instance Analogy

Production rule Low 2 rules for each 
direction

Declarative rule

Instance Very low 7-9 instances Analogy, Declara-
tive rule, or Pro-
duction rule

Table 2

Effect of direction of practice and whether a rule has been trained on time to respond 

(in seconds) from day 4 of experiment 1.

Data Model

Same direction, 
practised

8.9 8.4

Reverse direction, 
practised

10.9 9.3

Not practised 13 16
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Figure captions

Figure 1. Prototypical research design used in cognitive modeling.

Figure 2. A schematic diagram of ACT-R. Adapted from Anderson & Lebiere (1998). 

Figure 3. Example of subsymbolic activation in declarative memory. Each oval 

represents a chunk, arrows represent references between chunks, and the gray arrows 

represent spreading activation from the goal context.

Figure 4. Partial matching in the SugarFactory model

Figure 5. Relative use of instance retrieval per trial by the ACT-R model

Figure 6. Number of trials on target in the experiment, the ACT-R model and the D&F 

model for the first and second half of the experiment conducted by Dienes & Fahey 

(1995)

Figure 7. Concordances for the experiment and both models

Figure 8. Performance of SE and SO participants and the model in the knowledge 

application phase

Figure 9. Questionare results for new and old questions, for the SE and SO group, and 

the model

Figure 10. Example of the interface used in Anderson & Fincham (1994) and Anderson, 

Fincham & Douglass (1997). From Anderson, Fincham & Douglass (1997).

Figure 11. Schematic representation of the four possible strategies used in the model. 

Note that two strategies (possibly the same) are needed to solve the whole problem: 

one for the day of the week and one for the time.

Figure 12. Latencies for days 1 to 3 in experiment 1, data and model.

Figure 13. Proportion of the trials a certain strategy is used in experiment 1.

Figure 14. Latencies for experiment 2.

Figure 15. Directional asymmetry in experiment 2, (a) data (b) model.
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Figure 16. Time to respond as a function of whether a rule or example is reported, (a) 

data (b) model.

Figure 17. Time to respond for the studied example and other example, (a) data (b) 

model.

Figure 18. Proportion of the trials a certain strategy is used in experiment 2

Figure 19. Latency (in seconds) in experiment 3 as function of condition. Only items 

that are reversed that day are used for these results.

Figure 20. Directional asymmetry in experiment 3.
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Figure 10. Example of the interface used in Anderson & Fincham (1994) and 

Anderson, Fincham & Douglass (1997). From Anderson, Fincham & Douglass 

(1997).
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Figure 20. Directional asymmetry in experiment 3.
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