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Acquiring Expertise in Science:
Explorations of What, When, and How

Christian D Schunn
George Mason University

John R. Anderson
Carnegie Mellon University

Relatively little is known about the skills that practicing scientists actually
use. This lack of knowledge makes the design of science curricula rather
difficult. How can we train students to be scientists if we do not know
what it means to be a scientist? In this chapter, we ask two central ques-
tions about the nature of expertise in science: 1) Are there general skills
that scientists from different domains share?, and 2) If there are any gen-
eral skills, are these skills just ones that any intelligent adult would have,
or are they the result of training and practice in scientific activities? To
answer these questions, we present a study of expert research psycholo-
gists working on a scientific discovery problemn taken from psychology.
Then we turn to a more practical question: 3) If there are general skills not
possessed by average intelligent adults, are they being covered in under-
graduate education? As a preliminary answer to this question, we present
an evaluation of several research methods courses in psychology at one
university.

Are There General Skills That Scientist From Different Domains
Share?!

Within cognitive psychology, there is some debate about the generality of
expertise. On the one hand, there is discussion of general problem solving
procedures and general characteristics of experts in a domain. For exam-
ple, it has been argued that experts (at least in some domains) use forward
reasoning whereas novices use backward reasoning (Larkin, 1980)—i.e.,
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84  Schunn and Anderson

reasoning from goals to givens versus from givens to goals. On the other
hand, the most prevalent view of expertise in cognitive psychology is one
of domain-specific pattern recognition skills (Chase & Simon, 1973; Chi
& Koeske, 1983; Ericsson & Charness, 1994; Gobet & Simon, 1996; Hayes,
1985; Johnson & Mervis, 1997; Larkin, 1980). For example, chess experts
are thought to have learned tens or hundreds of thousands of patterns of
chess positions. It is this pattern recognition expertise that is thought to
underlie their superior performance in chess, rather than differences in
general intelligence or sophisticated strategies. Consequently, their exper-
tise is extremely domain specific. For example, while chess experts can
play several games of chess simultaneously while blindfolded, their
impressive memory for chess positions disappears when random posi-
tions are used that could not normally occur in a game (Chase & Simon,
1973).

Moreover, cognitive psychology is filled with examples of failure to
transfer knowledge from one domain to another domain. When two
domains have superficial differences, people tend to have a very difficult
time spontaneously noticing underlying similarities between the domains
{Duncker, 1945; Gentner & Toupin, 1986; Holyoak, 1985; Holyoak &
Thagard, 1995; Ross, 1989).

Does this perspective of expertise apply to science as well? In particu-
lar, are expert scientists experts in only their narrow area of specialization,
or is there a set of general skills shared by different kinds of scientists?
Expertise in science shares many of the characteristics of expertise in other
domains. For example, focused practice of an extended period (usually 10
years) is required before a scientist attains world-class expertise (Hayes,
1985). This 10-year-rule has been found in all other domains of expertise
(Ericsson, Krampe, & Tesch-Romer, 1993). One might expect there to be a
large amount of domain-specificity to this expertise. Moreover, one might
expect that the higher the level of expertise, the more separation between
different sciences. For example, with higher levels of training, a chemist
might have increasingly less in common with a psychologist.

Yet, science has some properties that seem to make it different. While
pattern recognition is also likely to be important in science, more concep-
tual and procedural components are also likely to be important. Thus, the
research on less complex tasks lile chess may not generalize to science.
Moteover, some research on transfer has found that experts can be more
able to transfer knowledge from their domain of expertise than are nov-
ices, at least in simple problem solving contexts (Novick, 1988).

Models of science education also rest on certain assumptions about
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the nature of expertise in science. On the one hand, there is discussion of
the scientific method, as if there is some central aspect that all or most sci-
ences share. On the other hand, faitly early on in a student’s high school
education, science is taught separately by discipline. For examnple, there
are physics, biology, and chemistry classes, and physics, biology, and
chemistry labs, rather than general science classes or general science labs.
Underlying this design is an assumption that relatively little can be taught
in a generic fashion about science. Thus, we have these opposing views of
science as very general and science as very specific.

In sum, it is possible that scientists do not share skills across the dif-
ferent scientific domains. It is also possible that, even if they share skills,
they will not be able to apply those skills in a domain outside their narrow
specialization. This chapter reports a study that examines this issue and
finds that scientists do share skills in common and can transfer their skills
to other scientific domains.

If There Are Any General Skills, Are These Skills Just Ones That
Any Intelligent Adult Would Have?

In the cognitive and developmental psychology literature, there is a long
tradition of viewing individuals {(children or adults} as intuitive scientists
(Klahr & Dunbar, 1988; Kuhn, 1989; Piaget, 1952). Under this view, peo-
ple are thought to naturally explore their world, developing and testing
hypotheses by conducting simple experiments. For example, the infant
learns about gravity and cause and effect by systematically dropping
objects from a high chair. Or a chef learns about what factors produce a
good cake by trying different ingredients or different cooking methods.
Thus, it is quite likely that scientists from different domains do share some
general scientific reasoning skills because they share problem solving weak
methods (e.g., hill-climbing and means-ends analysis) and some basic sci-
entific reasoning skills with all (or most) humans.

However, there is also a long tradition in the cognitive psychology lit-
erature of describing in intricate details the logical reasoning errors that
humans tend to make. The average university undergraduate has been
found to make basic reasoning errors in syllogistic reasoning (Johnson-
Laird, 1972), conditional reasoning (Wason, 1968), probabilistic reason-
ing (Cheng & Holyoak, 1985), and scientific reasoning (Kuhn, 1989;
Wason, 1960). It is typically assumed (although not always found
(Mahoney, 1979)} that well-trained scientists would not make these kinds
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of reasoning errors.

Assuming scientists are better reasoners than the average university
undergraduate, this difference in reasoning ability is not necessarily a
result of scientific training and practice. In addition to having had much
training and experience in scientific reasoning, scientists also tend to have
higher general intelligence levels, even before their training began. This
difference is not to say that science requires high levels of intelligence. In
fact, there is some controversy about whether intelligence measures can
predict whether a scientist will be successful (Sternberg & Williams,
1997). However, there is a simple observation that, in selecting individuals
for science training, 1Q surrogates like the SATs and the GREs are used
quite heavily. This reason alone is sufficient to produce higher levels of
general intelligence in scientists compared to the general population.

In sum, even if scientists share abilities in common with one another,
these commonalities may not be a consequence of training and experience
in science, nor are they necessarily specific to science. This chapter reports
a study that examines exactly this issue and finds that scientists do share
abilities that are specific to science and are not attributable to general rea-
soning ability differences.

If There Are General Skills Not Possessed By Average, Intelligent
Adults, Are They Being Covered in Undergraduate Education?

Given evidence for general skills that scientists share amongst one
another, the question arises: Where did they get those skills? One obvious
alternative is that these skills are acquired as a result of thousands of hours
of practice conducting and interpreting experiments. Another alternative
is that many of these skills are acquired in formal education at either the
undergraduate or graduate level. Since the issue is domain-general skills,
one might expect that they should be included in existing courses on
research methodology. It would certainly be efficient to focus on domain-
general skills which students are likely to use independent of which partic-
ular scientific domain they end up pursuing.

There are several reasons, however, why existing research methods
courses might not cover these domain-general skills. First, there may be
an overemphasis on domain-specific information. For example, many
psychology departments have separate courses called cognitive research
methods, social research methods, tests and measurements, developmen-
tal research methods, etc. Similarly, chemistry departments have labs in
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physical chemistry, organic chemistry, etc. Even when a department has a
more general research methods class, it is still tied to a particular research
domain (e.g., psychology vs. physics. vs. chemistry vs. biology). Thus, it is
possible that these domain-specific research methods courses would
neglect the domain-general research skills.

Another possibility is that existing research methods courses might
cover domain-general skills, but not the ones actually used by scientists.
Research methods curricula are typically developed from armchair, self-
reflective analyses of the skills used in scientific settings rather than
detailed, systematic observation of practicing scientists. Research on
expertise has shown that experts are often unaware of the components of
their expertise. Many skills begin as conscious, declarative knowledge, and
then, with enough practice, they become effortless, unconscious, proce-
dural skills {Anderson, 1983, 1993; Anderson, Fincham, & Douglass,
1997).

This chapter reports an evaluation of several research methods
courses at one research-oriented psychology department. The study
examined 1) whether the domain-general skills are taught in such courses,
and 2) whether the skills are acquired by the students in such courses. The
study found that many of the skills were not covered explicitly in the
courses. Moreover, while there was some improvement on some of the
skills, even the most basic and central skills showed only modest improve-
ments.

The Studies

Overview

The studies reported here are really a case study of expertise in and teach-
ing of research psychology. However, the list of skills examined is not logi-
cally tied to psychology, and we suspect they will generalize to many other
sciences. For example, the ability to read tables of data is a skill that one
would expect to generalize to many other sciences. The first study exam-
ines whether psychologists from different subdomains of psychology
share skills in common, as evidenced by their performance on an experi-
mental design and outcome interpretation task. This first study was
reported in great detail in Schunn and Anderson (1999). The second study
examines whether undergraduate psychology majors show improvement
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in those very skills identified in the first study using the same task as was
given to the experts. Because these two studies examine performance on
the same skills in the same tasks at four points along an expertise contin-
uum, we will present the studies as one large study with four groups.

The Subjects

Most expert/novice studies confound two different types of expertise:
Expertise in the tasks being studied (skills) and expertise in content
domain (knowledge). In this particular study, the general task is designing
and interpreting experiments, and the specific content domain is the cog-
nitive psychology of memory. To isolate domain-general skills, we have
two kinds of experts. The first group consists of cognitive psychologists
who study memory. Thus, they are experts in both the content area and
the general task. For convenience, we will call these the Domain Experts.
The second group consists of social and developmental psychologists who
do not study memory. Thus, they are experts only in the task but not in
the content area. We will call these the Task Experts. A non-psychologist
might expect that there is little different between cognitive and develop-
mental or social psychologists. However, they are guite different domains
in terms of the journals in which they publish, the primary conferences
they attend, the theories they use, and the methodologies they use.

The third group is undergraduate psychology majors in their second
year of study. None of them have yet taken a research methods course, and
thus they are experts in neither the task nor the domain. We will call these
the Pre-RM group (pre-research methods). The fourth group is under-
graduate psychology majors in their third and fourth year of study imme-
diately after having taken a research methods class in psychology. We will
call these the Post-RM group.

There were four Domain Experts. They were highly productive
research faculty at a well-established, top-tier, research university. All had
conducted many studies and written many journal articles in the area of
the cognitive psychology of memory. There were six Task Experts. They
were also highly productive research faculty and were taken from the same
department as the Domain Experts. None of the Task Experts had worked
in the domain of memory (cognitive or otherwise). The two groups of
experts were equivalent in terms of the number of years since Ph.D. and in
the number of publications overall (approximately 65) and in the last year.

There were twenty-two students in the Pre-RM group. All were psy-
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chology sophomores at the same university as the experts. None had pre-
viously taken a research methods course. The students were recruited
from five different lower level psychology classes to ensure a breadth of
student interests. There were forty-one students in the Post-RM group.
They were recruited from five different psychology research methods
courses: two developmental research methods, two social research meth-
ods, and one cognitive research methods. All students were paid $8 for
their participation in the study. There was no relationship between volun-
teering for the study and grade received in the course.

In cross-sectional designs, one must always worry about selection
artifacts. A somewhat atypical feature of the undergraduate psychology
curriculum at this particular university made this particular cross-sec-
tions design cleaner than most. At this university, psychology majors are
required to take two research methods courses (from the three available)
in order to graduate. However, the number of offered classes and the max-
imum enrollment size in these classes is severely limited and thus only
seniors and a few juniors are able to enroll. Consequently, none of the
sophomores could have taken a research methods class, but all of these
sophomores must eventually take several research methods classes before
graduating. Therefore, we need not worry about the Pre-RM being sys-
tematically different from the Post-RM groups in orientation towards
research (vs. clinical psychology) or in area preferences (cognitive vs.
social vs. abnormal) or in general intelligence.

The Task

The task given to the faculty and students was designed to be representa-
tive of experimentation and analysis in psychology, but to also have cer-
tain extra properties. In particular, it was important to have the task be
sufficiently realistic and complex that experts in the area would not know
the answer and yet would feel that the question was answerable. If the
experts could simply retrieve the answer from memory, then it is unlikely
that we would see evidence of the strategies they use in their own scientific
research, which, by definition, involves a solution that cannot be simply
retrieved from memory. However, it was equally important to have the
terminology and issues be understandable to individuals outside of that
area of expertise. If the other groups misunderstood the issues and terms,
their problem solving behavior would be different from that of the
Domain Experts for very uninteresting reasons.
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The task that met these criteria was as follows. People were given a
description of a simple and pervasive phenomenon from the cognitive
psychology memory: the spacing effect. The spacing effect is simply the
advantage of studying that is spaced out in time over studying that is
lumped all together. For example, on a later test, students who study for
one hour straight typically remember less than students that study three
different times for 20 minutes. Even though the total amount of study
time is the same, the group with more spaced out study episodes remem-
bers more at a later test. This effect is very simple to describe to people
who are not cognitive psychologists. However, even cognitive psycholoe-
gists do not yet know why the spacing effect occurs. The task given to all
the subjects was to design an experiment to determine the cause of the
spacing effect.

To make the task more similar to the one faced by the experts in the
area (who already had many theories for the cause of the spacing effect),
everyone was given a description of two different theories for the spacing
effect. These two theories are the most common ones proposed by experts
in the area. The first theory, called the shifting context theory, assumes
that memories are associated with the context under study and that con-
text gradually shifts with time. Under this theory, the spacing effect occurs
because spaced practice produces associations to more divergent contexts,
which in turn are more likely to overlap with the test context. The second
theory, called the frequency regularity theory, states that the mind esti-
mates how long memories will be needed based on regularities in the
environment and, in particular, adjusts forgetting rates according to the
spacing between items. Under this theory, items learned with short inter-
vening spaces decay more rapidly (because they are not expected to be
needed again after long delays) whereas items learned with long interven-
ing spaces decay more slowly (because they are expected to be needed
again at long delays).

Everyone was given much longer, more concrete descriptions of the
two theories, and the study did not continue until they felt that they
understood the spacing effect and the two theories. The specific goal given
to the subjects was to determine the cause of the spacing effect. They were
told that the answer could be that one, both, or neither theory was correct
(as is the typical case in science).



4. Acquiring Expertise in Science 91

The Simulated Psychology Lab

The most straightforward way to proceed would be to give everyone a
pencil and paper and have them design an experiment or series of experi-
ments that would test between the theories for the spacing effect. This
technique would make the problem realistically open-ended. Any kind of
experiment could be proposed. However, it would not be possible for the
subjects to see the results of their proposed experiments. In this way, the
task is very much unlike real science. Scientists very rarely answer any
questions with only one experiment, and certainly never the first experi-
ment that gets designed. Instead, scientists design an experiment, run it,
and construct a new experiment based on the problems revealed by the
outcomes of the first experiment. Much of their expertise lies in being able
to interpret the outcome of one experiment and use the information to
design a better experiment. Additionally, scientific discoveries involve
designing good experiments and correctly interpreting their outcomes.
Using a pencil and paper task, we could not examine the skills that scien-
tists possess for interpreting the results of their experiments.

To achieve these goals, a computer environment, called the Simulated
Psychology Lab (SPL), was developed. The SPL environment simplifies
the experimental design process by presenting the individual with a large
but limited number of experiments that can be designed. The advantage
of SPL. is that it allows people to see the results of the experiments that
they designed. Thus, we can observe how scientists iterate through the
cycle of experiment design and outcome interpretation.

The hypothetical experiments that one could create within SPL were
simple list learning experiments. The hypothetical subjects would get a list
of items to study for a later test. The list could be studied several times
under a variety of contexts. The later test could occur in a variety of con-
texts at various different times. There were six variables that could be
manipulated within this basic scenario. Two variables were highly relevant
to the theories under test: spacing between study repetitions (from one
minute to 20 days), and source context {whether it was the same context
for each study repetition). Three variables were moderately relevant: test
context {whether it was the same context as during study), delay (the time
between the last study episode and the test, from one minute to 20 days),
and test task (whether the test was free recall, recognition, or stem comple-
tion). Finally, there was one irrelevant variable: repetitions (the number of
times each word is studied; two, three, four, or five times).
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Participants selected variable settings using a simple mouse-con-
trolled interface. For each of the six variables, they could select whether to
manipulate that variable (or hold it constant) and what particular values
to pick (for each condition or for the constant value). When a variable was
manipulated, two or three different levels could be used. Participants
could only vary up to four variables simultaneously in any given experi-
ment. With the six variables, there were almost 400,000 unique experi-
ment settings that could be generated.

To provide a concrete example, a participant might have selected to
conduct the following experiment: Vary study spacing {five minutes ver-
sus 20 minutes), test delay (five minutes, 20 minutes, or two hours), and
source context (same versus different rooms), and hold constant repeti-
tions (three), test task (free recall), and test context (different room}. In
this sample experiment, there are 12 different conditions (2 x 3 x 2).

The participants were given outcomes in a table format with all cells
being shown at once. Tables rather than graphs were used because tables
were thought to be easier for undergraduates to understand and manipu-
late. Before being given the table, participants had to select on which
dimension each manipulated variable would be plotted (i.e., rows, col-
umns, across tables vertically, or across tables horizontally).

The table of results included a display of the variables held constant
and their values (see Figure 1).
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Figure I The interface used for displaying the outcomes of experiments
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To facilitate comparison across rows, columns, and tables, the row,
column, and table means were also provided. Figure 1 also illustrates the
key results in this task: the effects of spacing and delay, and their interac-
tion (the drop-off with increasing delay is faster at smaller spacings), and
the lack of an effect of source context.

In order to lead the participants to treat the outcomes of their experi-
ments as real data (with noise levels and other properties of real data), the
participants were told that the computer had access to a large database of
experiments and would simply present the results of those experiments on
the screen. However, in reality, a mathematical model was used to produce
the results of each experiment. The model was selected to be roughly con-
sistent with existing results from research on memory and the spacing
effect. The model also incorporated random noise at a typical level for
these kinds of experiments (i.e., between -2% and +2% added to each
cell).

Participants worked at the task—iterating through the process of
experiment design, choosing a table structure, and viewing outcomes—
until they felt that they had found out what the cause of the spacing effect
was or 40 minutes had elapsed. The primary data gathered in this experi-
ment were keystroke data as the participants generated experiments,
choose the table structures, and interpreted experiments. However, the
participants were also asked to give a think-aloud verbal protocoi
throughout the task (Ericsson & Simon, 1993). Moreover, at the end of
the task, participants were asked to verbally report their conclusions about
the spacing effect——i.e., whether the shifting context theory, the frequency
regularity theory, both theories, or neither theory explained the spacing
effect. The participants were also asked to give conclusions about the
effects of each of the six variables.

Terminology

To avoid confusion between this overall study and the experiments that
the participants designed and analyzed, the following conventions will be
used. The participants designed experiments; they took part in this study.
The participants viewed their results in the form of tables; we will present
analyses of their aggregate behavior in this study in the form of graphs.
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Skills Examined

Finding the general skills used by scientists is a very open-ended research
goal. What particular skills should be investigated? To generate a list of
general skills, we constructed a computational model of scientific discov-
ery behavior in the SPL domain (Schunn & Anderson, 1998). The model
uses the ACT-R production system framework (Anderson, 1993; Ander-
son & Lebiere, 1998), which captures skills as if-then rules (in contrast to
Minstrell’s Facets, this volume). The model is capable of designing appro-
priate experiments to test the two theories for the spacing effect and ana-
lyzing the data to examine whether the data is consistent with each theory.
From this model, we extracted twelve skills that 1) did not appear to be
specific to the particular domain, and 2) could be examined with the
behavioral data provided by our participants. To keep the current story
brief, we will focus on six representative skills in this chapter (see Table 1;
see Schunn and Anderson {(1999) for the full list of 12 skills). There are
three skills associated with designing experiments and three skills associ-
ated with interpreting outcomes.

Table 1. List of skills examined by skill type, along with Engiish form of the skills in the
computational model that implements them

Skill Detailed Description of the Skifl
Experiment design

Design experiments to  If given theories to test,

test theories then set goal to test some aspect of theory
Keep experiments If variable is not refevant to hypotheses under test,
stmple then hold variable constant

Keep settings copstant  If not varying a variable,
across experiments then pick the value used in the previous experiment

Interpret outcomes

Encode interactions If effect of variable X is significantly different at different ,
levels of Y then conclude there is an interaction

lgnore small noise If an effect or interaction is very smali,

levels in data then ignore it

Relate data to theories  If finished encoding the results of an experiment,
under test then relate results to theories under test

Table 1 also lists a description, in English, of exactly what the skill
entailed in the computational model. The skills included in this list are
basic skills that are applicable in a broad range of scientific settings. Thus,
one could argue that they are especially important targets for science edu-
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cation. While some of the skills may seem quite obvious and simple to the
reader, we shall see that they were not so obvious and simple to the under-
graduates in the study. The following sections describe the resulits for each
of these skills, grouped by type of skill (experiment design versus interpret
outcomes).

Group Comparisons

To answer the main questions raised in this chapter, there are three key
comparisons between the four groups (that will be made repeatedly on
the range of skills just described). If the domain and Task Experts perform
equally well on a given skill, then this is evidence that 1) this skill is
domain general (at least across different areas of psychology); and 2) that
expert scientists can apply their expertise to problems in other content
domains. If the Task Experts do not perform equally well on a given skill,
then this would suggest that either the given skill is not domain-general
{i.e., not used by experts in multiple domains} or that expert scientists are
limited in their ability to apply their skill expertise outside of their domain
of expertise.

Comparing the two expert groups with the Pre-RM group establishes
whether skills shared among the scientists are also shared with non-scien-
tists. If the Pre-RM group also performs well on a given skill, then this
argues that the skill is common to most adults (or at least those found in
university settings). If the Pre-RM group performs much more poorly on
a given skill, then this suggests that the skill is not common to most adults
and is the result of formal training and/or extensive practice in science.

Of course, there are always other possible explanations for differences
between the Pre-RM group and the experts. For example, the groups also
differ in age, personality types, overall intelligence levels, etc. The differ-
ence that seems most plausibly related to performance differences in this
domain is an overall intelligence difference. To address this issue, the
undergraduates were also asked about their SAT scores, which ranged in
this sample from levels close to the average population to levels very close
to those of the faculty’s. We then analyzed whether SAT scores predicted
performance differences within the undergraduate groups. If SAT scores
do not predict performance differences on any of the skills, then overall
intelligence differences is not likely to be the cause of performance differ-
ences between the undergraduates and the experts.
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Finally, comparing the Pre-RM group with the Post-RM group exam-
ines whether the existing research methods courses teach the students any
of the general skills that they were missing. The instructors were shown a
list of the skills examined and were asked whether these skills were covered
in their course, and (whether or not it was explicitly covered) how likely it
was that the students would possess those skills at the end of the course.
Thus, we can examine whether these skills were explicitly covered in the
research methods courses and how that related to whether the students
had acquired the skills.

Stylistic Notes

There are two things to note about the format of the results section. First,
we will not present inferential statistics in the text. All the appropriate
inferential statistics were computed and only the statistically significant
{p<0.05) results are discussed as differences. Second, since there is a natu-
ral set of three pairwise comparisons between the four groups (Domain
Experts versus Task Experts, experts versus Pre-RM undergraduates, and
Pre-RM versus Post-RM undergraduates), the groups are always pre-
sented in the order Domain Experts, Task Experts, Pre-RM, and Post-RM
to facilitate these comparisons.

Results

Overall Resules

Before examining the performance of the different groups on each of the
skills, we will mention the overall performance levels of each group. First,
there is the performance on the overall goal of the discovery task: To
determine which theory of the two theories (frequency regularity and
shifting context) provides a good explanation for the spacing effect. The
memory mode] built into the interface was strongly inconsistent with the
shifting context theory and generally consistent with the frequency regu-
larity theory.! We coded the participants’ final conclusions to examine
whether the participants were able to discover and correctly interpret
these results. One point was given for accepting a theory, zero points for
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no conclusion, and -1 for rejecting the theory. Figure 2 presents the means
for each group on each theory. Somewhat surprisingly, the undergradu-
ates were more likely than the experts to accept the frequency regularity
theory. This occurred because there were several results that were incon-
sistent with the frequency regularity theory, and the experts were more
likely to notice these inconsistencies. For the shifting context theory, the
Domain Experts all discovered that this theory was incorrect, whereas far
fewer of the other participants were able to come to this conclusion.
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Figure 2. Mean acceplance score {or each group for each of the two theories

Turning to time-on-task, the three groups spent approximately an
equal amount of time to complete the task (36.0, 38.0, 31.2, and 34.2 min-
utes for the Domain Experts, Task Experts, Pre-RM and Post-RM under-
graduates respectively). However, Domain Experts conducted fewer
experiments (2.8) than did the Task Experts (4.8) who in turn conducted
about as many experiments as the undergraduates {5.5 and 5.8 respec-
tively). As we shall see below, this occurred because the Domain Experts
conducted a small number of complex experiments, whereas the other
groups conducted a larger number of simple experiments,

1. There was no effect of source context, which is strongly inconsistent with the shifting context the-
ory, and generally consistent with the frequency regularity theory However, a strong form of the
frequency regularity theory implies that there should be a matching effect between delay and spac-
ing such that performance is best when delays exactly match study specing—this was not to be
found in the data
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Experiment Design Skill 1: Design Experiments to Test Theories

Not all experiments done by scientists test hypotheses (see Okada and
Shimokido, this volume). However, when there are theories to test, the
details of the theories should be taken into account when designing the
experiment. Although this would seem obvious to the reader, as we shall
see, this was not so obvious to the students. Using the verbal protocols, we
classified the participants according to whether or not they mentioned
either of the two theories (frequency regularity and shifting context) dur-
ing the course of designing experiments, either during the first experi-
ment or during any experiment. Note that this is a very lax criterion for
measuring use of theories in experiment design—the theory need only be
mentioned in passing. Below is an example of what one participant said
before designing her first experiment:

Alright. The first thing that I think about these two theories, as I understand
this, what is it, frequency regularity theory, it doesn't say anything about con-
text at all. It says the thing that matters is whether you have, um, close or far
intervals. So. One way to attack the problem is to show that there is a context
effect.

This (Domain Expert) participant not only mentioned one of the the-
ories but also mentioned how it influenced her design. In this coding
scheme, only the mention of the theory was necessary. Here is an example
of what a participant not mentioning the theories would say (also before
the design of the first experiment):

Ol Click on repetitions... I'm going to set it. Number of different repetitions.
I'll have them do all the same number of repetitions at one. And I'll set the
repetitions to .. four.. Ok.. Now, there’s spacings. Number of different spac-
ings ... uh. I'll set that at ..two. .and... Do the first one .. in minutes for ..
fifteen. And the second one, in hours.

As we can see, this participant is simply selecting options within the
interface, apparently without thinking about the theories under test.

As one would expect, all of the Domain Experts and Task Experts
mentioned the theories, starting with the very first experiment (see Figure
3}. However, fewer than half of the Pre-RM undergraduates mentioned
the theories during any of the experiments. Thus, they appeared not to
understand the experimentation should be guided by theories at hand.
Taking the research methods courses did appear to help: The proportion
of undergraduates mentioning the theories in the design of the first exper-
iment almost doubled from Pre-RM to Post-RM. However, there
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rernained a fairly substantial proportion of Post-RM undergraduates who
did not ever mention either of the two theories during the design of their
experiments.
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Figure 3 The percentage of participants in each group who mention the theories during
experiment design in the first experinient or in &ny experiment.

Were these mentionings of the theories correlated with using the the-
ories to guide experiment design? It is possible that the undergraduates
used the theories but did not name them directly. To examine this issue,
the variables manipulated in the undergraduates’ first experiment were
analyzed as a function of whether or not they mentioned the theories (see
Figure 4). These two groups of undergraduates ran rather different first
experiments.

The undergraduates that mentioned the theories focused on the
source context, spacing, and delay variables—the variables that are most
obviously relevant to the theories. By contrast, the undergradunates not
mentioning the theories primarily varied repetitions, the upper-leftmost
variable in the interface.

Moreover, relative ordering of variable use in this group is highly sug-
gestive of a left-to-right, top-to-bottom strategy, which is much more
consistent with simply varying variables without regard to their relevance
to the theories.
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Figure 4. Proportion of undergraduates varying each of the variables in the first experi-
ment as a function of whether or not they mentioned the theories in their first experiment

Figure 5 presents the corresponding variable use in the first experi-
ment for the domain and Task Experts, who all mentioned the theories in
their first experiment. While the experts focused on different variables
than the undergraduates, perhaps reflecting different views of what vari-
ables were relevant to the theories, the experts did prefer spacing and
source context (the variables of obvious relevance) and avoided repeti-
tions, the variable of least apparent relevance of the theories.
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Figure 5. Proportion of demain and Task Experts varying each of the variables in the first
experiment
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Experiment Design Skill 2: Keep Experiments Simple (When Necessary)

One general principle of experiment design is to keep experiments simple,
especially as a first approach. One rough measure of the complexity of an
experiment in this context is the number of cells in an experiment. For
example, the experiment in Figure 1 has 12 cells (2 x 3 x 2). Figure 6 pre-
sents the mean experiment complexity for participants in the various
groups, defined as the mean number of cells in the design of each experi-
ment.
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Figure 6. Mean number of factorial design cells per experiment in the first experiment and
across alfl experiments

The Domain Experts designed more complex experiments than did
the Task Experts, and the Pre-RM undergraduates designed more com-
plex experiments than did the Task Experts? These differences are
reflected, both in the number of variables that the participants manipu-
lated (Task Experts manipulated two or fewer variables, the other groups
manipulated two or more variables), and in the pumber of levels per
manipulated dimension (Task Experts typically included only two levels
in their manipulations, the other groups two or three levels equally often).
Moreover, 40% of the Pre-RM undergraduates attempted to design exper-
iments with more than four factors, whereas none of the Task Experts
attempted such complex designs. Thus, it appears that Domain Experts

2 Readers outside of cognitive psychology may be shocked by the size of the experiments generated by
the Domain Experts However, in this area of cognitive psychology, with many short-duration trials,
it is not uncommeon to have designs with 20+ celis
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do not need to keep experiments simple, and that the Pre-RM undergrad-
uates do not know that they should keep experiments simple. There was a
small influence of the research methods courses on the undergraduates:
They appeared less likely to start with very complex experiments and they
were less likely to try to design an experiment with more than four factors
(27%). However, there was no impact on the mean complexity across later
experiments.

Experiment Design Skill 3:Keep General Settings Constant Across
Experiments

In the current context, it is not possible to examine the traditional experi-
ment design issue of avoiding confounds (see Klahr, Chen, and Erdosne-
Toth, this volume) because the SPL interface forces participants to use full
factorial designs—it is impossible to design a confounded experiment.
However, it is possible to study a related general heuristic of experimental
design: use the same constant values across experiments (Schauble, 1990;
Tschirgi, 1980). By continuing to use the same constant values, it makes
comparisons across experiments easier and it capitalizes on the success of
previous experiments. To illustrate this issue, consider the following
example sequence of experiments, Suppose that a participant decides in
the first experiment to manipulate only the repetitions variable, holding
the other variables constant. This manipulation and the constant values
chosen for the other five variables are listed as Experiment I in Table 2.
Suppose that the participant finds little effect of repetitions but wants to
see whether a stronger manipulation of repetitions would have a more
noticeable effect (e.g., two versus five repetitions). What values should be
selected for the other variables? In particular, should the participant use
the same constant values again (as in Experiment 2 of Table 2}, or should
the participant select new constant values (as in Experiment 2' of Table 2)?
The general wisdom, as we shall see, is to keep most if not all the values
the same.

Violations of this heuristic were counted by examining the situations
in which a variable was not manipulated in consecutive experiments and
then determining whether the same constant value was used in both
experiments (e.g., hold spacing constant at 10 minutes across multiple
experiments).
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Table 2 Example experiments illustrating the ceding of feature changes from experiment
to experiment. Experiment 2 changes zero features from Experiment | Experiment 2'
changes five features from Experiment |

Variable Experiment 1 Experiment 2 Experiment 2'
Repetitions 2vs. 3 2vs 5 2vs 3

Spacing 10 minutes 10 minutes 2 days

Source context Same room Same room Different room
Test task Recall Recall Recognition
Delay 1 day 1 day 20 minutes
Test context Same room Same room Different mood

Since there are occasionally good reasons for changing one or two
constant values (e.g., to examine whether the result generalizes to a differ-
ent task or population, or to address floor or ceiling effect problems), we
focused on the frequency of extreme changes: Changing more than two
constant values from one experiment to the next. Figure 7 presents the
percentage of participants in each group ever changing more than two
constant values.
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Figure 7 The percentage of participants in each group varying more two values {for vari-
ables held constant) from one experiment Lo the next

Experts appear to be sensitive to this heuristic and never changed such
a large number of values. By contrast, a sizeable minority of undergradu-
ates did undergo such extreme changes. Moreover, this estimate of the
number of heuristic violators is likely to be a large underestimate: Many of
the undergraduates conducted complex experiments that by definition
reduces the number of constant variables that could be changed.
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Thus far, we have seen clear evidence of domain-general skills of
experimental design: Skills that the experts share among one another and
are not possessed by untrained undergraduates. There is also some evi-
dence for some learning of these general skills in an undergraduate
research methods course. Now we shall turn to the case of outcome inter-
pretation skills.

Qutcome Interpretation Skill 1: Encode Interaction Outcomes

A very basic interpretation skill is the ability to correctly encode main
effects and interactions from a table of data. However, most of the vari-
ables in this task had main effects that one would have expected. For
example, more repetitions produced better recall, Jonger delays produced
worse recall, etc. Thus, examining performance on main effects is not
likely to produce insight into the participants’ abilities. By contrast, the
interactions in this task were less obvious. There were two, two-way inter-
actions. First, there was a quantitative spacing x delay interaction, such
that the spacing effect was larger at longer delays. Second, there was an
effect/no-effect spacing x test task interaction, such that there was no
spacing effect with stem completion. Participants’ final hypotheses were
coded for correctness on these two interactions, and only those partici-
pants who had conducted the relevant experiments were included in this
analysis. Overall, the Domain Experts and the Task Experts were equally
able to correctly encode these interactions (see the upper curve in Figure
8). By contrast, the undergraduates were half as likely to encode the inter-
actions, and this ability did not improve with a research methods course.

Outcome Interpretation Skill 2: Ignore Small Noise Levels in Data

In addition to being able to encode interactions when they exist, there is
also the skill of noting non-interactions (i.e., not being deceived by small
levels of noise). To see whether the groups differed in their ability to note
non-interactions, the participant’s final conclusions were coded for
descriptions of non-existent interactions. The Domain Experts and Task
Experts almost never made such errors (see the lower curve of Figure 8).
The Pre-RM also rarely made such errors.
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Figure 8 The percentage of participants in each group making commect conclusions about
each interaction given opportunity io observe the interaction (Interactions} and percentage
of participants making extraneous interaction conclusions (Noise)

However, the presence of any errors shows that undergraduates were
willing to pay attention to and report interactions. Thus, the difference in
the ability to report interactions is not likely to be due to an unwillingness
to discuss interactions. Interestingly, there was a slight increase in the
number of false interactions reported following the research methods
course.

Outcome Interpretation Skili 3: Relate Results to Theories

After encoding the basic results of each experiment, the participants
should have attempted to relate the experimental evidence to the theories
under test. To investigate potential differences across groups in this skill,
we coded for the presence of conclusions made about the two theories
while interpreting outcomes (during the first experiment or during any
experiment). The Domain Experts and Task Experts all mentioned the
theories at some point, and usually mentioned a theory during the inter-
pretation of the first experiment. By contrast, only half of the Pre-RM
undergraduates ever made any mention of the theories, and they men-
tioned theories much less often in interpreting the outcome of the first
experiment (see Figure 9). Thus, it appears that many of the undergradu-
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ates did not use the theories in designing or interpreting the experiments.
As with mentioning theories in the design of experiments, there was a
slight improvement with a research methods course in the mentioning of
theories during outcome interpretation.
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Figure 9. Percentage of participants in each group who mention the theories during out-
come interpretation (during the first experiment or during any experiment)

One interpretation of the lack of mention of the theories is that the
undergraduates did not understand the theories and thus did not mention
them. There is data from the students’ final conclusions that addresses
these issues. After conducting all their experiments, the participants were
asked about their conclusions for each theory. If the students did not
understand the theories, then they would be unlikely to provide any con-
clusions regarding the theories. However, over 90% of the undergraduates
made conclusions about the correctness of each theory. Of these, most
provided some empirical justification to support their claims (e.g., the
shifting context theory is correct because there is a context effect). Yet
many of these comments about the relationship between the theories and
the evidence appeared to be constructed only when asked. That is, when
first asked about conclusions, the students tended not to comment on the
theories but instead comment on the effects of the various variables (e.g.,
there is an effect of spacing and delay, but not of source context). When
subsequently asked about the theories, the students made comments like:
“Oh, the theories. What were they again? Let me think about that”

Providing further support that the undergraduates understood the
theories, approximately 10% of the undergraduates who made conclu-
sions about the theories provided no empirical justifications for their
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claims—instead they simply referred to their own personal experiences
and beliefs {e.g., the shifting context theory is correct because that is what
works for me}. Thus, not only did the undergraduates understand the the-
ories well enough to make conclusions regarding them, but they also
understood them so well to apply them to their own lives. Of course, in
this context, it was not particularly appropiiate to rely exclusively on per-
sonal experience and belief as a justification. This is further evidence that
some of the undergraduates did not understand the basic role of experi-
mentation in theory testing.

General Discussion

The chapter began with three questions. The results from the studies pro-
vide partial answers to these questions. First, it appears that there are gen-
eral skills shared by different kinds of scientists, or at least different kinds
of psychologists. On all of the dimensions, the Domain Experts and Task
Experts performed quite well and equally well. Thus, this study has identi-
fied a core set of experiment design and outcome interpretation skills that
psychologists share, independent of their research styles, training back-
ground, and research domain.

Second, these core skills are not ones already possessed by all intelli-
gent adults. The experts performed significantly better than the under-
graduates. Moreover, when the undergraduates were split by their SATs,?
there were no performance differences on these dimensions. Thus, at least
within these ranges of intelligence and for these skills, overall intelligence
appears not to play a role. What is surprising from these results is that so
many of the undergraduates were missing such fundamental skills. These
were bright students at a strong private university and presumably had
already been exposed to many science content courses. Yet, they appeared
to be unclear on the important and basic relationship between theory and
experimental data.

The implication for science education from these results are clear. We
have identified important skills that can be applied across a wide range of
domains and are not yet possessed by untrained adults. Therefore, we

3 The undergraduates were divided using a mediar split of 1240 combined math plus verbal The
mean combined scores of the twe groups were 1152 and 1340 Thus, there was a fairly large differ-
ence in scores between the two groups, and the higher group had scores more than adequate for
entry into graduate school in psychology
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have a clear target for instruction. What is not so clear is how to teach
these skills.

Third, and relevant to this last point, it appears that current under-
graduate research methods classes in psychology address only some of
these skills. On only half of the six skills were there signs of improvement
as a result of taking a research methods course. Moreover, on all six
dimensions, there was still room for improvement—there were still signif-
icant differences between the Post-RM and expert groups for all six skills.
This lack of improvement cannot be attributed to one bad instructor or
one bad curriculum. The Post-RM group included students from five dif-
ferent classes, taught by five different instructors, teaching, in some cases,
very different curricula.

There are several interpretations of the mediocre improvement of the
Post-RM group. For example, it is possible that the students had been
taught the relevant skills but did not see the relationship between their
class material and the SPL task. In the psychological literature on analogi-
cal reasoning, this might be called a failure to spontaneously notice the
deep similarity between the two domains. At the end of the SPL task, the
students were asked whether their psychology course had helped them do
the task, and if so, what aspects. Three-quarters of the Post-RM students
thought their course had helped, whereas only half of the Pre-RM stu-
dents thought their course had heiped. When the Post-RM students
thought the courses had helped, the two most common aspects that stu-
dents mentioned were various aspects of designing the experiment (being
systematic, avoiding confounds) and various aspects of interpreting the
outcomes {organizing the tables, reading the tables for main effects and
interactions). The Pre-RM group mentioned design aspects 25% of the
time and never mentioned interpretation aspects. Many of them felt their
course had helped but could not name a particular way in which it had
helped. The Post-RM group mentioned design aspects 50% of the time
and interpretation aspects 33% of the time. Thus, many of the Post-RM
group were more likely to see a connection to their research methods class
and could be more articulate about that connection.

Of particular interest are the Post-RM students that did not feel that
their research methods course had helped them. Why did they feel that the
course that should be so directly relevant to the current task had not
helped? A few said that they already knew how to do this kind of task
before taking the research methods. However, most said that the current
task was too different from what was covered in the course.
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This pattern of responses suggests that noticing the relationship
between their research methods course and the SPL task may be part of
the problem, but it is not likely to be the primary reason for their poor
performance on the SPL task. This raises the question: What material was
covered in the courses? Perhaps the skills examined in this study were not
the ones covered in those courses. To address this issue, the instructors
were shown a list of the skills examined, and were asked to rate the skills
on two dimensions: 1) Were these skills covered in their course, and 2)
whether or not a skill was explicitly covered, how likely it was that the stu-
dents would possess those skills at the end of the course?

Looking at the correlations among instructors’ responses, there were
great similarities in what was covered, but essentially no agreement in
what the students should be able to do. This lack of agreement about what
students could do was true for both the items that the instructors felt they
covered and for the ones they felt they did not cover. The instructors used
a scale of zero (never) to four (often) for the taught question and zero
{none of the students) to four (all of the students) for the “should possess”
question. The mean ratings for each skill are indicated in Table 3. As can
be seen in the table, the instructors felt that five of the six skills were
taught in their class, and that at least some of their students should pos-
sess each of the six skills.

Table 3 also indicates that improvement on each skill as a result of
taking these research methods classes. An effect size measure was used—it
divides the difference in group means by the standard deviation in group
performance (i.e., an effect size of 1 is a one standard deviation improve-
ment).4 As noted earlier, only three of the six skills showed significant
improvements. The one skill that the instructors unanimously agreed was
not covered (keep settings constant across experiments) was among the
skills that showed no improvement. Thus, we have an explanation for the
lack of improvement on one of the skills (and we have evidence that stud-
ies of the current type can provide new insights into what skills should be
included in research methods courses). However, the other two skills that
showed no improvement were rated as covered—in fact, one of the skills
(encode interactions) had the highest ratings on the taught dimension.
Thus, some of the skills showed no improvements despite (apparently)
being covered in the courses.

4. For the skilis in which two measures had been pathered (first experiment/ail experiments), the first
experiment measure was used because it seemed to most cleanly represent transfer from the course
rather than learning that occurred during the study
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Table 3. For each of the six skills examined, the improvement {rom Pre-RM and Post-RM
groups {difference in group means divided by group standard deviation), and the mean
instructor ratings on whether the skills were taught and whether the students should pos-
sess those skills

Improve Taught Should

Skill (Effect Size) {0-4) possess (0-4)
Design experiments to test 0.62 25 2.5
theories
Keep experiments simple 0.51 25 23
Keep settings constant across 0.09 0.0 2.0
experiments
Encode interactions 0 38 33
Ignore small noise levels in data 0 25 25
Relate data to theories under 0.52 3.5 33
test

In sum, the courses produced at best small improvement on these
core skills, and the variability in improvements can only be partially
explained by what was explicitly not covered in the courses. What can be
done to improve the situation? It may be that these skills, while basic and
simple to describe, are not so simple to learn. This could be because they
have many, many component skills. For example, encoding interactions in
tables may have many component skills relating to the many types of
interactions one may find. In support of this interpretation, the computa-
tional model that we developed required a surprisingly large set of If-Then
rules to search a table and encode interactions. We are investigating this
interpretation further using eye-tracking studies of how experts and
undergraduates scan tables of data.

Another reason for why the skills could be difficult to learn is that
they involve deep misconceptions rather than simple lack of knowledge.
For example, understanding the basic relationship between theory and
evidence may involve a deep misconception. Kuhn (198%; 1991} has
argued that many children and adults have confusion between theory and
evidence—that they treat the two as the same. The work by Lehrer, Schau-
ble, and Petrosino (this volume) suggests that many students do not
understand the larger context in which experiments fit. The current find-
ings are consistent with those views.

There is another line of research suggesting that many teenagers have
an epistemological stance in which all beliefs are viewed as equally valid-—
every belief is just someone’s opinion. It is often only with extended
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undergraduate and graduate school experience that many individuals
appear to acquire the more sophisticated view that while nothing can be
known with 100% certainty, some views are more credible that others
given the current evidence (Kitchener & King, 1981; Kitchener, King,
Wood, & Davison, 1989). One could see how an individual with the per-
spective that all beliefs are equally valid could find the task of designing
experiments (i.e., collecting data) to select among theories as a fundamen-
tally confusing, if not wrong-minded, activity {similar to a claim currently
made by deconstructivists).

Designing for Science: The Simulated Psychology Lab

A more optimistic interpretation of our results is that, while current
instruction has produced little improvement on these skills, alternative
forms of instruction might produce more consistent and strong improve-
ments. We propose that the Simulated Psychology Lab might contain the
seeds of such an alternative form. In this chapter, we have presented thus
far two uses of the SPL task. First, we presented it as a research tool for
understanding what skills experts use in designing and interpreting exper-
iments. This has advantages for instruction in that it can help identify
which skills need to be covered (e g, keep settings constant across experi-
ments).

Second, SPL can be used as an assessment tool for understanding
what undergraduates learn or do not learn in research methods and other
psychology classes. The essay and multiple choice exams that courses typ-
ically use are not likely to be good tests of the complex procedural skills
required in experimental design and outcome interpretation. The project-
based assessment that research methods courses also use has its own prob-
lems, too. The students are typically scaffolded through the design and
interpretation process to such a heavy extent that it is often unclear what
was the student's skill and what was the teacher’s skill. By contrast, SPL
offers a way to test the complex skills involved in experimental design and
outcome interpretation.

The third and new use of SPL that we propose is one of a teaching
tool. With the use of computer projection screens that are now readily
available in university settings, the instructor can bring the SPL task into
the classroom and use it as a teaching tool. As a group activity, experi-
ments can be designed and outcomes can be interpreted. The students can
quickly see the experiment design cycle at an appropriately detailed level.
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Misconceptions can be addressed and correct behavior can be modeled by
the instructor. On the experiment design end, the advantage of SPL is that
the consequences of various design decisions can be quickly and con-
cretely explored. For example, the rapid growth of the number of cellsin a
factorial design becomes quickly clear. On the outcome interpretation
end, the SPL task can be used to show how the results of one experiment
can be used to inform the design of the next experiment. For example,
floor or ceiling effects can be used to calibrate the difficulty of test items in
an experiment {and they make clear the importance of pilot experi-
ments!).

SPL is written in an educationally-targeted programming environ-
ment, called ¢cT (Sherwood & Sherwood, 1988), that is cross-platform
(i.e., Mac, PC, unix). The SPL program is freely available for distribution
from the first author. The interface was designed such that it could be gen-
eralized to other scientific domains. For example, by changing the names
of the variables to be manipulated and by specifying the equations deter-
mining outcomes, the SPL task can be used in other domains such as
social psychology, physics, sociology, etc. The only requirement is that fac-
torial experimental designs be appropriate for the domain. Looking to the
future, we are currently developing an HTML variant that allows more
flexibility in both the range of experiments that can be designed and the
kinds of outcome analyses that can be conducted {e.g., graphs, inferential
statistics, etc.).
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