HUMAN-COMPUTER INTERACTION, 19871988, Volume 3, pp 223-274
Copyright © 1987-1988, Lawrence Eribaum Associates, Inc.

A Keystroke Analysis of Learning and
Transfer in Text Editing

Mark K. Singley and John R. Anderson
Carnegie-Mellon University

ABSTRACT

Two experiments studied the acquisition and transfer of text-editing skill.
The first experiment, originally reported in Singley and Anderson (1985) but
reanalyzed in greater detail here, found nearly total transfer between two
similar line editors and partial transfer from the line editors to a screen editor.
Analyses of the keystroke data revealed that the majority of the improvement
during both learning and transfer was concentrated in the planning compo-
nents of the skill. The second experiment found little evidence for negative
transfer between a pair of screen editors designed for maximal interference
using a classic interference paradigm. The few instances of negative transfer
observed were better characterized as the positive transfer of nonoptimal
methods rather than instances of true procedural interference. These results
support an identical elements model of transfer based on a production system
representation of cognitive skill. The relative magnitudes of transfer observed
were consistent with detailed measures of production system overlap. In
addition, localized transfer sites were hypothesized and identified through a
series of microanalyses. Finally, specific transfer predictions based on the
differential practice of general and specific components were tested and
confirmed.

Authors’ present addresses Mark K Singley and John R. Anderson, Department of
Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213,

224 SINGLEY AN ANDERSON

CONTENTS

1. INTRODUCTION
2. EXPERIMENT 1: IDENTICAL ELEMENTS IN TEXT EDITING
2.1, Method
2.2. Results
Summary of Macroanalysis
Microanalysis of Learning and Transfer
First Learning Analysis: Relative Contributions of Planning Time and
Execution Time
Second Learning Analysis: Division Into LL/MT
Third Lecarning Analysis: Division into Methods
Firat Transfer Analysis: LL/MT
Second Fransfer Analysis: MT Methods
2.3. Summary of Experiment 1
3. EXPERIMENT 2: IDENTICAL ELEMENTS AND NEGATIVE
TRANSFER
3.1. Method
3.2, Results
Macroanalysis of Transfer
Microanalysis of Transfer
First Transfer Analysis: LL/MT
Second Transfer Analysis: Division Into Methods
Third Transfer Analysis: MT Methods
3.3. Summary of Experiment 2
4. SIMULATION MODELS AND QUANTITATIVE PREDICTIONS
5. GENERAL DISCUSSION
APPENDIX: KEYSTROKE PARSING PROCEDURE

1. INTRODUCTION

The aim of our research is to take a detailed look at transfer among
relatively complex cognitive skills. In particular, we have studied _u,oi people
transfer among various text editors. Issues of transfer have fallen in and out
of the main focus of psychology several times in the past. Perhaps the first
psychologist to study transfer was Thorndike at the turn of the nmﬂ.ﬁmQ
{Thorndike & Woodworth, 1901). Thorndike took issue with the ﬁnawmﬁmnm
opinton concerning education during his time, namely, the nUonﬁ:‘S‘ of
Formal Discipline” (Angell, 1908). This doctrine claimed that studying
otherwordly subjects such as Latin and geometry were beneficial because they
served to discipline the mind. “Formal Discipline” viewed the ﬂwmn as a
collection of general faculties, such as observation, attention, discrimination,
and reasoning, which were exercised in much the same way as a set of
muscles. The content of the exercise made little difference; most important

LEARNING AND TRANSFER IN TEXT EDITING 225

was the level of exertion (hence the fondness for Latin and geometry),
Transfer in such a view is broad and takes place at a general level, sometimes
spanning domains that share no content. For example, training in chess
should transfer to computer programming because both skills involve the use
of the general reasoning faculty. This view has taken on a variety of forms
over the years and has been advanced recently by those who champion LOGO
programming as a powerful new vehicle for teaching general problem solving
(Linn & Fisher, 1983; Papert, 1980).

Thorndike performed a series of experiments which showed that transfer
was much narrower in scope than was predicted by the “Doctrine of Formal
Discipline.” In one experiment, no correlation was found between memory for
words and memory for numbers. In another, accuracy in spelling was not
correlated with accuracy in arithmetic (Orata, 1928). To explain these and
other similar results, Thorndike proposed the Theory of Identical Elements,
which stated that training in one kind of activity would transfer to another
only if the activities shared common elements. However, Thorndike’s theory
was not explicit about the respresentation of cognitive skills, so it was quite
difficult to identify just what these elements were. In fact, there has been
considerable debate concerning the exact nature of these elements, including
the meaning of the troublesome term identical (EDis, 1965; Orata, 1928). Just
how identical did the elements have to be? Are subjects able to generalize
across any dimensions? For example, could someone pound nails with a red
hammer after having learned with a green? Thorndike attempted rather
unsuccessfully to answer these questions, but quite sitaply, did not have the
formal and theoretical tools to develop his ideas properly. However, it is
generally accepted (Bower & Hilgard, 1981; Orata, 1928) that Thorndike’s
elements were quite specific and tied to a superficial analysis of the skill, which
was congistent with his behaviorist outlook. Thus, Thorndike and the
proponents of the “Doctrine of Formal Discipline” sat at opposite endpeints of
the transfer-specificity continnum.

As Just mentioned, one of Thorndike's problems was the lack of an
adequate theory of knowledge representation in which he could define
identical elements. Recently, however, his theory has been recast in terms of
various modern formalisms and applied with reasonable success by some
researchers. One factor that distinguishes these modern efforts from
Thorndike’s is that the elements are not necessarily tied to superficial
behaviors but rather can be defined in purely cognitive terms. This allows for
the sharing of abstract mental objects such as goal structures and plans among
different procedures. This means that current analyses of transfer sometimes
predict greater levels of transfer than what might be predicted given
superficial analyses of similarity.

In one such attempt to revive the Theory of Identical Elements, Moran
(1983) developed a task analysis technique called Extemal Task, Internal Task

226 SINGLEY AND ANDERSON

(ETIT) that conceptualizes the use of a device such as a text editor as a
mapping from the user's goals and intentions (the external task) into the
operating principles or semantics of the device (the internal task). One can use
this technique to predict transfer among devices by merely gauging the
differences between the mappings for different devices. One performs set
computations on the two sets of mapping rules, and the degree of overlap
predicts the degree of transfer. As Moran pointed out, this work was at an
early stage. However, ETIT has already been used to account for errors made
by novices learning a screen editor (Douglas & Moran, 1983) and the fact that
novices can perform certain tasks they have not been taught (Douglas, 1983).

More recently, Polson and Kieras {1983) used a similar kind of analysis to
predict the amount of transfer between different text-editing procedures.
They identified production rules as the elements of skill and consequently
used production set overlap as a predictor of transfer. They found that the
amount of time it takes to learn a new procedure 1s primarily a function of the
number of new production rules in that procedure. By varying the serial
posttion of a procedure within a training set of similar procedures, dramatic
differences in learming times were predicted and observed. In another study,
Kieras and Bovair {1985) found similar results with subjects learning to use a
simple control panel. Once again, the total time to learn a new procedure was
predicted quite well by the number of new productions.

A potential problem with any identical elements account of transfer is its
treatment of negative transfer. At first blush, one might expect that the worst
possible transfer situation in such models is zero transfer, which occurs when
there is no overlap between elements. However, if one adopts condition-action
rules as the elements of cogmtive skill, it is possible to account for negative
transfer as the firing of rules whose conditions match in the transfer task but
whose actions are mappropriate or nonoptimal. Of course, such a phenom-
enon complicates identical elements models, because it means there i1s not
necessarily a straightforward mapping between the proportion of common
elements and the overall level of performance. In one of the experiments
reported here, we explore the phenomenon of negative transfer in text editing
and discuss possible implications for identical elements models.

We chose text editing as our domain for a variety of reasons, but perhaps
most important was the existence of a well-specified theory of expert
performance. Card, Moran, and Newell {1983) put forth a series of information-
processing models at various levels of detail that account for an impressive
percentage of error-free, expert behavior. These models are useful in that they
serve as a well-defined endpoint for skill acquisition m text editing.

The goal of our research is to use these models to extend the identical
elements theory of transfer. The models supply us with a representation of
text-editing skill that can be used to identify the elements common to different
editors. More specifically, the models provide us with the abstract goal

LEARNING AND TRANSFER IN TEXT EDITING 227

structures that underlie and organize the production of keystrokes in the
editors. Our predictions of transfer between the editors hinge on the fact that,
even though the specific commands used to accomplish edits in the various
systems may be different, the underlying goal structures are largely the same
and provide the basis for positive transfer.

Like Polson and Kieras (1985), a major assumption in our work 1s that
single production rules are the units of cognitive skill—the elements that
Thorndike was searching for. What we are proposing is essentially a modern
version of the Theory of Identical Elements based on productions rather than
stimulus-response bonds. Unlike Thorndike’s superficial elements, produc-
tions are versatile and powerful computatonal entities. It is well known that
production systems have the computational power of Turing machines.
Procuctions are abstract and can be used to represent many different
problem-solving methods at various levels of generality. Productions are often
used to represent cognitive processes that have no direct impact on the
external world vet, nonetheless, play an important role in skilled behavior like
planning and problem decomposition (i.e., subgoaling). Therefore, not only
external but also internal “actions” are considered in calculations of transfer.
In our models, all the components of skill (e.g., goal structures, methods,
operators, decision rules, and sequences of user actions) are represented as
productions.

Aside from our emphasis on task analysis and production system simula-
tion, our work differs from previous work on transfer as follows:

Multiple Trials. Many studies have probably underestimated transfer be-
cause of a failure to insure that something was learned in the first place (Hayes
& Simon, 1977; Smith, 1986). It is not surprising that transfer is minimal
when subjects have only a single trial in both the base and transfer tasks. To
better understand both learning and transfer, we trace our subjects’ perform-
ance over multiple trials. We feel this methodology yields more semsitive
measures of transfer than single trials in much the same way as time to relearn
is a more sensitive measure of retention than recall or recognition.

Fine-Grained Analyses. In any account of learning and transfer, the level of
analysis is critical. Gentral to our effort is the goal of determining the loci of
transfer at the finest grain of analysis possible. Most desirable would be a
grain size that allowed for the separation and independent measurement of all
learning and transfer components. This would allow the most rigorous test of
any common elements theory of transfer. However, given imperfect theories
of skill representation and imperfect behavioral measures, this is presently and
perhaps forever impossible. Unable to determine a priori the proper gramn of
analysis, we have conducted a series of analyses at several different grain sizes.
We hope to understand learning and transfer by successive approximation,
using the more aggregate measures to guide our analysis at more detailed
levels.

228 SINGLEY AND ANDERSON

2. EXPERIMENT 1: IDENTICAL ELEMENTS IN
TEXT EDITING

The results of the first experiment were originally reported in Singley and
Anderson (1985), but are analyzed in much greater detail here. The
experiment involved teaching groups of computer-naive subjects one or two
line editors and then 2 screen editor. Of particular interest was the following.

The Magnitude of Transfer Among Different Editors. Would transfer be positive,
negative, or nonexistent? How would transfer among the line editors compare
with transfer from the line editors to the screen editor? A production system
analysis of the structural similarity of the editors suggested that, whereas the
goal structures of the line editors were quite similar, the line editors and the
screen editor shared few elements. Perhaps the magnitudes of transfer would
reflect this difference.

ldentification of Learming and Transfer Components. Could transfer effects be
localized to particular subskills and pieces of knowledge? What would be the
nature of these components?

2.1. Method

This section 1s a somewhat abbreviated version of that appearing in Singley
and Anderson {1985), which should be consulted for additional details.

Subjects. Subjects were 24 women between the ages of 18 and 30 from a
local secretarial school. None of the subjects had any computer experience,
but ali could type proficiently.

Materials. Subjects learned from a set of three commercially available
text editors. Two of these editors, UNIX ED (Kernighan & Pike, 1984) and
VMS EDT (“Introduction to the EDT editor,” 1982), belong to the genre
known as line editors, whereas the third editor, UNIX EMACS (Gosling,
1981), belongs to the genre known as screen editors.

Subjects were taught a minimum core set of commands for each editor.
These commands were totally sufficient for the kinds of edits our subjects had
to perform. In the line editors (ED and EDT), the core set included commands
for: (a) printing, deleting, inserting, and replacing lines; and (b) substituting
strings within lines (the substitution command also provided for string
insertion and deletion). In the screen editor (EAACS), the core set included
commands for: {a) moving the cursor forward, backward, up, and down; and
(b) deleting characters, words, and strings. Of course, the character of the
commands differed markedly between the line editors and the screen editor.
The majority of EMACS commands pertained to moving the cursor and
involved special terminal keys. In all editors, subjects were spared from

LEARNING AND TRANSFER IN TEXT EDITING 229

learning the procedures for reading and writing files and were instead fed files
automatically by experimental software. See Figure 1 for a listing of the core
set of commands for each of the editors.

Subjects edited sections of a book on cognitive psychology that resided on
a local computer system. The book was sectioned into 18-line files, and each
file was randomly mutilated by a text-mutilation program. The program
performed 6 of the 12 possible mutilations on each file. The 12 mutilations
were defined by crossing the editing operations msert, delete, and replace by
the data objects character, word, string, and line. It took two files to cover all
12 mutilations; the same mutilations occurred on every other screen. Each file
constituted a single trial.

The subjects’ task was to correct the errors introduced by the mutilation
program. They worked from a marked-up copy of the files placed in a
loose-leaf binder (see Figure 2 for a sample page). The binder sat on the tabie
beside the terminal. Each page corresponded to a single file.

Design. The study used a2 X 2 between-subjects design with two control
groups. The first factor was nurmber of line editors learned {one vs. two), and
the second was initial line editor (ED vs. EDT). The two control groups
learned no line editors; their first exposure to text editing was EMACS. One
of the control groups spent the entire experiment editing with EMACS. (This
was the control that would reveal whether transfer to EMACS from the line
editors was positive or negative.} The other control group practiced typing at
the terminal prior to editing with EMACS. This group typed for the amount
of time the experimental groups spent learning the line editors. (This was the
control that would reveal the perceptual-motor component of transfer.)

Procedure. 'The experiment consisted of 6 consecutive days of text editing.
Each day consisted of a 3-hr session interrupted by two 10-min breaks after
the first and second hours. Subjects were run by pairs in a quiet experimental
room.

On the first day, all subjects (except those in the typing control condition)
were given a brief introduction to the set of commands they would be using
that day. This introduction consisted of a brief description of each command
followed by a demonstration on the terminal. This introduction lasted
approximately 30 min,

The subjects then began editing at the terminals. An experimenter was
present m the room at all times to answer any questions or help with
particularly difficult problems. Experimenters were told not to intervene
unless a subject asked for help. A single tutor was designated for each editor,
so that all subjects’ experiences with a single editor would be similar. As
experimenter was totally confounded with editor in the experiment, the results
should not be regarded as a totally valid comparison of the editors.

The subjects spent the first 2 days practicing their first editor. On the third

Figure 1. Command summary for the three editors. In the figure, tdenotes a
control character and] an escape character.

Command
Type Editor Command Action

Locative ED 1,%p prints all lines of the file
3p prints the third line
P prints the current line
= prints the line number of the current line
RETURN pnnts the line following the current line
EDT t whole prints all lines of the file
t ‘dog’ prints the first line following the current line
that contains ‘dog’
t ~ ‘dog’ prints the first line before the current line
that contains dog
t prints the current line
DELETE pnnts the line following the current line
EMACS f moves tursor forward one character
If moves cursor forward one word
ib moves cursor backward one character
b moves cursor backward one word
ta moves cursor to beginning of line
e moves cursor to end of line
Ip moves cursor to previous kHne
tn moves cursor to next Hne
Mutative ED .3 inserts lines after the current line
{type “’ to exit the mnsert mode)
d deletes the current line
. replaces the current line
{type '’ to exit the mnsert mode)
sla/blp substttutes the first occurrence of ‘a’ with ‘&'
on the current line
EDT 1 nserts lines after the current line
{type 1z to exit the insert mode)
d deletes the current line
r replaces the current line
{type iz to exit the insert mode)
stalb substitutes the first occurrence of ‘a’ with B’
on the current line
EMACS 1d deletes the character marked by the cursor
id deletes the word marked by the cursor
DELETE deletes the character to the left of the cursor
Tk deletes from the current cursor position to the
end of the line
a inserts the character ‘a’ at the current cursor
position
(EMAQGS is m insert mode by default)

230

LEARNING AND TRANSFER IN TEXT EDITING 231

Figure 2. Sample page of corrections.

—3 not only will The whnit nedes inticse +races
accrue strength with days of practice, but also

the element nodes will acerue strength. As will
be seen, this power function prediction
corresponds to the data about practice. A setof
experiments was conducted to test the prediction
about a power-law increase wnmﬂ.._.mmmmﬁw with
extensive practice. In one experiment subjects

studied subject-verb-object sentences of the form

(Thee lawyer hated the doctor), After studying
4+hese sentemersd they weretransferved +o o

A Eurthenmererthethoughipreventyihostudy-
sentence recognition paradigm in which they had to
diseriminate these sentences from foil bithemind sentences
) tovget
made of the same words as thelusirates sentence but
in new combinations. There were 25 daysof tests
and hence practice. Each day subjects were tested

on ench sentence 12 times (in one group) or 24

times in the other group. There was no difference

day, those subjects in the two-line editor conditions switched to their second
editor (either ED or EDT), whereas the other subjects remained on their first.
However, all subjects received a second introduction to the set of commands
they would be using. (This constituted a review for the subjects who did not
switch.) In this way, the amount of formal instruction received by subjects
was constant across conditions.

On the fifth day of the experiment, all experimental subjects and the typing
control group transferred to EMACS. After receiving formal instruction on the
commands, these subjects spent the last 2 days practicing EMACS. (The
EMACS control group spent all 6 days learning EMACS. They received formal
mstruction on the first, third, and fifth days.)

Those subjects in the typing contro] group spent the first 4 days typing the
manuscript that the experimental groups were editing. In addition to
incorporating all the corrections marked on the manuscript, subjects had to
correct typing mistakes as they were made. This rule was enforced by a

232 SINGLEY AND ANDERSON

program that checked the stream of keystrokes against a target file and
deactivated the keyboard once a difference was detected. Subjects could only
reactivate the keyboard by pressing the delete key, which erased the mistake.
This practice resuited in a level of frustration similar to that experienced by
subjects in the experimental conditions. Thus, the typing control group had
experience reading the manuscript, interpreting the edits, and interacting
through the terminal.

Keystroke data accurate to within 1 sec were collected for all subjects. In
addition, the edited versions of the mutilated files were saved to allow for error
checking,

2.2. Results

In this section, we first quickly summarize subjects’ performance in terms
of gross measures, such as time per edit and keystrokes per trial. This
macrolevel of analysis, which was the stopping point in Singley and Anderson
(1985), gives us a general understanding of what 1s happening and encourages
us to explore certain phenomena further. The bulk of this section is devoted
to a detailed analysis of the keystroke data. In this microanalysis, we hope to
localize the components of learning and transfer intimated at the coarser level.

Summary of Macroanalysis

The macroanalysis (Singley & Anderson, 1985) presented results purely in
terms of global measures. However, the basic outlines of the phenomena of
learning and transfer emerged. In terms of both time per trial and keystrokes
per trial, we observed the following:

1. A consistent rank ordering of the editors (EMACS, ED, EDT) in terms
of learnability and ease of use, with EAL4CS being the easiest and EDT
the hardest.

2. Near total transfer between the two line editors. For example, 2 days of
practice on £D was nearly as good as 2 days of practice on EDT in terms
of preparation for further editing with EDT.

3. Moderate amount of transfer from the line editors to FAMACS.

Slight transfer from the typing control condition to EMACS.

5. No sign of negative transfer. All transfer at the macrolevel was
overwhelmingly positive.

:-{a.

Microanalysis of Learning and Transfer

The goal of the microanalysis is to isolate and independently measure the
acquisition and transfer of the various elements of text-editing skill. T'o do
this, we need some theory of performance in text editing to identify the

LEARNING AND TRANSFER IN TEXT EDITING 233

Figure 3. The top-level goal structure of text editing.

edit manuscript

edit unit task

N\

acquire unit task execute unit task

imore subgoals locateline modify text

and leaves] \ /
|more subgoals imore subgoals
and igaves] and leaves}
| ! i
LL component MT component

theoretically significant components. As mentioned previously, an extensive
task analysis of text editing already exists in the work of Card et al. (1983).
According to their GOMS formulation, text editing consists of a series of
largely independent unit tasks, each of which is accomplished through the
satisfaction of three subgoals: encode the edit from the manuscript {acquire-
unit-task}), move to the line requiring modification, and modify the text {see
Figure 3). These three subgoals are instances of goals, one of the four
components of skill in the GOMS model. The other components are
operators, methods, and selection rules.

As an initial goal of the microanalysis, we set out to trace the acquisition
and transfer of the various unit tasks of text editing and their major subgoals:
acquire-unit-task, locate-line, and modify-text. We do this by taking a
detailed look at the stream of keystrokes executed by our subjects over the
course of the experiment. The keystroke data can be viewed as'a series of
keystroke bursts separated by pauses. These bursts and pauses have psycho-
logical significance in that the pauses represent the mental preparation time
for an operation and the bursts represent its execution. Presumably, as a
person becomes more skillful at text editing, the frequency and duration of the
bursts and pauses change, reflecting the acquisition and compilation of the
various components of text-editing knowledge.

Kepstroke Parsing. In order to make sense of the nearly 500,000 keystrokes
collected 1n Experiment 1, we developed a keysiroke parsing algorithm that
was instantiated in several data analysis programs. The goal of the parsing

234 SINGLEY AND ANDERSON

Figure 4. Parsing efficiency. Percentage of time attributed to the satisfaction of
goals by the parsing algorithm.

Learning Transfer
Editor Day i 2 3 4 M 1 2 M
EMACS 94 94 93 95 95 93 95 94
ED 82 89 92 92 89 94 £ 93
EDT 78 50 93 86 87 96 94 95
M 85 51 93 91 30 94 93 94

algorithm 1s to identify each burst and pause in the keystroke data and
attribute 1t to the planning or execution of some text-editing operation. The
general strategy is to simulate the editors by parsing commands and updating
the contents of the file while collecting statistics on each interaction. A full
description of our keystroke parsing procedure can be found in the Appendix.
A short summary follows.

The parsing algorithm first segments the keystroke data from a single trial
into six unit-task episodes corresponding to the six edits on the page. The
algorithm further subsivides these six segments into their locate-line and
modify-text components. The locate-line component (LL) mciudes not only
the time and keystrokes spent moving to the site of the modification but also
the time spent acquiring the unit-task from the manuscript {see Figure 3). The
modify-text component (MT) 15 composed simply of the time and keystrokes
spent modifying the text. Finally, these two components are split into
planning and execution subcomponents. Operationally, we defined the
execution subcomponent as the time from the first to last keystroke minus any
interkeystroke pauses of greater than 2 sec. (As we shall see shortly,
subsequent analyses provided corroboration for this cutoff point of 2 sec.)
1.ikewise, we defined the planning component to be the sum of ali pauses of
greater than 2 sec. Typically, an LL or MT component begins with a long
pause followed by keystroke bursts separated by short pauses.

Critical to the success of the parsing algorithm is that subjects move in an
orderly fashion from unit-task to unit-task in the manuscript. Although the
parser has certain methods for dealing with backtracking and skipped goals,
in many cases the parser simply refuses to attribute pauses and keystrokes that
fall outside of its expectations. Figure 4 shows one measure of the success of
our parsing algorithm: the percentage of total time attributed to the satisfac-
tion of goals. Generally, parsing efficiency ranges between 85% and 55%.

Overvtew gf Microresults. The primary yield from our parsing analysis is a set
of learning and transfer curves for the 12 methods corresponding to the 12
kinds of modifications in our editing task. Fach of these curves is further

LEARNING AND TRANSFER IN TEXT EDITING 235

Figure 5. The aggregate method learning curve broken down into planning and
execution cemponents. Planning time is the difference between total time and
execution time.

= 60
@
b
a
]
2 50+
0
B Oy {0t a! Hime
o—=0 execution time
40
30F
20
10+ n/Ov/An[o
1 i i I3 }
O 1 2 3 4 5

Day

subdivided into its LL and MT components, which are, mn turn, split into
planning and execution components. Given such a multileve]l analysis, it
should be possible to localize the learning and transfer effects observed at the
macrolevel. We proceed with this microresults section by moving from the
coarser to the finer levels of analysis, as just outlined. We start with a series
of learning anaiyses and conclude with a senies of transfer analyses.

First Learning Analysis: Relative Contributions of Planning Time and
Execution Time

In this first analysis, we collapse across LI, MT, and the 12 methods and
simply split total time per edit into its planning and execution components.
One of the first things we discovered was that, apart from minor differences,
all learning curves decomposed in this way have a characteristic shape,
regardless of editor. Figure 5 shows this characteristic shape averaged across
the various methods in all three editors. The two curves plotted are total time

236 SINGLEY AND ANDERSON

Figure 6. Correlations between dependent measures in the three editors ia
Experiment 1.

Editor

Correlanon EMACS ED EDT

Execution time vs. keystrokes LL .57 .86 .98
MT .98 .97 .98
M = 86

Planning time vs. keystrokes LL 46 .83 .73
MT .59 72 .65
M = .66

per edit and execution time per edit; planning time is merely the difference of
these two.

Most striking is the fact that, whereas total time per edit drops from 48 sec
on Day 1 to 16 sec on Day 4 {a 3 to 1 decrease), the execution time curve is
relatively flat. Apparently, most of what a subject learns manifests itself as a
reduction in planning time. Also, as we shall see shortly, the slight decrease in
execution time can be attributed totally to a decrease in keystrokes rather than
an increase in keying rate,

The ratic of planning time to execution time drops from 3.0 on Day [t0 1.2
on Day 4. This means that subjects spend zbout 75% of their time planning
on Day 1 and 54% on Day 4. This 5¢% figure compares favorably with the
results of Card et al. (1983), who reported that the seasoned experts in their
studies spend about 60% of their tme planning. Our number is somewhat
lower because a full third of the subjects used in our analysis were editing with
EMACS, which requires substantially less planning time per keystroke than
the line editors used here and also those used in Card et al. Specifically, the
ratio of planning time to execution time on Day 4 for our EMACS subjects was
.9, which is well below the line editor average of 1.3.

Having explored the general properties of method learning curves, we now
move on to the next analysis, which again collapses across the 12 methods but
partitions the keystroke data into two additional components: LL and MT.

Second Learning Analysis: Division Into LL/MT

Although the dramatic reductions occur in planning time, we have seen that
modest reductions occur in execution time as well. The number of keystrokes
per edit also decreases over the course of the experiment. The question
naturally arises as to whether the reduction in execution tume is due solely to
the reduction in number of keystrokes. The first row of Figure 6 presents
correlation data that establishes the connection between execution time and
keystrokes in each of the editors. Separate data points were entered for each

LEARNING AND TRANSFER IN TEXT EDITING 237

of the 12 methods on 4 days of learning, making a total of 48 data points per
correlation. (For this analysis, data was averaged across subjects.} As can be
seen, the correlations are remarkably high (M = .96), giving strong evidence
for an airtight linkage between these two variables. This lawful pattern of
results attests to the soundness of our original decision to regard pauses of
greater than 2 sec as a part of planning time. The fact that execution time can
be computed by multiplying the number of keystrokes by typing speed
indicates that our parsing procedure successfully segmented the planning and
execution subcomponents.

To remove any doubt whatsoever concerning the exclusive relationship
between reductions in execution time and keystrokes, we considered a
plausible alternative hypothesis: that subjects were becoming better typsts
and were keying faster over the course of the experiment. To test this
hypothesis, we performed multiple trials ANOVAs for the LL and MT
components of the three editors using execution time per keystroke as the
measure of keying rate. As expected, there was no significant main effect for
days, which meant that subjects were keying at the same rate throughout the
experiment —a sensible result given they were already skilled typists. Subjects
averaged .47 sec per keystroke, or approximately 2 keystrokes per sec; there
were no significant differences between editors. We conclude, then, that the
speedup observed in the execution subcomponent is solely a result of subjects
using fewer keystrokes to perform edits and not a result of faster typing.

Having isolated the source of spesdup in execution time, we must now
consider what causes subjects to use fewer keystrokes. Clearly, there are at
jeast two possibilities: First, subjects’ methods may be becoming more
efficient because of either the acquisition of new operators or the mere
Judicious use of existing operators. Second, subjects may be making fewer
errors requiring fewer corrections. Fortunately, we can discriminate between
these two possibilities with two new dependent measures. If subjects are
acquiring more efficient methods, the number of keystrokes per command
should decline over the course of the experiment. Likewise, if subjects are
executing fewer errorful commands requiring fewer resubmissions, the
number of commands per edit should decline.’

Figure 7 shows the results of 12 muitple trials ANOVAs performed on our
two dependent measures for the MT and LL components of the three editors.

' The concept of command is clearly defined in the line editors 1o be a string of characters
composed on a single line and terminated by a carnage return, However, the concept is net so
clear in a screen editor ke EAMACS. Tor this analysis, we defined a command in EMACS to be
any uninterrupted string of LL or MT keystrokes. For example, in the parse in Figure 20 (see
Appendix), the LL component 15 composed of three commands. The first is the imtial string of
LL keystrokes, the second is the alphanumenc € followed by s defetion, and the third is the
concluding string of LL keystrokes. This definition aliows for our dependent measures, keystrokes
per command and commands per edit, to have common referents i all three editors.

238 SINGLEY AND ANDERSON

Figure 7. Summary of ANOVA results for keystrokes per command and
commands per edit. An x denotes a significant reduction in the marked
component over the course of Experiment 1.

Editor
Dependent Measure EMACS ED EDT
Keystrokes per command LL x
MT
Commands per edit LL X X
MT X X x

As can be seen, five of the six commands per edit ANOVAs vielded a main
effect for days, but only one of the six keystrokes per command ANOVAs did.
This pattern of results strongly suggests that most of the reduction in
keystrokes is due to fewer error episodes and not more efficient methods,

Given our success at reducing execution time to number of keystrokes, it is
tempting to propose that planning tume can be similarly reduced. If this were
possible, a very simple model of learning and performance would emerge that
associates some fixed amount of overhead with each keystroke and explains all
speedup in terms of reductions in keystrokes. However, the results strongly
suggest that the estimation of planning time is 2 much more complex
undertaking. First, correlations between planning time and number of
keystrokes are too low. The second row of Figure 6 shows that, whereas
number of keystrokes predicted over 90% of the vaniance in execution time,
1t predicts only 40% of the variance in planning time. Of course, because both
number of keystrokes and planning time are decreased, we would expect some
correlation. Second, we performed six repeated-measures ANOVAs using
planning time per keystroke as the dependent variable and found that both
MT and L1 components in all three editors were significantly decreasing on
this measure, all /{3, 9) > 5.0, all p < .05. Also, significant main effects and
interactions were found for the various unit tasks. This is additional evidence
that pianning time per keystroke 1s not a constant in our experiment.

Third Learning Analysis: Division Into Methods

So far in this microanalysis we have been concerned primarily with the
acquisition of four components: LL and MT planning times and LL and MT
execution tumes. We now merease the complexity of the analysis by a factor of
12 by decomposing the LI, and MT components mnto their 12 constituent
methods. Recall that these methods correspond to the 12 kinds of edits found
in the manuscript and are derived by crossing the editing operations insert,
replace, and delete by the data objects character, word, string, and line. The

LEARNING AND TRANSFER IN TEXT EDITING 239

purpose of this analysis is to gain a better understanding of the microstructure
of text editing and, therefore, set the stage for microanalyses of transfer.

As it is difficult to grasp the independent contributions of the dozens of
learning components separately, we propose a simple model to summarize the
results. This model attempts to account for the LL and MT planning time and
LL and MT execution times for 9 of the 12 types of edits over the course of
the experiment. We have excluded those edits concerned with manipulating
lines {i.e., insert line, replace line, delete line) from the analysis for reasons to
be discussed shortly. Our model is characterized by the following features:

1. All execution times are based solely on the number of keystrokes
required to perform edits.

2. LL planning times vary only as a function of days of practice.

3. MT planning times vary not only as a function of days of practice but
also as a function of editing operation (insert vs. replace vs. delete) and
data complexity {character vs. word vs. string).

Our strategy for supporting the model is as follows:

1. Use correlations to show that execution time is strictly dependent on the
number of keystrokes.

2. Use ANOVASs to show that LL planning time decreases over days but 1s
imndependent of edit type.

3. Use ANOVAS to show that MT planning time decreases over days but
also varies as a function of edit type, The model predicts main effects for
both editing operation and data complexity but no interaction.

As for these three lines of evidence, the first has already been established.
Figure 6 presented a series of correlanions that demonstrated the strong link
between number of keystrokes and execution time. Subsequent analyses
confirmed the exclusive relationship between these two variables. As for the
second, 3 X 3 X 4 repeated measures ANOVAs using LL planning time as
the dependent measure confirmed that, in all three editors, LL planning time
varied only as a function of practice, all K3, 9) > 12.08, all p < .001, and
not as a function of edit type.

As for the third line of evidence, that concerning MT planning time, the
pattern of results is slightly more complicated. Figure 8 presents matrices of
means for the nine methods in the line editors and EMACS averaged over
Days 2 to 6. Because of high variability, data from the first day of learning
have been excluded from this analysis. Data were collapsed across the line
editors after an ANOVA comparing ED and EDT in terms of MT planning
tine yielded neither a main effect nor an interaction for editor. This, again,

240 SINGLEY AND ANDERSON

Figure 8. Matrices of planning time means for the line editors and EMACS.

Line Editors EMACS
Insert Replace Delete M Insert Replace Delete M
Char 11.8 13.0 11.3 12.0 4.2 4.8 2.9 4.0
Word 16.0 15.1 13.0 14.7 3.2 6.8 4.4 4.8
String 21.6 15.7 14.9 17.4 6.2 7.8 4.7 6.2
M 16.4 14.6 13.1 14,7 4.5 6.5 4.0 5.0

confirms our hypothesis that line editor MT components are virtually
identical.

In the figure, we are first reminded of the gross disparity between line editor
and EMACS MT planning times, which was mentioned 1n the first learning
analysis. As for the predictions of the model, two 3 X 3 repeated measures
ANOVAs yielded main effects for editing operation and data object in both
the line editors and EMACS. However, the EMACS ANOVA also vielded an
Interaction - a result inconsistent with the predictions of our simple model but
apparently an anomoly due to an unnaturally low entry for the mnsert word cell.

Line Operaitons. We have excluded the line operations from our simple
model because they necessarily disrupt the main effects found for editing
operation and data complexity by introducing a strong interaction. This
interaction has two sources: First, in all three editors, the predominant
method for delete ine requires just two keystrokes (d followed by [CR] in the
line editors and tktk in EMACS). Therefore, the delete line operation was much
lower in both MT planning fime and keystrokes than our model predicted.
Second, tnsert line takes more planming time than replace line in EMACS, which
1s inconsistent with the general pattern. This reversal is most likely due to the
difficulty subjects had “making space” for the line to be inserted, a problem
well-documented by Mack, Lewis, and Carroll (1983).

This concludes the learning analyses from Experiment 1. We now move on
to transfer analyses.

First Transfer Apalysis: LL/MT

As noted at the beginning of the results section, we observed at the
macrolevel near total transfer between the line editors and moderate transfer
from the line editors to EMACS. We now ask whether it is possible to localize
any of these macroeffects to either the LL or MT component. Besides
shedding light on the sources of transfer, this analysis provides our first
opportunity to study the intimate relation between learning and transfer in
text editing.

At the end of this article 1s a section describing in explicit detail the
simulation models used to make precise guantitative predictions of transfer,

i Nl

vl it

LEARNING AND TRANSFER IN TEXT EDITING 241

However, at this point, we are concerned primarily with the results of
empurical rather than formal analyses. In order to guide our understanding of
the results, we will make rough predictions based on sketchy descriptions of
the underlying models. Later, once the basic outlines of the phenomenon are
understood, we will compare the observed results with quantitative predic-
tions,

We now compare the editors in terms of both LL and MT components. All
three editors use different methods to locate lines. However, the LL compo-
nent spans not only locate-line procedures but also acquire-unit-task proce-
dures and the uppermost nodes of the text-editing goal tree (see Figure 3).
Because traversing the top nodes in the goal tree and encoding the edits are
the same regardless of editor, we would expect moderate and roughly equal
degrees of transfer among the three editors in the LI component based on
these rules. However, the line editors share several additional rules pertaining
to the selection of LL method and also specification of the secondary,
carriage-return method. Therefore, LL transfer in the line editors should be
somewhat higher than that between the line editors and EMACS.

The degree of similarity in the line editors is even greater in the MT
component. Although the surface features of the MT commands in the two
line editors are largely different, their underlying conceptual structures are
nearly identical. This means that the line editor MT procedures share many
high-levei and intermediate-level nodes in their goal trees. For example, to
replace a line in ED, one moves to the line to be replaced and types c for
change. In EDT, one moves to the line to be replaced and types r for replace.
In both editors, one then types 1n the new line. To exit the insert mode in ED,
one types a period by itself on a line immediately followed by a carriage
return. To exit the insert mode in EDT, one presses 1z. Although these
methods are quite different in surface symbols typed, they have the same
underlying logical structure. This common structure 15 a likely source of
positive transfer in the MT component.

Although line editor MT procedures are quite similar, line editor and
EMACS MT procedures are largely different. However, they do share several
rules for generating the top MT nodes in the goal tree and for inserting text.
Therefore, we would predict nearly total transfer between the line editors in
the MT component but substantially less from the line editors to EMACS.

Transfer Between Line Editors. Figure 9(a) presents line editor learning and
transfer data for LL and MT planning time. We focus on planning time
because it 15 not affected by such factors as typing speed and is, therefore, our
purest measure of higher-level cognitive processing. Data is averaged across
the first 2 days of learning and transfer for additional reliability.”

? As Card et al. pointed out, vanability generaily increases as the gram size of an analyus gets
finer. To combat this effect, we collapse across days.

242 SINGLEY AND ANDERSON

Figure 8. LL/MT planning time transfer. Raw scores report the average number
of seconds to either LL or MT.

Locate Line Modify Text

Between
Line Editors To ED Te EDT To ED To EDT
Transfer(3) 10.0 17.4 13.1 14.8
Learning(1) 19.0 447 45.9 53.3
Learnmg(3) 8.2 13.5 12.8 16.5
Transfer score

{from Equation 1) 9% B87% 899 105%

LL MT
From Line From From Line From

To EMACS Editors Typing Editors Typing
Transfer(5) i4.0 1.6 12.5 20.7
Learning(1) 27.0 27.0 2.76 27.6
Learnming(5) 5.7 5.7 4.0 4.0
Transfer score

{from Equation 1) 61% 5% 62% 29%

To characterize the magnitude of transfer, we use a transfer score
mntroduced by Katona (1940) that measures the savings on a transfer task
relative to a theoretical upper limit derived from learning data. This formula
is insensitive to the amount of training prior to transfer, because the transfer
savings (the numerator) 15 modulated by the degree of learning (the denom-
inator). If subjects transfer to a new editor on day n of the experiment, the
percentage of transfer 1s given by the following equation:

% — .?bwﬂn._.v . .\K.ﬁgﬂbu
AT T Myn(1) = Mipy(n)

As an example, we will show how this equation applies to gauge transfer from
ED to EDT. The denominator, which expresses the savings due to learming,
is simply the difference between the means for Days 1 and 3 of the group that
spends 4 days learning EDT. (Because subjects transfer from ED to EDT on
the third day of the experiment, we use learning data from Day 3 to establish
the theoretical upper limit of transfer.) The numerator, which expresses the
transfer savings, 1s the difference between the learning mean on Day i and the
transfer mean on Day 3. We see that this measure varies sensibly from 0 to 1,
although negative values and values greater than 1 are possibie. The former
represents negative transfer, and the latter a kind of supertransfer one might
observe in part-to-whole training.

The major result shown in Figure 9(a) 1s that the M'T component exhibits

X 100 (1)

LEARNING AND TRANSFER IN TEXT EDITING 243

meore transfer than the LL component, with means of 102% and 89%,
respectively. This 1s what an identical elements model would predict, given
the line editor MT procedures have more in common than the LL procedures,
Although MT transfer is slightly larger, LL transfer is still quite substantial.

We have mentioned that both line editors have as a secondary method the
use of the carriage return to move forward one line in the file. It may be that
if this method is in fact a source of transfer, transfer subjects would use it more
frequently than control subjects, To test this hypothesis, we characterized the
LL methods used in the line editors as either primary —that is, line addressing
(10p) 1n ED and string searching (t ‘unique’) in EDT—or secondary — that is,
the carriage return method just mentioned. It turns out that the use of the
secondary method is more common in the transfer subjects (28% vs. 17%),
although a two-way ANOVA confirming the difference was only marginally
significant, F(1, 12) = 2.1, p < .2. It appears, however, that subjects
transferring to a new line editor rely more on a secondary but familiar
procedure for locating lines. This result suggests a general rule that, when
more than one method is available, known methods assume an unnaturally
prominent role in transfer tasks.

It should be mentioned that another source of LL transfer from ED to EDT"
lies not 1n ED's LL component, but rather its MT component. It turns out
that the specification of unique search strings when locating lines in EDT is
identical to the specification of unique replacement strings when substituting
text 1in ED. Although these subprocedures serve quite different high-level
goals, it is conceivable that the upper nodes rewrite to identical subgoals that
involve the same subprocedures. In this way, the MT string specification
subprocedure in ED can be transferred whole cloth to serve an LL goal m
EDT.

Transfer o EMACS. Figure 9(b) summarizes LL and MT planning time
transfer from the line editors and typing to EMACS. As with the line editor
data, means have been averaged across the first 2 days of jearning and
transfer.

LL transfer from the line editors to EMACS is somewhat smaller than that
between the line editors themselves, as predicted. We have already enumer-

. ated the additional LL transfer sites in the line editors, which would explain

this discrepancy. The amount of LL transfer from typing is less than that from
the line editors, but is still greater than zero. To understand planning time
transfer from typing, recall that subjects in the typing control group were
required to type the edits that were marked on the manuscript. This means
that they had practice encoding the edits from the manuscript. However, they
had no exposure to the text-editing goal tree, as they were typing continuous
text and not locating lines and modifying text. This explains the difference in
LL transfer between the line editor and typing control groups.

The average MT transfer from the line editors and typing control to

244 SINGLEY AND ANDERSON

EMACS was 46%, definitely less than the 102% observed between ED and
EDT. However, this still seems rather high given that EMACS MT procedures
share very little with line editor MT procedures, and there is no text
modification per se in the typing manipulation at all. Here, then, 1s an
interesting challenge to our identical elements model. Possible sources of
transfer include such low-level operations as glancing at the manuscript and
using the proper keying action on control and escape keys, but our data are
unable to provide support for such conjectures. An additional candidate is the
encode edit component just proposed as a source of LL transfer. Our
experimenters report that, unlike the experts observed by Card et al. (15983),
our subjects often required more than one look at the manuscript to represent
edits, especially those manipulating strings and lines. Often these additional
looks occurred after the modification had been located, that 1s, the period
attributed to MT planning. More efficient encoding procedures gained
through experience with the line editors and the typing manipulation would
thus contribute to MT transfer. Although this and the other proposed sources
might contribute to transfer, as a group they seem insufficient to account for
the magnitude of transfer we observed. We therefore suspend any firm
conclusions at this time. A better understanding of this perplexing result must
wait for the results of the next, more detailed empirical analysis.

Second Transfer Anaiysis: MT Metheds

Qur primary purpose in this section is to pursue the outstanding question
concerning transfer from the LL/MT analysis: What is the source of the
rather substantial transfer in the MT component from the line editors and
typing to EMACS? Currently, the candidates include portions of the upper-
level goal tree (good only for line editor subjects) and subskills for encoding
the edit from the manuscript {good for both sets of subjects). In the present
analysis, we can examine the differential transfer of all 12 MT methods and
possibly localize the transfer of particular operators.

Figure 10 presents transfer scores expressing MT planning time transfer
from the line editors and typing to EMACS. Once again, the scores are based
on data from the first 2 days of learning and transfer. To facilitate
interpretation, we have plotted the savings scores along number lines which
show the relative orderings of the various subgoals,

Rather than attempt to understand the entire continuum of subgoal transfer
data, we focus on those subgoals at either end of the distribution - those that
exhibit the most and least transfer. Interestingly, the delete character subgoal
shows the most transfer and delete string the least in both line editor and typing
distributions. Another strong performer for both groups is delete word; delele line
1s strong for only line editor subjects.

What might explam such a pattern of results? Most compelling is the fact
that these extreme sites are all instances of delete operations. Furthermore, in

LEARNING AND TRANSFER IN TEXT EDITING 245

Figure 10. Number line showing ordering of unit tasks in terms of MT planning
time transfer.

DLPW
RS RwW DC
DSIL W RLISRC IC
} } | d b
-100 -850] 50 100
{a} from line editors to EMACS
bL
W i3
.Um . RC IL AL IC RS RW DW DC
-100 -50 m.v m.o 40.0
{b} from typing to EMACS

both the line editors and the typing control, subjects do learn a deletion
operator that could transfer to EMACS: the delete key. The delete key is used to
edit malformed commands in the line editors and to correct typos in the typing
control. (It is interesting to note that our task analyses based on error-free
behavior failed to identify this area of commonality.) So, although the deleie
key 15 not used as part of any text-editing method that can be transferred
whole cloth to EMACS, 1t 15 nevertheless available for use as the terminal node
in the goal tree of some new method. This would explain not only the high
level of positive transfer for delete character and delete word subgoals, but also the
low-level and even negative transfer for delete sinng. There are much more
efficient methods for deleting strings in EAMACS than the repetitive use of the
delete key.

An earlier analysis of the transfer of LL methods between the line editors
suggested that, if many methods exist for accomplishing a goal and most are
new but one is familiar, the familiar method will be favored. Applying this
general rule to the present situation, if the delete key is a source of transfer to
EMACS, line editor and typing control subjects should use the delete key more
often in EMACS than EMACS control subjects. Examining the deletion
methods used on the first day of learning and transfer, we found that, whereas
EMACS control subjects used the delete key in 50% of their methods, line
editor and typing control subjects used it in 68% of theirs. Although a
chi-square test failed to confirm this difference as significant, this result does
suggest that the delete key 15 being transferred.

The preceding discussion does not explain why the delete line subgoal shows
a high-level of positive transfer in the line editor group but not the typing

246 SINGLEY AND ANDERSON

control. In EMACS, delete line is distinguished from other deletion operations
by a specialized method so efficient it precludes the use of the delete key. This
method has the same goal structure as the delete line method in the line editors
but involves different keystrokes. In all three editors, one moves to the line
requiring deletion and types the delete line operator. (In the line editors, the
operator is d, and in EMACS, it is tktk.) There is no such goal structure in
the typing control, hence the difference in delete /ine transfer.

Here, then, in the delete operations, are two additional sources of MT
transfer to EMACS. The first, the delete key, contributes to either positive or
negative transfer, depending on its interaction with unit-task. The second, the
delete line goal structure, exists in only the line editor group, and thereby
contributes to the difference between line editor and typing control transfer.
These specific cases illustrate the general point that, although text modifica-
tion procedures in the line editors and EMACS are quite different in terms of
overall goal structure, the two do share a number of leaf components.

2.3. Summary of Experiment 1

We have just completed a rather detailed analysis of the data. It is
worthwhile to stress some of the general conclusions supported:

1. Degree of transfer does seem to be a function of the overlap in number
of elements.

a. Information-processing models like GOMS help to define shared
goal structures. For mstance, the massive transfer in MT between the
line editors occurred because of identical goal structures for different
physical commands.

b. Even in cases where tasks do not share goal structures, there can be
considerable transfer at the level of leaf nodes.

2. A complex task like text editing can be decomposed into parts and each
part seems to be learned separately.

a. Components such as LL are performed and learned independently of
the context in which they occur,

b. Time to perform highly practiced components such as typing do not
speed up, but the planning components show very rapid speed up.

c. Various components of the task seem to decompose cleanly into
planning and execution time.

In summary, although the task of text editing 1s complex, it appears that
under the right analyses the underlying behavior is not. In line with Simon’s
{1968) long-standing claims, the complexity of the behavior simply reflects the
complexity of the task.

LEARNING AND TRANSFER IN TEXT EDITING 247

Negatwe Transfer. As mentioned previously, the issue of negative transfer
complicates simple identical elements models of transfer. In the micro-
analysis, however, we found evidence for only one instance of this effect: the
inefficient use of the delete key in EMACS to satisfy the delete siring subgoal. This
13 not a true instance of procedural interference as commonly conceived,
however. Procedural interference 1s usually thought of as one procedure
disrupting the successful execution of another by making it stower or more
errorful. In this case involving the delete key, the deletion procedure is not
slower or more errorful, but rather is executing quite successfully. The
problem is simply that this familiar procedure brought over from the line
editors and typing is less efficient than other novel procedures in EAMACS. If
anything, the delete key 15 interfering with the acquisition, not the execution,
of other procedures. This phenomenon can be likened to the classic
Einstellung effect {Luchins, 1942), where the flawless execution of a familiar
procedure in a new situation similarly leads to nonoptimal performance.
Therefore, this instance of negative transfer seems to fit in rather well with our
identical elements model.

3. EXPERIMENT 2: IDENTICAL ELEMENTS AND
NEGATIVE TRANSFER

The purpose of the second experiment is twofold: (a) we wish to verify and
extend our multicomponent view of learning and transfer by making addi-
tional transfer predictions, and {b) we wish to press the issue of negative
transfer to the limit. We do this by importing a classic interference paradigm
from verbal learning research into the domain of text editing.

For these purposes, we had to create a new, special kind of editor for the
transfer task. This editor is identical to EMACS, with the one exception that
all the control and escape keys are replaced or scrambled. For example,
whereas in regular EMACS, 1d deletes a character and e moves to the end of
aline, in this new editor, 1d moves down a line and e deletes a word. In all,
almost half of the commands in the new editor are bound to keys used for
contrary purposes in EMAGS, with the remainder bound to entirely new keys.
We call this new editor perverse EMACS, for obvious reasons.

Were a subject to learn EMACS first and then perverse EMACGS, one would
reasonably expect a lot of negative transfer. In fact, if we regard the functions
of the keys as the stimuli and the bindings as the responses, we have an
approximation to the classic A-B, A-Br interference paradigm used in verbal
learning research (Postman, 1971). However, the important observation is
that an identical elements model based on a production system analysis
predicts strong positive transfer in this situation. Using the standard goal-tree
representation of skill, perverse EMACS is identical to EMACS except that the
terminal nodes executing specific EMACS keystrokes have been replaced. In

248 SINGLEY AND ANDERSON

other words, EMACS and perverse EMACS share all the internal nodes of their
goals trees and differ in only the leaves.

The basic plan of our experiment is to teach subjects EMACS, then perverse
EMAGCS, and finally EMACS again. Our major prediction is that each of the
transitions will be marked by strong positive transfer. Not only will subjects’
initial training on EMACS transfer to perverse EMACS, but also their continued
training on perverse EMACS will serve to umprove their performance on
EMACS when they return to it. Aside from these general predictions, our
further claim is that transfer will be localized primarily to the various plannng
components in the editors, because the areas of overlap lie mainly in the
underlying goal structures and not the surface procedures.

Our experiment has one other feature which serves as an additional source
of transfer predictions. We compare the performance of one group that passes
through the basic EMACS, perverse EMACS, EMACS cycle just outlined with
another that passes though the same cycle except that it learns one of the line
editors first. The crucial manipulation here is that we control the amount of
practice the second group gets so that, with its combination of line editor and
EMAGS training, it is performing as well on EMACS prior to transfer to
perverse EMACS as the first group that has EMACS training alone. Although
the groups will perform equivalently on EMACS, we predict that they will
show differential transfer to perverse EMACS. This is due to the fact that the
two groups have different learning histories and, therefore, different compo-
sitions of text-editing skill. Our specific prediction is that the transfer task will

favor the group with the combination of line editor and ZAMACS training.

This prediction is based on the following analysis: The group with prior
line-editor experience achieves equal overall performance prior to transfer by
having the components common to EMACS and the line editor better
practiced and the components unique to EAMACGS less practiced. Presumably,
any component general to a line editor and EMACS would transfer completely
to perverse EMACS, but those components specific to EMACS would not. Thus,
the line editor group shows more transfer reflecting a stronger general

compenent.

3.1. Method

Subjects. Subjects were eight women from the same population as in
Experiment 1.

Materials. Three editors were used in this experiment, EMACS, perverse
EMACS, and EDT. The decision to use EDT instead of ED as the line editor
was entirely arbitrary. The functionalities of EMACS and EDT were identical
to those in the first experiment and are summarized 1n Figure 1. Figure 3
presents a full comparison of the commands in EMACS and perverse EMACS.
In the context of regular EMACS, perverse EMACS is certainly a treacherous

LEARNING AND TRANSFER IN TEXT EDITING 249

Figure 11. Screen editor command
summary for E i
denotes a contral character and Jan nmnmwMuMumHMnnM Friment 2. In the table, |

EMACS Perverse EMACS

Command Type Action Binding Binding
Locative forward character tr
forward word I W
backward character th 1
backward word Ib WH
beginning of line ta 1
end of line te 3
previous line tp fu
, next line in id
Mutative delete character id
delete word Id Wn
delete previous character DELETE qM
delete line 1k 1w

n&%cﬁ However, every effort was made to make the commands sensible in
mpﬁ,n own right. In fact, we tried to preserve many of the more user-friend]
design features of EMACS. For example, command names are mnemonic: Qu\
moves the CUIsor up one line and !d moves it down. In addition noEBm.me
are m.nocmuna in pairs: Je deletes a character and 1e a word. In HEM latter case
however, just to add to the confusion, the functionality of the escape munm
control keys within the pairs are reversed, so that the escape ﬁnnmmomvom the
noEEmma operates on characters and the control version operates on words
(Just E.m opposiie is true in EMACS.) Finally, we designed perverse EMACS zw
approximate regular EMACS in its proportion of control to escape ke
noEEE,&m and also left-handed to right-handed commands. Qur E]ﬁ.umm Y
all of ﬂ:u was to make the new version of EMACS as learnable as Mﬁw wE o
that mn.%wnnunmm in performance between the two might be attrib . au o
something besides absolute differences in the editors, P e

%MMMWMW%“MEM primary task in designing this expernnment Is to give two
o m“u amounts of general ,mun_ specific practice but equate their
B Perte nwmznn on gwﬂh prior to transfer. We calculated from
’ M. ent at a group with roughly 2 days of EAMACS practice will
wm orm mm.inm as another with 2 days of EDT and 1 day of EMACS practice
ore specifically, we calculated that 2 days of EMACS practice would 1 ,
m.m.v.wmnmm with slightly better performance and planned to stop the mcw.nnﬂnmwMM
Wm group on Um.% 2 when therr performance reached the criterion Hmﬁwm Here
en, is our ﬂmﬁaom for matching the two groups. .
N M_w.m w:m design for the mxwmﬂﬂgﬂ 15 as follows. One group (hereafter called
¢ ling-and-screen group) starts with 2 days of EDT followed by 1 day of

. EMACS, 2 days of perverse EMACS, and 1 day of EMACS. The second group

250 SINGLEY AND ANDERSON

(hereafter called the screen-only group) starts with 2 days of EMACGS, followed
by 2 days of perverse EMACS, and 2 days of EMACS.

Procedure. The procedure was nearly identical to that used in the first
experiment. Subjects spent 3 hr per day editing the standard manuscript (see
Figure 2). With each new editor, subjects were given a w hr introduction by
the experimenter that included both a description of the commands and a
demonstration of two trials. The only difference in the procedure was that, on
Day 2 of the experiment, members of the screen-only group were stopped
prematurely by the experimental program if their performance dipped below
a target level. We determined this target level by yoking each subject from the
screen-only group to another run earlier mn the line-and-screen group.
Pairings were based on rank orderings of subjects from performance on the
first day of EMACS. As expected, all screen-only subjects attained their target
levels on the second day of the experiment.

3.2. Results

This results section has two major parts corresponding to the macro and
micro levels of data analysis. The macroanalysis describes transfer in terms of
aggregate measures like time per correct edit and keystrokes per trial. The
microanalysis describes attempts at localizing transfer through the application
of the parsing algorithm.

Macroanalysis of Transfer

Figure 12 presents data that confirms our prediction concerning differential
transfer to perverse EMACS. Plotted is time per correct edit for the 2 days of
perverse EMACS as well as 1 day before and after. (We have plotted Days 2
through 5 of the experiment for the screen-only group and Days 3 through 6
for the line-and-sereen group. This aligns the perverse EMACS data to facilitate
comparisons.} As shown, the two groups are matched quite well on EMACS
prior to transfer (43.5 and 44.2 sec per edit for the screen-only and
line-and-screen groups, respectively). However, these functionally equivalent
groups are separated by transfer to perverse EMACS. A one-tailed matched-
groups i-test confirms that the average performance on perverse EMACS of the
screen-only group is significantly worse than that of the line-and-screen
group, #3) = 2.3, p < .05. Interestingly, the last day plotted, which
represents the return to EMCS, shows that the two groups never guite recover
their former equivalance: The screen-only group continues to lag behind.

As might be expected given previous results (Singley & Anderson, 1983),
the pattern observed in the timmng data is duplicated almost perfectly in the
keystroke data. Our matching procedure mnadvertently matched groups on

LEARNING AND TRANSFER IN TEXT EDITING 251

Fipure 12. .Huwnmmmﬂ. to perverse EMACS in terms of time per correct edit. The
curves have been aligned so that the first day represents performance on EMACS

prior to transfer, Days 2 and 3 performance on perverse EMACS, and Day ¢4 the
return to EMACS.

c 60r
2
®
D
[=%
o
B
o 50l o—a screen-only
w. o——=¢ line-zgnd-screen
@
e
=
Q
2
o 40
30
20+
.._ i } 1 H i
5] 2 3 4 5

Day

keystrokes as well as time per edit, giving further credence to the position that
number of keystrokes is a major predictor of performance in text editing
(Card et al., 1983). Once again, the two groups are separated by the transfer
task, but this time the matched-groups i-test was only marginally significant,
{(3) = 1.7, p < .08. If we accept the keystroke difference as wnmm., however, it
sheds an entirely new light on our interpretation of the results. We had
predicted the screen-only group’s inferior performance in terms of a weaker,
less-practiced general component that runs more stowly in perverse EMACS.
This kind of explanation is based on a strong identical elements model of
transfer that makes no appeal to negative transfer. However, the disadvantage
in keystrokes raises the possibility that the screen-only group’s strong specific
component is playing a role as well. The group’s well-practiced EMACS-
specific methods may be interfering with the acquisition and use of efficient
methods in perverse EMACS. With this kind of explanation, the screen-only
group is in a kind of double jeopardy: both its general and specific

252 SINGLEY AND ANDERSON

components are liabilities. The general component is weaker and contributes
less to positive transfer, whereas the specific component is stronger and
contributes more to negative transfer.

The further Interpretation of the results of this expertment, as well as the
status of identical elements models of transfer generally, seems to hinge on the
issue of negative transfer. For this reason, we devote the remainder of the
macroanalysis and the entire microanalysis to its exploration. We focus our
attention on the screen-only group, because its poorer performance makes it
a more likely victim.

Baseline Comparisons. To gain a better perspective on the absolute perform-
ance of the screen-only group on perverse EMACS, we compare the screen-only
data to the EMACS learning curve from Experiment I. Because as editors
EMCS and perverse EMACS are practically equivalent on all objective meas-
ures, we can use the EMACS learning curve as a rough approximation to a
perverse EMACS learning curve and thereby gauge whether the screen-only
group experiences positive or negative transfer overall.

Figure 13 compares the screen-only and EMACS-control groups on time per
correct edit over 6 days of editing. Recall that the screen-only group spent
Days 3 and 4 of the experiment using perverse EMACS; all other data points in
the figure represent performance on EMACS. We see that the two curves
follow each other fairly closely. In fact, i-tests revealed that the two groups
were not statistically different on 5 of the 6 days. Only on the third day, the
first day of transfer to perverse EMACS, did the groups differ significantly, #6)
= 2.9, p < .05. These results highlight the overwhelming similarity and
positive transfer between the two editors. First, compared to Day 1 using
EMACS, there 1s large positive transfer for the screen-only group on Day 3 to
perverse EMACS. The difference between the two groups on Day 3 represents
the temporary deficit suffered by the screen-only group while learning the
specific rules of perverse EMACS. By Day 4, this deficit has largely disappeared,
and en Day 5, when the screen-only group returns to EAMACS, it picks up at
the same point on the learning curve as the group that had stayed with
EMACS all along. Thus, although there is some reason to suspect that the
screen-only group 1s experiencing negative transfer at some level, most
measures at the macrolevel indicate massive positive transfer.

Microanalysis of Transfer

At finer grains of analysis, it should be possible to identify and characterize
sources of negative transfer that might have been washed out at more
aggregate levels. We continue to focus on the screen-only group.

First Transfer Analysis: LL/MT

We have pomted out previously that in using the standard goal-tree
formulation EMACS and perverse EMACS differ i only their terminal nodes.

LEARNING AND TRANSFER IN TEXT EDITING 253

Figure 13. Comparison of screen-only group from Experiment 2 with the EMACS
control group from Experiment 1 in terms of time per correct edit.

"y
(=]
[

Lty gmacs practice curve
o—o0 screen-only

oo
Q
T

]

Seconds/correct operation

60

40

30

201

10F

Day

In other words, both MT and LL planning components overlap completely,
but the execution components are largely different. It turns out that, whereas
the LL execution component is completely different in the two editors, the
MT execution component overlaps somewhat because insert operations make
use of the standard alphanumeric keys that have not been rebound. Given this
analysis, we would expect large and equal amounts of transfer in the LL and
MT planning components, less transfer in the MT execution component, and
essentially none in the LL execution component. Of course, if execution
components are somehow interfering with one another, transfer could be
negative.

To measure LL/MT transfer, we have devised a new transfer score that is
sumilar in spirit to the score used in Experiment 1. The goal once again is to
measure transfer relative to the amount of learning that takes place with the
same amount of practice, Because we did not make an independent assess-
ment of learning in perverse EMACS, we use regular EMACS learning data
from Experiment 1 to estimate learning rates. This approximation is gquite

254 SINGLEY AND ANDERSON

Figure I14. LL/MT transfer from EMACS to perverse EMACS.

LL MT
Planning time Transfer(3) 16.0 17.7
Learnming(1) 29.4 34.8
r .67 .78
Transfer score {from
Equation 2) 68% 63%
Number of keystrokes Transfer(3) 10.7 20.8
Learning{1) B.7 18.8
T .10 17
Transfer score {from
Equation 2) -234% -61%

good given that the two editors are functionally and structurally equivalent.
The new transfer score 1s given by the following equation:

Q. . R"_.:Amv - a:.nuﬂmwv
Otransfer ‘a\bﬂnﬁmv *

x 100 @

As in the earlier equation, the numerator represents the speedup due to
transfer and the denominator the speedup due to learning. The Day 1
learning mean (M (1)) 1s taken from the screen-only group’s performance on
the first day of the experiment. To calculate the speedup due to learning, we
multiply this mean by a fraction, 7, which represents n:.w ?.Suoz\wou of
speedup observed in Expertment ! for the compenent in question. In this way,
the learning baseline is supplied by the screen-only group, but wnmwnim wmﬂnm
are supplied by Experiment 1. This allows for a more sensitive ,.,...#Ex-maa.ﬁna
measure of transfer that behaves identically to the between-subjects measure
used in Experiment 1.

Figure 14 presents LL/MT transfer scores for both planning time and
keystrokes. We see that our predictions concerning LL/MT transfer are
mmmmnmw confirmed. Planning time transfer 1s substantial (M = 66%) .mnm
virtually identical for LL and MT components. Keystroke eransfer (i.e.,
execution component transfer) is much less than planning time transfer, E,E
LL t5 much worse than MT, as predicted. Most striking 1s that the keystroke
transfer is not small or zero but negative. On average, subjects strike an extra
two keystrokes per edit on the first day of perverse EAJACS compared to the first
day of EMACS on both LL and MT components. Thus, 1t appears that
%ﬁh.mvmnmmn methods are somehow interfering with the acquisition o,m new
methods in perverse EMACS. The exact nature of this interference remains to
be seen,

LEARNING AND TRANSFER IN TEXT EDITING 255

Second Transfer Analysis: Division Into Methods -

Although transfer at the macrolevel was overwhelmingly positive, we have
now 1dentified two sources of negative transfer in the LL and MT execution
components. In this analysis, we attempt to further localize the sites of
negative transfer by examining individual unit tasks. The analysis is restricted
to the MT component because LL procedures are essentially the same for all
unit tasks and should not differ in terms of transfer. In addition, the three unit
tasks involving line operations are excluded because MT procedures for these
three share nothing with the others and add unnecessary complexity to the
analysis.

As stated previously, insert operations are identical in the two editors, but
delete operations are grievously different. This means that, although the
transfer observed in the LL/MT analysis for the MT execution COmponent
was negative overall, that subset of unit tasks involving insertion should show
substantial positive transfer. Negative transfer should be restricted to those
unit tasks that involve deletion. Because replacement involves both insertion
and deletion, transfer scores for those unit tasks should lie somewhere between
the other two.

To further dramatize the fact that positive transfer dominates the planning
components and negative transfer is restricted to a subset of execution
components, we first examined MT planning time for each of the nine unit
tasks. As expected, a 3 X 3 ANOVA using the transfer score in Equation 3
as the dependent measure yielded no main effects or nteractions, thereby
confirming that MT planning time transfer for all nine unit tasks was equally
positive.

When we performed the same ANOVA using keystroke transfer as the
dependent measure, a main effect for editing operation emerged, M2, 12) =
123.6, p < .001. As predicted, insertion operations exhibited substantial
positive transfer (M = 110%) and deletion operations massive negative
transfer (M = —240%). Finally, replace operations were in the middle (A =
—100%). Here, then, is strong support for the view that deletion operations
are the source of negative transfer in the MT execution component.

Third Transfer Analysis: MT Methods

We now know that the acquisition of EMACS deletion methods somehow
interferes with the acquisition of perverse EMAGS deletion methods. Critical to
the status of our identical elements model of transfer is the nature of this
interference. In Experiment 1, the one case of negative transfer was charac-
terized in terms of the positive transfer of a nonoptimal method. No real
evidence was found for procedural interference in the classic sense, and a
fairly strong version of our identical elements model was retained.

The pressing question now is whether the rather substantial negative

256 SINGLEY AND ANDERSON

Figure 15. Distribtion of operators in deletion unit tasks for (a) EMACS and (b)
perverse EMACS.

EMACS Perverse EMACS
del-pre- del-pre-
Operator del-char char del-word dei-char char del-word
Unit Task (1) (DELETE) {}d) (Je) (ta) {1e)
delete character 78 16 6 57 it 3
delete word 66 22 12 81 3 16
delete string 60 10 30 75 0 25

transfer observed in this experiment can be similarly explained. To answer
this question, we performed a qualitative analysis of the methods used for the
deletion of characters,words, and strings in both EMACS and perverse EMACS
by screen-only subjects on the first 4 days of the experiment. As can be seen
in Figure 11, there are four deletion operators in each editor: delete character
marked by cursor {del-char), delete word marked by cursor (del-word), delete
character to left of cursor (del-pre-char), and delete from current cursor position
to the end of the line. This last operator will be ignored because it was not used
in any of the three unit tasks in either editor. Figure 15 shows the distribution
of the remaining three operators i the deletion unit tasks of both editors.

We first see that in EMACS the operator of overwhelming preference is
del-char (1d). Subjects adjust their operator selections somewhat by the
amount of text to be deleted, as evidenced by the increased use of del-word (]d)
on words and strings. However, even in the delefe siring unit task, {d-enjoys a
2 to 1 advantage over the more optimal]d. Looking at the perverse EMACS
results, we see that del-char (now bound to e} is again the runaway favorite,
but now its dominance is even greater. The del-pre-char operator, which played
a minor role in EMACS, has all but disappeared n perverse EMACS,
Interestingly, of the three deletion operators used in perverse EA{ACS, only one,
Je, did not have a previous binding in EMACS.

Thus, it appears that negative transfer can once again be explained in terms
of the positive transfer of a nonoptimal method. Transfer is negative because,
whereas the use of del-char in EMACS involved a single keystroke, its use in
perverse EMACS nvolves two. {The escape key 1n the Je operator must be
struck independently and, therefore, counts as an extra keystroke.} Therefore,
what was a nonoptimal method in EMACS becomes even worse in perverse
EMACS. In addition, the use of this nonoptimal method may be amplified
somewhat by a kind of fan effect (Anderson, 1983), which penalizes those
operators with multiple bindings and enhances those with single bindings. In
our case, the operator with a single binding just happened to be del-char, which
is already dominant and, as we've seen, very inefficient. However, even this

LEARNING AND TRANSFER IN TEXT EDITING 257

secondary effect is probably not true procedural interference, in that its roots
are most likely in the declarative representation of the skill. Factors like fan
probably influence the initial operator selections made during the early
interpretive phase of skill acquisition. Such influences can certainly affect the

course of knowledge compilation and uitimately the compiled representation
of the skill.

3.3. Summary of Experiment 2

The resuits of our second experiment largely reinforce the conclusions of the
first, Text editing does seem to be a skill that can be hierarchically
decomposed into independent subcomponents. Positive transfer is to be
understood in terms of the number of shared components among skills. In
addition, the second experiment has shown that negative transfer has a similar
explanation. Negative transfer occurs when the use of shared components in
a new skill is suboptimal. Again we see that the transfer of text-editing skill
can be understood in terms of an identical elements model when that mode}
1s defined by an appropriate cognitive representation.

4. SIMULATION MODELS AND QUANTITATIVE
PREDICTIONS

Up to now, we have been content to make transfer predictions based on
rather qualitative analyses of similarity. We now pool data from the two
experiments and make quantitative predictions of transfer based on detailed
task analyses of text-editing skill in the four editors. The product of our task
analyses 1s a set of production system models which simulate skilled, error-free
text-editing behavior n each of the editors. As mentioned previously, the
underlying goal structures used in our models are based largely on the GOMS
keystroke level analysis of Card et al. (1983, pp. 165-166). The GOMS model
uses a strict hierarchical control structure to model expert, error-free text-
editing behavior. With such-a restricted goal structure, the GOMS model is
not a true instance of a production system, although it can be easily adapted
to one. To recast the GOMS model as a production systern, we assume that
several productions fire to create the top-level goal structure in Figure 3. In
response to each of these major goals, additional productions fire to create
subgoals and eventually actions. This production system analysis is essentially
identical to the GOMS formulation. In our simulations, we use the GRAPES
production system language (Sauers & Farrell, 1982), which supports the
construction of hierarchical goal trees and restricts production firings to those
relevant to the current goal.

When using such production system models, a first approximation to a

258 SINGLEY AND ANDERSON

Figure 16. Listing of productions used in the text-editing simulations. Produc-
tions are categorized in terms of goal (LL vs. MT) and range of application.
Production frequency refers to the number of times a production fires every two
trials.

Component Category Number of Rules Total Frequeney

1L GENERAL 6 96.0
LINE 10 35.4
ED 5 458.7
EDT 7 73.4
SCREEN 13 89.0
EMACS 7 62.0
PERVERSE EMACS 7 62.0

MT GENERAL 3 32.0
LINE 24 105.3
ED 6 23.0
EDT 5 14.0
SCREEN 18 70.0
EMACS 4 18.0
PERVERSE EMACS 4 18.0

transfer prediction would involve comparing two sets of productions for
different editors. To the extent that the production sets overlap, transfer
would be positive from one skill to the other. To get a somewhat more
accurate prediction, we assign weights to the productions according to their
frequency of use in the transfer task. A production that fires frequently in the
transfer task contributes more to the time estimate than one that fires
seldomly. This point in fact figures prominently because the productions that
generate the upper-level goal structures common to 2ll editors are relatively
high-frequency productions, firing in service of every unit task.

A total of 118 distinct production rules are used to simulate behavior in the
four editors. A good proportion of these rules do double-duty, that is, they
apply m more than one editor. Figure 16 summarizes the rules and categorizes
them in terms of whether they contribute to the LL component or the MT
component.” Furthermore, these rules are categorized according to their
range of application. The categories are as follows:

* ((ENERAL. Rule applies in all four editors.

3 As alluded 10 previously, some productions that do not strictly fire in service of the L1 goal
still contribute to the LL component because they add to the innial long pause before the first LL
keystroke. These include ruies for generating the upper portion of the goal tree and rules for
acquinng the unit task from the manuscript.

LEARNING AND TRANSFER IN TEXT EDITING 259

LINE. Rule applies in both line editors: ED and EDT.

SCREEN. Rule applies in both screen editors: EMACS and perverse
EMACS.

ED, Raule is specific to ED.

EDT. Rule 1s specific to EDT,

EMACS. Rule 1s specific to EMACS.

PERVERSE. Rule 1s specific to perverse EMACS.

Note that there are no rules that are common to a specific line and screen
editor (e.g., EDT and EMACS).

Also shown in Figure 16 is an estimate for total frequency of occurrence for
each set of rules. These estimates were derived by simulating each production
set on 10 randomly selected trials from the experimental manuscript. The
numbers reflect the average number of firings of a rule on any two trials that
contain the 12 kinds of edits our subjects had to perform. Thus, for a rule that
fires once on every unit task (e.g., the rule that sets the subgoals of LL and
MT) the frequency of occurrence 1s 12. The numbers in the figure are simply
summations over all rules in the set.

There are four rules common to all editors that are not represented m the
fipure and make no contribution to our calculations. Two of these are rules for
typing, and it has been shown m the learning analyses that there 15 virtually
no speedup in the execution (i.e., typing) component. It is a general principle
that a component which exhibits no learning can have no impact on transfer.
Therefore, we exclude typing productions from the analysis. The productions
shown in the figure contribute solely to the various planning components, so
we restrict ourselves to predictions of planning time in these transfer analyses.

The other two excluded rules concern failing to acquire the next unit task
and terminating with success when the acquire-unit-task goal fails, These
rules fire in succession at the very end of each trial, and the associated pause
is not included n any of our measurements.

Because it is impossible given space limitations to describe each rule in
detail, we give brief descriptions of each category plus one or two examples.
Those interested in a fuller understanding of the simulations are encouraged
to write us for the code. Here, then, are summaries of each category:

LL-GENERAL. This contains rules for generating the upper levels of the
goal tree in Figure 3 and rules for acquiring edits from the manuscript. Here
is & version of one rule:

260 SINGLEY AND ANDERSON
PRODUCTION execute-unit-task-G

IF the goal 1s to execute-unit-task
THEN set as subgoals to

1) locate line

2) modify text.

As mentioned previously, these are all relatively high-frequency rules and,
therefore, make strong contributions to LL transfer among the editors.

LL-LINE. This contains rules for deciding between primary and secondary
LL methods in the line editors, terminating commands with carriage return
{(this rule also appears in MT-line), recognizing when movement is required
and when it’s not, and rules for determining whether a string search is
successful and how to pad the string to make it unique. It is interesting to note
that these latter rules only apply in DT because £D uses number rather than
string addressing methods for locating lines. However, these rules appear in
the MT component of ED because unique strings must often be selected as
arguments to the substitution command. Therefore, these rules appear in the
LL-line category rather than LL-EDT.

Here is a version of a rule from this set:

PRODUCTION choose-ll-secondary-LINE

IF the goal is to choose a command

and the supergoal is to locate line

and the current line is =linel

and the target line is =line2

and =line? is immediately after =linel
THEN use the secondary carriage return method.

This rule implements the decision rule to select carriage return to move down
a single line. This secondary method, of course, 1s common to both line
editors.

LL-ED. This contains rules that specify the primary LL. method in ED and
rules that count lines of the manuscript in order to supply the line number
argument, Here is the rule that specifies the method:

PRODUCTION &I-primary-method-ED

I¥ the goal is to enter a command
and the command is LL-prunary
THEN set as subgoals to
1) specify the line number
2} specify the command symbol.

LEARNING AND TRANSFER IN TEXT EDITING 261

This rule nltimately leads to the generation of a command such as 10p, which
positions the user on the tenth line of the file.

LL-EDT. This contains rules that specify the primary LL method i EDT
and rules for iterating through lines of the manuscript to test the uniqueness
of a search string. This is the rule that specifies the primary LI method in
EDT:

PRODUCTION li-primary-method-EDT

IF the goal 15 to enter 2 command
and the command is LL-primary
THEN set as subgoals to
1) specify the command symbol
2) specify the search string delimiter
3) specify the search string
4) specify the search string delimiter,

This rule leads to the generation of a command such as t 'hello’, which
positions the user on the first line containing the string ‘hello’ following the
current Jine.

LL-SCREEN. The LL methods in screen editors like EMACS and perverse
EMACS are much more precise than those in the line editors because both
horizontal and vertical positions are specified. The LL rules common to both
screen editors include rules for choosing among the various LL operators
(e.g., forward-word, backward-word, beginning-of-ling) and special-case
rules for stopping in pesition depending on the direction of movement. For
example, the user stops immediately to the right of certain modifications when
coming from the right, but immediately to the left when coming from the left.
Two distinct rules are required to model this behavior,

Here is the rule that chooses to apply to the forward-word operator:

PRODUCTION choose-forward-word-SCREEN

IF the goal 15 to move horizontally on a line
AND the cursor is to the left of the modification
AND one or more words separate the cursor and the
site of the modification
THEN choose forward-word.

A separate rule retrieves the command symbol associated with the forward-
word operator. These rules, however, are different in the two screen editors,
because forward-word is |f in EMACS and 1r in perverse EMACS.

LL-EMACS. These rules simply retrieve the bindings associated with the

262 SINGLEY AND ANDERSON

various LL operators in EMACS. For example, this rule retrieves the binding
for next-line:

PRODUCTION next-line-EMACS

IF the goal i3 to specify the command symbol
AND thie command is next-line
THEN set as a subgoal to type In.

LL-PERVERSE. The rules m this set are completely analogous to those in
LL-EMACS. The LL operators simply have different bindings in perverse
EMACS.

MT-GENERAL. This contains rules for setting the upper-level goal struc-
ture for modify-text, inserting text within a particular method, and verifying
the location of an edit. This last operation is technically part of LL but 1s
counted as part of MT by our parsing algorithm.

This rule sets the goal structure for modify-text:

PRODUCTION modify-text-G

IF the goal is to modify-text
THEN set as subgoals to
1) choose a method
2} use the chosen method
3) verify the edit.

MT-LINE. The line editors share many rules for MT. Some of these are
rules for selecting a particular MT operator; others concern the specification
of string arguments to the heavily used substitution command. In this latter
category, many deal with the management of space. For example, one rule
states that if the goal is to delete text that has space on both sides, then one of
those spaces should also be deleted. Similar considerations come into play for
text insertion. For example, this rule deals with the msertion of 2 word or
string of words into a line of text:

PRODUCTION second-arg-sub-insert-middle-space-LINE

IF the goal is to specify the second argument to

the substitution command

AND the modification is the insertion of a word or string of words
THEN pad the insertion with a space on the end.

This rule insures that all words are separated by spaces following text
insertion.

LEARNING AND TRANSFER IN TEXT EDITING 263

MT-ED. These rules retrieve the particular MT command bindings for ED.
For example, this rule retrieves the binding for replace-line:

PRODUCTION replace-line-ED

IF the goal 15 to specify the command symbol
AND the command is replace-line
THEN set as a subgoal to type r.

MT-EDT. These rules supply the command bindings for EDT and are
almost completely analogous to those m MT-ED. One difference 1s that the
rule for supplying the syntactic terminator for the substitution command in
ED is missing in EDT because no syntactic terminator is required (see Figure
1).

VE T-SCREEN. MT rules shared by the screen editors concern the selection
of MT methods and also the management of space, which, as just discussed,
1s also a source of common rules in the line editors. As an example of the
former type, this rule selects the kill-line deletion method:

PRODUCTION choose-kill-line-SCREEN

IF the goal 1s to delete text
AND the deletion spans the entire line
THEN use the kill-line method.

As an example of the latter type, the next rule checks for superfluous space
following a deletion:

PRODUCTION too-much-space-SCREEN

IF the goal 1s to check for space following a deletion
AND the cursor is positioned on a space character
AND the character to the left is also a space character

THEN delete the previous character.

MT-EMACS. These rules simply specify the command bindings for the four
deletion operators in EMACS. We have seen several exampies of these kinds
of rules already.

MT-PERVERSE. 'These four rules are the counterparts of those in MT-
EMACS.

This completes our description of the rule sets used to simulate behavior in
the editors. One remaining task 15 to identify the rules that in our view are
practiced by the typing control group from Experiment 1 and are transferred
to EMACS. Typing control subjects must acquire edits from the manuscript

264 SINGLEY AND ANDERSON

and, therefore, practice two high-frequency rules from LL-GENERAL. As
for MT, subjects practice only a single rule from the SCREEN category,
which states that if the goal is to insert text, then set as a subgoal to type that
text {the typing interface, like the screen editors, was always in the “insert”
mode).

Given this task analysis, we are now in position to make quantitative
predictions of LL. and MT planning time transfer for all conditions from both
experiments. The method is simply to sum the production frequencies for a
particular editor and then figure the percentage of firings that involved known
rules. Of course, the known rules are defined by our various categories and
differ depending on the particular transfer condition being modeled. For
example, to calculate percentage transfer for LL from £D to EDT, one would
use the following formula:

fri.cenerar + fiirine
firceneraL + forme + fiiepr

Qo:.u.: -

X 100 (3)

where fy is the sum of production frequencies for category x. In this case, the

numerator represents the rules shared by the line editor LL, components, and

the denominator represents the entire set of rules required for LL in EDT.
Instantiating this formula, we get:

96 + 55.4
96 + 55.4 + 73.4

Whereas we use Equation 3 to generate our theoretical predictions, it is
important to note that we used a different equation (Equation 1) to measure
transfer empirically. At first blush, the equivalence of Equations 3 and 1 is not
apparent. However, we have shown (see Singley & Anderson, 1988, for a
detailed derivation) that Equation 1 can be reduced to Equation 3 under the
following set of assumptions:

X 100 = 67%

1. All productions take roughly the same amount of time to learn and
execute,

2. Exposure to the training task does not affect the structure of the transfer
task.

3. Common elements occur with roughly the same frequencies in the
training and transfer tasks.

4. Measures of subject performance are aggregated over roughly the same
number of trials in tramning and transfer tasks.

Needless to say, violations of these assumptions may account for certain
discrepancies between predicted and observed values,

Figure 17 presents predicted and observed transfer percentages for the
various conditions from both experiments in tabular form, and Figure 18

Figure I7. Ohbserved and predicted transfer percentages for LL and MT
planning time in the two experiments.

Training Transfer % Transfer % Transfer
Component Editor Editor Predicted Observed
LL ED EDT 68 87
DT ED 75 91
LINE EMACS 39 61
TYPING EMACS 19 35
EMACS PERVERSE EMACS 75 68
MT ED EDT 80 105
EDT ED 85 99
LINE EMACS 27 62
TYPING EMACS 7 29
EMACS FPERVERSE EMACS 85 63
Figure 18. Graphical depiction of the data in Figure 17.
k3 110
0
8
= 100
2
5
2 80
&
80
70
60
50
40
30r o
20 1 1 i] 13 i
0 20 40 60 80 100 120
Predicted transter
265

266 SINGLEY AND ANDERSON

presents that same data in graphical form. Generally, we see a good fit
between predicted and observed values; the correlation between these sets of
points 15 .85, However, upon closer inspection, we see that in 8 out of 10
cases, we are underpredicting the amount of observed transfer, and in the
remaining two, we are overpredicting. Interestingly, the eight cases of
underprediction are all drawn from Experiment I, and the two cases of
overprediction concern LL and MT transfer from EMACS to perverse EMACS.

If one excludes the two points involving transfer from EMACS to perverse
EMACS, the correlation becomes .98. This represents an almost perfect linear
relationship between our production-overlap predictions and empirical meas-
ures of transfer. This linear relationship is as follows:

C = .26 + .887T (4)

where O 15 the observed transfer and T 1s the theoretical prediction.
Unfortunately, such an equation makes little sense because it predicts greater
than 100% transfer when T = 1, that is, when there is total production
overlap.

One simplifying assumption made throughout this analysis is that all
productions have equal cost in terms of learning, and therefore, contribute
equally to transfer. However, given the systematic bias in our predictions, it
may be that we are assigning inappropriate weights to the components of
transfer. Specifically, 1t appears that we are underestimating the contribution
of the general components and overestimating the contribution of the specific
components. Looking at the low extreme case, we find ourselves predicting
about 13% transfer in the case of typing to EMACS and observing about 32%.
The typing condition and EMACS share a high-frequency production that
encodes edits from the manuscripe. It is perhaps reasonable that there is more
to a production that interprets the edit marks on a line than many of the
productions specific to EMACS, for example, a production that issues the If
keystroke. Looking at the high-extreme case, we predict 79% transfer
between the line editors and observe 96%. This suggests that the productions
specific to the line editors are being overweighted. Again, it is not unreason-
able to suppose a production that issues the p command is less costly to learn
than a production that decides among methods. ,

To identify the appropriate weightings, we could rewrite our linear transfer
equanon as:

i+ 30— .16 =~ T)

where En + .30 represents the extra emphasis needed for the general
productions and — .16 represents the lesser emphasis needed for the terrminal

LEARNING AND TRANSFER IN TEXT EDITING 267

productions umque to an editor. Without these adjustments, BEquation 5
reduces to the simple equation C = T. In summary, we are encouraged by
the close linear relationship between observed and predicted transfer that
exists when we exclude perversz EMACS from our analysis. The fact that we do
not get the simple equation O = T probably reflects the fact that different
productions deserve different weightings in the transfer equation.

The well-behaved character of the nonperverse EMACS pownts in Figure 18
makes the overprediction of the perverse EMACS pomnts all the more striking.
One is tempted to conciude that here is our first evidence of true procedural
interference between the screen editors in the planning components. Note that
this is negative transfer only in the relative sense, however. The overwhelming
effect is positive, just not as positive as we had predicted.

5. GENERAL DISCUSSION

The results of our two experiments largely support an identical elements
model of transfer based on a production system representation of cognitive
skill. In the first experiment, the relative magnitudes of transfer observed were
consistent with detailed measures of production system overlap between
editors. In addition, localized transfer sites were hypothesized and identified
through a series of empirical microanalyses. In the second experiment,
specific transfer predictions based on the differential practice of components
were tested and confirmed. Using a classic interference paradigm, little
evidence was found for negative transfer in the usual sense.

Additional Transfer Components. Although our identical elements models were
quite successful at making relative predictions, they were less able to predict
the magnitude of transfer in absolute terms. Most notable was the tendency to
underpredict the magnitude of transfer. We have already proposed an
explanation for this effect, although other explanations exist. We suggest one
additional source of transfer that represents a significant complication to our
simple production system analysis. This 1s the roie of declarative knowledge in
procedural transfer. It is our view that declarative knowledge of a special sort
contributed to transfer between the editors, although we gathered no data in
our experiments to support this claim. Our lack of data on this point 15
primarily due to our choice of methodology: Keystroke protocols are not very
informative about the role of declarative knowledge in skill acquisition and
transfer. However, other researchers (Bott, 1979; Mack et al., 1983) have
taken verbal protocols of subjects learning to use an editor and have found
that critical to the initial performance of the skill is a rudimentary mental
model of the editor as an interactive device. For example, a novice may be
ignorant of such basic facts as:

1. Text editing is an interactive dialogue between user and computer.
2. ‘The user issues commansls to the computer, not vice versa.

268 SINGLEY AND ANDERSON

3. The computer allows for mistakes, and the user must detect and correct
them.

Facts such as these play a useful role early on by supplying a kind of
high-level search control which facilitates a subject’s structuring of the task.
However, although such knowledge is certainly integral to text editing,
subjects quickly get beyond this stage and move on to the real order of
business: learning the particular procedures of a particular editor. Because
other researchers had already done quite well in the study of a subject’s initial
exposure to an interactive device, we chose to take a more extended view of
learning mn our experiments.

General Versus Specific Transfer. Our subjects were quite resourceful and
opportunistic in exploiting areas of production overlap in the transfer task. In
some cases, they identified areas of commonality in the performance of the
task that we had overlooked as expert observers, as mentioned previously. No
doubt this was partdly due to our multiple-trials methodology; subjects were
given every opportunity to discover similarities.

Despite the seeming intelligence of our subjects, our results suggest that
transfer was rather local and task-specific. The question naturally arises as to
whether our theory has any place for the transfer of some task-independent
component such as the various weak methods documented by Newell and
Simon {1972). The weak methods are invariably cast in procedural terms and
would, therefore, be an easy addition to any production system model of skill.
However, given our analysis, although the weak methods often play a vital
role in the ininal performance of a skill, they play virtually no role in transfer.
‘The reason for this is not profound but rather a simple consequence of how
transfer is measured. If a component is already well-practiced before training
begins, learning will be negligible and the component will simply drop out of
the transfer equation. This 1s true even when the component is a significant
part of the transfer task, which is the case in our experiments with the subskill
of typing. Because our subjects were already skilled typists before the
experiment began, learning was negligible, and, as a result, the typing
component had no impact on transfer. Alternatively, if our subjects had
known nothing about typing, we would have observed massive learning and
subsequent transfer of this subskill. This point highlights the fact that all skills
are learned not in isolation but rather against a backdrop of well-practiced
support skills which go virtually undetected in any measurement of learning
and transfer. In the typical psychology experiment using adults, the weak
methods fall into this latter class of support skills. Presumably, once acquired
and automated, nothing significant is gained through their repeated practice
other than a slight speedup. This may partly explain why the transfer of
general problem-solving skills has been so difficult to detect in adults (Jeffries,
1978).

LEARNING AND TRANSFER IN TEXT EDITING 269

Indeterminacy in Transfer Predictions. Putting aside the difficulties resulting
from inaccurate task analyses, quantitative predictions are still very difficult
when studying a complex skill such as text editing in full-blown form. One
reason for the difficulty is that, in an editor with close to full functionality,
subjects are confronted with many choices concerning methods for accom-
plishing particular edits. One subject may fixate on a method in a training
editor that figures prominently in a transfer editor, whereas another may
fixate on a method that has no role in the transfer editor at all. As a result, the
first subject exhibits more transfer than the second. This difficulty arises
whenever methods and/or strategic knowledge play a prominent role in a skill.
Unless subjects are forced to practice certain components, transfer will be
indeterminate to some degree.

Negative Transfer Remsited. Of course, the issue of negative transfer cannot be
.mnnmmam by a couple of experiments. However, our results suggest that
nterference in the classic sense is quite hard to achieve in the realm of
cognitive skills. What little negative transfer we observed was explained
largely as the positive transfer of a nonoptimal method which blocked the
acquisition and use of a new method. The fact that declarative interference is
well-documented (Postman, 1971) but procedural interference is not suggests
another possible distinction between these two types of knowledge (Anderson,
1983). Ultimately, this is additional evidence for the declarative-procedural
distinction in knowledge representation.

Acknowledgments. We thank Jeff Shrager for his help in programming the
expeniments, and also Peter Pirolli, John Karat, and especially Peter Polson for
msightful comments on earlier versions of the manuscript.

Support, This research was supported by the Personnel and Training Research

Programs, Psychological Services Division, Office of Naval Research, under Contract
No. N00O14-84-K-0064.

REFERENCES

Anderson, J. R. (1983). The architecture of copmtion. Cambridge, MA: Harvard
University Press.

Angell, J. R. (1508). The doctrine of formal discipline in the light of the principles of
general psychology. Educational Review, 36, 1-14.

Bott, R. A. (1979). A study of complex learnng: theory and methodoiogies (Report No. 7901).
H.Lw.wozm. CA: University of California at San Diego, Center for Human Informa-
tion Processing,.

Bower, G. H., & Hilgard, E. (1981). Theories of leaming. Englewood Cliffs, NJ:
Prentice-Hall.

Card, 8. K., Moran, T. P., & Newell, A, (1983). The psychology of human-computer
wteraction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

270 SINGLEY AND ANDERSON

Douglas, 8. A. (1983). Leaming to lext edit: Semantics in procedural skill acquisition. Doctoral
dissertation, Stanford University, Stanford, CA.

Douglas, S. A., & Moran, T. P. (1983). Learning text editor semantics by analogy.
Proceedings of the CHI ‘83 Conference on Human Factors in Computing Systems, 207-216.
New York: ACM.

Ellis, H. C. (1965). The transfer of learmng. New York: Macmillan.

Gosling, J. (1981). Unix EMACS user manual, Pittsburgh: Camegie-Mellon University,
Computer Science Department,

Introduction to the EDT editor. (1982). Marlborough, MA: Digital Equipment Corpora-
tron,

Hayes, J. R., & Simon, H. A. (1977). Psychological differences among problem
isomorphs. In N. J. Castellan, ID. B. Pisom, & G. R. Pous (Eds.), Gognitive theory
{Vol. 2, pp. 21-41), Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Jeffries, R. (1978). The acquisttion of experitse on missionaries-cannibals and water jug
problems, Doctoral dissertanon, University of Colorado, Boulder.

Katona, G. (1940). Organitzing and memorizing. New York: Columbia University Press.

Kernighan, B. W., & Pike, R. (1984). The UNIX programming environment. Englewood
Cliffs, NJ: Prentice-Hall.

Kieras, D. E., & Bovarr, S. (1985). The acguisttion of procedures from texi: A production
system analysis of transfer of training (Report No. 18}, Ann Arbor: University of
Michigan.

Linn, M. C., & Fisher, C. W. (1983). The gap between promise and reality in
computer education: Planming a response. In Making our schools more effective: 4
conference for Califsrnia educators. San Francisco: ACCCEL.

Luchins, A. 5. {1942). Mechanization in problem solving. Psychological Monographs,
54(248).

Mack, R., Lewis, C. H., & Carroll, J. (1983). Learning to use word processors:
problems and prospects. ACM Transactions on Office Information Systems, 3, 254-271.

Moran, T. P. {1983). Getting into a system: External-internal task mapping analysis.
Proceedings of the CHI ‘83 Confersnce on Human Factors n Computing Systems, 45-49. New
York: ACM.

Newell, A., & Simon, H. A. (1972). Human problem solumg. Englewood Cliffs, Nj:
Prentice-Hall.

Orata, P. T, (1928). The theory of identical stements. Golumbus: Ohio State University
Press.

Papert, S. (1980). Mindstorms: Children, computers, and powerful idens. New York: Basic
Books.

Polson, P. (., & Kieras, D. E. (1985). A quantitative model of the learning and
performance of text-editing knowledge. Proceedings of the CHI ‘85 Conference on Human
Factors in Computing Systems, 207-212. New York: ACM.

Postman, L. {1971). Orgamzation and interference. Psychological Review, 78, 280-302.

Sauers, R., & Farrell, R. (1982). GRAPES user’s manual (Tech. Rep. No. ONR-82-3).
Pitssburgh, PA: Carnegie-Mellon University.

Simon, H. A. (1968). The sciences of the artifical. Cambridge, MA: MIT Press.

Singley, M. K., & Anderson, J. R. (1685). The transfer of text-editing skill.
Internaitonal Journal of Man-Muachine Studies, 22, 403423

Singley, M. K., & Anderson, J. R. (1988). The iransfer of cogmitive skill. Manuscript in
preparation.

o

LEARNING AND TRANSFER IN TEXT EDITING 271

Smith, S. B. (1986). 4n analysis of trangfer between fow H, 3 f
dissertation, Camegie-Mellon University. “r o Hanot ssomerghs. Doctoral
Thorndike, E. L., & Woodworth, R. §. (1901). The influence of improvement in one

MMWSMM Hmcnnzon upon the effictency of other functions. Psychological Review, 8,

HCT Editorial Record. First manuscri ! is1
ICT ; pt received October 28, 1986. Revisions
received July 26, 1987, and December 3, 1987, Accepted by Peter Polson — Editor

APPENDIX: KEYSTROKE PARSING PROCEDURE

Figure 19 mwos.m the parsing algorithm in pseudocode. Before parsing any
commands, the program initializes the goal stack for the trial being parsed.
Recall that each trial consists of six edits randomly distributed in an 18-line
Em...,ﬁmo recall that there are 12 distinet types of edits defined by crossing the
&Emm operations insert, replace, and delete by the data objects character
word, string, and line. Thus, an instance of a goal stack® is: .

(1) insert line, line 1, character }

(2) insert word, line 7, character 31

(3) delete character, line 10, character 4
(4) replace line, line 11, characters 1-44
(5) delete string, line 13, characters 40-50
(6) replace word, line 14, characters 31-41

Given a goal stack such as this, the parsing program has certain well-
gmmwma expectations about the sequence of commands executed by subjects.
First, subjects enter some sequence of LL commands to position themseives
for w.wm first goal. Then subjects execute a sertes of MT commands to fix the
Bsammn.é. Subjects continue this LL/MT alternation until all six goals have
anu mmc.mmnnm. In this way, the parser segments the keystroke data into six
major episodes, each containing LL and MT subcomponents. The keystrokes
mmw. time intervals of each of these episodes are attributed to each of the six
goals. The simplifying assumption here is that subjects invariably proceed
mu.oa top to bottom in a file and do not backtrack. This assumption 1s fairly
plausible given that subjects are positioned at the top of the file at the start of
each trial. As shown in Figure 4, this assumption 15 in fact born out by the
success of our parsing algorithm.

There are two major modules in the program, labeled normal and #imbo. In
most straightforward cases of parsing, control remains in the while loop of the

4 s i : -
This is1n fact the goal stack for the tral shown m Figure 2. Goal stack information is saved
reach trial by the text mutilation program that introduces the errors onginaily.

272 SINGLEY AND ANDERSON

Figure 19. The keystroke parsing algorithm in pseudocode.
Control staris in the normal module.

initlalize goalstack

NORMAL:
while goaistack is non-empty
read goal on top ot stack
parse lpcate line sequence and update position
i currant position Is close to goal position
parse modify text sequence
pop goal from stack

eise golo LIMBO

LIMBO:
while there are keystrokes left to be parsed
copy goalstack to temporary stack
while temporary stack Is non-empty
read goal on top of temporary stack
if current position is close o goal position
copy temporary stack 1o goal stack
attribute ‘lost’ sequence
goto NORMAL

alse pop goal from temporary stack

parse current command and update position
update goal stack If line numbers have changed

normal moduie, reading LL/MT sequences until all goals are satisfied and no
more keystrokes remain. However, if after reading a LL sequence the
simulation program is out of position” for the top goal on the stack, an error
condition results and control is passed to the limbo module. The subject has
deviated from the expectations of the parser and keystrokes can no longer be
attributed reliably to goals.

In most cases, the parser goes into limbo because subjects have done one of
three things: inadvertantly modified the wrong text, skipped a goal, or
backtracked to remedy a previous mistake. Our strategy at this point 1s to
temporarily reserve judgement on the commands being parsed until the
subject is once again in position to satisfy any of the goals remaining on the
stack. We then resume normal parsing after trying to salvage any or all parts
of the lost sequence. We use the following heuristics to attribute the lost
sequence:

¢ If the parser finds itself in posttion for the goal that was on the top of
the stack when limbo was first entered, the entire lost sequence is
attributed to the LL subcomponent of that goal.

* Qut of position 15 defined as being on the wrong fne in the line editors and more than 10
characters away from the locus of the modification 1n EMACS. The locus is 2 single character for
mnsert operations, but usually a range of characters for replace and delete operations.

LEARNING AND TRANSFER IN TEXT EDITING 273

Figure 20. A timeline of keystroke data showing the application of the parsing
algorithm. This excerpt is based on the satisfaction of Goal 5 in Figure 1.

TRIAL 16

N

Gl G2 G3 G4 Goas: G6
delete string
line 13

N

(G4 MT) @5 locate line G5 modify text (G6 LL)
l 1 1
.toa Antn T [del) M didld "nib.

i | ! frm] -]

0 10 20 30 0 10
b L

planning planning panning

fime fime time

] |

e !

salvaged from
fimbo

*# If the parser finds itself in position for a Jater goal, all but the last LL
sequence in the lost sequence is thrown away. This last LL sequence
is attributed to the LL subcomponent of the later goal. This goal is
made the current goal and parsing continues normally.

Measuring Planning and Execution Times. The last step in the parsing analysis
is to partition the time intervals attributed to the various LL and MT
sequences into their planning and execution components. A LL or MT
sequence is composed of one or more comumands, each of which has its own
planning and execution component. We take the planning component of a
command to be the sum of two types of pauses: the single long pause that
extends from the last keystroke of the previous command to the first keystroke
of the current command and the various shorter pauses that may or may not
separate keystroke bursts within the command. (Times between keystrokes
are classified as pauses if they are longer than 2 sec.) Given this definition, the
execution component 1s merely the time from the first to last keystroke of the
command minus any interkeystroke pauses.

Figure 20 shows a timeline of keystroke data and its breakdown into

274

SINGLEY AND ANDERSON

components. This keystroke excerpt is taken from a hypothetical subject using
EMACS to perform the fifth modification (delete string, line 13) from the trial
shown in Figure 2. To put this excerpt into context, included are the last few
keystrokes from the MT component of the previous goal, replace line 11. The
clock for the current goal starts when the last key is struck from the previous
goal. The LL component starts with a long pause followed by ta, which
positions the cursor at the beginning of line 11, and then Inin, which moves
the cursor down two lines. Now the subject must move across line 13 to the
position of the string to be deleted. The subject begins with Jf, which moves
the cursor ahead one word. This is followed by a standard, alphanumeric f,
which modifies the text and breaks the sequence of locate line commands. (In
EMACS, all alphanumeric characters are inserted at the current cursor
position.) As intelligent observers, we surmise that the subject actuvally
intended to execute another)f command and merely forgot to strike the escape
key, a common novice error due to a misgeneralization of the control and shift
keys.® At this point in the parsing, attribution of keystrokes is temporarily
suspended, because 2 modification has been made away from the current goal
site. As the parser continues in limbo, the subject pauses, deletes the mistaken
{, and ends the LL sequence with four |{ commands. The parser now awakens,
because the subject is in position to satisfy the current goal. Using the first
heuristic just outlined, the parser attributes all of the lost keystrokes to the LL
component of the current goal. The MT component begins with a short pause
followed by three]Jd commands, which delete the three words in the string.

This concludes the parsing for this goal, as the subject moves on to the next
goal site.

As should be apparent from the preceding description, there are two
shortcomings with our parsing analysis. The first is that any time spent
looking at the screen to verify that a modification has been done correctly is
misattributed to the planning component of the following LL sequence. The
second is that any time spent encoding the edit from the manuscript is also
buried in the planning component of the LI, sequence. Complicating this
second point is our informal observation that subjects sometimes looked at the
manuscript several times in the course of an edit. Although we could have
betier separated the encode edit component by videotaping, this route was
impractical given the quantity of our data.

® The escape key differs from the control and shift keys in that it must be relensed and depressed
between consecutive commands :

