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This article describes a general-purpose programmable substrate designed to allow
cognitive modeling systems to interact with o!-the-shelf interactive applications. The
substrate, called VisMap, improves on conventional approaches, in which a cognitive
model interacts with a hand-constructed abstraction, an arti"cial simulation or an
interface tailored speci"cally to a modeling system. VisMap can be used to construct
static scenarios for input to a cognitive model, without requiring its internal modi"-
cation; alternatively, the system can be integrated with a cognitive model to support
direct control of an application.
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1. Introduction

Research in cognitive modeling has strongly in#uenced human}computer interaction
(HCI). Cognitive modeling research drove some of the earliest rigorous examinations
of user behavior, providing insight and guidance in areas such as the e!ects of practice
on performance, rational decision-making and expert problem solving in the user
interface (Card, Moran & Newell, 1983). In some e!orts, the distinction between
cognitive modeling research and HCI research has blurred almost to the point of
disappearing (Kitajima & Polson, 1995, 1997; Kieras & Meyer, 1997; Barnard & May,
1999).

HCI research has naturally bene"ted cognitive modeling research as well. As a surro-
gate for the real world, the graphical user interface provides a simpli"ed, more tractable
environment in which interesting problems can still be posed and solved. In fact, the
properties of a tractable environment for a cognitive model correspond strickingly with
the properties of graphical user interfaces. Cognitive modeling research has been strongly
in#uenced by Newell and Simon's (1972) view of human problem solving as search
through a problem space. Problem spaces traditionally abstract away continuous,
non-deterministic, dynamic and unobservable properties of an environment, such that it
becomes discrete, deterministic, static and accessible*properties associated with broad
classes of modern graphical user interfaces (St Amant, 1999). The result, from the
viewpoint of cognitive modeling research, is realistic problems for which modeling
solutions have useful theoretical and practical implications (Gray, John & Atwood,
1993).
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In view of the shared concerns and close relationship between the two "elds, we might
expect cognitive models to routinely interact with the user interfaces of o!-the-shelf
applications. Perhaps surprisingly, this is not yet the case. For some cognitive modeling
systems, visual input is generated via the look-up of properties in a static, hand-
constructed interface speci"cation, e.g. through a "le interface (Kitajima & Polson, 1997).
Other models interact with dynamic simulations of interfaces, constructed to mimic the
behavior of a real interface, but tailored to the input and output requirements of the
model (Kieras, 1999). Still other models interact directly with user interfaces, but under
signi"cant restrictions, which commonly involve extending a user interface management
system to generate feature-based or object-based representations that mirror the interac-
tive display and are appropriate as input and output for a cognitive model (Anderson
& Lebiere, 1998; Ritter, Baxter, Jones & Young, 2000).

A di!erent approach, with comparable goals, is to arrange for a cognitive model to
interact directly with applications through their user interfaces. The main drawback is
that the model must now address a new set of complexities dealing with visual process-
ing, object manipulation, action planning and so forth, at a greater level of detail than
required by the approaches above. The potential advantages of extending a cognitive
model in this way, however, are compelling.

(1) Ecological validity. By their nature, interface simulations and speci"cations are
abstractions; they do away with unimportant details of a real interface. Real user
interfaces exhibit variation in timing, variation in the predictability and reliability of
actions and occurrence of events uninitiated by the user, among other behavioral
properties, which may or may not be relevant to performance on a given task. Neglecting
these subtleties, however, can bring the validity of empirical cognitive modeling results
into question. We can forestall potential objections along these lines by reducing the
distance between cognitive models and real environments. If researchers can deal with
a real user interface instead of a simulation or speci"cation, they can dispense with an
additional layer of indirection in the evaluation of the performance of a cognitive model.

(2) Real-world problem relevance. Cognitive modeling goals usually include a concern
for solving problems of general interest, rather than focusing solely on problems for
model calibration or benchmarking. Real user interfaces easily provide real-world
problems; additional design and maintenance e!ort is required to replicate such prob-
lems in a simulation or speci"cation.

(3) External standards for comparison. Progress in cognitive modeling often arises
from comparisons of di!erent models on the same problem. In some cases [e.g. the
performance of EPIC and ACT-R/PM on Nilsen's menu selection task (Hornof
& Kieras, 1999; Byrne, Anderson, Douglass & Matessa, 1999); see also Byrne, this issue],
it is straight-forward to determine whether two instances of a problem are directly
comparable. As researchers take on more complex problems in richer environments,
however, this determination can be more di$cult, especially if the tested interfaces di!er
signi"cantly (say, an active simulation in one case and a symbolic speci"cation in
another). This di$culty can be isolated if environmental information and interactions
stem from a single independent source, a real user interface.

(4) Development e+ort. In some cognitive modeling e!orts, considerable work is
devoted to developing realistic user interface scenarios, either as static representations or
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device simulations; ironically, much of this e!ort reproduces functionality that already
exists in a form appropriate for human users, but is inaccessible (i.e. programmatically) to
a cognitive model. Peter Polson has observed that automatic processing to generate
realistic interface scenarios for model input and validation would be a signi"cant step
forward in cognitive modeling research (Polson, pers. comm.).

We have developed a practical approach to visual processing and manual interaction
for cognitive models in HCI, based on a novel type of interface agent that we call an
interface softbot (Zettlemoyer & St. Amant, 1999; Zettlemoyer, St. Amant & Dulberg,
1999). An interface softbot, unlike the current generation of interface agents, controls an
interactive system through the graphical user interface, as human users do, without
relying on an application programming interface (API) or access to source code. To
support this functionality in the Microsoft Windows environment we have developed
a programmable substrate that we call VisMap, for &&visual manipulation''. In VisMap,
a sensor module takes pixel-level input from the display, runs the data through image
processing algorithms and builds a structured representation of visible interface objects.
An e!ector module generates mouse and keyboard gestures to manipulate these objects.
The sensor and e!ector act as the eyes and hands of an arti"cial user, to be controlled
externally by a computational cognitive model.

VisMap is not a cognitive model in itself. Rather, it is a suite of functions that allow an
existing cognitive model, without extensive internal modi"cation, to interact directly
with o!-the-shelf applications. The system is designed to be broadly compatible with
common assumptions made in cognitive modeling, but in cases where practical function-
ality con#icts with cognitive plausibility, the practical direction is usually chosen. We
believe that the implications of this system for cognitive modeling research are signi"-
cant. VisMap should allow modeling researchers to more easily develop realistic input
scenarios and evaluate the ecological validity of models with respect to real-world
applications. We hope that in general VisMap will support more researchers in treating
cognitive modeling as an exploratory research tool, expanding the current boundaries of
experimental practice.

The body of this article "lls out this brief description. Section 2 discusses several
cognitive modeling systems that interact in di!erent ways with a user interface environ-
ment. Each model incorporates perception and motor components that interact with
a modi"ed user interface or a programmatic intermediary. This indirect interaction
facilitates development but also includes potential pitfalls for researchers. Section 3 de-
scribes VisMap's direct interaction with the user interface, concentrating on the tracta-
bility of the interface in comparison with the physical, dynamic, three-dimensional world.
Interactive applications, by design, are well suited to the properties of computational
vision and action. Section 4 discusses the design of VisMap's visual and motor compo-
nents. These components are signi"cantly limited with regard to cognitive plausibility;
nevertheless, their design is broadly consistent with current approaches to modeling
perception and action in HCI. Section 5 gives two examples of VisMap in practice. In the
"rst, the system is used to generate a symbolic speci"cation that describes a sequence of
actions in an application. The result is appropriate for static input to a cognitive
modeling system. In the second example, VisMap carries out a simple sequence of
actions, directed by ACT-R/PM in a loosely coupled integration. In both examples, the
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emphasis is not on the correctness of the model (or of VisMap itself) with regard to
cognitive processing, but rather on the novel interaction capabilities that the integration
enables. Section 6 closes with a brief discussion of the implementation status of the
system, related modeling tools under development and future work.

2. Indirect interaction with the interface

Our research has been in#uenced by work in visual and to some extent motor processing
for cognitive modeling in HCI. This work spans a number of distinct research areas:
comprehensive, general-purpose cognitive models (such as Soar (Nowell, 1990), ACT-R
(Anderson & Lebiere, 1998) and others), tools to support task analysis and programm-
able user models and their application to user interface design and evaluation (Runciman
& Hammond, 1986; Young, Green & Simon, 1989).

Most modern cognitive modeling system for HCI incorporate some form of visual and
motor processing, tailored to interact with the user interface. In this section, we review
a representative sample of these systems, limiting our consideration to those that
simulate behavior, rather than model it in abstract terms (cf. interacting cognitive
subsystems, Barnard & May, 1999). For each of the models, we describe its general aims
and scope, the level of detail at which the environment and interaction with the
environment are represented, and the general engineering approach to making environ-
mental information available to the model. All of these models have been under active
development for several years, and many have passed through di!erent versions and
even name changes; our description re#ect their current status to the best of our
knowledge.

LICAI, a linked model of comprehension-based action planning and instruction
taking (Kitajima & Polson, 1995, 1997), simulates the execution of exploratory tasks in
applications with graphical user interfaces. LICAI has the stated goal of modeling
behavior in environments that dynamically change in response to user actions (Kitajima
& Polson, 1995). Nevertheless, LICAI adopts a static speci"cation approach to interac-
tion with the environment. The environment is described by a set of logical predicates
that specify the identity, properties and display status of display objects. For example, the
predicates that represent an icon in the menu bar titled &&Graph'', used to active a pull
down menu, are as follows.

(is-on-screen $object-123)
(is-a-kind-of $object-123 display-object)
(is-a-kind-of $object-123 graph-menu-item)
(is-pointed-at $object-123)
(not (is-highlighted $object-123)
(not (is-grabbed $object-123).

The "rst three predicates describe the object itself. The latter three predicates describe
the display status of the object in an interactive context, for a situation in which the
model has moved the mouse pointer over the menu header but has not selected it. Other
visual properties, such as location, shape, size and color, may also be represented, as well
as relationships between objects, such as part*whole relationships.
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Actions in the model are an elaboration of modern STRIPS-style operators, which
involve an action name, a precondition and an e!ect (Fikes & Nilsson, 1971; Penberthy
& Weld, 1992). Preconditions and e!ects are conjunctions of predicates that represent,
respectively, constraints on the execution of an action and the state of the environment
after the action has been carried out. The representation also includes information about
a display object and the intended function of the physical action; thus a physical action
such as Mouse-move-cursor can be specialized, in a sense, to the action Point-at Graph in
menu-bar. Other examples of basic physical actions include the following.

Move-mouse-cursor: Move the mouse cursor to a speci"c location.
Single-click, Double-click: Single or double click the mouse button.
Press-and-mouse-button-down, Release-mouse-botton: A more primitive decomposi-

tion of mouse button actions.
¹ype: Extra a sequence of characters via the keyboard.

The static speci"cation of environmental information integrates easily into the action
representation, but at some development cost. Generating a su$ciently detailed speci-
"cation involves a good deal of time and e!ort. Further, experimental scenarios must be
planned with great care: a speci"cation must provide the appropriate environmental
responses to actions selected by the model, proceeding in lock step through the sequence.
While LICAI developers have produced impressive results, speci"cation by hand im-
poses a signi"cant barrier on development.

GOMS Language Evaluation and Analysis (GLEAN) is a tool for GOMS simulation
(Kieras, 1999). Models are built in GOMSL or GOMS Language, and represent the
knowledge users apply in carrying out tasks on devices. GLEAN acts as an interpreter
for GOMSL by processing and executing these models in a simulated interactive
environment. Although aimed at task analysis, GLEAN nevertheless represents much of
the state of the art in the interaction between cognitive models and their environments.

GLEAN performs visual processing of its environment, but not down to the level of
pattern recognition. Instead, visual inputs are represented as symbolic objects associated
with lists of attribute-value pairs, which may include location, size, color and other
properties. A red &&Start'' button in a user interface, for example, is represented as follows.

Visual object: Start-button
Type is Button
Label is Start
Color is Red

If such an object is visible on the screen and in focus in the GLEAN simulation's working
memory, then the properties of that object become available to GOMS methods. An
attentional mechanism brings objects into focus one at a time, where focusing can be as
simple as searching through visual working memory until an object with appropriate
features is found. GLEAN provides both manual and visual actions, as follows.

Keystroke: This manual operation generates a typed character from the keyboard.
¹ype-in: This manual operation enters a sequence of keyboard characters.
Hold-down, Release: These manual operations generate lower-level keyboard events.
Click, Double-click: These manual operations generate mouse button events.
Point-to: This manual operation moves the mouse cursor to an object.
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Home-to: This manual operation moves the hand to its position over the keyboard.
¸ook-for-object-with-property-and-store2: This is a visual operation that scans the
display for an object with a speci"c property value and associates it with a named tag.
=ait-for-object-with-property-and-store2: This visual operator behaves comparably.

In contrast to LICAI, in which detailed speci"cations of an interface are built by hand,
GLEAN takes input from visual inputs generated by device simulations. A device
simulation provides all the information required by a GOMS method in the course of
executing a GOMSL program. In the current version of GLEAN, device simulations are
coded in C## and compiled together with the system. While this allows great #exibility,
it can also be time consuming, and so GLEAN provides an alternative by which models
can be executed without device simulations. Instead, auxiliary information can be
associated with the model itself, an approach that su$ces for some types of static
environmental information that need not change in response to user actions.

Executive-Process/Interactive Control (EPIC) is a prominent example of a detailed
cognitive model of low-level interaction with a computer interface (Kieras & Meyer,
1997). EPIC supports the construction of models that allow accurate and detailed
evaluation of human perceptual/motor performance. EPIC does not process at the
pattern recognition level, but instead deals with symbolic objects. Physical visual objects
represent location, size, color and other properties. These physical objects are made
available to the cognitive simulation as psychological visual objects, which include such
properties as position on the retina.

The EPIC cognitive architecture is considerably more sophisticated than that of
GLEAN, but shares some of its properties at the level of environment interaction. EPIC's
manual and visual operators, for example, are very detailed: instead of simple movement,
EPIC allows styles of movement, which include punch, point, pose, peck, ply and patter;
visual operations include move, "xate, preposition and prepare. Both systems, neverthe-
less, use the same general mechanisms for interacting with their environments. Our
discussion of GLEAN's properties in this regard thus applies equally to EPIC.

The ACT-R visual interface- uses a more direct approach to environmental interac-
tion (Anderson & Lebiere, 1998). ACT-R is a theory of the nature of human knowledge,
implemented in a production system. The visual interface integrates di!erent theories of
attention into a framework that encompasses both cognitive and perceptual processes.
Research with the visual interface, both theoretical and empirical, has emphasized the
processing of alphanumeric characters. A character object in the environment is repre-
sented as an object with speci"c properties, as follows.

(Letter-E
is a Abstract-Letter
value ‘‘E’’
line-pos2)

In the default optimizing mode of the visual interface, processing is object-based,
under the assumption of perfect visual recognition ability. Cognitive operators have
direct access to objects such as the one above, and characters and strings are auto-
matically processed with no chance for error. In the non-optimizing mode, however,
-By &&visual interface'' we mean to encompass both ACT-R Visual and its successor ACT-R/PM.
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processing is feature-based, rather than object-based. Characters are represented in
an LED form that contains 16 line segments, which constitute distinct visual features
that must be processed for recognition. Once recognized, objects*their identity as well
as their associated features*are available as chunks in the higher-level cognitive
process.

The implementation of the visual interface for ACT-R/PM is based on the interface
construction facility built into Macintosh Common Lisp. The modeler constructs an
interface in the MCL interface toolkit, and then translation routines automatically build
iconic representations for interface objects such as characters, strings and other types
of object. Operations that access and manipulate these representations include the
following.

Press-key: This manual operation types a keyboard key.
Move-mouse, Click-mouse: These manual operations move the mouse cursor and gener-
ate button events.
Find-location: This visual operation "nds screen locations based on a speci"cation that
may be a screen position, a description of a display object or a list of the features of an
object.
Move-attention: This visual operation shifts attention to di!erent locations on the
screen.

The Ritter et al. (2000) Sim-eyes and Sim-hands take the conceptual approach of ACT-
R/PM a step farther, by embedding perception and action in the user interface. The
Sim-eye and Sim-hand systems are based on a powerful, general simulation architecture
for environment interaction. Instead of environment speci"cations or device simulations
that run independently of a user interface environment, Ritter et al. advocate a scheme in
which a user interface management system is extended to incorporate a simulated
sensor/e!ector component. This approach provides a number of development bene"ts: it
can lead to more accurate models that are less costly to develop; it reduces inadvertent
model-task dependencies; it supports experimentation across models and across tasks at
a low development e!ort. The Cognitive Model Interface Management System has been
used to simulate perception and motor activity for the Garnet user interface management
system (Myers et al., 1990) and ACT-R, and the Tcl/Tk interface to Soar 7, demonstrat-
ing the generality of the work.

We describe all of these approaches and their relatives are being indirect; the informa-
tion available to a cognitive model does not arise directly from the visual display.
Instead, some input speci"cations are constructed by hand; others are constructed
automatically, but based on data structures internal to the use interface, rather than on
the visual representations that result from these structures. In other words, no direct
computational process exists between the information visible in the environment and the
input actually processed by the model. When evaluating cognitive models that take input
indirectly, rather than from a real interface, researchers must keep in mind that the
relevance of experimental results depends on the accuracy of the simulation or speci"ca-
tion. Anderson and Lebiere describe this issue in terms of &&stresses'' on cognitive
modeling research (Anderson & Lebiere, 1998), which can arise in a number of ways,
including the following.
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Missing object and object feature information. A cognitive process might plausibly
include a sequence that involves moving to an OK button to con"rm an action; an
interface speci"cation or simulation would include the necessary descriptive information
for the action. In a real environment, however, one often "nds multiple occurrences of the
same object, distinguishable by location and the surrounding visual context. An OK
button might belong to a dialog box in the currently active application or to an
application in the background. Abstracting away such distractors simpli"es the task for
a cognitive model.

Missing classes of event and object information. In some cases, a simulated interface or
speci"cation may dispense with entire classes of information. Timing is a common
example. Cognitive models sometimes assume that the sequential relationships between
events in the environment are relevant, but not their duration. This approach can run
into problems in a real user interface*how long should a model wait until the
environment responds to an action or returns to quiescence? Clicking on a menu header
and waiting for the menu to appear may take less than a second, for example, but waiting
for an application to start may take much longer; sometimes undetected events can cause
the interface never to respond at all. (Dix (1993) gives a general, theoretical discussion
and describes some of the practical implications of this and related interface modeling
issues.)

Inconsistent object information. By simulating or reproducing an environment, even at
a high degree of detail, rather than interacting directly with it, artefacts can be introduced
into the object recognition process. In the ACT-R visual interface, for example, charac-
ters are represented in an LED representation, which cannot capture curved segments or
some types of diagonal segments. Letters such as &&A'', &&B'' and &&C'', must be represented
by horizontal and vertical segments only. This is a minor example in comparison with
the potential di!erences between static object speci"cations or device simulations and
actual interface objects.

The signi"cance of these examples is not that cognitive models should be extended to
handle all classes of information, at all levels of detail. On the contrary, abstractions are
necessary, to limit development e!ort and to allow for the valid comparison of disparate
models. Rather, the point is that if one has design control over both a cognitive model
and the environment in which it is evaluated, questions of ecological validity can escape
one's attention; building a speci"cation of an interface, or an interface designed for
a speci"c cognitive modeling experiment, one is parsimonius with one's e!ort, implemen-
ting only those factors judged relevant to the problem at hand. Working with real
interfaces, as discussed in the following section, forces explicit consideration of how to
handle the subtleties of interaction with a sometimes complex environment. Addressing
these issues directly has the additional bene"t of improving opportunities for explora-
tion, possibly allowing novel, unexpected relationships to be identi"ed.

3. Direct interaction with the interface

VisMap stands in contrast to the systems described in Section 2 by interacting directly
with the user interface. VisMap is designed to be situated between a cognitive model and
the user interface. From the point of view of the user interface of an application (or
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interactive utility or the operating system), VisMap is a set of functions for passive
observation and active control. From the perspective of a cognitive model, VisMap is
essentially invisible: it maps the primitive perception and motor operations of the model,
such as ,nd-object-with-features, move-mouse-to-location, press-key and so forth, to these
observations and control functions.

Being to some extent independent of both the user interface and a cognitive model,
VisMap must depend for its generality on common properties of cognitive models and
some kinds of task analysis models. For VisMap's design we make some assumptions
about a hypothetical generic cognitive modeling simulation, assumptions that re#ect
most of the relevant environment interaction properties of the models discussed above.
Identifying these assumptions also helps to separate the functionality expected of
VisMap from that of the cognitive model that controls it.

The generic model represents attentional processing, but does not extend to pattern
recognition. It relies on an iconic representation of objects in the environment, in which
graphical icons may be accessed by identify or at the object feature level. Features
include type, location, size and related geometrical properties. Modeling emphasis,
however, is on character and text processing; text icons may be accessed by direct
matching. The generic model supports only a few types of motor actions: pressing keys
on the keyboard, pressing the mouse button and moving the mouse pointer. These last
actions can be tied to the results of visual processing, so that objects can be manipulated.
Finally, perception and action occur in a serial process. This generic model does not
incorporate features of more sophisticated, existing cognitive models, in particular
multiple modalities, parallel processing and detailed visual and motor decompositions.
Nevertheless, signi"cant functionality is present, enough to motivate one of VisMap's
central design goals: to make relevant interface information and appropriate interface
operators available to this generic model.

Even for such a restricted model, it might seem that we have set ourselves overly
ambitious goals for perception and action in VisMap. We know of no arti"cial vision
systems that can reliably produce arbitrary iconic representations from the physical,
three-dimensional world. Robots, even in domains with simple motor requirements, can
have trouble dealing with the dynamics and instability of real environments. Fortunate-
ly, we can rely on signi"cant constraints on the complexity of the user interface, imposed
by explicit standards and common design conventions.

Although the user interface is designed to match human perceptual abilities, it is
a vastly simpler environment than the physical world: it is discrete, rectilinear and
two-dimensional. Unlike the real world, almost all objects in the interface are clearly
delineated from their background. Buttons and other controls are rectangular, with lined
borders and shadows. Text is drawn in contrasting colors. Three-dimensional interfaces
are still a rarity; in a conventional interface, obscured information can simply be brought
to the foreground for inspection, with little search or inference required.

Further, the interface is highly structured. For example, related items are grouped and
aligned vertically or horizontally, as we see in palettes, toolbars and "ll-in forms.
Window borders partition information. Icons and text strings are often drawn from
a small, "xed set, for immediate visual recognition. By design, interfaces support the
e$cient recovery of information through their visual structure (Woods, 1991). The
interface is also heavily annotated. Simple inspection is often enough to establish the
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correct interpretation of objects in the environment. Buttons and menu items are labeled
with their functions. Visual highlighting indicates that a type-in "eld has the current
focus, or that a speci"c button is the default action. The active window has a border with
a distinctive color. When implicit structure is insu$cient for correct interpretation of
information, explicit cues are supplied.

Comparable constraints apply to action in the user interface. User interfaces are
designed to simplify and facilitate the successful execution of action. Design guidelines
include the following (Woods & Roth, 1988; Apple Computer, 1992; Gentner & Neilsen,
1996; Shneiderman, 1998; St. Amant, 1999).

f ;ser control: The interface should not initiate actions, but rather respond like a tool.
f Consistency: A user action under well-de"ned conditions should always produce the

same e!ect.
f Perceived stability: The interface should remain stable (e.g. in visual layout) as time

passes.
f Continuous representation: Objects and actions of interest should remain continuously

visible.

These guidelines promote the development of interfaces in which simple motor actions
are generally reliable, without the need for complex dependencies between actions for
handling failures and unexpected contingencies.

All of these factors contribute to the feasibility of e!ective computational vision and
action in the interface.

4. VisMap

As an integrated system, VisMap is strongly in#uenced by techniques for image process-
ing (Gonzales & Woods, 1992) and arti"cial intelligence planning (Hendler, Tate
FIGURE 1. Genetic ibot architecture.
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& Drummond, 1990). Figure 1 shows the basic architecture. The bulk of the processing
in VisMap is devoted to visual processing and motor behavior, as discussed below.

4.1. VISUAL PERCEPTION IN VISMAP

The goal of the visual component of VisMap is as follows. Input to the system is the raw
contents of the display, at a pixel level; output is a description of the high-level user
interface components. Processing must be application- and domain-dependent, and must
follow the general functional outline of biological visual processing. Our work draws on
the computational account of high-level vision proposed by Ullman (1996), and an
implementation of many of these ideas by Chapman (1991). As will be clear from the
discussion below, our work also adopts two conventional assumptions in vision
modeling research (Marr, 1982). First, despite the considerable di!erences between
biological systems and computer systems at a hardware level, we can develop computa-
tional processes that are faithful to biological processes at a functional or task level. This
assumption is also common in most computational cognitive modeling. Second, vision is
not a single, indivisible process but rather a set of stages in which information
is incrementally processed to produce increasingly re"ned representations of the
environment.

4.1.1. Low-level processing. In biological systems, low-level vision is responsible for
analysis of color, depth, motion, shape and texture of objects. In VisMap, the goal for
low-level processing is to transform the raw data, a two-dimensional array of colored
pixels.

Operationally, this is a straight-forward image segmentation problem (Gonzales
& Woods, 1992). The process begins with a screen capture, which records the color
values of each pixel on the screen. Region segmentation is the result of the pixel grouping
algorithm shown in pseudo-code Figure 2. The segmentation algorithm allows pixels to
be activated in any order, growing from a single starting point, and pixel values can be
overwritten as parts of the screen bu!er change. Partial or total analysis of the screen can
be performed depending on how many pixel values are added through the algorithm. In
the resulting representation, if two pixels are adjacent (with eight-neighbor connectivity)
and have the same color, then they are in the same region, and region membership is
associative. The result is internally homogeneous, often rectilinear regions of pixels.

A special case of motion analysis is also handled at this level: changes to the
environment, such as the appearance and disappearance of windows, the updating of text
and so forth. This is not the more complex task of object tracking (the movement,
appearance and disappearance of objects), which overlaps to some extent with the object
recognition process and is partially handled during a later process. Motion analysis here
covers only the basic recognition of change. The implementation works through a bit-
wise comparison, assisted by standard graphics hardware. On the triggering of
such a screen change event, the segmentation algorithm breaks the a!ected area into
appropriate regions.

Low-level processing in VisMap di!ers in many important ways from more cognitive-
ly plausible accounts of vision. For example, some processes, such as edge detection, are
trivial here because there are few meaningful gradients of color or intensity in the user



GrowGroupFrom (location)
Set groupColor"color of pixel at location
Add point at location to ExpansionList
while (length of ExpansionList'0)

ExpandAbout (location)

ExpandAbout (location)
Increment pixelCount
For each neighboringPixel around location

If (color of neighboringPixel"GroundColor)
Call ComputerType (NeighboringPixel)
if (NeighboringPixel isa BorderType)

Add NeighboringPixel to BorderList
Call UpdateBoundingBox ()
Add NeighboringPixel to ExpansionList

FIGURE 2. Region segmentation algorithm.
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interface, and regions and boundaries tend to have distinct and consistent coloring.
Many of the results that might be expected from a complete vision system, such as
interpretation of di!erences in texture, are missing. The entire process is serial, rather
than parallel. Three-dimensionality, including stereo processing and continuous object
movement are neglected almost entirely. The two processes, nevertheless, share some
important abstract properties. First, results at the low-level stage are comparable,
though considerably simpli"ed in the case of the computational system. Second, both
processes are bottom-up, relying on the image data rather than any knowledge and goals
derived from speci"c tasks. Third, low-level processing in VisMap implicitly re#ects
a view of attention as selective processing, in particular early selection (Allport, 1989).
The segmentation algorithm can be &&focused'' on a speci"c starting point and a given
region, limiting further processing at a higher level. Alternatively, a late selection form of
attention can be managed, as part of high-level processing. In general, however,
modeling the details of attention is not a part of VisMap; this is considered the
responsibility of an external cognitive model.

4.1.2. High-level processing. In biological systems, high-level vision applies the results of
low-level vision to accomplish tasks such as object recognition and classi"cation, visually
guided manipulation, navigation through an environment and other activities. Our
concern will be with object recognition of icons that commoly appear in the user
interface. Object recognition in VisMap occurs at an intermediate and a high-level stage
of visual processing. The main distinction between the two stages is the reliance at the
high level on knowledge about objects, rather than general physical knowledge such as
spatial relationships used at the intermediate level (Ullman, 1996).

At an intermediate level, visual features and relationships are derived from the
constructs produced during the low-level stage. Intermediate-level functions and rela-
tionships execute in bottom-up fashion, relying solely on the information acquired from
the low-level pixel grouping process. To streamline the complexities of high-level visual
processing, segmented regions are bounded rectangularly. Since most graphical interface
components are rectilinear, this approximation is acceptable, though a more accurate
method could be implemented if needed. Representative examples are given in Figure 3.
In these examples, spatial properties refer to the bounding box of a region.



Width:
region.lowerRightX ()— region.upperLeftX()#1

Height:
region.lowerRightY ()— region.upperLeft()#1

Area:
MaxPossibleNumPixels"Width()* Height ()
area"ActualNumPixels ()/MaxPossibleNumPixels

ContainedIn:
inner.upperLeftX ()*outer.upperLeftX () and
inner.upperLeftY ()*outer.upperLeftY () and
inner.lowerRightX ())outer.lowerRightX () and
inner.lowerRightY ())outer.lowerRightY ()

FIGURE 3. Examples of intermediate features.
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Some auxiliary functions are de"ned at this level that have no real cognitive counter-
parts; they are aimed at practicality rather than cognitive plausibility. An example is
Actual NumPixels in Figure 3. As VisMap matures, dependence on these will be reduced.

At the high-level processing stage, objects are recognized, drawing on information
produced during the intermediate and low-level stages. Rules are de"ned to represent
structural relationships between regions; each rule corresponds to a di!erent type of
interface objects. Each rule can be considered a specialized implementation of a template
for an object. For an object on the screen to be recognized, there must exist a template
which describes how speci"c components must be present and in the correct relative
positions.

For example, the template rule in Figure 4 "nds drop boxes. Other templates identify
right angles, rectangles, circles, check marks, up, down left and right triangles; these
contribute toward composite templates that identify buttons, windows, check boxes,
radio button, list boxes, vertical and horizontal scroll bars, the entire alphabet for
a single typeface, plus more specialized objects. As the sample template rule shows,
high-level templates make calls to pre-de"ned intermediate-level region operations.
Successive applications of such sets of templates detect and identify the visible controls in
the interface. The existing set of templates in the system was developed opportunistically
to provide the functionality needed to identify all of the most common interface controls.

The result of the high-level processing stage is a set of meaningful interface objects that
become available to a cognitive model layered on top of the substrate. Non-meaningful
shapes (as de"ned implicitly by our heuristic rules) are deemed part of the irrelevant
background. Note that among these non-meaningful shapes may be partially occluded
windows, widgets and text; in general, if an object is not entirely visible, it may be
recognized. In the real, three-dimensional world, this limitation would be catastrophic.
In the user interface, however, where for the most part only fully visible objects in the
foreground are of interest, the limitation does not prevent e!ective action.

As with the low-level stage, the intermediate- and high-level processes re#ect some
important properties of biological vision, but also di!er signi"cantly from more cogni-
tively plausible descriptions. The di!erences are most pronounced at the intermediate
stage, where there is very little #exibility in the computational process. For example,
Hildreth and Ullman, in describing the properties of intermediate-level vision, give the



If object Obj is a downArrow ()
and Obj is containedIn () object RB

such that RB is a raisedButton ()
and RB is toTheRightOf () object RTA

such that RTA is a rectangularTextArea ()
and RTA is recessed () and has width ()'height ()

Then Obj is a component of a dropBox

FIGURE 4. A description rule for drop boxes.
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example that it is not feasible to have an &&inside/outside'' detector at every possible
location to test whether a point falls within a contour (Hildreth & Ullman, 1989);
however, this is essentially the purpose feature computations in VisMap serve. At the
high-level stage, processing is limited to object recognition, and it is not at all clear how
the template-based approach would generalize to other tasks such as manipulation and
navigation or even recognition in three dimensions.

4.1.3. Cognitive modeling interface. The operations supported by the system, at the
programmatic interface to a cognitive model controller, are shown below.

Get-widgets: This operation returns a list of all widgets visible on the screen. An
optional argument can specify the type of widgets to be returned. All the familiar user
interface controls in the Windows user interface can be returned: buttons, scroll bars
(including the scroll box, scroll arrows and background regions), list boxes, menu items,
check boxes, radio buttons and application windows. Depending on the value of
a parameter setting, container relationships between widgets are computed.

Find-widget: Given a test of the properties of a widget, this operation returns a speci-
"cation of the matching objects it "nds on the screen. Currently, these properties are
limited to its type and spatial properties (location, width, height). If no such widget is
found, the operation returns an empty list.

Get-pixel-groups, Find-pixel-group: These operations are the equivalent of their wid-
get counterparts. As input they take a rectangular boundary, and return objects repres-
enting the pixel groups within that boundary. Given the boundaries of a widget, then,
these operations return the pixel groups that constitute that widget. These operations
can test for spatial properties as well as for the color of a pixel group.

Get-strings, Find-string: These operations are the text-based equivalent of get-widgets
and ,nd-widget. The "rst operation returns a list of objects representing all the strings
visible on the screen that are separated either vertically or by horizontal white space. The
second operation returns objects representing the text and spatial characteristics of
a speci"ed string, if such is visible on the screen.

Get-letters: This operation is a more primitive version of get-strings. It returns all the
individual letters recognized on the screen, with their location and extent.

Get-screen-objects: This operation combines get-widgets and either get-strings or
get-letters, depending on a parameter setting. Depending on the value of a parameter
setting, container relationships between objects (widgets and strings) are computed.

Set-bounds: This operation constrains the operations that follow to occur only within
the speci"ed rectangular bounds. With this operation a cognitive model can focus
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processing on a region such as a single window, for example, ignoring objects outside its
boundaries.
=ait-for-object: This operation returns when a new object of a speci"c type has

become visible.

On the face of it, this set of operations has an obvious shortcoming: it places too few
constraints on the development of a cognitive model. An improved set of operations
would include underlying representations of retinal zones (a fovea, parafovea and so
forth, as in EPIC and Sim-eyes), more constraints on tests of visual object features (e.g.
modeling the limitations of feature integration, as in ACT-R), and in general a better
account of attention, all of which would help prevent the development of too-powerful
cognitive models. These operations are thus currently best treated as primitives with
which one can construct di!erent plausible controller interfaces.

A rudimentary visual model that addresses these concerns is under development.
However, our steps in this direction are tentative. One of the goals of VisMap is to
provide a general-purpose tool for a variety of cognitive models. We face a practical
tradeo! between power and generality: a more powerful (i.e. detailed) visual representa-
tion may reduce the range of models to which VisMap is applicable, due to con#icts with
the existing assumptions of these models; a weaker representation will increase this
range, but at the cost of greater modeling e!ort. That said, the current operations
provide some degree of modeling support, in the form of timing metrics.

A duration computation is associated with each operation. For searches at the pixel
group level, duration is based on the area to be processed. For "nding strings and
widgets, duration is based on the number of objects within the region under considera-
tion. This information is also made available to an external cognitive model to improve
its internal timing estimates; in other words, VisMap provides information about the
visual environment to the model in exchange for more accurate timing assessments for its
processing. Due to the concessions VisMap must make to functionality, its performance
in real time often cannot match its duration computations. As VisMap matures in
e$ciency and representational detail, however, we expect that the default duration
estimates (and their actual performance) will more closely approach those of cognitively
plausible models.

VisMap incorporates some 30 feature computation functions and 80 interpretation
rules of the types given in Figures 3 and 4. Practical limitations exist on many opera-
tions, however, in addition to the issues raised above. Visual changes to the mouse
cursor, for example, are not detected. Sometimes objects are aligned in such a way that
their identically colored boundaries overlap, causing recognition rules that depend on
perimeter patterns to fail for those objects. The rules for character recognition are also
imperfect. Graphical patterns occasionally cause spurious letters to be returned. Kerning
can cause some uppercase letters to touch their neighbors, which cannot be handled by
the recognition process. Thus extraneous, missing and even incorrect letters can result.
To partially remedy (but not completely solve) this problem, cost-based string matching
is performed for "nding speci"c strings, using the Levenshtein distance metric (Sanko!
& Kruskal, 1983). A longer-term solution will involve devising a more robust recognition
process, potentially following the lead of Anderson and Lebiere toward general pattern
recognition (Anderson & Lebiere, 1998). Finally, VisMap's recognition of only a single
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typeface limits its #exibility in detecting di!erences between selected and unselected
windows and some button icons. VisMap is a work in progress; we expect that these
limitations can be addressed in the short term.

4.2. MOTOR BEHAVIOR VISMAP

Motor behavior in VisMap is an extreme simpli"cation of actual performance, rudimen-
tary but adequate for component action in the user interface. The motor module
concentrates on generating actions that have appropriate durations, but neglects proper-
ties of the actions below this level of abstraction. Thus, for example, the duration of
a mouse movement follows Fitts' (1954) law, but the trajectory of the movement from
a starting location to an ending location has no lateral deviation, and its velocity is
constant over the course of the movement, without the characteristic initial acceleration
and "nal closed-loop targeting phase (Meyer, Abrams, Kornblum, Wright & Smith,
1988).

Given relevant information about objects in the interface, the motor module can select
icons, click buttons, pull menus down, turn on radio buttons and carry out other
standard, familiar operations. Operationally, these actions are implemented as special-
ized functions for manipulating the event queue at the operating system level. Its event
insertions are indistinguishable from user-generated events. All action in the user
interface proceeds from sequences of the primitive events given below. As with visual
processing operations, useful higher-level abstractions, such as click-button, have been
de"ned. These are handled in a straight-forward way as sequences of the more primitive
events.

Key-down, Key-up: These operations press and release keys on the keyboard. Their
duration is a parameterized constant, set by default at 200 ms.

Mouse-up, Mouse-down: These operations press and release the left mouse button.
Their duration is a parameterized constant, set by default at 100 ms.

Mouse-click, Mouse-double-click: These operations are composed of Mouse-up and
Mouse-down operations. Their duration simply sums the durations of their component
actions.

Move-to-point: This operation moves the mouse pointer to the location supplied. The
duration ¹ of the operation is governed by Fitts' law in the following version (MacKen-
zie, 1995): ¹"a#b log

2
(A/=#1). The values of the constants a and b can be speci"ed

per task, but are set by default to a"230 and b"166 for pointing with the mouse
(MacKenzie, 1995). The value for the distance A is measured between the current mouse
pointer location and the location given; the target width= is set to a nominal constant
value.

Move-to-object: This operation retrieves the location property of an object and sets
the appropriate parameters for execution of the Move-to-point operation.

Drag-to-point: This operation is comparable to Move-to-point, except that the para-
meters a and b are set to di!erent values: a"135 and b"249 (MacKenzie, 1995).

The default duration computation for each of these operations is as described. These
default computations can be overridden by an external cognitive model interfacing with
the motor module. As with our discussion of vision processing, VisMap makes no
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commitment to speci"c action decompositions, concentrating instead on low-level func-
tionality, which is straight-forward. The motor modeling limitations of the system should
be clear. Actions are represented at a much coarser level of detail than in systems such as
EPIC, Soar and ACT-R/PM. Nevertheless, their more sophisticated decompositions of
movement actions can be built on top of the functions described above, with duration
functions modi"ed appropriately.

5. VisMap in practice

This section illustrates the use of VisMap in two di!erent settings. The "rst example
shows how VisMap can be used to produce a sequence of static scenario descriptions, for
later input to a cognitive modeling system. In the second example, VisMap is coupled
with ACT-R/PM to carry out a simple visual task.

5.1. GENERATING SCENARIOS WITH VISMAP

Some cognitive models expect a static speci"cation of the state of the user interface as
input; VisMap can be used to generate such speci"cations. We demonstrate the genera-
tion procedure with a simple visual task. A document called numbers.text contains
a sequence of words naming the numbers from &&one'' to &&ten''. The task is to launch
a word processing application, open the document and select word &&"ve''. Figure 5
shows the state of the interface near completion of the task.

This task required only a simple, programmatic controller, designed without concern
for cognitive plausibility. Its role is to generate the environmental information on which
a hypothetical cognitive model can base its decisions. To do this, it relies on both
VisMap primitive operations and knowledge about the structure of the visual display
and interaction in the Microsoft Windows user interface.

At each step, the controller generates description of the current state of the interface, as
represented by the objects returned by VisMap. The printed representation of these
objects can easily be modi"ed to match the syntactic input requirements of a cognitive
model, but in this example it is not intended to match any speci"c model. The analysis
below describes each of the controller's steps at two levels of detail: the VisMap
operations that execute perception and motor actions in the interface, and the more
abstract tasks that these operations constitute. Tasks are annotated with a discussion of
the interaction issues VisMap faces, its techniques for addressing potential problems and
some of its speci"c limitations.

(1) Start Notepad. The controller can follow di!erent courses of action to start an
application in Windows. A labeled icon for the application may be present on the
desktop. Many applications can be started by selecting them from the Start menu,
which is usually activated by pressing a labeled button in the lower left corner of
the desktop. Each running application is also associated with a labeled button in
a task bar at the bottom of the screen. Raising an already running application
involves the following sequence:
(a) Search for the string 00Notepad11 in the task bar. (Operations: set-bounds; "nd-

string.) The boundaries of the task bar are hard-coded in the controller. These



FIGURE 5. The Notepad example environment.
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are used to limit visual processing to the appropriate region. A text object is
returned if the string is found in this region.

(b) Activate the application. (Operations: set-bounds; get-widgets; mouse-click;
wait-for-object.) Processing bounds are reset to the entire display, and its state
is recorded. This is necessary for the following step, in which the application
button is clicked and the controller waits for the appearance of the Notepad
window. VisMap detects changes by polling the visual display for di!erences
from an earlier recorded state. When the Notepad window appears, it will be
detected and returned. In the controller, these individual steps are performed as
part of a set procedure, simulating an event-driven process, as might be
appropriate for a speci"c cognitive model.

The other procedures for starting an application are comparable. Some of the assump-
tions and practical limitations of VisMap can be seen even in this short sequence.
External knowledge guides the controller's interpretation of the function of interface
icons; for example, it can safely treat strings and buttons as being equivalent in the task
bar, an equivalence that does not hold elsewhere in the display. One of the alternative
methods of starting the application, selecting from the Start menu, relies on comparable
knowledge about Windows conventions. Further, the controller must hard-code the
location of the Start button, because VisMap cannot recognize its boldface label.



(MOUSE-POSITION 443 264)
(BUTTON :LEFT 3 :TOP 745 :RIGHT 53 :BOTTOM 763)
(BUTTON :LEFT 554 :TOP 16 :RIGHT 566 :BOTTOM 26)
(BUTTON :LEFT 536 :TOP 16: RIGHT 548 :BOTTOM 26)2
(VSCROLL :LEFT 558 :TOP 55 :RIGHT 566 :BOTTOM 404)
(HSCROLL :LEFT 163 :TOP 409:RIGHT 553 :BOTTOM 553)
(WINDOW :LEFT 157 :TOP 11 :RIGHT 572 :BOTTOM 423)2
(TEXT :LEFT 370 :TOP 754 :RIGHT 402 :BOTTOM 754 :STRING ‘‘AIIERGO’’)
(TEXT :LEFT 405 :TOP 754 :RIGHT 446 :BOTTOM 754 :STRING ‘‘COMMON’’)
(TEXT :LEFT 449 :TOP 754 :RIGHT 468 :BOTTOM 754 :STRING ‘‘LISP’’)
(TEXT :LEFT 12 :TOP 495 :RIGHT 51 :BOTTOM 495 :STRING ‘‘RECYCIE’’)
(TEXT :LEFT 54 :TOP 495 :RIGHT 69 :BOTTOM 495 :STRING ‘‘BIN’’)2
(TEXT :LEFT 166 :TOP 60 :RIGHT 184 :BOTTOM 60 :STRING ‘‘ONE’’)
(TEXT :LEFT 191 :TOP 60 :RIGHT 210 :BOTTOM 60 :STRING ‘‘TWO’’)
(TEXT :LEFT 217 :TOP 60 :RIGHT 243 :BOTTOM 60 :STRING ‘‘THREE’’)
(TEXT :LEFT 250 :TOP 60 :RIGHT 271 :BOTTOM 60 :STRING ‘‘FOUR’’)
(TEXT :LEFT 277 :TOP 60 :RIGHT 296 :BOTTOM 60 :STRING ‘‘FIVE’’)

FIGURE 6. Partial description generated from the starting state.
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A partial description of an intermediate state of the interface, a representation of entire
display, is shown in Figure 6. Although the recognition rules produce only an imperfect
rendering of the displayed text, VisMap can "nd each of the words reliably. Also notice
that none of the graphical icons on the left of Figure 5 are returned. The low-level visual
processing stage generates the appropriate internal pixel group regions, with their
associated features; these can be retrieved by a call to get-pixel-groups. However, because
there exist no rules to recognize the combinations of features, no objects are created to
represent the icons.

(2) Open the document numbers.text. In most applications, opening a document can
be managed in di!erent ways: a keystroke accelerator may open a "le selection
dialog box, or a recently used "le may be present in a pulldown menu. The
controller follows the most basic approach.
(a) Find the File menu at the top of the Notepad window. (Operations: set-bounds,
"nd-string.) Identifying a menu with a given name involves more than simply
"nding the appropriate string. In Windows, if more than one application is
open, more than one instance of the string &&File'' may be visible. The string
&&File'' may even be present in the text of a document. The controller in this
example takes the top left corner of the Notepad window to be the origin of
a coordinate system and searches through the text objects inside the bound-
aries of the window for occurrences of the string &&File''. It returns the nearest
instance, measured by vertical distance, which limits it to the menu bar. An
alternative strategy might incorporate more information about the structure of
application windows in the user interface.

(b) Pull down the menu. (Operations: move-to-point; get-widgets; mouse-click;
wait-for-object.) Like the appearance of an application window, a menu selec-
tion operation requires that the controller wait until the menu actually ap-
pears. As before, this occurs by via polling process.

(c) Find the 00Open211 option on the menu. (Operations: set-bounds; "nd-string;
move-to-point; mouse-click; wait-for-object.) A comparable sequence here
waits for the appearance of the dialog box.



34 R. ST AMANT AND M. O. RIEDL
(d) Find and select the document numbers.text. (Operations: set-bounds; "nd-
string; move-to-point; mouse-click; wait-for-object; type-string; press-key.) In
this operation the controller assumes that the document is in the default
directory, so that it need not browse through the "le system hierarchy. The
name of the document may be visible in a list box in the Open "le dialog. The
controller follows an alternative procedure by simply typing in the string
&&numbers.text'' into the active text box, and pressing the return key.

(3) Select the word 00,ve11 in the document. The only point of note here is that words
and letters, like other visible objects, have spatial extent.
(a) Find the word 00,ve11. (Operations: set-bounds, "nd-string.) Notepad, by de-

fault, displays new documents in a system font, readable by VisMap. In an
extended version of this example, not described here, the controller changes the
Notepad font to MS Sans Serif, enabling it to process formerly unreadable text.
Here the text is already in the appropriate visual form. VisMap has one
additional requirement: the words are separated by three spaces, rather than
a single space; otherwise word boundaries are not detected reliably.

(b) Select the word. (Operations: move-to-point, mouse-down, move-to-point,
mouse-up.) A common short cut involves a double-click of the mouse inside the
boundaries of the word.

With an appropriate controller, VisMap can carry out more extensive procedures than
the scenario given, but they all break down the end to similar operations performed on
similar interface objects. All along the way, the substrate generates and stores descrip-
tions of the state of the interface. This process can also be carried out by hand, using
human guidance rather than an automated controller for transitions between interface
states. This scenario demonstrates one of the main roles of VisMap, as an automated
or semi-automated generator or realistic interface scenarios, for model input and
validation.

5.2. EXECUTING MODELING ACTIONS WITH VISMAP

In this second example, we use a portion of a task devised by Byrne (1997) to illustrate
the operation of ACT-R/PM. Byrne notes that the design is not an attempt at a veridical
cognitive model, but is instead an example of a simple, visual task. A sequence of words is
presented on the screen. The task is to "nd the nouns among these words, and for each
one found, to click on it to select it and then to delete it. Our discussion here will be brief
due to the similarities with the previous example. The primitive VisMap operations that
accomplish this task are identical. Their combination and dynamic application, however,
are now governed by a running cognitive model.

Productions for the task include attend-word, move-to-noun, click-noun, delete-noun
and skip-word. Nouns and other words are also added to memory, including &&dog'',
&&girl'', &&the'', &&hit'' and so forth, along with each word's grammatical category. In the
execution of the unmodi"ed ACT-R/PM model, the environment is a dialog window
designed to display some number of regions labeled with words. Attention is directed by
the vision module to each word in turn. For nouns, the move-to-noun production
activates the motor module to move the mouse pointer to the appropriate location.
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Other words are skipped. Once the movement has completed, the mouse is clicked to
select the noun and the delete key is pressed to delete it. The process repeats with a new
display of words.

In our restricted version of this task, with the integration of ACT-R/PM and VisMap,
only a single iteration is performed. Rather than a dialog designed speci"cally for the
task, the integrated system relies on a word processor, here again Notepad, open to
a document containing appropriate text. The click-noun production is modi"ed to
perform a double-click selection action, but otherwise the ACT-R/PM model remains
the same.

ACT-R/PM ordinarily carries out actions in the user interface by calling functions that
retrieve appropriate information and e!ect changes through a Lisp-based user interface
management system. In the original task, ACT-R/PM works through an experiment
module that consolidates perceptual and motor actions. In the integrated system, these
experiment functions are redirected to call VisMap operations. A process-screen function
generates a hierarchical description of the features of the words visible; output functions
for pressing keys, moving the mouse pointer and pressing the mouse button directly call
their VisMap equivalents. An abbreviated trace of the task execution is shown in
Figure 7.

This scenario demonstrates the second main role of VisMap, as an on-line, integrated
vision and action substrate for a working cognitive model.

6. Discussion

This section discusses the limitations of VisMap as a development tool for cognitive
modeling and plans for future improvement of the system. For the current implementa-
tion, the feature computations and rules were all constructed by hand in a programming
language development environment. This can be laborious, especially given the con-
straints imposed by the simple control structure for rule selection. We are currently
working on three tools to address development issues, for feature and rule de"nition,
scenario extraction and regression testing. We intend for the tools to form the core of
a toolkit for exploratory research and practical development in the area of computa-
tional models of visual cognition.

Feature and rule de,nition: We are developing a simple graphical interface, compara-
ble to pixel-editing facilities in a drawing package, to allow users to de"ne features by
selecting them and drawing them, rather than describing them programmatically. We are
also developing a rule de"nition and editing tool that allows users to con"gure features
spatially and combine them in text form, to produce high-level rules.

Scenario extraction: VisMap produces display descriptions in a few limited forms. As
we saw in Section 2, however, cognitive models describe environments in slightly
di!ering formats. Currently, specifying a translation can be handled programmatically,
but a more structured, language-based solution would be more general and #exible. Such
a translation language is currently under development.

Regression testing: Regression testing allows developers to establish a baseline of
performance for a system, and then, with each change in the system, to ensure through
repeated testing that its behavior does not signi"cantly degrade. Some elements of



; Loading ACTR-DEMO: actr-demo; example1.lisp
; (/Research/systems/vismap/domains/actr-demo/example1.lisp)
; Loading ACTR-DEMO: actr-demo; example1.actr
; (/Research/systems/vismap/domains/actr-demo/example1.actr)

Running ACT-R at time 0.000. Cycle 0 Time 0.000: Attend-Word
Running ACT-R at time 0.185. Cycle 1 Time 0.185: Skip-Word
PM: Skipping word: ‘‘the’’
Running ACT-R at time 1.235. Cycle 2 Time 1.235: Attend-Word
Running ACT-R at time 1.420. Cycle 3 Time 1.420: Move-To-Noun
PM: Going to delete word: ‘‘boy’’
VisMap: Move cursor to (126 104).
Running ACT-R at time 5.106. Cycle 4 Time 5.106: Click-Noun
VisMap: Key press: Mouse-Double-Click.
Running ACT-R at time 5.806. Cycle 5 Time 5.806: Delete-Noun
Running ACT-R at time 5.856. Cycle 6 Time 5.856: Attend-Word
VisMap: Key Press: Delete.
Running ACT-R at time 6.256. Cycle 7 Time 6.256: Skip-Word
PM: Skipping word: ‘‘the’’
Running ACT-R at time 7.306. Cycle 8 Time 7.306: Attend-Word
Running ACT-R at time 7.491. Cycle 9 Time 7.491: Skip-Word
PM: Skipping word: ‘‘hit’’
Running ACT-R at time 8.541. Cycle 10 Time 8.541: Attend-Word
Running ACT-R at time 8.726. Cycle 11 Time 8.726: Skip-Word
PM: Skipping word: ‘‘hit’’
Running ACT-R at time 9.776. Cycle 12 Time 9.776: Attend-Word
Running ACT-R at time 9.961. Cycle 13 Time 9.961: Skip-Word
PM: Skipping word: ‘‘the’’
Running ACT-R at time 11.011. Cycle 14 Time 11.011: Attend-Word
Running ACT-R at time 11.196. Cycle 15 Time 11.196: Move-To-Noun
PM: Going to delete work: ‘‘girl’’
VisMap: Move cursor to (166 104).
Running ACT-R at time 14.882. Cycle 16 Time 14.882: Click-Noun
VisMap: Key press: Mouse-Double-Click.
Running ACT-R at time 15.582. Cycle 17 Time 15.582: Delete-Noun
Running ACT-R at time 15.632. Cycle 18 Time 15.632: Attend-Word
VisMap: Key press: Delete.
2

VisMap: Key press: Return.
2

FIGURE 7. A trace of ACT-R/PM and VisMap on the noun selection task.
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regression testing are already supported by the system. The motor module works as
a sensor as well as an e!ector: it can monitor the behavior of users interacting with the
user interface. Watching the event queue, VisMap can selectively log all events of interest
and insert these into an internally maintained queue for further processing. These data
can be fed back into the user interface to act as a simple script of a previously recorded
session.

Much of the e!ort in building these tools is in making the functionality accessible to
modelers not necessarily familiar with the underling detailed design of the system. This
entails a signi"cant amount for new research. To interpret the graphical de"nition of new
features correctly, for example, the system will need to perform some amount of visual
pattern generalization. We expect to handle these issues as they arise, to produce
practical development tools within a short time.
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The remaining issues for future work involve integration with more sophisticated
cognitive models that operate at a higher level of abstraction and improvement of the
capabilities of visual and motor processing. We believe that VisMap can be integrated
with modern cognitive models with minimal programming e!ort. Our e!orts up to the
present have concentrated on functionality issues rather than integration issues. Never-
theless, as discussed in Section 5.2, we have loosely coupled VisMap with ACT-R/PM,
and we have also used VisMap with controllers based on AI planning systems and
arbitrary code in Lisp, C## and Java. We expect that integration with other specialized
modeling languages will pose no di$culty. The main integration question that remains
open is the information and processing requirements that VisMap imposes on existing
models. The simple existence of an accessible interface to a given environment is no
guarantee that a cognitive model will be able to interact with it: representing and
processing the relevant knowledge remains to be done. Integration with a variety of
di!erent models will provide some measure of validation for VisMap beyond the
preliminary arguments we have advanced here.

The authors would like to thank L. Zettlemoyer, E. Rasmussen and D. Foley for their technical
contributions to this project.
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Appendix A: VisMap software

The examples discussed in Section 5 were developed using Franz Allegro Common Lisp
5.0 for Windows and GNU Emacs version 19.34.6. The runtime environment is the
standard user interface to Microsoft Windows 98, with a screen display size of
1024]768.

VisMap comprises some 3000 lines of C## code in its sensor/e!ector modules, plus
about 4000 lines of Common Lisp code for the programmatic interface to external
controllers. Although the system gathers its information through WIN32 system calls, it
makes very little use of the operating system other than to gather low-level window
events and screen bu!er information. Only about 3% of the system is speci"c to the
Windows operating system. Another 40% is speci"c to Windows interface conventions
for visual display: the appearance of buttons, list boxes and other controls. One of the
strengths of the software is that it separates operating system issues from user interface
issues. The system is thus largely platform-independent and operating system-indepen-
dent (e.g. the system should easily port to a Windows emulator running on a Macintosh
or a Unix machine).

The VisMap system, including the examples discussed in this article, can be obtained
from http://www.csc.ncsu.edu/faculty/stamant/ibots.html
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